JP6909191B2 - 積層体、半導体装置及び積層体の製造方法 - Google Patents

積層体、半導体装置及び積層体の製造方法 Download PDF

Info

Publication number
JP6909191B2
JP6909191B2 JP2018182714A JP2018182714A JP6909191B2 JP 6909191 B2 JP6909191 B2 JP 6909191B2 JP 2018182714 A JP2018182714 A JP 2018182714A JP 2018182714 A JP2018182714 A JP 2018182714A JP 6909191 B2 JP6909191 B2 JP 6909191B2
Authority
JP
Japan
Prior art keywords
crystal
intermediate layer
layer
metal oxide
laminate according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018182714A
Other languages
English (en)
Other versions
JP2020053598A (ja
Inventor
洋 橋上
洋 橋上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2018182714A priority Critical patent/JP6909191B2/ja
Priority to KR1020217007405A priority patent/KR20210058834A/ko
Priority to EP19867010.1A priority patent/EP3859770A4/en
Priority to CN201980060388.5A priority patent/CN112771651A/zh
Priority to US17/272,873 priority patent/US20210313433A1/en
Priority to PCT/JP2019/035415 priority patent/WO2020066575A1/ja
Priority to TW112123178A priority patent/TWI838287B/zh
Priority to TW108134846A priority patent/TWI811459B/zh
Publication of JP2020053598A publication Critical patent/JP2020053598A/ja
Priority to JP2021110457A priority patent/JP7220257B2/ja
Application granted granted Critical
Publication of JP6909191B2 publication Critical patent/JP6909191B2/ja
Priority to US18/121,680 priority patent/US20230223446A1/en
Priority to US18/121,691 priority patent/US11984481B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds
    • H01L29/2206Amorphous materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02483Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • H01L29/7828Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate

Description

本発明は、コランダム構造の結晶層を有する積層体とこれを用いた半導体装置及びコランダム構造の結晶層を有する積層体の製造方法に関する。
高耐圧、低損失及び高耐熱を実現できる次世代のスイッチング素子として、バンドギャップの大きな酸化ガリウム(α−Ga)を用いた半導体装置が注目されており、インバータなどの電力用半導体装置や、受発光素子への応用が期待されている。
霧化されたミスト状の原料を用いて、基板上に結晶成長させるミスト化学気相成長法(Mist Chemical Vapor Deposition:Mist CVD。以下、「ミストCVD法」ともいう。)が開発され、コランダム構造を有する酸化ガリウム(α−Ga)の作製が可能となってきた(特許文献1)。この方法では、ガリウムアセチルアセトナートなどのガリウム化合物を塩酸などの酸に溶解して前駆体とし、この前駆体を霧化することによって原料微粒子を生成し、この原料微粒子とキャリアガスと混合した混合気をサファイアなどコランダム構造の基板の表面に供給し、原料ミストを反応させることで基板上に単一配向した酸化ガリウム薄膜をエピタキシャル成長させている。
このようなヘテロエピタキシャル成長で特に問題となるのは、基板材料と薄膜材料との格子不整合や、あるいは基板の品質に起因した結晶欠陥である。これらの結晶欠陥を抑制する方法として、ELO(Epitaxial Lateral Overgrowth)が知られている。この手法では、例えば非晶質薄膜を用いたマスクを基板表面に形成し、部分的に露出させた基板表面からの選択的なエピタキシャル成長とマスク上の横方向成長を行う。これにより転位がマスクで止められたり、あるいは結晶の方位によっては転位が曲げられたりして、エピタキシャル膜中の欠陥が低減される。特許文献2には、マスクとしてSiOを用いてα−Ga薄膜を形成した例が開示されている。
特許5793732号 特開2016−100592号公報
上記特許文献1に開示されたミストCVD法によっては、結晶欠陥が十分に抑制された高品質なコランダム構造の結晶を得ることはできなかった。
一方、上記特許文献2に記載のELO法で用いる選択成長用マスクとしては、エピタキシャル膜とは組成の異なる非晶質膜が用いられるため、通常、所望のエピタキシャル膜を形成する装置とは別の製膜装置で形成される。また、マスクのパターニングは、一般にフォトリソグラフィで行われる。したがって、結晶欠陥が抑制された高品質な結晶薄膜を得るために、従来のELO法によるエピタキシャル成長を採用した場合、工程が煩雑であるため、スループットの増大や生産コストが高くなるという問題があった。
本発明は、上記問題を解決するためになされたものであり、結晶欠陥が十分に抑制された高品質なコランダム構造の結晶を有する積層体を提供すること、及び、結晶欠陥が抑制された高品質な結晶薄膜を低コストで得ることが可能な結晶の製造方法を提供することを目的とする。
本発明は、上記目的を達成するためになされたものであり、結晶基板と該結晶基板の主表面上に形成された、第1金属酸化物を主成分としコランダム構造からなる結晶相の結晶領域と、アモルファス相のアモルファス領域とが混在した中間層と、該中間層上に形成された、第2金属酸化物を主成分としコランダム構造の結晶層とを有する積層体を提供する。
このような積層体であれば、中間層のアモルファス領域で基板に由来する転位欠陥の伸長が止められるため、低欠陥で高品質なコランダム構造の結晶層を有するものとなる。
このとき、前記結晶領域は、前記結晶基板の結晶面からのエピタキシャル成長層である積層体とすることができる。
これにより、中間層の結晶領域が種結晶となるため、結晶基板の結晶方位に従った高品質な結晶層を有するものとなる。
このとき、前記中間層の、前記結晶基板の前記主表面に垂直な任意の断面において、前記中間層に含まれる前記結晶領域の割合が1%以上である積層体とすることができる。
これにより、中間層は、結晶基板から伸長する転位欠陥をより有効に低減されたものとなるため、より高品質な結晶層を有するものとなる。
このとき、前記中間層の、前記結晶基板の前記主表面に垂直な任意の断面において、前記中間層に含まれる前記結晶領域の割合が4%以上25%以下である積層体とすることができる。
これにより、さらに高品質な結晶層を有するものとなる。
このとき、前記中間層の膜厚が1nm以上である積層体とすることができる。
これにより、中間層は、結晶基板から伸長する転位欠陥をより有効に阻止できるものとなるため、より高品質な結晶層を有するものとなる。
このとき、前記中間層の膜厚が10nm以上である積層体とすることができる。
これにより、さらに高品質な結晶層を有するものとなる。
このとき、前記第1金属酸化物が、アルミニウム、チタン、バナジウム、クロム、鉄、ガリウム、ロジウム、インジウム、イリジウムのいずれかを含む酸化物を主成分とする積層体とすることができる。
また、前記第2金属酸化物が、アルミニウム、チタン、バナジウム、クロム、鉄、ガリウム、ロジウム、インジウム、イリジウムのいずれかを含む酸化物を主成分とする積層体とすることができる。
これにより、電気特性に優れ半導体装置により適した結晶層を有する積層体となる。
このとき、前記中間層がさらにシリコンを含む積層体とすることができる。
これにより、良質な結晶層を形成可能な中間層を、より安定して形成できるものとなる。
このとき、前記中間層に含まれる前記シリコンの濃度は0.5at%以上、より好ましくは、1at%以上10at%以下である積層体とすることができる。
これにより、結晶領域とアモルファス領域とが混在した中間層を、さらに安定して形成できるものとなる。
前記結晶基板と前記中間層との間に、さらに応力緩和層を備える積層体とすることができる。
これにより、中間層における結晶領域の結晶性がより向上したものとなり、結晶層の結晶性がより向上したものとなる。
このとき、半導体層と電極とを少なくとも含む半導体装置であって、前記半導体層として、前記積層体の少なくとも一部を備えるものとすることができる。
これにより、より高性能な半導体装置となる。
このとき、霧化した第1金属酸化物前駆体とキャリアガスとシリコンが混合された第1混合気を形成するステップと、前記第1混合気を加熱された結晶基板上に供給して、第1金属酸化物を主成分としコランダム構造からなる結晶相の結晶領域と、アモルファス相のアモルファス領域とが混在した中間層を形成するステップと、霧化した第2金属酸化物前駆体とキャリアガスが混合された第2混合気を形成するステップと、前記第2混合気を加熱された前記結晶基板上に供給して、第2金属酸化物を主成分としコランダム構造の結晶層を前記中間層上に形成するステップとを含む積層体の製造方法を提供することができる。
このような積層体の製造方法によれば、特殊なマスクを形成する必要なく、低コストで、高品質なコランダム構造の結晶層を容易に形成することができる。
このとき、前記第1混合気を形成するステップでは、前記霧化した第1金属酸化物前駆体と前記キャリアガスとを前記結晶基板上に搬送する途中で、前記シリコンの添加が行われる積層体の製造方法とすることができる。
これにより、簡便に結晶領域とアモルファス領域とが混在した中間層を形成することができる。
このとき、前記シリコンの添加は、前記霧化した第1金属酸化物前駆体と前記キャリアガスとをシリコーン樹脂製の管を通して搬送することにより行われる積層体の製造方法とすることができる。
これにより、さらに容易に結晶領域とアモルファス領域とが混在した中間層を形成することができる。
このとき、前記中間層を形成するステップにおいて、前記第1混合気の供給量を変化させる積層体の製造方法とすることができる。
これにより、中間層中の結晶領域割合や中間層の厚みの制御を容易に行うことができる。
以上のように、本発明によれば、結晶欠陥が抑制された高品質なコランダム構造の結晶層を有する積層体を提供できる。また、本発明によれば、高品質なコランダム構造の結晶層を有する積層体を容易かつ低コストで生産できる。
本発明に係る積層体の構造の一形態を示す図である。 本発明に係る積層体の構造の別の形態を示す図である。 本発明に係るショットキーバリアダイオード(SBD)の一例を示す図である。 本発明に係る高電子移動度トランジスタ(HEMT)の一例を示す図である。 本発明に係る金属酸化膜半導体電界効果トランジスタ(MOSFET)の一例を示す図である。 本発明に係る絶縁ゲート型バイポーラトランジスタ(IGBT)の一例を示す図である。 本発明に係る発光素子ダイオード(LED)の一例を示す図である。 本発明に係る積層体の製造方法に用いるミストCVD装置の一形態を示す図である。 実施例におけるTEM像を示す図である。 比較例におけるTEM像を示す図である。 実施例及び比較例における積層体中のシリコン濃度分布を示す図である。
以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
上述のように、結晶欠陥が十分に抑制された高品質なコランダム構造の結晶が求められていた。
本発明者らは、上記課題について鋭意検討を重ねた結果、結晶基板と該結晶基板の主表面上に形成された、第1金属酸化物を主成分としコランダム構造からなる結晶相の結晶領域と、アモルファス相のアモルファス領域とが混在した中間層と、該中間層上に形成された、第2金属酸化物を主成分としコランダム構造の結晶層とを有する積層体により、低欠陥で高品質なコランダム構造の結晶層を有するものとなることを見出し、本発明を完成した。
また、上述のように、結晶欠陥が抑制された高品質なコランダム構造の結晶を有する積層体を、低コストで得ることが可能な積層体の製造方法が求められていた。
本発明者らは、上記課題について鋭意検討を重ねた結果、霧化した第1金属酸化物前駆体とキャリアガスとシリコンが混合された第1混合気を形成するステップと、前記第1混合気を加熱された結晶基板上に供給して、第1金属酸化物を主成分としコランダム構造からなる結晶相の結晶領域と、アモルファス相のアモルファス領域とが混在した中間層を形成するステップと、霧化した第2金属酸化物前駆体とキャリアガスが混合された第2混合気を形成するステップと、前記第2混合気を加熱された前記結晶基板上に供給して、第2金属酸化物を主成分としコランダム構造の結晶層を前記中間層上に形成するステップとを含む積層体の製造方法により、結晶欠陥が抑制された高品質な結晶薄膜を低コストで得ることができることを見出し、本発明を完成した。
以下、図面を参照して説明する。
図1に、本発明に係る積層体100を示す。積層体100は、結晶基板101と、結晶基板101の主表面上に形成された、第1金属酸化物を主成分としコランダム構造からなる結晶相の結晶領域102aと、アモルファス相のアモルファス領域102bが混在した中間層102と、中間層102上に形成された、第2金属酸化物を主成分としコランダム構造の結晶層103を有している。結晶領域102aは柱状でランダムに複数形成されており、アモルファス領域102bは結晶領域102aの間を埋めるように形成されている。また、結晶層103は結晶領域102aからのエピタキシャル成長により形成されている。
結晶基板101は、結晶物を主成分として含む基板であれば特に限定されず、公知の基板であってよい。絶縁体基板、導電性基板、半導体基板のいずれであってもよい。また、単結晶基板であっても、多結晶基板であっても良い。品質及びコストの面から、例えばサファイア基板を用いることが好ましい。
サファイア基板としては、例えば、c面サファイア基板、m面サファイア基板、a面サファイア基板などが使用できる。また、前記サファイア基板はオフ角を有していてもよい。前記オフ角は、特に限定されないが、好ましくは0°〜15°である。なお、前記結晶基板の厚さは特に限定されないが、取り扱いやコストの面から200〜800μm程度が好ましい。
ここで、第1金属酸化物と第2金属酸化物を構成する金属元素は、同じであっても、異なっていてもよい。また、「第1金属酸化物を主成分とし」との表現においては、第1金属酸化物のほかにドーパントや不可避的不純物等が含まれていてもよいことを意味しており、例えば、第1金属酸化物が概ね50%以上含まれているものを指す。第2金属酸化物についても同様である。
図1には、中間層102が結晶基板101上へ直接形成された例を示したが、中間層は結晶基板上に形成された他の層を介して形成されてもよい。特に結晶基板と結晶領域の格子不整合が問題となる場合などでは、結晶基板101と中間層102との間に応力緩和層を設けることができる。
図2に、応力緩和層204を設けた積層体200を示す。積層体200は、図1に示す積層体100と同様に、結晶基板201と、結晶領域202aとアモルファス相のアモルファス領域202bが混在した中間層202と、中間層202上に形成された、結晶層203を有している。また、結晶基板201と中間層202との間に、応力緩和層204を設けている。これにより、中間層202における結晶領域202aの結晶性をより向上することができ、その結果、結晶層203の結晶性もより向上されたものとすることできる。
応力緩和層204は、例えば結晶基板201と結晶領域202aの格子不整合を緩和する場合などに形成するのが好ましい。この場合、応力緩和層204の格子定数を、応力緩和層204の成長方向に向けて、結晶基板201の格子定数に近い又は同じ程度から、結晶領域202aの格子定数に近い又は同程度の値へと連続的あるいは段階的に変化させることが好ましい。例えばAl基板上にα−Gaの結晶領域を含む中間層を形成する場合、応力緩和層204を(AlGa1−x(0≦x≦1)で形成し、結晶基板201側から中間層202側へ向かってx値を小さくしていくのが良い。
ここからは、図1に記載の積層体100、図2に記載の積層体200に共通な事項について説明する。
中間層102、202におけるアモルファス領域102b、202bは、特に結晶基板に由来した転位欠陥などの伸展を妨げる効果がある。結晶領域102a、202aは、結晶層103、203の種結晶として機能する。
結晶層103、203の形成過程では、結晶領域102a、202aからのエピタキシャル成長のほか、中間層102、202のアモルファス領域102b、202bの表面に形成された核からの結晶成長も生じ得る。アモルファス領域102b、202bの表面に形成された核からの結晶成長は、結晶領域102a、202aからのエピタキシャル成長とは異なり、ランダムな結晶方位をもつため、より高品質な結晶層103、203を形成するためには、アモルファス領域102b、202bと結晶領域102a、202aの比率を適切な範囲とすることが好ましい。このためには、結晶基板101、201の主表面に垂直な任意の断面において、中間層102、202に含まれる結晶領域102a、202aの割合を1%以上とすることが好ましく、4%以上25%以下とすることがより好ましい。なお、ここでの割合は、断面における各領域の面積を基準としている。
中間層102、202に含まれる結晶領域102a、202aの割合をこのような範囲とすることで、より高品質な結晶層103、203とすることができる。
また、中間層102、202の膜厚は、1nm以上、より好ましくは10nm以上とすることが好ましい。中間層102、202の膜厚をこのような範囲とすることで、結晶基板に由来した転位欠陥などの伸展を妨げる効果をより高いものとすることができる。
中間層102、202は、コランダム構造を取り得る金属酸化物であれば特に限定されず、例えば、アルミニウム、チタン、バナジウム、クロム、鉄、ガリウム、ロジウム、インジウム、イリジウムのいずれかを含む酸化物を主成分とすることができる。より具体的には、Al、Ti、V、Cr、Fe、Ga、Rh、In、Irであり、また上記の金属元素から選ばれる2元素をA、Bとした場合に(A1−x(0<x<1)で表される2元系の金属酸化物や、あるいは、上記の金属元素から選ばれる3元素をA、B、Cとした場合に(Al1−x−y(0<x<1、0<y<1)で表される3元系の金属酸化物とすることができる。
また、中間層102、202はシリコンを含有することが好ましい。中間層102、202がシリコンを含有することで、結晶領域102a、202aとアモルファス領域102b、202bとが混在した中間層102、202を、より安定して形成できるものとなる。
この場合のシリコン濃度は、0.5at%以上、より好ましくは1at%以上10at%以下とすることができる。0.5at%以上とすればアモルファス領域102b、202bをより安定して形成することができ、また10%以下とすれば、結晶領域102a、202aをより安定して形成することができる。
なお、中間層102、202では、中間層102、202を形成する金属酸化物の化学量論よりも酸素の割合が増加することがわかっている。このことから、中間層102、202に添加されたシリコンはシリコン酸化物を形成し、中間層の下地となる結晶基板表面の結晶構造を乱すように作用し、アモルファス領域の形成を促進すると考えられている。
結晶層103、203は、コランダム構造を取り得る金属酸化物であれば特に限定されず、例えば、アルミニウム、チタン、バナジウム、クロム、鉄、ガリウム、ロジウム、インジウム、イリジウムのいずれかを含む酸化物を主成分とすることができる。より具体的には、Al、Ti、V、Cr、Fe、Ga、Rh、In、Irであり、また上記の金属元素から選ばれる2元素をA、Bとした場合に(A1−x(0<x<1)で表される2元系の金属酸化物や、あるいは、上記の金属元素から選ばれる3元素をA、B、Cとした場合に(Al1−x−y(0<x<1、0<y<1)で表される3元系の金属酸化物とすることができる。
さらに、結晶層103、203は、上記の金属酸化物の単層構造でも良いし、組成やドーパントなどの含有成分が異なる複数の結晶膜の積層構造であっても良い。
中間層102、202や結晶層103、203の金属酸化物として、上記のような金属酸化物とすることで、半導体装置により適した結晶層又は積層体となる。
また、本発明の積層体100、200における、結晶基板101、201、中間層102、202、結晶層103、203のそれぞれは、導電性を付与すべく不純物でドーピングされていてもよい。この場合の不純物としては、例えば金属酸化物が少なくともガリウムを含む場合には、シリコン、ゲルマニウム、スズ、マグネシウム、銅のいずれか、またはこれらの組合せが好適に使用できる。ドーピングにより添加される不純物の濃度は、目的とする最終製品に応じて適宜設定することができる。例えば、1×1016cm−3以上、8×1022cm−3以下とすることができる。また、結晶層103、203は、異なる不純物濃度が添加された複数層の結晶層の積層とすることもできる。
本発明に係る積層体における結晶層は、欠陥密度が低減され、電気特性に優れており、工業的に有用なものである。このような積層体は、半導体装置等に好適に用いることができ、とりわけ、パワーデバイスに有用である。また、積層体の一部として形成された結晶層をそのままの状態(積層体の状態)で用いてもよいし、前記結晶基板等から公知の方法により剥離等した後に、半導体装置等に適用してもよい。
また、半導体装置は、電極が半導体層の片面側に形成された横型の素子(横型デバイス)と、半導体層の表裏両面側にそれぞれ電極を有する縦型の素子(縦型デバイス)に分類することができ、本発明に係る積層体の少なくとも一部は、横型デバイスにも縦型デバイスにも好適に用いることができる。特に、縦型デバイスに用いることが好ましい。
前記半導体装置としては、例えば、ショットキーバリアダイオード(SBD)、金属半導体電界効果トランジスタ(MESFET)、高電子移動度トランジスタ(HEMT)、金属酸化膜半導体電界効果トランジスタ(MOSFET)、接合電界効果トランジスタ(JFET)、絶縁ゲート型バイポーラトランジスタ(IGBT)又は発光ダイオード(LED)などが挙げられる。
本発明に係る積層体から得られる結晶層をn型半導体層(n+型半導体やn−半導体層等)に適用した場合の好適な例を、図面を用いて説明するが、本発明はこれらの例に限定されるものではない。
なお、以下に例示する半導体装置において、仕様や目的に応じて、さらに他の層(例えば絶縁体層や導体層)などが含まれていてもよいし、また、中間層や緩衝層(バッファ層)などは適宜、追加、省略してもよい。
図3は、ショットキーバリアダイオード(SBD)の一例である。SBD400は、相対的に低濃度のドーピングを施したn−型半導体層401a、相対的に高濃度のドーピングを施したn+型半導体層401b、ショットキー電極402及びオーミック電極403を備えている。
ショットキー電極402及びオーミック電極403の材料は、公知の電極材料であってもよく、前記電極材料としては、例えば、アルミニウム、モリブデン、コバルト、ジルコニウム、スズ、ニオブ、鉄、クロム、タンタル、チタン、金、プラチナ、バナジウム、マンガン、ニッケル、銅、ハフニウム、タングステン、イリジウム、亜鉛、インジウム、パラジウム、ネオジムもしくは銀等の金属又はこれらの合金、酸化錫、酸化亜鉛、酸化レニウム、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン又はポリピロ−ルなどの有機導電性化合物、又はこれらの混合物並びに積層体などが挙げられる。
ショットキー電極402及びオーミック電極403の形成は、例えば、真空蒸着法又はスパッタリング法などの公知の手段により行うことができる。より具体的には、例えば、前記金属のうち2種類の第1の金属と第2の金属とを用いてショットキー電極を形成する場合、第1の金属からなる層と第2の金属からなる層を積層させ、第1の金属からなる層及び第2の金属からなる層に対して、フォトリソグラフィの手法を利用したパターニングを施すことにより形成することができる。
SBD400に逆バイアスが印加された場合には、空乏層(図示せず)がn−型半導体層401aの中に広がるため、高耐圧のSBDとなる。また、順バイアスが印加された場合には、オーミック電極403からショットキー電極402へ電子が流れる。したがって、本発明のSBDは、高耐圧・大電流用に優れており、スイッチング速度も速く、耐圧性・信頼性にも優れている。
図4は、高電子移動度トランジスタ(HEMT)の一例である。HEMT500は、バンドギャップの広いn型半導体層501、バンドギャップの狭いn型半導体層502、n+型半導体層503、半絶縁体層504、緩衝層505、ゲート電極506、ソース電極507及びドレイン電極508を備えている。
図5は、金属酸化膜半導体電界効果トランジスタ(MOSFET)の一例である。MOSFET600はn−型半導体層601、n+型半導体層602及び603、ゲート絶縁膜604、ゲート電極605、ソース電極606及びドレイン電極607を備えている。
図6は、絶縁ゲート型バイポーラトランジスタ(IGBT)の一例である。IGBT700は、n型半導体層701、n−型半導体層702、n+型半導体層703、p型半導体層704、ゲート絶縁膜705、ゲート電極706、エミッタ電極707及びコレクタ電極708を備えている。
図7は、発光ダイオード(LED)の一例である。LED800は、第1の電極801、n型半導体層802、発光層803、p型半導体層804、透光性電極805、第2の電極806を備えている。
透光性電極805の材料としては、インジウム又はチタンを含む酸化物の導電性材料などが挙げられる。より具体的には、例えば、In、ZnO、SnO、Ga、TiO、CeO又はこれらの2以上の混晶又はこれらにドーピングされたものなどが挙げられる。これらの材料を、スパッタリング等の公知の手段で設けることによって、透光性電極805を形成できる。また、透光性電極805を形成した後に、透光性電極805の透明化を目的とした熱アニールを施してもよい。
第1の電極801及び第2の電極806の材料としては、例えば、アルミニウム、モリブデン、コバルト、ジルコニウム、スズ、ニオブ、鉄、クロム、タンタル、チタン、金、プラチナ、バナジウム、マンガン、ニッケル、銅、ハフニウム、タングステン、イリジウム、亜鉛、インジウム、パラジウム、ネオジムもしくはAg等の金属又はこれらの合金、酸化錫、酸化亜鉛、酸化レニウム、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン又はポリピロ−ルなどの有機導電性化合物、又はこれらの混合物などが挙げられる。電極の製膜法は特に限定されることはなく、印刷方式、スプレー法、コ−ティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレ−ティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式、などの中から前記材料との適性等を考慮して適宜選択した方法に従って形成することができる。
次に、図1に記載の本発明に係る積層体の製造方法の一例について、図8を参照しながら説明するが、本発明はこれに限定されるものではない。
図8に、本発明に係る積層体の製造方法に用いる装置の一例を示す。本発明に係る積層体の製造方法においては、ミストCVD装置300を用いる。まず、霧化器302a、302b内には、原料溶液として、それぞれ、第1金属酸化物前駆体312a、第2金属酸化物前駆体312bが収納されており、公知の手段を用いて霧化(「ミスト化」とも言う)され、ミストが形成される。第1金属酸化物前駆体312a、第2金属酸化物前駆体312bとしては、例えば、金属の有機金属錯体(例えばアセチルアセトナート錯体等)や金属ガリウムを酸溶液に溶解したガリウム溶液又はハロゲン化物(例えばフッ化物、塩化物、臭化物又はヨウ化物等)の水溶液などが挙げられる。前記金属は、金属酸化物結晶としてコランダム構造を形成可能な金属であれば限定されず、例えば、アルミニウム、チタン、バナジウム、クロム、鉄、ガリウム、ロジウム、インジウム、イリジウムが挙げられる。また、第1金属酸化物前駆体312aと第2金属酸化物前駆体312bのそれぞれに含まれる金属は、同一でもよいし異なっていてもよい。
原料溶液中の金属の含有量は、特に限定されず、目的や仕様に応じて適宜設定できる。好ましくは、0.001モル%〜50モル%であり、より好ましくは0.01モル%〜5モル%である。
積層体の少なくとも一部に導電性を付与する場合、ドーピングを行うことができる。この場合の不純物原料は、特に限定されないが、例えば前記金属が少なくともガリウムを含む場合には、シリコン、ゲルマニウム、スズ、マグネシウム、銅を含む錯体や化合物が好適に使用でき、特にn型の導電性を付与する場合には、ハロゲン化スズを用いるのが好ましい。これらの不純物原料を、原料溶液中に0.1〜20at%、より好ましくは1〜10at%混合させて用いることができる。
原料溶液の溶媒は、特に限定されず、水等の無機溶媒であってもよいし、アルコール等の有機溶媒であってもよいし、無機溶媒と有機溶媒との混合溶媒であってもよいが、水を用いることが好ましい。
また、ミストCVD装置300は、キャリアガス301の供給手段を備えている。キャリアガス301は、霧化器302a、302b内で形成された霧化した原料溶液(金属酸化物前駆体)と混合され、製膜室309へと搬送される。
図8に示す例では、霧化器302bと製膜室309とが搬送配管306で接続され、霧化器302aからの搬送配管(シリコン添加管)303が搬送配管306の途中に合流する構造が示されているが、搬送配管(シリコン添加管)303と搬送配管306が独立して製膜室309へ接続されていてもよい。なお、搬送配管(シリコン添加管)303については、後で詳述する。
キャリアガス301は、特に限定されず、例えば、空気、酸素、オゾンの他、窒素やアルゴン等の不活性ガス、又は水素ガスやフォーミングガス等の還元ガスが好適に用いられる。キャリアガスの種類は1種類であっても、2種類以上であってもよい。キャリアガスの流量は、基板サイズや製膜室の大きさにより適宜設定すればよく、0.01〜40L/分程度とすることができる。
また、図示していないが、希釈ガスを添加して、霧化された原料とキャリアガスの割合を調節することも可能である。希釈ガスの流量は適宜設定すればよく、キャリアガスの0.1〜10倍/分とすることができる。希釈ガスを、例えば霧化器302a、302bの下流側へ供給しても良い。希釈ガスはキャリアガスと同じものを用いても良いし、異なるものを用いても良い。
製膜室309の構造等は特に限定されるものではなく、アルミニウムやステンレスなどの金属を用いて良いし、これらの金属の耐熱温度を超える、より高温で製膜を行う場合には石英や炭化シリコンを用いても良い。製膜室309の内部又は外部には、結晶基板307を加熱するための加熱手段310が設けられている。
また、結晶基板307は製膜室309内に設置されたサセプタ308上に載置されてよい。
(第1混合気を形成するステップ)
まず、キャリアガス301と、霧化器302aで形成した霧化した第1金属酸化物前駆体と、シリコンとが混合された第1混合気313を形成する。図8に示す例では、キャリアガス301と霧化した第1金属酸化物前駆体とを、製膜室309内に載置された結晶基板307上に搬送する途中で、シリコンを添加し第1混合気313を形成している。搬送する途中でシリコンを添加する方法としては、搬送配管(シリコン添加管)303内を通過させることでシリコンを添加することが、簡便で好ましい。例えば、搬送配管(シリコン添加管)303としては、シリコーン樹脂を主成分としたシリコーン樹脂配管を使用することができ、例えばメチルシリコーンゴム、ビニル・メチルシリコーンゴム、フェニル・メチルシリコーンゴムなどが好適に使用できる。
また、搬送配管(シリコン添加管)303を使用したシリコンの添加に代えて、予めキャリアガス301にシリコン原料を添加したり、霧化器302aでシリコン原料を添加する方法などを採用することも可能であるが、上記のように搬送配管(シリコン添加管)303を通すだけでシリコンを添加することとすれば、極めて容易に第1混合気を形成することができる。
(中間層を形成するステップ)
このようにして形成した第1混合気313を、製膜室309内でサセプタ308に載置され加熱手段310により加熱された結晶基板307上に搬送することにより、第1金属酸化物を主成分としコランダム構造からなる結晶相の結晶領域と、アモルファス相のアモルファス領域とが混在した中間層を形成する。
第1混合気313には、搬送配管(シリコン添加管)303内を搬送される過程でシリコーン樹脂由来のシロキサンを始めとしたシリコン化合物が混入しているため、このシリコンが中間層形成時に、中間層内部でシリコン酸化物を形成し、例えば酸化ガリウムの結晶構造が部分的に乱されて、部分的にアモルファス領域が形成されると考えられる。
第1混合気313の製膜室309への供給は、バルブ304の開閉により適宜調整され、所望の膜厚の中間層を形成した後に停止される。
ここで、中間層を形成する間に、第1混合気313の供給量を変化させても良い。このようにすることで、中間層中の結晶領域割合や中間層の厚みの制御を容易に行うことができるので、生産性が向上し、積層体を低コストで生産することができる。
なお、図8では、バルブ304は霧化器302aの上流側に設置してあるが、これに限らず霧化器302aの下流側に設置しても良い。
(第2混合気を形成するステップ)
また、霧化器302bで形成された霧化した第2金属前駆体(ミスト)とキャリアガス301とが混合された第2混合気323を形成する。第2混合気323は、シリコンが添加されていない点を除けば、第1混合気と同様にして形成される。
(結晶層を中間層上に形成するステップ)
上記のようにして形成された第2混合気323を、製膜室309内でサセプタ308に載置され加熱された結晶基板307上に搬送することにより、中間層上に第2金属酸化物を主成分としコランダム構造からなる結晶層を形成する。
製膜室309に導入された第2混合気323は、製膜室309内で熱源310により加熱された結晶基板307上で反応し、結晶層が形成される。
結晶基板307の温度は、用いる原料や目的の形成物により適宜設定されるものであるが、中間層形成時は350℃以上600℃以下であるのが良く、より好ましくは400℃以上500℃以下とするのが良い。このような温度範囲とすることで、結晶領域とアモルファス領域とが混在した中間層を、より安定して形成することができる。
また、中間層上に、例えばα相の酸化ガリウムを結晶層として形成する場合には、380℃以上900℃以下であるのが良い。このような温度範囲とすることで、β相よりもα相の酸化ガリウムの結晶層を、より安定して形成することができる。
製膜は、大気圧下、加圧下及び減圧下のいずれの条件下で行われてもよいが、装置コストや生産性の面で、大気圧下で行われるのが好ましい。
なお、膜厚は製膜時間やキャリアガス流量を調整することにより、設定することができる。
また、中間層を形成する際、製膜室309へ供給される混合気は、第1混合気313のみでも良いし、第1混合気313と第2混合気323の両方でも良い。第1混合気313と第2混合気323を同時に供給する場合には、例えば霧化器302aと302bに流すキャリアガスの総流量を前述の流量範囲内とすることが好ましい。なお、同図中では、バルブ304、305は霧化器302a、302bの上流側に設置してあるが、霧化器302a、302bの下流側に設置しても良い。
以下、実施例を挙げて本発明について詳細に説明するが、これは本発明を限定するものではない。
(実施例)
図8と同様のミストCVD装置を用いて、積層体の製造を行った。
霧化器としての2台の噴霧器(噴霧器A、噴霧器B)と、石英製の製膜室を用意した。噴霧器Aと製膜室を石英製配管で接続し、噴霧器Bはシリコーン樹脂製配管を介して、製膜室手前で噴霧器Aに接続している石英製配管に接続した。
次に、ガリウムアセチルアセトナート0.02mol/Lの水溶液に濃度34%の塩酸を体積比で1%加え、スターラーで60分間攪拌し、前駆体を得た。この前駆体を2台の噴霧器(噴霧器A、噴霧器B)のそれぞれに充填した。
次に、厚さ0.45mmのc面サファイア基板を、製膜室内に設置したサセプタに載置し、基板温度が450℃になるように加熱した。
次に、2.4MHzの超音波振動子により水を通じて噴霧器A、Bの前駆体に超音波振動を伝播させて、前駆体を霧化(ミスト化)した。
次に、噴霧器Bに窒素ガスを5L/minの流量で加え、霧化した前駆体と窒素ガスの混合気を反応器に5分間供給して、膜厚約70nmの中間層を形成した。この直後、噴霧器Bへの窒素ガス供給を停止し、反応器への混合気供給を停止した。
次に、噴霧器Aに窒素ガスを5L/min流量で加え、ミストと窒素ガスの混合気を反応器に30分間供給して膜厚約300nmの結晶層を形成した。この直後、噴霧器Aへの窒素ガス供給を停止し、反応器への混合気供給を停止した。
次に、基板の加熱を停止し、室温付近まで冷却してから基板を製膜室から取り出した。
作製した積層体の結晶層は、X線回折測定で2θ=40.3°にピークが現れたことから、α相のGaであることが確認された。
この後、作製した積層体を透過型電子顕微鏡(TEM)分析した。また、エネルギー分散型X線分析(EDX)により、積層体中のシリコン濃度を分析した。
(比較例)
実施例で用いた装置のうち、噴霧器Bとシリコーン樹脂配管を取り外し、結晶層の製膜を行った。
まず、実施例で用いたものと同様の前駆体を噴霧器Aに充填した。
次に、厚さ0.45mmのc面サファイア基板を、製膜室内に設置したサセプタに載置し、基板温度が450℃になるように加熱した。
次に、2.4MHzの超音波振動子により水を通じて噴霧器Aの前駆体に超音波振動を伝播させて、前駆体を霧化(ミスト化)した。
次に、噴霧器Aに窒素ガスを5L/min流量で加え、ミストと窒素ガスの混合気を反応器に35分間供給して結晶層を形成した。この直後、噴霧器Aへの窒素ガス供給を停止し、製膜室への混合気供給を停止した。
次に、基板への加熱を停止し、室温付近まで冷却してから基板を製膜室から取り出した。
作製した結晶層は、X線回折測定で2θ=40.3°にピークが現れたことから、α相のGaであることが確認された。
この後、作製した積層体を透過型電子顕微鏡(TEM)分析した。また、EDXにより、積層体中のシリコン濃度を分析した。
図9に実施例、図10に比較例で作製した積層体の断面TEM像を示す。図9に示す実施例では、基板上に柱状の結晶領域を含む中間層が形成されているのがわかる。断面TEM像の中間層において、黒く見える柱状部分が結晶領域である。同一試料で複数箇所のTEM像を画像解析した結果、中間層中の結晶領域の割合は約9.5%であった。なお、図10に示す比較例においては、中間層は形成されていない。
また、結晶層に注目すると、実施例では、中間層上の結晶層では中間相の柱状結晶を種結晶として成長した大きな結晶粒(白く見える部分)が形成されているのがわかる。図10に示す比較例の結晶層に比べ、膜成長方向に伸びる黒のコントラストとして観察される結晶欠陥が大幅に低減されているのがわかる。
図11は、図9、図10の視野におけるシリコン原子の濃度分布を示したものである。実施例(図9)では、中間層に当たる基板表面から約70nmの領域において、最大で約2.0at%のシリコンが検出された。一方、実施例の結晶層、及び比較例の結晶層中におけるシリコン濃度はノイズレベルで不検出であった。
上記の結果から、本発明によれば、従来技術よりも低欠陥の高品質な結晶層(結晶膜)が得られることがわかった。
しかも、本発明では、中間層と結晶層の形成を一つの装置で行っているため、従来のELO法のように、ELO成長用マスクを形成するための別装置を用いた製膜やフォトリソグラフィ工程を必要とする製膜と比較して、極めて低コストかつ生産性高く、低欠陥の高品質な結晶層(結晶膜)を得ることができる。さらに、上記のように他の装置を使用する必要がないため、結晶基板が汚染を受ける可能性も低くなる。
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
100…積層体、 101…結晶基板、 102…中間層、 102a…結晶領域、
102b…アモルファス領域、 103…結晶層、
200…積層体、 201…結晶基板、 202…中間層、 202a…結晶領域、
202b…アモルファス領域、 203…結晶層、 204…応力緩和層、
300…ミストCVD装置、 301…キャリアガス、 302a…霧化器、
302b…霧化器、 303…搬送配管(シリコン添加管)、 304…バルブ、
305…バルブ、 306…搬送配管、 307…結晶基板、 308…サセプタ、
309…製膜室、 310…加熱手段、 312a…第1金属酸化物前駆体、
312b…第2金属酸化物前駆体、 313…第1混合気、323…第2混合気、
400…ショットキーバリアダイオード(SBD)、 401a…n−型半導体層、
401b…n+型半導体層、 402…ショットキー電極、
403…オーミック電極、
500…高電子移動度トランジスタ(HEMT)、 501…n型半導体層、
502…n型半導体層、 503…n+型半導体層、 504…半絶縁体層、
505…緩衝層、 506…ゲート電極、 507…ソース電極、
508…ドレイン電極、
600…金属酸化膜半導体電界効果トランジスタ(MOSFET)、
601…n−型半導体層、 602…n+型半導体層、 603…n+型半導体層、
604…ゲート絶縁膜、 605…ゲート電極、 606…ソース電極、
607…ドレイン電極、
700…絶縁ゲート型バイポーラトランジスタ(IGBT)、
701…n型半導体層、 702…n−型半導体層、 703…n+型半導体層、
704…p型半導体層、 705…ゲート絶縁膜、 706…ゲート電極、
707…エミッタ電極、 708…コレクタ電極、
800…発光ダイオード(LED)、 801…第1の電極、
802…n型半導体層、 803…発光層、 804…p型半導体層、
805…透光性電極、 806…第2の電極。

Claims (16)

  1. 結晶基板と
    該結晶基板の主表面上に形成された、第1金属酸化物を主成分としコランダム構造からなる結晶相の結晶領域と、アモルファス相のアモルファス領域とが混在した中間層と、
    該中間層上に形成された、第2金属酸化物を主成分としコランダム構造の結晶層とを有し、
    前記中間層がさらにシリコンを含むことを特徴とする積層体。
  2. 前記結晶領域は、前記結晶基板の結晶面からのエピタキシャル成長層であることを特徴とする請求項1に記載の積層体。
  3. 前記中間層の、前記結晶基板の前記主表面に垂直な任意の断面において、前記中間層に含まれる前記結晶領域の割合が1%以上であることを特徴とする請求項1又は2に記載の積層体。
  4. 前記中間層の、前記結晶基板の前記主表面に垂直な任意の断面において、前記中間層に含まれる前記結晶領域の割合が4%以上25%以下であることを特徴とする請求項1から3のいずれか一項に記載の積層体。
  5. 前記中間層の膜厚が1nm以上であることを特徴とする請求項1から4のいずれか一項に記載の積層体。
  6. 前記中間層の膜厚が10nm以上であることを特徴とする請求項1から5のいずれか一項に記載の積層体。
  7. 前記第1金属酸化物は、アルミニウム、チタン、バナジウム、クロム、鉄、ガリウム、ロジウム、インジウム、イリジウムのいずれかを含む酸化物を主成分とすることを特徴とする請求項1から6のいずれか一項に記載の積層体。
  8. 前記第2金属酸化物は、アルミニウム、チタン、バナジウム、クロム、鉄、ガリウム、ロジウム、インジウム、イリジウムのいずれかを含む酸化物を主成分とすることを特徴とする請求項1から7のいずれか一項に記載の積層体。
  9. 前記中間層に含まれる前記シリコンの濃度は0.5at%以上であることを特徴とする請求項1から8のいずれか一項に記載の積層体。
  10. 前記中間層に含まれる前記シリコンの濃度は1at%以上10at%以下であることを特徴とする請求項1から9のいずれか一項に記載の積層体。
  11. 前記結晶基板と前記中間層との間に、さらに応力緩和層を備えることを特徴とする請求項1から10のいずれか一項に記載の積層体。
  12. 半導体層と電極とを少なくとも含む半導体装置であって、前記半導体層として、請求項1から11のいずれか一項に記載の積層体の少なくとも一部を備えることを特徴とする半導体装置。
  13. 積層体の製造方法であって、
    霧化した第1金属酸化物前駆体とキャリアガスとシリコンが混合された第1混合気を形成するステップと、
    前記第1混合気を加熱された結晶基板上に供給して、第1金属酸化物を主成分としコランダム構造からなる結晶相の結晶領域と、アモルファス相のアモルファス領域とが混在した中間層を形成するステップと、
    霧化した第2金属酸化物前駆体とキャリアガスが混合された第2混合気を形成するステップと、
    前記第2混合気を加熱された前記結晶基板上に供給して、第2金属酸化物を主成分としコランダム構造の結晶層を前記中間層上に形成するステップとを含むことを特徴とする積層体の製造方法。
  14. 前記第1混合気を形成するステップでは、前記霧化した第1金属酸化物前駆体と前記キャリアガスとを前記結晶基板上に搬送する途中で、前記シリコンの添加が行われることを特徴とする請求項13に記載の積層体の製造方法。
  15. 前記シリコンの添加は、前記霧化した第1金属酸化物前駆体と前記キャリアガスとをシリコーン樹脂製の管を通して搬送することにより行われることを特徴とする請求項14に記載の積層体の製造方法。
  16. 前記中間層を形成するステップにおいて、前記第1混合気の供給量を変化させることを特徴とする請求項13から15のいずれか一項に記載の積層体の製造方法。
JP2018182714A 2018-09-27 2018-09-27 積層体、半導体装置及び積層体の製造方法 Active JP6909191B2 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2018182714A JP6909191B2 (ja) 2018-09-27 2018-09-27 積層体、半導体装置及び積層体の製造方法
EP19867010.1A EP3859770A4 (en) 2018-09-27 2019-09-09 STACK, SEMICONDUCTOR DEVICE AND METHOD OF MAKING STACK
CN201980060388.5A CN112771651A (zh) 2018-09-27 2019-09-09 层叠体、半导体装置及层叠体的制造方法
US17/272,873 US20210313433A1 (en) 2018-09-27 2019-09-09 Laminate, semiconductor device, and method for manufacturing laminate
PCT/JP2019/035415 WO2020066575A1 (ja) 2018-09-27 2019-09-09 積層体、半導体装置及び積層体の製造方法
KR1020217007405A KR20210058834A (ko) 2018-09-27 2019-09-09 적층체, 반도체장치 및 적층체의 제조방법
TW112123178A TWI838287B (zh) 2018-09-27 2019-09-26 層積體、半導體裝置及層積體之製造方法
TW108134846A TWI811459B (zh) 2018-09-27 2019-09-26 層積體、半導體裝置及層積體之製造方法
JP2021110457A JP7220257B2 (ja) 2018-09-27 2021-07-02 積層体、半導体装置、ミストcvd装置及び成膜方法
US18/121,680 US20230223446A1 (en) 2018-09-27 2023-03-15 Laminate, semiconductor device, and method for manufacturing laminate
US18/121,691 US11984481B2 (en) 2018-09-27 2023-03-15 Laminate, semiconductor device, and method for manufacturing laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018182714A JP6909191B2 (ja) 2018-09-27 2018-09-27 積層体、半導体装置及び積層体の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021110457A Division JP7220257B2 (ja) 2018-09-27 2021-07-02 積層体、半導体装置、ミストcvd装置及び成膜方法

Publications (2)

Publication Number Publication Date
JP2020053598A JP2020053598A (ja) 2020-04-02
JP6909191B2 true JP6909191B2 (ja) 2021-07-28

Family

ID=69950050

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018182714A Active JP6909191B2 (ja) 2018-09-27 2018-09-27 積層体、半導体装置及び積層体の製造方法
JP2021110457A Active JP7220257B2 (ja) 2018-09-27 2021-07-02 積層体、半導体装置、ミストcvd装置及び成膜方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021110457A Active JP7220257B2 (ja) 2018-09-27 2021-07-02 積層体、半導体装置、ミストcvd装置及び成膜方法

Country Status (7)

Country Link
US (2) US20210313433A1 (ja)
EP (1) EP3859770A4 (ja)
JP (2) JP6909191B2 (ja)
KR (1) KR20210058834A (ja)
CN (1) CN112771651A (ja)
TW (1) TWI811459B (ja)
WO (1) WO2020066575A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220166283A (ko) * 2020-04-13 2022-12-16 신에쓰 가가꾸 고교 가부시끼가이샤 성막장치 및 성막방법

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4301592B2 (ja) * 1998-01-16 2009-07-22 三菱マテリアル株式会社 窒化物半導体層付き基板の製造方法
KR20000041281A (ko) 1998-12-22 2000-07-15 이형도 질화물계 반도체소자 및 질화물계 반도체 결정성장방법
JP3721011B2 (ja) * 1999-06-28 2005-11-30 日立マクセル株式会社 情報記録媒体及びそれを用いた磁気記憶装置、光磁気記憶装置
JP2001038831A (ja) 1999-07-29 2001-02-13 Pentel Corp 内面に樹脂層を有する金属パイプの製造方法
JP2004296598A (ja) * 2003-03-26 2004-10-21 Canon Inc 太陽電池
JP2006060066A (ja) 2004-08-20 2006-03-02 Mitsubishi Electric Corp シリコン酸化膜の成膜方法および成膜装置
JP5051023B2 (ja) 2008-06-23 2012-10-17 スタンレー電気株式会社 成膜装置および半導体素子の製造方法
KR101137632B1 (ko) * 2009-08-25 2012-04-20 성균관대학교산학협력단 금속산화물 나노구조체의 제조방법 및 금속산화물 나노구조체가 구비된 전자소자
JP5793732B2 (ja) 2011-07-27 2015-10-14 高知県公立大学法人 ドーパントを添加した結晶性の高い導電性α型酸化ガリウム薄膜およびその生成方法
US8552465B2 (en) * 2011-11-09 2013-10-08 Toshiba Techno Center Inc. Method for reducing stress in epitaxial growth
JP5462897B2 (ja) 2012-01-24 2014-04-02 東京エレクトロン株式会社 半導体装置の製造方法
WO2015005202A1 (ja) * 2013-07-09 2015-01-15 株式会社Flosfia 半導体装置及びその製造方法、並びに結晶及びその製造方法
US9701574B2 (en) * 2013-10-09 2017-07-11 Corning Incorporated Crack-resistant glass-ceramic articles and methods for making the same
JP6349592B2 (ja) 2014-07-22 2018-07-04 株式会社Flosfia 半導体装置
JP6515318B2 (ja) * 2014-09-25 2019-05-22 株式会社Flosfia 結晶性積層構造体の製造方法および半導体装置
JP6945119B2 (ja) 2014-11-26 2021-10-06 株式会社Flosfia 結晶性積層構造体およびその製造方法
JP6774592B2 (ja) 2015-09-08 2020-10-28 株式会社Flosfia 深紫外発光素子
FR3056011B1 (fr) * 2016-09-09 2019-05-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif de selection d’une cellule memoire

Also Published As

Publication number Publication date
EP3859770A1 (en) 2021-08-04
US20210313433A1 (en) 2021-10-07
KR20210058834A (ko) 2021-05-24
JP2021168406A (ja) 2021-10-21
CN112771651A (zh) 2021-05-07
TWI811459B (zh) 2023-08-11
EP3859770A4 (en) 2022-06-01
TW202338936A (zh) 2023-10-01
JP7220257B2 (ja) 2023-02-09
WO2020066575A1 (ja) 2020-04-02
US20230223446A1 (en) 2023-07-13
TW202029285A (zh) 2020-08-01
JP2020053598A (ja) 2020-04-02
US20230238432A1 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
JP6936982B2 (ja) 半導体装置
JP6916426B2 (ja) 積層構造体およびその製造方法、半導体装置ならびに結晶膜
JP2022172066A (ja) 結晶性酸化物半導体膜および半導体装置
US20230223446A1 (en) Laminate, semiconductor device, and method for manufacturing laminate
JP7053539B2 (ja) 積層体、半導体膜、半導体装置、半導体システム及び積層体の製造方法
TWI838287B (zh) 層積體、半導體裝置及層積體之製造方法
US11984481B2 (en) Laminate, semiconductor device, and method for manufacturing laminate
JP7061214B2 (ja) 半導体積層体、半導体素子および半導体素子の製造方法
WO2022030114A1 (ja) 半導体積層体、半導体素子および半導体素子の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190909

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210702

R150 Certificate of patent or registration of utility model

Ref document number: 6909191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150