JP6895589B2 - Sputtering equipment, thin film manufacturing method - Google Patents

Sputtering equipment, thin film manufacturing method Download PDF

Info

Publication number
JP6895589B2
JP6895589B2 JP2020537555A JP2020537555A JP6895589B2 JP 6895589 B2 JP6895589 B2 JP 6895589B2 JP 2020537555 A JP2020537555 A JP 2020537555A JP 2020537555 A JP2020537555 A JP 2020537555A JP 6895589 B2 JP6895589 B2 JP 6895589B2
Authority
JP
Japan
Prior art keywords
magnet
variable
sputtering
magnetic
cathode electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020537555A
Other languages
Japanese (ja)
Other versions
JPWO2020241010A1 (en
Inventor
弘敏 阪上
弘敏 阪上
哲宏 大野
哲宏 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Application granted granted Critical
Publication of JP6895589B2 publication Critical patent/JP6895589B2/en
Publication of JPWO2020241010A1 publication Critical patent/JPWO2020241010A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3423Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3455Movable magnets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Description

本発明は、スパッタリング装置と薄膜製造方法に関する。 The present invention relates to a sputtering apparatus and a thin film manufacturing method.

マグネトロンスパッタリング方法は、スパッタリングターゲット表面に磁界を形成し、電子を磁界中で移動させ、効率よくスパッタリングガスをプラズマ化する装置であり、薄膜の形成に広く用いられている。 The magnetron sputtering method is a device that forms a magnetic field on the surface of a sputtering target, moves electrons in the magnetic field, and efficiently turns the sputtering gas into plasma, and is widely used for forming a thin film.

図8(a)、(b)の符号130は、マグネトロンスパッタリング装置に用いられるターゲット装置であり、カソード電極121の片面にスパッタリングターゲット114が配置され、反対側の面に複数の磁石装置131が配置されている。 Reference numerals 130 in FIGS. 8A and 8B are target devices used in the magnetron sputtering device, in which the sputtering target 114 is arranged on one side of the cathode electrode 121, and a plurality of magnet devices 131 are arranged on the opposite side. Has been done.

各磁石装置131は環状の外側磁石136と、外側磁石136で囲まれた領域に配置された直線状の内側磁石134を有しており、各磁石装置131の外側磁石136の二個の磁極のうち、同じ極性の磁極がカソード電極121に向けられ、内側磁石134の二個の磁極のうち、カソード電極121に向けられた外側磁石136の磁極とは逆極性の磁極がカソード電極121に向けられている。 Each magnet device 131 has an annular outer magnet 136 and a linear inner magnet 134 arranged in a region surrounded by the outer magnet 136, and has two magnetic poles of the outer magnet 136 of each magnet device 131. Of these, the magnetic poles of the same polarity are directed to the cathode electrode 121, and of the two magnetic poles of the inner magnet 134, the magnetic pole having the opposite polarity to the magnetic pole of the outer magnet 136 directed to the cathode electrode 121 is directed to the cathode electrode 121. ing.

カソード電極121にはスパッタリング電圧が印加されており、スパッタリングターゲット114表面から放出された電子は外側磁石136と内側磁石134とによってスパッタリングターゲット114の表面に形成される磁界に捕捉され、スパッタリングターゲット114の表面に、スパッタリングガスの高密度のプラズマが形成され、スパッタリングターゲット114の表面がスパッタリングされる。 A sputtering voltage is applied to the cathode electrode 121, and the electrons emitted from the surface of the sputtering target 114 are captured by the magnetic field formed on the surface of the sputtering target 114 by the outer magnet 136 and the inner magnet 134, and the sputtering target 114 A high-density plasma of sputtering gas is formed on the surface, and the surface of the sputtering target 114 is sputtered.

高密度でプラズマが形成される場所は、外側磁石136と内側磁石134との間の上の領域であり、スパッタリングターゲット114の表面を広くスパッタリングするために、各磁石装置131が設けられた移動板145を、磁石装置131の長手方向とは垂直な方向に移動させ、高密度のプラズマがスパッタリングターゲット114の表面で移動するようにされている。 The place where the plasma is formed at high density is the upper region between the outer magnet 136 and the inner magnet 134, and a moving plate provided with each magnet device 131 in order to widely sputter the surface of the sputtering target 114. The 145 is moved in a direction perpendicular to the longitudinal direction of the magnet device 131 so that the high density plasma moves on the surface of the sputtering target 114.

しかしながら磁石装置131の両端の位置の上では磁界強度が強くなりやすく、その場所に形成されるプラズマは特に高密度になり、スパッタリングターゲット114が多量にスパッタリングされてしまう。 However, the magnetic field strength tends to be strong above the positions at both ends of the magnet device 131, the plasma formed at that location tends to be particularly dense, and the sputtering target 114 is sputtered in large quantities.

そして、磁石装置131の両端位置で、ターゲットに形成されるエロ−ジョンの深さが他の領域よりも深くなると、スパッタリングターゲット114の表面と磁石装置131との間の距離が他の場所より短くなり、スパッタリングターゲット114が更に多量にスパッタリングされることになる。 Then, when the depth of the erosion formed on the target at both ends of the magnet device 131 becomes deeper than in other regions, the distance between the surface of the sputtering target 114 and the magnet device 131 becomes shorter than in other places. Therefore, the sputtering target 114 is sputtered in a larger amount.

特開平5−214527号公報Japanese Unexamined Patent Publication No. 5-214527 特開平8−81769号公報Japanese Unexamined Patent Publication No. 8-81769 特開2012−241250号公報Japanese Unexamined Patent Publication No. 2012-241250 特開2004−115841号公報Japanese Unexamined Patent Publication No. 2004-115841 特開2015−1734号公報Japanese Unexamined Patent Publication No. 2015-1734 KR101885123KR101885123 KR101924143KR101921433

本願発明は上記従来技術の課題を解決するために創作されたものであり、永久磁石と電磁石とを組みあわせた可変磁石の磁界強度を減少させてスパッタ面上の磁界強度が変化しないようにして、スパッタ面上で均一にスパッタリングできるようにする。 The present invention was created to solve the above-mentioned problems of the prior art, and reduces the magnetic field strength of a variable magnet in which a permanent magnet and an electromagnet are combined so that the magnetic field strength on the sputtered surface does not change. , To enable uniform sputtering on the sputtered surface.

上記目的を達成するためになされた本発明は、カソード電極と、前記カソード電極の片面に配置され、真空槽内に露出するスパッタ面がスパッタリングされるスパッタリングターゲットと、前記カソード電極の面のうち前記片面とは反対側の面に配置され、前記スパッタ面上に磁界を形成する磁石装置と、が設けられたターゲット装置を有し、前記スパッタリングターゲットがスパッタリングされると前記真空槽内に位置する成膜対象物の成膜面に薄膜が形成されるスパッタリング装置であって、前記磁石装置は、細長で長手方向を有しており、前記長手方向の両端にはそれぞれ可変磁力部が配置され、前記可変磁力部の間には固定磁力部が配置され、前記固定磁力部は、前記長手方向に沿って配置された細長の永久磁石から成る第一、第二の中央外側部と、前記第一、第二の中央外側部の間に前記長手方向に沿って配置された細長の永久磁石から成る中央内側部と、を有し、前記可変磁力部は、前記長手方向に沿って配置された細長の永久磁石から成る第一、第二の端外側部と、前記第一、第二の端外側部の間に前記長手方向に沿って配置された複数個の可変磁石から成る端内側部と、前記磁石装置の前記長手方向の両端に位置し、前記第一、第二の端外側部の端部同士を接続する細長で湾曲した永久磁石から成る接続部と、を有し、N極とS極のうち、いずれか一方の極性の磁極を第一極とし、他方の極性の磁極を第二極とすると、前記第一、第二の中央外側部と、前記第一、第二の端外側部と、前記接続部とは、前記第一極の磁極が前記カソード電極に向けられ、前記中央内側部と前記端内側部とは前記第二極の磁極が前記カソード電極に向けられ、前記可変磁石は磁芯部と、前記磁芯部の周りに巻かれたコイルを有し、励磁電流が流れると磁界を形成する電磁石部とを有し、前記可変磁石が形成する磁界の向きと強度は、前記励磁電流の流れる方向と大きさによって変更可能に構成されたスパッタリング装置である。
本発明は、前記可変磁石のうち、少なくとも一つの前記可変磁石の前記磁芯部は永久磁石からなる基礎磁力部を有し、前記可変磁石が形成する磁界の強度は前記基礎磁力部の磁界と前記電磁石部の磁界とが合成された磁界の強度になるスパッタリング装置である。
本発明は、前記基礎磁力部の前記第一極の磁極は前記カソード電極に向けられたスパッタリング装置である。
本発明は、前記基礎磁力部の前記第二極の磁極は前記カソード電極に向けられたスパッタリング装置である。
本発明は、前記可変磁石が形成する磁界の強度は、前記スパッタリングターゲットがスパッタリングされる間に変更可能にされたスパッタリング装置である。
本発明は、前記スパッタリングターゲットと前記磁石装置とは、相対的に往復移動するように構成されたスパッタリング装置である。
本発明は、前記ターゲット装置は、一枚の前記カソード電極と、一枚の前記カソード電極に配置された前記スパッタリングターゲットと、互いに平行に配置された複数個の前記磁石装置とを有するスパッタリング装置である。
本発明は、複数個の前記磁石装置を有するスパッタリング装置であって、複数個の前記磁石装置は互いに平行に配置されて一列に並べられ、並べられた前記磁石装置のうち、両端に位置する前記磁石装置の前記可変磁石の個数は、他に位置する前記磁石装置の前記可変磁石の個数よりも多数個にされたスパッタリング装置である。
本発明は、前記ターゲット装置を複数個有するスパッタリング装置である。
本発明は、スパッタリング装置であって、前記ターゲット装置は、円筒形形状にされた前記カソード電極と、前記カソード電極の外周に配置された円筒形形状の前記スパッタリングターゲットと、前記カソード電極で囲まれた領域に配置された前記磁石装置とを有するスパッタリング装置である。
本発明は、前記可変磁石はケース内に配置し、前記ケースに設けられた冷媒路に冷却媒体を流し、前記可変磁石を冷却するスパッタリング装置である。
本発明は、スパッタリング装置を制御して成膜対象物に薄膜を形成する薄膜製造方法であって、前記スパッタリング装置は、カソード電極と、前記カソード電極の片面に配置され、真空槽内に露出するスパッタ面がスパッタリングされるスパッタリングターゲットと、前記カソード電極の面のうち前記片面とは反対側の面に配置され、前記スパッタ面上に磁界を形成する磁石装置と、が設けられたターゲット装置を有し、前記スパッタリングターゲットがスパッタリングされると前記真空槽内に位置する成膜対象物の成膜面に薄膜が形成されるスパッタリング装置であって、前記磁石装置は、細長で長手方向を有しており、前記長手方向の両端にはそれぞれ可変磁力部が配置され、前記可変磁力部の間には固定磁力部が配置され、前記固定磁力部は、前記長手方向に沿って配置された細長の永久磁石から成る第一、第二の中央外側部と、前記第一、第二の中央外側部の間に前記長手方向に沿って配置された細長の永久磁石から成る中央内側部と、を有し、前記可変磁力部は、前記長手方向に沿って配置された細長の永久磁石から成る第一、第二の端外側部と、前記第一、第二の端外側部の間に前記長手方向に沿って配置された複数個の可変磁石から成る端内側部と、前記磁石装置の前記長手方向の両端に位置し、前記第一、第二の端外側部の端部同士を接続する細長で湾曲した永久磁石から成る接続部と、を有し、N極とS極のうち、いずれか一方の極性の磁極を第一極とし、他方の極性の磁極を第二極とすると、前記第一、第二の中央外側部と、前記第一、第二の端外側部と、前記接続部とは、前記第一極の磁極が前記カソード電極に向けられ、前記中央内側部と前記端内側部とは前記第二極の磁極が前記カソード電極に向けられ、前記可変磁石は磁芯部と、前記磁芯部の周りに巻かれたコイルを有し、励磁電流が流れると磁界を形成する電磁石部とを有し、前記可変磁石が形成する磁界の向きと強度は、前記励磁電流の流れる方向と大きさによって変更可能に構成され、前記薄膜を形成した前記成膜対象物の枚数が増加すると、前記可変磁石が形成する磁界の強度を減少させる薄膜製造方法である。
本発明は、スパッタリング装置を制御して成膜対象物に薄膜を形成する薄膜製造方法であって、前記スパッタリング装置は、カソード電極と、前記カソード電極の片面に配置され、真空槽内に露出するスパッタ面がスパッタリングされるスパッタリングターゲットと、前記カソード電極の面のうち前記片面とは反対側の面に配置され、前記スパッタ面上に磁界を形成する磁石装置と、が設けられたターゲット装置を有し、前記スパッタリングターゲットがスパッタリングされると前記真空槽内に位置する成膜対象物の成膜面に薄膜が形成されるスパッタリング装置であって、前記磁石装置は、細長で長手方向を有しており、前記長手方向の両端にはそれぞれ可変磁力部が配置され、前記可変磁力部の間には固定磁力部が配置され、前記固定磁力部は、前記長手方向に沿って配置された細長の永久磁石から成る第一、第二の中央外側部と、前記第一、第二の中央外側部の間に前記長手方向に沿って配置された細長の永久磁石から成る中央内側部と、を有し、前記可変磁力部は、前記長手方向に沿って配置された細長の永久磁石から成る第一、第二の端外側部と、前記第一、第二の端外側部の間に前記長手方向に沿って配置された複数個の可変磁石から成る端内側部と、前記磁石装置の前記長手方向の両端に位置し、前記第一、第二の端外側部の端部同士を接続する細長で湾曲した永久磁石から成る接続部と、を有し、N極とS極のうち、いずれか一方の極性の磁極を第一極とし、他方の極性の磁極を第二極とすると、前記第一、第二の中央外側部と、前記第一、第二の端外側部と、前記接続部とは、前記第一極の磁極が前記カソード電極に向けられ、前記中央内側部と前記端内側部とは前記第二極の磁極が前記カソード電極に向けられ、前記可変磁石は磁芯部と、前記磁芯部の周りに巻かれたコイルを有し、励磁電流が流れると磁界を形成する電磁石部とを有し、前記可変磁石が形成する磁界の向きと強度は、前記励磁電流の流れる方向と大きさによって変更可能に構成され、前記薄膜を形成した前記成膜対象物の枚数が増加すると、前記可変磁石が形成する磁界の強度を増加させる薄膜製造方法である。
本発明は、カソード電極と、前記カソード電極の片面に配置され、真空槽内に露出するスパッタ面がスパッタリングされるスパッタリングターゲットと、前記カソード電極の面のうち前記片面とは反対側の面に配置され、前記スパッタ面上に磁界を形成する複数の細長の磁石装置と、が設けられたターゲット装置を用い、前記スパッタリングターゲットをスパッタリングして前記真空槽内に位置する成膜対象物の成膜面に薄膜を形成する薄膜製造方法であって、各前記磁石装置の両端部に、永久磁石と電磁石とを有し、前記永久磁石が形成する磁界と励磁電流が流れて前記電磁石が形成する磁界とが合成された磁界を形成する可変磁石を配置し、前記電磁石に流れる前記励磁電流の方向と大きさとを制御して、前記薄膜が形成された前記成膜対象物の枚数の増加により前記可変磁石が形成する磁界強度を小さくする薄膜製造方法である。
The present invention made to achieve the above object is the above-mentioned of the cathode electrode, the sputtering target arranged on one surface of the cathode electrode and the sputtering surface exposed in the vacuum chamber is sputtering, and the surface of the cathode electrode. It has a target device that is arranged on the surface opposite to one side and is provided with a magnet device that forms a magnetic field on the sputtered surface, and is located in the vacuum chamber when the sputtering target is sputtered. A sputtering device in which a thin film is formed on the film-forming surface of a film object. The magnet device is elongated and has a longitudinal direction, and variable magnetic force portions are arranged at both ends in the longitudinal direction. A fixed magnetic force portion is arranged between the variable magnetic force portions, and the fixed magnetic force portion includes the first and second central outer portions composed of elongated permanent magnets arranged along the longitudinal direction, and the first and second central outer portions. The variable magnetic force portion has a central inner portion composed of an elongated permanent magnet arranged along the longitudinal direction between the second central outer portions, and the variable magnetic force portion is an elongated portion arranged along the longitudinal direction. The outer side of the first and second ends made of permanent magnets, the inner side of the end made of a plurality of variable magnets arranged along the longitudinal direction between the outer outer parts of the first and second ends, and the above. The magnet device is located at both ends in the longitudinal direction, and has connecting portions made of elongated and curved permanent magnets that connect the ends of the outer portions of the first and second ends to each other, and has an north pole and an south pole. Assuming that the magnetic pole of one of the polarities is the first pole and the magnetic pole of the other polarity is the second pole, the first and second central outer portions and the first and second end outer portions With the connection portion, the magnetic pole of the first pole is directed to the cathode electrode, and the magnetic pole of the second pole of the central inner portion and the end inner portion is directed to the cathode electrode, and the variable magnet Has a magnetic core portion and a coil wound around the magnetic core portion, and has an electromagnet portion that forms a magnetic field when an exciting current flows, and the direction and strength of the magnetic field formed by the variable magnet are determined. It is a sputtering apparatus configured to be changeable depending on the direction and magnitude of the exciting current flowing.
In the present invention, the magnetic core portion of at least one of the variable magnets has a basic magnetic field portion made of a permanent magnet, and the strength of the magnetic field formed by the variable magnet is the magnetic field of the basic magnetic field portion. This is a sputtering device in which the strength of the combined magnetic field is obtained by combining the magnetic field of the electromagnet portion.
The present invention is a sputtering apparatus in which the magnetic pole of the first pole of the basic magnetic force portion is directed to the cathode electrode.
The present invention is a sputtering apparatus in which the magnetic pole of the second pole of the basic magnetic force portion is directed to the cathode electrode.
The present invention is a sputtering apparatus in which the strength of the magnetic field formed by the variable magnet can be changed while the sputtering target is sputtered.
The present invention is a sputtering device configured so that the sputtering target and the magnet device relatively reciprocate.
In the present invention, the target device is a sputtering device having one cathode electrode, the sputtering target arranged on one cathode electrode, and a plurality of the magnet devices arranged in parallel with each other. is there.
The present invention is a sputtering apparatus having a plurality of the magnet devices, wherein the plurality of magnet devices are arranged in parallel with each other and arranged in a row, and among the arranged magnet devices, the said magnet devices located at both ends. The number of the variable magnets of the magnet device is larger than the number of the variable magnets of the magnet device located elsewhere.
The present invention is a sputtering apparatus having a plurality of the target apparatus.
The present invention is a sputtering apparatus, wherein the target apparatus is surrounded by the cathode electrode having a cylindrical shape, the sputtering target having a cylindrical shape arranged on the outer periphery of the cathode electrode, and the cathode electrode. It is a sputtering apparatus having the said magnet apparatus arranged in the region.
The present invention is a sputtering device in which the variable magnet is arranged in a case, a cooling medium is passed through a refrigerant passage provided in the case, and the variable magnet is cooled.
The present invention is a thin film manufacturing method in which a sputtering device is controlled to form a thin film on an object to be deposited. The sputtering device is arranged on one side of a cathode electrode and the cathode electrode and is exposed in a vacuum chamber. It has a target device provided with a sputtering target on which the sputter surface is sputtered and a magnet device arranged on the surface of the cathode electrode opposite to the one surface and forming a magnetic field on the sputter surface. Then, when the sputtering target is sputtered, a thin film is formed on the film-forming surface of the film-forming object located in the vacuum chamber, and the magnet device is elongated and has a longitudinal direction. A variable magnetic force portion is arranged at both ends in the longitudinal direction, a fixed magnetic force portion is arranged between the variable magnetic force portions, and the fixed magnetic force portion is an elongated permanent magnet arranged along the longitudinal direction. It has a first and second central outer part made of magnets and a central inner part made of elongated permanent magnets arranged along the longitudinal direction between the first and second central outer parts. The variable magnetic force portion is formed in the longitudinal direction between the first and second end outer portions made of elongated permanent magnets arranged along the longitudinal direction and the first and second end outer portions. An elongated curve located at both ends of the magnet device in the longitudinal direction and connecting the ends of the first and second ends of the outer side of the end, which is composed of a plurality of variable magnets arranged along the line. If the magnetic pole of one of the north pole and the south pole is the first pole and the magnetic pole of the other polarity is the second pole, the first pole has a connecting portion made of a permanent magnet. The second central outer portion, the first and second end outer portions, and the connection portion have the magnetic pole of the first pole directed toward the cathode electrode, and the central inner portion and the end inner portion. The magnetic pole of the second pole is directed to the cathode electrode, and the variable magnet has a magnetic core portion and a coil wound around the magnetic core portion, and an electromagnet portion that forms a magnetic field when an exciting current flows. The direction and strength of the magnetic field formed by the variable magnet can be changed depending on the direction and magnitude of the exciting current, and when the number of the film-forming objects on which the thin film is formed increases, This is a thin film manufacturing method for reducing the strength of the magnetic field formed by the variable magnet.
The present invention is a thin film manufacturing method in which a sputtering device is controlled to form a thin film on an object to be deposited. The sputtering device is arranged on one side of a cathode electrode and the cathode electrode and is exposed in a vacuum chamber. It has a target device provided with a sputtering target on which the sputter surface is sputtered and a magnet device arranged on the surface of the cathode electrode opposite to the one surface and forming a magnetic field on the sputter surface. Then, when the sputtering target is sputtered, a thin film is formed on the film-forming surface of the film-forming object located in the vacuum chamber, and the magnet device is elongated and has a longitudinal direction. A variable magnetic force portion is arranged at both ends in the longitudinal direction, a fixed magnetic force portion is arranged between the variable magnetic force portions, and the fixed magnetic force portion is an elongated permanent magnet arranged along the longitudinal direction. It has a first and second central outer part made of magnets and a central inner part made of elongated permanent magnets arranged along the longitudinal direction between the first and second central outer parts. The variable magnetic force portion is formed in the longitudinal direction between the first and second end outer portions made of elongated permanent magnets arranged along the longitudinal direction and the first and second end outer portions. An elongated curve located at both ends of the magnet device in the longitudinal direction and connecting the ends of the first and second ends of the outer side of the end, which is composed of a plurality of variable magnets arranged along the line. If the magnetic pole of one of the north pole and the south pole is the first pole and the magnetic pole of the other polarity is the second pole, the first pole has a connecting portion made of a permanent magnet. The second central outer portion, the first and second end outer portions, and the connection portion have the magnetic pole of the first pole directed toward the cathode electrode, and the central inner portion and the end inner portion. The magnetic pole of the second pole is directed to the cathode electrode, and the variable magnet has a magnetic core portion and a coil wound around the magnetic core portion, and an electromagnet portion that forms a magnetic field when an exciting current flows. The direction and strength of the magnetic field formed by the variable magnet can be changed depending on the direction and magnitude of the exciting current, and when the number of the film-forming objects on which the thin film is formed increases, This is a thin film manufacturing method for increasing the strength of the magnetic field formed by the variable magnet.
In the present invention, the cathode electrode is arranged on one side of the cathode electrode, and the sputtering target on which the sputtering surface exposed in the vacuum chamber is sputtered is arranged on the surface of the cathode electrode opposite to the one side. A target device provided with a plurality of elongated magnet devices that form a magnetic field on the sputtered surface is used to sputter the sputtering target to form a film-forming surface of a film-forming object located in the vacuum chamber. A thin film manufacturing method for forming a thin film, wherein a permanent magnet and an electromagnet are provided at both ends of each of the magnet devices, and a magnetic field formed by the permanent magnet and an exciting current flow to form a magnetic field formed by the electromagnet. By arranging a variable magnet that forms a combined magnetic field, controlling the direction and magnitude of the exciting current flowing through the electromagnet, and increasing the number of film-forming objects on which the thin film is formed, the variable magnet This is a thin film manufacturing method for reducing the magnetic field strength formed by.

スパッタリングターゲット又は個別ターゲットの成膜面内の場所によるスパッタリング量の差が小さくなる。 The difference in the amount of sputtering depending on the location in the film formation surface of the sputtering target or the individual target becomes small.

可変磁石が電磁石部と基礎磁力部とを有している場合は電磁石部に励磁電流が流れなくなった場合でもスパッタリングを続行することができる。 When the variable magnet has an electromagnet portion and a basic magnetic force portion, sputtering can be continued even when the exciting current stops flowing through the electromagnet portion.

本発明のスパッタリング装置を説明するための図面Drawing for explaining the sputtering apparatus of this invention (a)、(b):本発明の可変磁石を説明するための図面(A), (b): Drawings for explaining the variable magnet of the present invention. (a)〜(c):本発明の一例のターゲット装置を説明するための図面(A)-(c): Drawing for explaining the target apparatus of an example of this invention. (a)〜(c):本発明の他の例のターゲット装置を説明するための図面(A)-(c): Drawing for explaining the target apparatus of another example of this invention. (a):本発明の他の例のターゲット装置を説明するための図面 (b)、(c):そのターゲット装置に用いられる磁石装置を説明するための図面(A): Drawing for explaining the target device of another example of the present invention (b), (c): drawing for explaining the magnet device used for the target device. (a)、(b):本発明の他の例のターゲット装置の断面図(A), (b): Cross-sectional view of the target device of another example of the present invention. 可変磁石を冷却するためのケースを説明するための図面Drawings to illustrate a case for cooling a variable magnet (a)、(b):従来技術のスパッタリング装置に用いられるターゲット装置を説明するための図面(A), (b): Drawing for explaining the target apparatus used in the prior art sputtering apparatus.

<スパッタリング装置>
図1、2を参照し、図1の符号2は、本発明のスパッタリング装置を示している。
<Sputtering device>
With reference to FIGS. 1 and 2, reference numeral 2 in FIG. 1 indicates the sputtering apparatus of the present invention.

このスパッタリング装置2は、真空槽25とターゲット装置5とを有している。 The sputtering device 2 has a vacuum chamber 25 and a target device 5.

ターゲット装置5は、板状の一枚のカソード電極21と、カソード電極21の片面に配置された一枚のスパッタリングターゲット14と、カソード電極21のスパッタリングターゲット14とは反対側の面に配置された一乃至複数個の磁石装置301、311〜314、302(図3(a)〜(c))を有している。The target device 5 is arranged on a plate-shaped cathode electrode 21, a single sputtering target 14 arranged on one side of the cathode electrode 21, and a surface of the cathode electrode 21 opposite to the sputtering target 14. has one or a plurality of magnets 30 1, 31 1 to 31 4, 30 2 (FIG. 3 (a) ~ (c) ).

真空槽25の内部には成膜対象物13が配置されており、スパッタリングターゲット14のスパッタリングされるスパッタ面24と成膜対象物13の薄膜が形成される成膜面22とは対面されている。 The film-forming object 13 is arranged inside the vacuum chamber 25, and the sputtered surface 24 of the sputtering target 14 to be sputtered and the film-forming surface 22 on which the thin film of the film-forming object 13 is formed face each other. ..

成膜対象物13はここでは載置台23上に配置されており、スパッタリングターゲット14に対して静止しているが、成膜対象物13又はスパッタリングターゲット14のいずれか一方又は両方が真空槽25の内部で移動するようにしてもよい。 Although the film-forming object 13 is arranged on the mounting table 23 and is stationary with respect to the sputtering target 14, either one or both of the film-forming object 13 and the sputtering target 14 are in the vacuum chamber 25. It may be moved internally.

真空槽25にはガス源26と真空排気装置29とが接続されており、真空排気装置29を動作させ、真空槽25の内部を真空排気して真空槽25の内部に真空雰囲気を形成した後、ガス源26から真空槽25の内部にスパッタリングガスを導入する。 A gas source 26 and a vacuum exhaust device 29 are connected to the vacuum tank 25, and after operating the vacuum exhaust device 29 and evacuating the inside of the vacuum tank 25 to form a vacuum atmosphere inside the vacuum tank 25. , The sputtering gas is introduced from the gas source 26 into the vacuum chamber 25.

カソード電極21はスパッタ電源28に接続され、スパッタ電源28からスパッタ電圧が印加されるようにされている。スパッタリングターゲット14はカソード電極21に密着して配置されている。後述する他のカソード電極161〜166もスパッタ電源28に接続され、スパッタ電圧が印加されるようにされている。The cathode electrode 21 is connected to a sputtering power supply 28 so that a sputtering voltage is applied from the sputtering power supply 28. The sputtering target 14 is arranged in close contact with the cathode electrode 21. Other cathode electrode 16 1 to 16 6 to be described later is connected to a sputtering power supply 28, a sputtering voltage is to be applied.

一枚のカソード電極21の両面のうち、スパッタリングターゲット14が配置された面とは反対側の面に、図3(a)に示すように、一乃至複数個の磁石装置301、311〜314、302が配置されている。図3(b)は同図(a)のA1−A1線截断断面図であり、図3(c)は同図(a)のB1−B1線截断断面図である。 As shown in FIG. 3A, one or a plurality of magnet devices 30 1 , 31 1 to the surface of one surface of the cathode electrode 21 opposite to the surface on which the sputtering target 14 is arranged. 31 4 and 30 2 are arranged. 3 (b) is a A 1 -A 1 line cutting off cross-sectional view of FIG. (A), FIG. 3 (c) is a B 1 -B 1 line cutting off cross-sectional view of FIG. (A).

図3(a)〜(c)のスパッタリングターゲット14は長方形形状又は正方形形状の直角四辺形形状にされている。 The sputtering targets 14 shown in FIGS. 3 (a) to 3 (c) have a rectangular or square shape with a right-angled quadrilateral shape.

後述する図6(a)、(b)のターゲット装置60は、円筒形形状のカソード電極61と、円筒形形状のカソード電極61の外周面に配置された円筒形形状のスパッタリングターゲット64とを有しており、円筒形形状のスパッタリングターゲット64の内周側の領域内に円筒形形状のカソード電極61が位置するようにされ、円筒形形状のカソード電極61の内周側であって、円筒形形状のカソード電極61で取り囲まれた領域に、図5(b)、(c)に示す磁石装置32が配置されている。 The target device 60 of FIGS. 6A and 6B, which will be described later, has a cylindrical cathode electrode 61 and a cylindrical sputtering target 64 arranged on the outer peripheral surface of the cylindrical cathode electrode 61. The cylindrical cathode electrode 61 is located in the region on the inner peripheral side of the cylindrical sputtering target 64, and is on the inner peripheral side of the cylindrical cathode electrode 61 and has a cylindrical shape. The magnet device 32 shown in FIGS. 5 (b) and 5 (c) is arranged in a region surrounded by the cathode electrode 61 having a shape.

ここで、上述した直角四辺形形状のスパッタリングターゲット14に配置された磁石装置301、311〜314、302と、円筒形形状のカソード電極61内に配置された磁石装置32とは、それぞれ細長で長手方向を有しており、各磁石装置301、311〜314、302、32の長手方向を主方向と呼ぶと、各磁石装置301、311〜314、302、32は、主方向が平板形形状のスパッタリングターゲット14の二辺、又は円筒形形状のスパッタリングターゲット64の中心軸線と平行になるように配置されている。Here, the magnet device 30 1 which is disposed in the sputtering target 14 at right angles quadrilateral shape described above, 31 1 to 31 4, 30 2, a magnet 32 disposed in the cathode electrode 61 of cylindrical shape, Each of them is elongated and has a longitudinal direction, and when the longitudinal direction of each of the magnet devices 30 1 , 31 1 to 31 4 , 30 2 and 32 is called the main direction, each of the magnet devices 30 1 , 31 1 to 31 4 and 30 2 and 32 are arranged so that the main direction is parallel to the two sides of the flat plate-shaped sputtering target 14 or the central axis of the cylindrical sputtering target 64.

従って、複数の磁石装置301、311〜314、302を有する場合は、各磁石装置301、311〜314、302は互いに平行に配置されている。平板形形状のスパッタリングターゲット14は、主方向と平行な辺の長さが、それとは直角な辺の長さよりも長くなっている。Therefore, the case where a plurality of magnets 30 1, 31 1 to 31 4, 30 2, each magnet device 30 1, 31 1 to 31 4, 30 2 are arranged parallel to one another. In the flat plate-shaped sputtering target 14, the length of the side parallel to the main direction is longer than the length of the side perpendicular to it.

<磁石装置>
各磁石装置301、311〜314、302、32は、長手方向が主方向に沿って配置された細長の薄板であるヨーク39、40をそれぞれ有している。ヨーク39、40は高透磁率材料で形成されている。複数の磁石装置301、311〜314、302を有する場合は、各ヨーク39は同一平面に配置することができ、また、異なる平面上に配置することができる。
<Magnet device>
Each magnet unit 30 1, 31 1 to 31 4, 30 2, 32 in the longitudinal direction and has a yoke 39 and 40 is a thin elongated arranged along the main direction. The yokes 39 and 40 are made of a high magnetic permeability material. If having a plurality of magnets 30 1, 31 1 to 31 4, 30 2, each yoke 39 may be arranged on the same plane, also be located on different planes.

各磁石装置301、311〜314、302、32は、それぞれ長手方向を有する可変磁力部53a、53b、54a、54bと、固定磁力部51、52とを有している。Each magnet unit 30 1, 31 1 to 31 4, 30 2, 32 has the variable magnetic force portion 53a having a longitudinal, respectively, 53b, 54a, and 54b, the fixed magnetic force units 51 and 52.

可変磁力部53a、53b、54a、54bは細長で長手方向を有しており、各磁石装置301、311〜314、302、32の両端に、その長手方向が主方向に沿って配置されている。The variable magnetic force portion 53a, 53b, 54a, 54b has a longitudinally elongated, the ends of each magnet device 30 1, 31 1 to 31 4, 30 2, 32, the longitudinal direction along the main direction Have been placed.

固定磁力部51、52は、両端の二個の可変磁力部53a、53b、54a、54bの間に、その長手方向が主方向に沿って配置されている。可変磁力部53a、53b、54a、54bと固定磁力部51、52は一直線上に配置されている。 The fixed magnetic force portions 51 and 52 are arranged between the two variable magnetic force portions 53a, 53b, 54a and 54b at both ends in the longitudinal direction along the main direction. The variable magnetic force portions 53a, 53b, 54a, 54b and the fixed magnetic force portions 51, 52 are arranged in a straight line.

固定磁力部51、52は、それぞれ細長の永久磁石から成る第一の中央外側部35a、36aと第二の中央外側部35b、36bと中央内側部33、34とを有している。 The fixed magnetic force portions 51 and 52 have first central outer portions 35a and 36a, second central outer portions 35b and 36b, and central inner portions 33 and 34, respectively, which are made of elongated permanent magnets.

第一の中央外側部35a、36aと第二の中央外側部35b、36bとは、その長手方向が主方向に沿って配置されており、第一の中央外側部35a、36aと第二の中央外側部35b、36bとの両端は一方が他方よりも突き出されないように揃えられている。 The first central outer portions 35a and 36a and the second central outer portions 35b and 36b are arranged along the main direction in the longitudinal direction thereof, and the first central outer portions 35a and 36a and the second center are arranged. Both ends of the outer portions 35b and 36b are aligned so that one does not protrude more than the other.

中央内側部33、34は、第一の中央外側部35a、36aと第二の中央外側部35b、36bとの間に、その長手方向が主方向に沿って配置されている。 The central inner side portions 33, 34 are arranged between the first central outer side portions 35a, 36a and the second central outer side portions 35b, 36b in the longitudinal direction along the main direction.

可変磁力部53a、53b、54a、54bは、それぞれ細長の永久磁石から成る第一の端外側部37a、38aと第二の端外側部37b、38bと、細長で湾曲形形状又は折線形形状の永久磁石からなる接続部37c、38cと、一直線上に配置された複数個の可変磁石47から成る端内側部43、44とを有している。 The variable magnetic force portions 53a, 53b, 54a, 54b have a first end outer side portion 37a, 38a and a second end outer side portion 37b, 38b, which are made of elongated permanent magnets, respectively, and have an elongated curved shape or a fold linear shape. It has connecting portions 37c and 38c made of permanent magnets, and end inner portions 43 and 44 made of a plurality of variable magnets 47 arranged in a straight line.

第一の端外側部37a、38aと第二の端外側部37b、38bとは、その長手方向が主方向に沿って配置されており、一方の端部は固定磁力部51、52に揃って向けられており、他方の端部には、接続部37c、38cの端部がそれぞれ接続されている。従って、第一の端外側部37a、38aと第二の端外側部37b、38bとは、接続部37c、38cによって接続され、U字形形状の永久磁石部材37、38が形成されている。 The first end outer portions 37a and 38a and the second end outer portions 37b and 38b are arranged along the main direction in the longitudinal direction thereof, and one end portion is aligned with the fixed magnetic force portions 51 and 52. The ends of the connecting portions 37c and 38c are connected to the other end portions, respectively. Therefore, the first end outer portions 37a and 38a and the second end outer portions 37b and 38b are connected by the connecting portions 37c and 38c to form the U-shaped permanent magnet members 37 and 38.

端内側部43、44は、第一の端外側部37a、38aと第二の端外側部37b、38bとの間に、その長手方向が主方向に沿って配置されている。 The end inner side portions 43 and 44 are arranged between the first end outer side portions 37a and 38a and the second end outer side portions 37b and 38b in the longitudinal direction along the main direction.

<可変磁石>
図2(a)、(b)を参照し、可変磁石47は、永久磁石から成る基礎磁力部71と、絶縁被覆配線が螺旋状に巻き回されたコイルから成る電磁石部73とを有している。
<Variable magnet>
With reference to FIGS. 2A and 2B, the variable magnet 47 has a basic magnetic force portion 71 made of a permanent magnet and an electromagnet portion 73 made of a coil in which the insulating coating wiring is spirally wound. There is.

真空槽25の外部には、励磁電源18が配置されており、電磁石部73は、配線75によって励磁電源18に接続され、励磁電源18が出力する励磁電流が流れて電磁石部73の両端に互いに逆極性の磁極が発生するようになっている。 An exciting power supply 18 is arranged outside the vacuum chamber 25, and the electromagnet portion 73 is connected to the exciting power supply 18 by wiring 75, and an exciting current output by the exciting power supply 18 flows to each other at both ends of the electromagnet portion 73. A magnetic pole of opposite polarity is generated.

図2(a)の可変磁石47は、基礎磁力部71が電磁石部73の内部に挿通され、電磁石部73が基礎磁力部71を巻き回すように配置されており、基礎磁力部71の互いに逆極性の磁極の中心を結ぶ直線と、電磁石部73が発生させる互いに逆極性の磁極の中心を結ぶ直線とは、一致するように配置されている。その結果、基礎磁力部71が形成する磁界と電磁石部73が形成する磁界とが重なり合う。符号70は、互いに逆極性の磁極の中心を結ぶ直線である。 In the variable magnet 47 of FIG. 2A, the basic magnetic force portion 71 is inserted into the electromagnet portion 73, and the electromagnet portion 73 is arranged so as to wind around the basic magnetic force portion 71. The straight line connecting the centers of the magnetic poles of the polarity and the straight line connecting the centers of the magnetic poles of opposite polarities generated by the electromagnet unit 73 are arranged so as to coincide with each other. As a result, the magnetic field formed by the basic magnetic force portion 71 and the magnetic field formed by the electromagnet portion 73 overlap. Reference numeral 70 is a straight line connecting the centers of magnetic poles having opposite polarities.

電磁石部73の磁極の極性は、電磁石部73に流れる励磁電流の向きによって変わる。 The polarity of the magnetic poles of the electromagnet unit 73 changes depending on the direction of the exciting current flowing through the electromagnet unit 73.

なお、複数のヨーク39を有する場合は、各ヨーク39は、各磁石装置301、311〜314、302毎に個別に互いに離間して配置されており、ヨーク39の長手方向は主方向に沿って長手方向両端がそろうように配置されている。Incidentally, the case where a plurality of yokes 39, each yoke 39, the magnet device 30 1, 31 1 to 31 4 are spaced individually from each other in 30 every two, longitudinally main yoke 39 Both ends in the longitudinal direction are arranged so as to be aligned along the direction.

各磁石装置301、311〜314、302、32の永久磁石と電磁石とは、ヨーク39、40とカソード電極21、61との間に配置されている。The respective magnets 30 1, 31 1 to 31 4, 30 2, 32 permanent magnets and electromagnets are disposed between the yoke 39 and 40 and the cathode electrode 21 and 61.

可変磁石47はヨーク39、40上に固定されており、可変磁石47のヨーク39、40に固定された面を底面とし、底面とは反対側の面を上端面とすると、基礎磁力部71の磁極は、N極とS極の二個の極性のうち、一方の極性の磁極が底面側に位置し、他方の極性の磁極が上端面側に位置している。
電磁石部73が発生させる磁極についても、一方の極性の磁極がヨーク39、40側に形成され、他方の極性の磁極がカソード電極21、61側に形成されている。
ヨーク39、40の位置とは反対側にはカソード電極21、61が位置している。
The variable magnet 47 is fixed on the yokes 39 and 40, and when the surface of the variable magnet 47 fixed to the yokes 39 and 40 is the bottom surface and the surface opposite to the bottom surface is the upper end surface, the basic magnetic force portion 71 Of the two polarities of the north pole and the south pole, the magnetic pole of one polarity is located on the bottom surface side, and the magnetic pole of the other polarity is located on the upper end surface side.
Regarding the magnetic poles generated by the electromagnet unit 73, one polar pole is formed on the yokes 39 and 40 sides, and the other polar pole is formed on the cathode electrodes 21 and 61 sides.
Cathode electrodes 21 and 61 are located on the opposite side of the yokes 39 and 40.

従って、基礎磁力部71が形成する磁界と電磁石部73が発生させる磁界とを合成した磁界の向きと強度が、可変磁石47が形成する磁界の向きと強度になる。 Therefore, the direction and strength of the magnetic field formed by the basic magnetic force portion 71 and the magnetic field generated by the electromagnet portion 73 are the direction and strength of the magnetic field formed by the variable magnet 47.

励磁電源18は制御装置12に接続されており、励磁電源18が電磁石部73に供給する励磁電流は、流れる向きと大きさが制御装置12によって制御されている。 The exciting power supply 18 is connected to the control device 12, and the direction and magnitude of the exciting current supplied by the exciting power supply 18 to the electromagnet unit 73 are controlled by the control device 12.

励磁電流の向きは二方向あるが、いずれの方向に流れる場合であっても電磁石部73が形成する磁界強度が基礎磁力部71が形成する磁界強度よりも強くならないような大きさの励磁電流が流れるようになっている。 There are two directions of the exciting current, but the magnetic field strength formed by the electromagnet unit 73 does not become stronger than the magnetic field strength formed by the basic magnetic force unit 71 regardless of the direction of the exciting current. It is flowing.

電磁石部73に一方向の向きの励磁電流が流れ、電磁石部73に発生した磁極のうち、ヨーク39、40に向けられた磁極の極性が、基礎磁力部71のヨーク39、40に向けられた磁極の極性と一致した場合は、電磁石部73に発生した磁極のうち、ヨーク39、40の位置とは反対側のカソード電極21、61に向けられた磁極の極性が、基礎磁力部71のヨーク39、40の位置とは反対側のカソード電極21、61に向けられた磁極の極性と一致する。 An exciting current in one direction flows through the electromagnet unit 73, and among the magnetic poles generated in the electromagnet unit 73, the polarities of the magnetic poles directed to the yokes 39 and 40 are directed to the yokes 39 and 40 of the basic magnetic force unit 71. If it matches the polarity of the magnetic poles, among the magnetic poles generated in the electromagnet portion 73, the polarity of the magnetic poles directed to the cathode electrodes 21 and 61 opposite to the positions of the yokes 39 and 40 is the yoke of the basic magnetic force portion 71. It coincides with the polarity of the magnetic poles directed at the cathode electrodes 21 and 61 opposite to the positions 39 and 40.

この場合は基礎磁力部71が形成する磁界強度と電磁石部73が形成する磁界強度とが加算され、可変磁石47の磁界強度は基礎磁力部71の磁界強度よりも大きくなる。 In this case, the magnetic field strength formed by the basic magnetic force portion 71 and the magnetic field strength formed by the electromagnet portion 73 are added, and the magnetic field strength of the variable magnet 47 becomes larger than the magnetic field strength of the basic magnetic force portion 71.

それとは逆に、電磁石部73に逆方向の向きの励磁電流が流れ、電磁石部73に発生した磁極のうち、ヨーク39、40に向けられた磁極の極性が、基礎磁力部71のヨーク39、40に向けられた磁極の極性とは逆極性になった場合は、電磁石部73に発生した磁極のうち、ヨーク39、40の位置とは反対側に向けられた磁極の極性も、基礎磁力部71のヨーク39、40の位置とは反対側に向けられた磁極の極性とは逆極性になる。 On the contrary, an exciting current flows in the electromagnet portion 73 in the opposite direction, and among the magnetic poles generated in the electromagnet portion 73, the polarities of the magnetic poles directed to the yokes 39 and 40 are the polarities of the yoke 39 of the basic magnetic force portion 71. When the polarity is opposite to the polarity of the magnetic poles directed toward 40, the polarity of the magnetic poles generated in the electromagnet unit 73 that is directed to the side opposite to the positions of the yokes 39 and 40 is also the basic magnetic force portion. The polarity is opposite to the polarity of the magnetic poles directed to the opposite side of the positions of the yokes 39 and 40 of 71.

この場合は基礎磁力部71が形成する磁界強度から電磁石部73が形成する磁界強度が減算され、可変磁石47の磁界強度は基礎磁力部71の磁界強度よりも小さくなる。 In this case, the magnetic field strength formed by the electromagnet portion 73 is subtracted from the magnetic field strength formed by the basic magnetic force portion 71, and the magnetic field strength of the variable magnet 47 becomes smaller than the magnetic field strength of the basic magnetic force portion 71.

なお、可変磁石47の磁芯として、永久磁石の代わりに高透磁率の材料を使用することもできる。また、基礎磁力部71に永久磁石を使用する場合は、ターゲット方向に永久磁石のどちらの磁極を向けてもよい。さらに、励磁電流の向きや電流値を制御することにより、基礎磁力部71の磁界強度を強めることも、弱めることもできる。 As the magnetic core of the variable magnet 47, a material having a high magnetic permeability can be used instead of the permanent magnet. When a permanent magnet is used for the basic magnetic force portion 71, either magnetic pole of the permanent magnet may be directed toward the target. Further, by controlling the direction and the current value of the exciting current, the magnetic field strength of the basic magnetic force portion 71 can be strengthened or weakened.

図2(b)は、電磁石部73の中に、高透磁率で永久磁石になりにくい材料で形成された磁芯72を挿入して磁芯72を電磁石部73の配線によって巻き回し、電磁石部73の外部に基礎磁力部71を配置して可変磁石47を形成したものである。 In FIG. 2B, a magnetic core 72 formed of a material having a high magnetic permeability and which is unlikely to become a permanent magnet is inserted into the electromagnet portion 73, and the magnetic core 72 is wound around by the wiring of the electromagnet portion 73. The variable magnet 47 is formed by arranging the basic magnetic force portion 71 outside the 73.

図2(a)、(b)のいずれの場合も、電磁石部73が形成する磁極の中心同士を結ぶ直線70が、基礎磁力部71の二個の磁極の中心を通るように電磁石部73と基礎磁力部71とが配置される。 In both cases of FIGS. 2A and 2B, the straight line 70 connecting the centers of the magnetic poles formed by the electromagnet portion 73 passes through the centers of the two magnetic poles of the basic magnetic force portion 71 with the electromagnet portion 73. The basic magnetic force portion 71 is arranged.

可変磁力部53a、53b、54a、54bに配置される複数の可変磁石47のうち、いくつかの磁芯を永久磁石とし、他の磁芯を高透磁率の材料にすることもできる。さらに、可変磁力部53a、53b、54a、54bは、少なくとも一つの可変磁石47を有していればよく、可変磁石47と永久磁石の組み合わせでもよい。さらに、一番端部が可変磁石47の場合に限定されない。 Of the plurality of variable magnets 47 arranged in the variable magnetic force portions 53a, 53b, 54a, 54b, some magnetic cores may be permanent magnets, and other magnetic cores may be made of a material having a high magnetic permeability. Further, the variable magnetic force portions 53a, 53b, 54a, 54b may have at least one variable magnet 47, and may be a combination of the variable magnet 47 and a permanent magnet. Further, the present invention is not limited to the case where the outermost end is the variable magnet 47.

<永久磁石>
各磁石装置301、311〜314、302、32に含まれる永久磁石は、各磁石装置301、311〜314、302、32毎に設けられたヨーク39、40上にそれぞれ固定されており、永久磁石のヨーク39、40に固定された面を底面とし、底面の反対側に位置する面を上端面とすると、底面と上端面にそれぞれ磁極が位置するようにされている。
<Permanent magnet>
Permanent magnets contained in each magnet device 30 1, 31 1 to 31 4, 30 2, 32, each magnet device 30 1, 31 1 to 31 4, 30 2, on the yoke 39 and 40 provided for each 32 Each is fixed, and if the surface fixed to the yokes 39 and 40 of the permanent magnet is the bottom surface and the surface located on the opposite side of the bottom surface is the upper end surface, the magnetic poles are located on the bottom surface and the upper end surface, respectively. There is.

S極とN極のうち、いずれか一方の極性を第一極とし、他方の極性を第二極とすると、各磁石装置301、311〜314、302、32の中のうち、第一の中央外側部35a、36aと第二の中央外側部35b、36bと、第一の端外側部37a、38aと、第二の端外側部37b、38bと、接続部37c、38cとの中の永久磁石は、同じ極性である第一極の磁極がヨーク39、40側に向けられており、その第一極とは逆極性の第二極の磁極がカソード電極21、61に向けられている。Of S and N poles, either polarity as the first pole and the other polarity and a second pole, the magnets 30 1, 31 1 to 31 4, 30 2, 32 out of the inside of The first central outer portions 35a, 36a, the second central outer portions 35b, 36b, the first end outer portions 37a, 38a, the second end outer portions 37b, 38b, and the connecting portions 37c, 38c. In the permanent magnet inside, the magnetic pole of the first pole having the same polarity is directed to the yokes 39 and 40, and the magnetic pole of the second pole having the opposite polarity to the first pole is directed to the cathode electrodes 21 and 61. ing.

端内側部43、44の可変磁石47と、中央内側部33、34と、端内側部43、44との中の永久磁石とは、第一の中央外側部35a、36aと第二の中央外側部35b、36bと、第一の端外側部37a、38aと、第二の端外側部37b、38bと、接続部37c、38cとは逆極性の磁極がヨーク39、40とカソード電極21にそれぞれ向けられるようになっている。 The variable magnets 47 of the end inner portions 43 and 44, the permanent magnets in the center inner portions 33 and 34, and the end inner portions 43 and 44 are the first central outer portions 35a and 36a and the second central outer portion. Magnetic poles having polarities opposite to those of the portions 35b and 36b, the first end outer portions 37a and 38a, the second end outer portions 37b and 38b, and the connection portions 37c and 38c are formed on the yokes 39 and 40 and the cathode electrode 21, respectively. It is designed to be directed.

従って、第一極の磁極と第二極の磁極とがカソード電極21、61に向けられており、スパッタリングターゲット14、64のスパッタ面24、66上にアーチ形形状の磁力線が形成され、電子が捕捉されるようになっている。 Therefore, the magnetic poles of the first pole and the magnetic poles of the second pole are directed to the cathode electrodes 21 and 61, and arch-shaped magnetic force lines are formed on the sputtering surfaces 24 and 66 of the sputtering targets 14 and 64, and electrons are generated. It is designed to be captured.

真空槽25の内部が真空排気装置29によって真空排気され、真空雰囲気が形成された後、真空槽25の内部にガス源26からスパッタリングガスが導入され、カソード電極21、61に電圧が印加されてスパッタ面24、66から電子が放出される。 After the inside of the vacuum chamber 25 is evacuated by the vacuum exhaust device 29 to form a vacuum atmosphere, a sputtering gas is introduced into the inside of the vacuum chamber 25 from the gas source 26, and a voltage is applied to the cathode electrodes 21 and 61. Electrons are emitted from the sputtered surfaces 24 and 66.

磁石装置301、311〜314、302、32がスパッタ面24、66上に形成する磁界によって電子が捕捉されてスパッタ面24、66の近傍にスパッタリングガスのプラズマが高効率に形成される。Magnet device 30 1, 31 1 to 31 4, 30 2, 32 of the sputtering gas is trapped electrons by the magnetic field to be formed on sputter surface 24,66 in the vicinity of the sputter surface 24,66 plasma is formed with high efficiency To.

第一の中央外側部35a、36aと第二の中央外側部35b、36bと、第一の端外側部37a、38aと、第二の端外側部37b、38bと、接続部37c、38cとは、環状に配置され、第一の中央外側部35a、36aと第二の中央外側部35b、36bと、第一の端外側部37a、38aと、第二の端外側部37b、38bと、接続部37c、38cとによって環状の磁石部が形成されるものとし、また、中央内側部33、34と端内側部43、44は同一直線上に配置され、直線状の磁石部が形成されるものとすると、直線状の磁石部は環状の磁石部の内側に配置されている。 The first central outer portions 35a, 36a, the second central outer portions 35b, 36b, the first end outer portions 37a, 38a, the second end outer portions 37b, 38b, and the connecting portions 37c, 38c , Arranged in an annular shape and connected to the first central outer portions 35a, 36a, the second central outer portions 35b, 36b, the first end outer portions 37a, 38a, and the second end outer portions 37b, 38b. An annular magnet portion is formed by the portions 37c and 38c, and the central inner portions 33 and 34 and the end inner portions 43 and 44 are arranged on the same straight line to form a linear magnet portion. Then, the linear magnet portion is arranged inside the annular magnet portion.

<エロ−ジョン領域>
スパッタ面24、66上のプラズマは、環状の磁石部と直線状の磁石部との間の環状の領域で強度が大きくなっており、スパッタ面24上で大量にスパッタリングされる部分は、各磁石装置301、311〜314、302、32毎にプラズマ強度が大きい環状の領域である。この領域はエロ−ジョン領域と呼ばれている。
<Erotic area>
The plasma on the sputtered surfaces 24 and 66 has a high intensity in the annular region between the annular magnet portion and the linear magnet portion, and the portion sputtered in large quantities on the sputtered surface 24 is each magnet. 30 1, 31 1 to 31 4, 30 2, 32 plasma intensity for each is larger annular region. This area is called the erotic area.

特に、平板形形状のスパッタリングターゲット14は外周付近の領域が多量にスパッタリングされやすく、円筒形形状のスパッタリングターゲット64では長手方向両端の領域が多量にスパッタリングされやすい。
スパッタ面24の領域のうち、多量にスパッタリングされる領域と磁石装置301、311〜314、302、32との間の距離は、少量しかスパッタされない領域と磁石装置301、311〜314、302、32との間の距離よりも短くなり、多量にスパッタリングされる領域のスパッタ面24上の磁界強度が強くなってしまうから、一層多量にスパッタリングされることになる。
In particular, the flat plate-shaped sputtering target 14 tends to be sputtered in a large amount in the region near the outer circumference, and the cylindrical sputtering target 64 tends to be sputtered in a large amount in both ends in the longitudinal direction.
Among the regions of the sputtering surface 24, the distance is only sputtered small amount region and the magnet device 30 1 between the large amount of area and the magnet system 30 to be sputtered 1, 31 1 to 31 4, 30 2, 32, 31 1 to 31 4, 30 2, shorter than the distance between the 32, a large amount because the magnetic field strength of the sputtering surface on 24 regions to be sputtered becomes stronger, it will be more heavily sputtered.

平板形形状のスパッタリングターゲット14では、可変磁石47は、スパッタリングターゲット14の外周付近に磁極が向く場所に配置されており、円筒形形状のスパッタリングターゲット64では、可変磁石47は、スパッタリングターゲット64の両端付近に磁極が向く場所に配置されている。
そのため、スパッタリングターゲット14、64の中央付近よりも外周付近又は両端付近の方がエロ−ジョン領域は深くなる。
In the flat plate-shaped sputtering target 14, the variable magnet 47 is arranged near the outer periphery of the sputtering target 14 at a position where the magnetic poles face, and in the cylindrical sputtering target 64, the variable magnet 47 has both ends of the sputtering target 64. It is located near the magnetic poles.
Therefore, the erosion region becomes deeper in the vicinity of the outer periphery or both ends than in the vicinity of the center of the sputtering targets 14 and 64.

薄膜が形成された成膜対象物13の枚数は制御装置12によって計数されており、薄膜が形成された成膜対象物13の枚数が増加すると、制御装置12は励磁電流の向きと大きさを制御して可変磁石47が形成する磁界強度が小さくなるようにされており、エロ−ジョン領域の深さが中央よりも深くなっても、可変磁石47がスパッタ面24に形成する磁界強度は一定になり、外周付近のスパッタリング量が多くならないようにされている。 The number of film-forming objects 13 on which the thin film is formed is counted by the control device 12, and when the number of film-forming objects 13 on which the thin film is formed increases, the control device 12 determines the direction and magnitude of the exciting current. The magnetic field strength formed by the variable magnet 47 is controlled to be small, and even if the depth of the erosion region is deeper than the center, the magnetic field strength formed by the variable magnet 47 on the sputtering surface 24 is constant. Therefore, the amount of sputtering near the outer periphery is prevented from increasing.

この場合、例えば、可変磁石47の中で、電磁石部73の磁極と基礎磁力部71の磁極のうち、カソード電極21に向けられた磁極を同極性にして可変磁石47が形成する磁界強度を強めておき、スパッタリング装置2で薄膜を形成する成膜対象物13の枚数の増加に応じて励磁電流を減少させ、可変磁石47が形成する磁界強度を枚数の増加に応じて減少させる。 In this case, for example, in the variable magnet 47, among the magnetic poles of the electromagnet portion 73 and the magnetic pole of the basic magnetic force portion 71, the magnetic poles directed to the cathode electrode 21 have the same polarity to strengthen the magnetic field strength formed by the variable magnet 47. The exciting current is reduced as the number of film-forming objects 13 forming the thin film in the sputtering apparatus 2 increases, and the magnetic field strength formed by the variable magnet 47 is reduced as the number of film-forming objects 13 increases.

励磁電流の大きさがゼロになった後、励磁電流の流れる方向を反転させ、電磁石部73と基礎磁力部71のカソード電極21に向けられた磁極を逆極性にして、基礎磁力部71が形成する磁界強度を、枚数の増加に応じて電磁石部73が形成する磁界強度によって弱め、可変磁石47が形成する磁界強度が枚数の増加に応じて減少するようにすると、多量にスパッタされる部分が磁石装置301、311〜314、302、32に接近するに従って磁界強度が小さくなるから、スパッタ面24の外周に近い領域とその内側の領域との間でのスパッタリング量が均一になる。After the magnitude of the exciting current becomes zero, the direction in which the exciting current flows is reversed, and the magnetic poles directed toward the cathode electrode 21 of the electromagnet part 73 and the basic magnetic field part 71 are reversed in polarity to form the basic magnetic field part 71. When the magnetic field strength to be generated is weakened by the magnetic field strength formed by the electromagnet portion 73 as the number of sheets increases and the magnetic field strength formed by the variable magnet 47 decreases as the number of sheets increases, a large amount of sputtered portion is produced. since the magnetic field strength decreases as approaching the magnet apparatus 30 1, 31 1 to 31 4, 30 2, 32, sputtering amounts among the region close to the outer periphery of the sputtering surface 24 and its inner region becomes uniform ..

従って、基礎磁力部71が形成する磁界強度は電磁石部73が形成せずに済むため、励磁電流が小さくて済み、可変磁石47の発熱が減少する。その結果、電流消費量が減少し、発熱が減少する。また、励磁電流が流れなくなる事故が生じた場合でも、基礎磁力部71が形成する磁界は消滅しないから、スパッタリングを続行することができるので、装置の信頼性が向上する。 Therefore, the magnetic field strength formed by the basic magnetic force portion 71 does not need to be formed by the electromagnet portion 73, so that the exciting current can be small and the heat generation of the variable magnet 47 is reduced. As a result, current consumption is reduced and heat generation is reduced. Further, even if an accident occurs in which the exciting current does not flow, the magnetic field formed by the basic magnetic force portion 71 does not disappear, so that sputtering can be continued, and the reliability of the apparatus is improved.

但し、最初のときから基礎磁力部71の磁界を減少させる向きに電磁石部73の磁界を形成させ、向きを変化させずに励磁電流を増加させ、薄膜形成の枚数増加に応じて電磁石部73の磁界強度を大きくすることで、可変磁石47の磁界強度を小さくしてもよい。 However, from the beginning, the magnetic field of the electromagnet unit 73 is formed in a direction that reduces the magnetic field of the basic magnetic force unit 71, the exciting current is increased without changing the direction, and the electromagnet unit 73 increases in number of thin film formations. By increasing the magnetic field strength, the magnetic field strength of the variable magnet 47 may be reduced.

本発明は全ての可変磁石47の磁界強度を小さくする場合に限定されるものではなく、スパッタ面内でのエロ−ジョン領域の分布を考慮する場合等、複数の可変磁石47の中に、磁界強度を減少させる可変磁石47と磁界強度を増加させる可変磁石47との両方が設けられる場合も本発明に含まれる。 The present invention is not limited to reducing the magnetic field strength of all the variable magnets 47, and when considering the distribution of the erotic region in the sputtered surface, the magnetic fields are contained in the plurality of variable magnets 47. It is also included in the present invention that both the variable magnet 47 that reduces the strength and the variable magnet 47 that increases the magnetic field strength are provided.

各磁石装置301、311〜314、302、32は互いに平行に一列に並べられている。平面上に配置された各磁石装置301、311〜314、302の両端は、それぞれ一直線上に並ぶように揃えられている。他方、円筒のカソード電極61内に配置された磁石装置32は、カソード電極61断面の円と同心で半径がその円よりも小さい円に沿って並べられている。Each magnet unit 30 1, 31 1 to 31 4, 30 2, 32 are parallel to be arranged in a line with one another. Each magnet unit 30 1 is disposed on a plane, 31 1-31 4, 30 2 at both ends, are aligned so that each aligned in a straight line. On the other hand, the magnet devices 32 arranged in the cylindrical cathode electrode 61 are arranged along a circle concentric with the circle in the cross section of the cathode electrode 61 and having a radius smaller than the circle.

複数の磁石装置301、311〜314、302が互いに平行に一列に並べられているときは、一列に並べられた磁石装置301、311〜314、302のうち、両端に位置する二個の磁石装置301、302の可変磁力部53a、53bの可変磁石47の個数は、他の場所に位置する磁石装置311〜314の可変磁力部54a、54bの可変磁石47の個数よりも多くされており、スパッタ面24のうち、主方向と平行な辺付近の領域でのスパッタリング量が調整されるようになっている。When a plurality of magnet devices 30 1 , 31 1 to 31 4 , 30 2 are arranged in a row in parallel with each other, both ends of the magnet devices 30 1 , 31 1 to 31 4 , 30 2 arranged in a row are arranged. The number of variable magnets 47 of the variable magnetic force portions 53a and 53b of the two magnet devices 30 1 and 30 2 located in the above is variable of the variable magnetic force portions 54a and 54b of the magnet devices 31 1 to 31 4 located at other locations. The number of magnets is larger than the number of magnets 47, and the amount of sputtering in the region of the sputtering surface 24 near the side parallel to the main direction is adjusted.

<磁石装置の移動>
なお、複数の磁石装置301、311〜314、302は移動板45に固定されている。真空槽25の外部には、モーター等の駆動装置19が配置されており、駆動装置19によって移動板45が移動されると、各磁石装置301、311〜314、302は互いに一緒に移動するようにされている。
<Movement of magnet device>
A plurality of magnets 30 1, 31 1 to 31 4, 30 2 are fixed to the moving plate 45. Outside the vacuum chamber 25, a driving device 19 such as a motor is disposed, when the moving plate 45 is moved by the drive unit 19, each magnet device 30 1, 31 1 to 31 4, 30 2 to each other with It is designed to move to.

円筒形形状のカソード電極61の中に配置された磁石装置32の移動については後述する。 The movement of the magnet device 32 arranged in the cylindrical cathode electrode 61 will be described later.

平板形形状のスパッタリングターゲット14の場合は、主方向に対し垂直であってスパッタ面24に対して平行な方向を垂直方向とすると(この場合のスパッタ面24はスパッタリングがされておらず、エロ−ジョン領域が形成されていない状態の場合)、図3(a)〜(c)に示されたように配置されたスパッタリングターゲット14の垂直方向の長さは、磁石装置301、311〜314、302が並べられた領域の垂直方向の長さよりも長くなるようにされており、駆動装置19によって移動板45は垂直方向に沿った方向に往復移動され、プラズマが強い領域がスパッタ面24上で移動されるようになっている。In the case of the flat plate-shaped sputtering target 14, if the direction perpendicular to the main direction and parallel to the sputtering surface 24 is the vertical direction (in this case, the sputtering surface 24 is not sputtered and is erotic. (When the John region is not formed), the vertical lengths of the sputtering targets 14 arranged as shown in FIGS. 3 (a) to 3 (c) are the magnet devices 30 1 , 31 1 to 31. 4, 30 2 are to be longer than the vertical length of the region arranged, the moving plate 45 by the driving device 19 is reciprocated in a direction along the vertical direction, the sputtering surface plasma is strong region It is designed to be moved on 24.

<他の例>
図3(a)のスパッタリングターゲット14は成膜材料から成る一枚の板であり、カソード電極21は一枚の電極板であったが、本発明のスパッタリング装置2の他の例は、図4(a)のように、複数のターゲット装置101、111〜114、102を有している。各ターゲット装置101、111〜114、102は個別の細長のカソード電極161〜166をそれぞれ有しており、各カソード電極161〜166の片面には、スパッタリングターゲット151〜156がそれぞれ配置され、反対側の面には、上述した磁石装置301、311〜314、302がそれぞれ配置されている。
<Other examples>
The sputtering target 14 of FIG. 3A was a single plate made of a film-forming material, and the cathode electrode 21 was a single electrode plate. However, another example of the sputtering apparatus 2 of the present invention is shown in FIG. (a), in which a plurality of target devices 10 1, 11 1 to 11 4, 10 2. Each target device 10 1, 11 1 to 11 4, 10 2 has separate elongate cathode electrode 16 1 to 16 6, respectively, to the one surface of the cathode electrodes 16 1 to 16 6, a sputtering target 15 1 15 6 are arranged respectively, on the surface opposite to the magnet device 30 1 described above, 31 1 to 31 4, 30 2 are disposed respectively.

複数の各カソード電極161〜166は、同じ平面上に互いに平行に離間して配置されている。The plurality of cathode electrodes 16 1 to 16 6 are arranged on the same plane so as to be parallel to each other.

図4(b)は同図(a)のA2−A2線截断断面図であり、図4(c)は同図(a)のB2−B2線截断断面図である。図3(a)と図4(a)では、移動板45とカソード電極21、161〜166とヨーク39とが省略されている。4 (b) is a A 2 -A 2 line cutting off cross-sectional view of FIG. (A), FIG. 4 (c) is a B 2 -B 2-wire cutting off cross-sectional view of FIG. (A). In FIGS. 3 (a) and FIG. 4 (a), has a moving plate 45 and the cathode electrode 21,16 1-16 6 and the yoke 39 are omitted.

<円筒形形状>
図5(a)の符号60は他の構造のターゲット装置であり、そのA3−A3線截断断面図を図6(a)に示し、B3−B3線截断断面図を同図(b)に示す。
<Cylindrical shape>
Figure 5 reference numeral 60 (a) is a target device of another structure, the A 3 -A 3-wire cutting off sectional view shown in FIG. 6 (a), B 3 -B 3-wire cutting off cross-sectional view to FIG. ( Shown in b).

このターゲット装置60は、上述したように、円筒形形状のカソード電極61と、カソード電極61の外周面に配置された円筒形形状のスパッタリングターゲット64とを有しており、スパッタリングターゲット64の内周側の領域内にカソード電極61が位置するようにされている。 As described above, the target device 60 has a cylindrical cathode electrode 61 and a cylindrical sputtering target 64 arranged on the outer peripheral surface of the cathode electrode 61, and has an inner circumference of the sputtering target 64. The cathode electrode 61 is located in the side region.

円筒形形状のカソード電極61の内周側であって、カソード電極61で取り囲まれた領域には図5(b)に示す磁石装置32が配置されている。同図(c)は、同図(b)のC−C線截断断面図である。 The magnet device 32 shown in FIG. 5B is arranged in a region on the inner peripheral side of the cylindrical cathode electrode 61 and surrounded by the cathode electrode 61. FIG. 3C is a cross-sectional view taken along the line CC of FIG.

この磁石装置32は、ヨーク40を有しておりヨーク40上には、上述した固定磁力部52と可変磁力部54a、54bとが配置されている。固定磁力部52と可変磁力部54a、54bとは、上述した通りに構成されており、但し、磁石装置32内の磁極はカソード電極61の内周面と対面するように、ヨーク40に傾斜面又は接続面が設けられている。 The magnet device 32 has a yoke 40, and the fixed magnetic force portion 52 and the variable magnetic force portions 54a and 54b described above are arranged on the yoke 40. The fixed magnetic force portion 52 and the variable magnetic force portions 54a and 54b are configured as described above, except that the magnetic poles in the magnet device 32 are inclined surfaces on the yoke 40 so as to face the inner peripheral surface of the cathode electrode 61. Alternatively, a connecting surface is provided.

ヨーク40は台座58に設けられており、台座58は、回転軸57に取り付けられた支持軸56に取り付けられている。 The yoke 40 is provided on the pedestal 58, and the pedestal 58 is attached to the support shaft 56 attached to the rotating shaft 57.

円筒形形状のカソード電極61の中心軸線と円筒形形状のスパッタリングターゲット64の中心軸線とは一致しており、図5(a)の符号74はその中心軸線を示しており、中心軸線74が伸びる方向が主方向になっている。 The central axis of the cylindrical cathode electrode 61 coincides with the central axis of the cylindrical sputtering target 64, and reference numeral 74 in FIG. 5A indicates the central axis, and the central axis 74 extends. The direction is the main direction.

回転軸57の回転軸線はカソード電極61の中心軸線74とスパッタリングターゲット64の中心軸線74と一致しており、駆動装置によって回転軸57が回転されると、磁石装置32は、中心軸線74を中心にして回転する。 The rotation axis of the rotation axis 57 coincides with the center axis 74 of the cathode electrode 61 and the center axis 74 of the sputtering target 64, and when the rotation axis 57 is rotated by the driving device, the magnet device 32 is centered on the center axis 74. And rotate.

このとき、磁石装置32内の磁極とカソード電極61との間の距離は変化せず、磁界強度が一定の場合は可変磁力部54a、54b上のスパッタリング量が増加する。本発明では可変磁石47が形成する磁界強度を制御して、可変磁力部54a、54bが形成する磁界強度を処理対象物の処理枚数に応じて減少させることで、スパッタリングターゲット64のスパッタ面66と磁石装置32との間の距離の不均一を、磁界強度の変更により補って、スパッタリングターゲット64の表面が均一にスパッタリングされるようにされている。 At this time, the distance between the magnetic pole in the magnet device 32 and the cathode electrode 61 does not change, and when the magnetic field strength is constant, the amount of sputtering on the variable magnetic force portions 54a and 54b increases. In the present invention, the magnetic field strength formed by the variable magnet 47 is controlled to reduce the magnetic field strength formed by the variable magnetic force portions 54a and 54b according to the number of processed objects to be processed. The non-uniformity of the distance between the magnet device 32 and the magnet device 32 is compensated for by changing the magnetic field strength so that the surface of the sputtering target 64 is uniformly sputtered.

上記可変磁石47は、図7に示した冷媒路69a、69bが設けられたケース67の内部に配置されてユニット68とされており、供給管63a、63bから冷却媒体を冷媒路69a、69bに供給して冷却媒体を冷媒路69a、69bの中に流し、熱を吸収した冷却媒体を排出管65a、65bからケース67の外部に排出させ、真空槽25の外部に配置した冷却装置20によって冷却し、供給管63a、63bからケース67の冷媒路69a、69bに戻すことで冷却媒体を循環させるようにすると、励磁電流を増加させることができる。 The variable magnet 47 is arranged inside the case 67 provided with the refrigerant passages 69a and 69b shown in FIG. 7, and serves as a unit 68. The cooling medium is supplied from the supply pipes 63a and 63b to the refrigerant passages 69a and 69b. The supplied cooling medium is allowed to flow into the refrigerant passages 69a and 69b, the heat-absorbed cooling medium is discharged from the discharge pipes 65a and 65b to the outside of the case 67, and cooled by the cooling device 20 arranged outside the vacuum chamber 25. Then, the exciting current can be increased by returning the cooling medium from the supply pipes 63a and 63b to the refrigerant passages 69a and 69b of the case 67 so as to circulate the cooling medium.

可変磁石47毎に異なるケース67に配置してもよいが、複数個の可変磁石47を同じケース67の内部に配置する方が、供給管63a、63bや排出管65a、65bを少なくすることができる。 The variable magnets 47 may be arranged in different cases 67, but if a plurality of variable magnets 47 are arranged inside the same case 67, the supply pipes 63a and 63b and the discharge pipes 65a and 65b can be reduced. it can.

2……スパッタリング装置
5、101、111〜114、102、60……ターゲット装置
13……成膜対象物
14、151〜156、64……スパッタリングターゲット
161〜166、21、61……カソード電極
18……励磁電源
22……成膜面
24、66……スパッタ面
25……真空槽
301、311〜314、302、32……磁石装置
33、34……中央内側部
35a、36a……第一の中央外側部
35b、36b……第二の中央外側部
37a、38a……第一の端外側部
37b、38b……第二の端外側部
37c、38c……接続部
43、44……端内側部
47……可変磁石
51、52……固定磁力部
53a、53b、54a、54b……可変磁力部
67……ケース
71……基礎磁力部
73……電磁石部
2 ... Sputtering device 5 , 10 1 , 11 1 to 11 4 , 10 2 , 60 ... Target device 13 ... Film formation target 14, 15 1 to 15 6 , 64 ... Sputtering target 16 1 to 16 6 , 21, 61 ... Cathode electrode 18 ... Exciting power supply 22 ... Film formation surface 24, 66 ... Sputtering surface 25 ... Vacuum tank 30 1 , 31 1 to 31 4 , 30 2 , 32 ... Magnet device 33, 34 ... Central inner side 35a, 36a ... First central outer part 35b, 36b ... Second central outer part 37a, 38a ... First end outer part 37b, 38b ... Second end outer part 37c , 38c …… Connection part 43, 44 …… End inner part 47 …… Variable magnet 51, 52 …… Fixed magnetic force part 53a, 53b, 54a, 54b …… Variable magnetic force part 67 …… Case 71 …… Basic magnetic force part 73 ...... Electromagnet part

Claims (14)

カソード電極と、
前記カソード電極の片面に配置され、真空槽内に露出するスパッタ面がスパッタリングされるスパッタリングターゲットと、
前記カソード電極の面のうち前記片面とは反対側の面に配置され、前記スパッタ面上に磁界を形成する磁石装置と、が設けられたターゲット装置を有し、
前記スパッタリングターゲットがスパッタリングされると前記真空槽内に位置する成膜対象物の成膜面に薄膜が形成されるスパッタリング装置であって、
前記磁石装置は、細長で長手方向を有しており、前記長手方向の両端にはそれぞれ可変磁力部が配置され、前記可変磁力部の間には固定磁力部が配置され、
前記固定磁力部は、前記長手方向に沿って配置された細長の永久磁石から成る第一、第二の中央外側部と、前記第一、第二の中央外側部の間に前記長手方向に沿って配置された細長の永久磁石から成る中央内側部と、を有し、
前記可変磁力部は、前記長手方向に沿って配置された細長の永久磁石から成る第一、第二の端外側部と、前記第一、第二の端外側部の間に前記長手方向に沿って配置された複数個の可変磁石から成る端内側部と、前記磁石装置の前記長手方向の両端に位置し、前記第一、第二の端外側部の端部同士を接続する細長で湾曲した永久磁石から成る接続部と、を有し、
N極とS極のうち、いずれか一方の極性の磁極を第一極とし、他方の極性の磁極を第二極とすると、
前記第一、第二の中央外側部と、前記第一、第二の端外側部と、前記接続部とは、前記第一極の磁極が前記カソード電極に向けられ、
前記中央内側部と前記端内側部とは前記第二極の磁極が前記カソード電極に向けられ、
前記可変磁石は磁芯部と、前記磁芯部の周りに巻かれたコイルを有し、励磁電流が流れると磁界を形成する電磁石部とを有し、
前記可変磁石が形成する磁界の向きと強度は、前記励磁電流の流れる方向と大きさによって変更可能に構成されたスパッタリング装置。
With the cathode electrode
A sputtering target arranged on one side of the cathode electrode and the sputtered surface exposed in the vacuum chamber is sputtered.
It has a target device provided with a magnet device arranged on a surface of the cathode electrode surface opposite to the one surface and forming a magnetic field on the sputtering surface.
A sputtering apparatus in which a thin film is formed on the film-forming surface of a film-forming object located in the vacuum chamber when the sputtering target is sputtered.
The magnet device is elongated and has a longitudinal direction, variable magnetic force portions are arranged at both ends in the longitudinal direction, and fixed magnetic force portions are arranged between the variable magnetic force portions.
The fixed magnetic force portion is formed along the longitudinal direction between the first and second central outer portions composed of elongated permanent magnets arranged along the longitudinal direction and the first and second central outer portions. With a central inner part, consisting of elongated permanent magnets, arranged in
The variable magnetic force portion is formed along the longitudinal direction between the first and second end outer portions made of elongated permanent magnets arranged along the longitudinal direction and the first and second end outer portions. An elongated curved shape located at both ends of the magnet device in the longitudinal direction and connecting the ends of the first and second ends of the outer side of the end, which is composed of a plurality of variable magnets arranged in a row. With a connection made of permanent magnets,
Assuming that the magnetic pole of either one of the north pole and the south pole is the first pole and the magnetic pole of the other polarity is the second pole,
The first and second central outer portions, the first and second end outer portions, and the connection portion have the magnetic poles of the first poles directed toward the cathode electrodes.
The magnetic poles of the second poles of the central inner portion and the end inner portion are directed toward the cathode electrode.
The variable magnet has a magnetic core portion and a coil wound around the magnetic core portion, and has an electromagnet portion that forms a magnetic field when an exciting current flows.
A sputtering apparatus configured such that the direction and strength of the magnetic field formed by the variable magnet can be changed depending on the direction and magnitude of the exciting current flowing.
前記可変磁石のうち、少なくとも一つの前記可変磁石の前記磁芯部は永久磁石からなる基礎磁力部を有し、
前記可変磁石が形成する磁界の強度は前記基礎磁力部の磁界と前記電磁石部の磁界とが合成された磁界の強度になる請求項1記載のスパッタリング装置。
Among the variable magnets, the magnetic core portion of at least one of the variable magnets has a basic magnetic force portion made of a permanent magnet.
The sputtering apparatus according to claim 1, wherein the strength of the magnetic field formed by the variable magnet is the strength of the magnetic field obtained by combining the magnetic field of the basic magnetic force portion and the magnetic field of the electromagnet portion.
前記基礎磁力部の前記第一極の磁極は前記カソード電極に向けられた請求項2記載のスパッタリング装置。 The sputtering apparatus according to claim 2, wherein the magnetic pole of the first pole of the basic magnetic force portion is directed to the cathode electrode. 前記基礎磁力部の前記第二極の磁極は前記カソード電極に向けられた請求項2記載のスパッタリング装置。 The sputtering apparatus according to claim 2, wherein the magnetic pole of the second pole of the basic magnetic force portion is directed to the cathode electrode. 前記可変磁石が形成する磁界の強度は、前記スパッタリングターゲットがスパッタリングされる間に変更可能にされた請求項1乃至請求項4のいずれか1項記載のスパッタリング装置。 The sputtering apparatus according to any one of claims 1 to 4, wherein the strength of the magnetic field formed by the variable magnet can be changed while the sputtering target is sputtering. 前記スパッタリングターゲットと前記磁石装置とは、相対的に往復移動するように構成された請求項1乃至請求項4のいずれか1項記載のスパッタリング装置。 The sputtering device according to any one of claims 1 to 4, wherein the sputtering target and the magnet device are configured to reciprocate relatively. 前記ターゲット装置は、一枚の前記カソード電極と、一枚の前記カソード電極に配置された前記スパッタリングターゲットと、互いに平行に配置された複数個の前記磁石装置とを有する請求項1乃至請求項4のいずれか1項記載のスパッタリング装置。 Claims 1 to 4 include the target device having one cathode electrode, the sputtering target arranged on the cathode electrode, and a plurality of the magnet devices arranged in parallel with each other. The sputtering apparatus according to any one of the above. 複数個の前記磁石装置を有するスパッタリング装置であって、
複数個の前記磁石装置は互いに平行に配置されて一列に並べられ、
並べられた前記磁石装置のうち、両端に位置する前記磁石装置の前記可変磁石の個数は、他に位置する前記磁石装置の前記可変磁石の個数よりも多数個にされた請求項1乃至請求項4のいずれか1項記載のスパッタリング装置。
A sputtering device having a plurality of the magnet devices.
The plurality of said magnet devices are arranged in parallel with each other and arranged in a row.
Claims 1 to claim that the number of the variable magnets of the magnet device located at both ends of the arranged magnet devices is larger than the number of the variable magnets of the magnet device located at other ends. 4. The sputtering apparatus according to any one of 4.
前記ターゲット装置を複数個有する請求項1乃至請求項4のいずれか1項記載のスパッタリング装置。 The sputtering apparatus according to any one of claims 1 to 4, which has a plurality of the target devices. 請求項1乃至請求項4のいずれか1項記載のスパッタリング装置であって、
前記ターゲット装置は、円筒形形状にされた前記カソード電極と、前記カソード電極の外周に配置された円筒形形状の前記スパッタリングターゲットと、
前記カソード電極で囲まれた領域に配置された前記磁石装置とを有するスパッタリング装置。
The sputtering apparatus according to any one of claims 1 to 4.
The target device includes the cathode electrode formed in a cylindrical shape, the sputtering target having a cylindrical shape arranged on the outer periphery of the cathode electrode, and the like.
A sputtering apparatus having the magnet apparatus arranged in a region surrounded by the cathode electrode.
前記可変磁石はケース内に配置し、前記ケースに設けられた冷媒路に冷却媒体を流し、前記可変磁石を冷却する請求項1乃至請求項4のいずれか1項記載のスパッタリング装置。 The sputtering apparatus according to any one of claims 1 to 4, wherein the variable magnet is arranged in a case, a cooling medium is passed through a refrigerant passage provided in the case, and the variable magnet is cooled. スパッタリング装置を制御して成膜対象物に薄膜を形成する薄膜製造方法であって、
前記スパッタリング装置は、
カソード電極と、
前記カソード電極の片面に配置され、真空槽内に露出するスパッタ面がスパッタリングされるスパッタリングターゲットと、
前記カソード電極の面のうち前記片面とは反対側の面に配置され、前記スパッタ面上に磁界を形成する磁石装置と、が設けられたターゲット装置を有し、
前記スパッタリングターゲットがスパッタリングされると前記真空槽内に位置する成膜対象物の成膜面に薄膜が形成されるスパッタリング装置であって、
前記磁石装置は、細長で長手方向を有しており、前記長手方向の両端にはそれぞれ可変磁力部が配置され、前記可変磁力部の間には固定磁力部が配置され、
前記固定磁力部は、前記長手方向に沿って配置された細長の永久磁石から成る第一、第二の中央外側部と、前記第一、第二の中央外側部の間に前記長手方向に沿って配置された細長の永久磁石から成る中央内側部と、を有し、
前記可変磁力部は、前記長手方向に沿って配置された細長の永久磁石から成る第一、第二の端外側部と、前記第一、第二の端外側部の間に前記長手方向に沿って配置された複数個の可変磁石から成る端内側部と、前記磁石装置の前記長手方向の両端に位置し、前記第一、第二の端外側部の端部同士を接続する細長で湾曲した永久磁石から成る接続部と、を有し、
N極とS極のうち、いずれか一方の極性の磁極を第一極とし、他方の極性の磁極を第二極とすると、
前記第一、第二の中央外側部と、前記第一、第二の端外側部と、前記接続部とは、前記第一極の磁極が前記カソード電極に向けられ、
前記中央内側部と前記端内側部とは前記第二極の磁極が前記カソード電極に向けられ、
前記可変磁石は磁芯部と、前記磁芯部の周りに巻かれたコイルを有し、励磁電流が流れると磁界を形成する電磁石部とを有し、
前記可変磁石が形成する磁界の向きと強度は、前記励磁電流の流れる方向と大きさによって変更可能に構成され、
前記薄膜を形成した前記成膜対象物の枚数が増加すると、前記可変磁石が形成する磁界の強度を減少させる薄膜製造方法。
A thin film manufacturing method in which a sputtering device is controlled to form a thin film on a film forming object.
The sputtering apparatus is
With the cathode electrode
A sputtering target arranged on one side of the cathode electrode and the sputtered surface exposed in the vacuum chamber is sputtered.
It has a target device provided with a magnet device arranged on a surface of the cathode electrode surface opposite to the one surface and forming a magnetic field on the sputtering surface.
A sputtering apparatus in which a thin film is formed on the film-forming surface of a film-forming object located in the vacuum chamber when the sputtering target is sputtered.
The magnet device is elongated and has a longitudinal direction, variable magnetic force portions are arranged at both ends in the longitudinal direction, and fixed magnetic force portions are arranged between the variable magnetic force portions.
The fixed magnetic force portion is formed along the longitudinal direction between the first and second central outer portions composed of elongated permanent magnets arranged along the longitudinal direction and the first and second central outer portions. With a central inner part, consisting of elongated permanent magnets, arranged in
The variable magnetic force portion is formed along the longitudinal direction between the first and second end outer portions made of elongated permanent magnets arranged along the longitudinal direction and the first and second end outer portions. An elongated curved shape located at both ends of the magnet device in the longitudinal direction and connecting the ends of the first and second ends of the outer side of the end, which is composed of a plurality of variable magnets arranged in a row. With a connection made of permanent magnets,
Assuming that the magnetic pole of either one of the north pole and the south pole is the first pole and the magnetic pole of the other polarity is the second pole,
The first and second central outer portions, the first and second end outer portions, and the connection portion have the magnetic poles of the first poles directed toward the cathode electrodes.
The magnetic poles of the second poles of the central inner portion and the end inner portion are directed toward the cathode electrode.
The variable magnet has a magnetic core portion and a coil wound around the magnetic core portion, and has an electromagnet portion that forms a magnetic field when an exciting current flows.
The direction and strength of the magnetic field formed by the variable magnet are configured to be changeable depending on the direction and magnitude of the exciting current flowing.
A thin film manufacturing method that reduces the strength of the magnetic field formed by the variable magnet as the number of film-forming objects on which the thin film is formed increases.
スパッタリング装置を制御して成膜対象物に薄膜を形成する薄膜製造方法であって、
前記スパッタリング装置は、カソード電極と、
前記カソード電極の片面に配置され、真空槽内に露出するスパッタ面がスパッタリングされるスパッタリングターゲットと、
前記カソード電極の面のうち前記片面とは反対側の面に配置され、前記スパッタ面上に磁界を形成する磁石装置と、が設けられたターゲット装置を有し、
前記スパッタリングターゲットがスパッタリングされると前記真空槽内に位置する成膜対象物の成膜面に薄膜が形成されるスパッタリング装置であって、
前記磁石装置は、細長で長手方向を有しており、前記長手方向の両端にはそれぞれ可変磁力部が配置され、前記可変磁力部の間には固定磁力部が配置され、
前記固定磁力部は、前記長手方向に沿って配置された細長の永久磁石から成る第一、第二の中央外側部と、前記第一、第二の中央外側部の間に前記長手方向に沿って配置された細長の永久磁石から成る中央内側部と、を有し、
前記可変磁力部は、前記長手方向に沿って配置された細長の永久磁石から成る第一、第二の端外側部と、前記第一、第二の端外側部の間に前記長手方向に沿って配置された複数個の可変磁石から成る端内側部と、前記磁石装置の前記長手方向の両端に位置し、前記第一、第二の端外側部の端部同士を接続する細長で湾曲した永久磁石から成る接続部と、を有し、
N極とS極のうち、いずれか一方の極性の磁極を第一極とし、他方の極性の磁極を第二極とすると、
前記第一、第二の中央外側部と、前記第一、第二の端外側部と、前記接続部とは、前記第一極の磁極が前記カソード電極に向けられ、
前記中央内側部と前記端内側部とは前記第二極の磁極が前記カソード電極に向けられ、
前記可変磁石は磁芯部と、前記磁芯部の周りに巻かれたコイルを有し、励磁電流が流れると磁界を形成する電磁石部とを有し、
前記可変磁石が形成する磁界の向きと強度は、前記励磁電流の流れる方向と大きさによって変更可能に構成され、
前記薄膜を形成した前記成膜対象物の枚数が増加すると、前記可変磁石が形成する磁界の強度を増加させる薄膜製造方法。
A thin film manufacturing method in which a sputtering device is controlled to form a thin film on a film forming object.
The sputtering apparatus includes a cathode electrode and
A sputtering target arranged on one side of the cathode electrode and the sputtered surface exposed in the vacuum chamber is sputtered.
It has a target device provided with a magnet device arranged on a surface of the cathode electrode surface opposite to the one surface and forming a magnetic field on the sputtering surface.
A sputtering apparatus in which a thin film is formed on the film-forming surface of a film-forming object located in the vacuum chamber when the sputtering target is sputtered.
The magnet device is elongated and has a longitudinal direction, variable magnetic force portions are arranged at both ends in the longitudinal direction, and fixed magnetic force portions are arranged between the variable magnetic force portions.
The fixed magnetic force portion is formed along the longitudinal direction between the first and second central outer portions composed of elongated permanent magnets arranged along the longitudinal direction and the first and second central outer portions. With a central inner part, consisting of elongated permanent magnets, arranged in
The variable magnetic force portion is formed along the longitudinal direction between the first and second end outer portions made of elongated permanent magnets arranged along the longitudinal direction and the first and second end outer portions. An elongated curved shape located at both ends of the magnet device in the longitudinal direction and connecting the ends of the first and second ends of the outer side of the end, which is composed of a plurality of variable magnets arranged in a row. With a connection made of permanent magnets,
Assuming that the magnetic pole of either one of the north pole and the south pole is the first pole and the magnetic pole of the other polarity is the second pole,
The first and second central outer portions, the first and second end outer portions, and the connection portion have the magnetic poles of the first poles directed toward the cathode electrodes.
The magnetic poles of the second poles of the central inner portion and the end inner portion are directed toward the cathode electrode.
The variable magnet has a magnetic core portion and a coil wound around the magnetic core portion, and has an electromagnet portion that forms a magnetic field when an exciting current flows.
The direction and strength of the magnetic field formed by the variable magnet are configured to be changeable depending on the direction and magnitude of the exciting current flowing.
A thin film manufacturing method that increases the strength of the magnetic field formed by the variable magnet as the number of film-forming objects on which the thin film is formed increases.
カソード電極と、
前記カソード電極の片面に配置され、真空槽内に露出するスパッタ面がスパッタリングされるスパッタリングターゲットと、
前記カソード電極の面のうち前記片面とは反対側の面に配置され、前記スパッタ面上に磁界を形成する複数の細長の磁石装置と、が設けられたターゲット装置を用い、
前記スパッタリングターゲットをスパッタリングして前記真空槽内に位置する成膜対象物の成膜面に薄膜を形成する薄膜製造方法であって、
各前記磁石装置の両端部に、永久磁石と電磁石とを有し、前記永久磁石が形成する磁界と励磁電流が流れて前記電磁石が形成する磁界とが合成された磁界を形成する可変磁石を配置し、
前記電磁石に流れる前記励磁電流の方向と大きさとを制御して、前記薄膜が形成された前記成膜対象物の枚数の増加により前記可変磁石が形成する磁界強度を小さくする薄膜製造方法。
With the cathode electrode
A sputtering target arranged on one side of the cathode electrode and the sputtered surface exposed in the vacuum chamber is sputtered.
A target device provided with a plurality of elongated magnet devices arranged on the surface of the cathode electrode opposite to the one surface and forming a magnetic field on the sputtering surface was used.
A thin film manufacturing method for forming a thin film on the film forming surface of a film forming object located in the vacuum chamber by sputtering the sputtering target.
A variable magnet having a permanent magnet and an electromagnet at both ends of each of the magnet devices is arranged to form a magnetic field in which a magnetic field formed by the permanent magnet and an exciting current flow and a magnetic field formed by the electromagnet is combined. And
A thin film manufacturing method in which the direction and magnitude of the exciting current flowing through the electromagnet are controlled to reduce the magnetic field strength formed by the variable magnet by increasing the number of film forming objects on which the thin film is formed.
JP2020537555A 2019-05-28 2020-03-24 Sputtering equipment, thin film manufacturing method Active JP6895589B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019099469 2019-05-28
JP2019099469 2019-05-28
PCT/JP2020/012902 WO2020241010A1 (en) 2019-05-28 2020-03-24 Sputtering apparatus and method for producing thin film

Publications (2)

Publication Number Publication Date
JP6895589B2 true JP6895589B2 (en) 2021-06-30
JPWO2020241010A1 JPWO2020241010A1 (en) 2021-09-13

Family

ID=73553364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020537555A Active JP6895589B2 (en) 2019-05-28 2020-03-24 Sputtering equipment, thin film manufacturing method

Country Status (5)

Country Link
JP (1) JP6895589B2 (en)
KR (1) KR102443757B1 (en)
CN (1) CN113056573B (en)
TW (1) TWI839503B (en)
WO (1) WO2020241010A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074680B (en) * 2021-03-12 2023-08-08 江苏菲沃泰纳米科技股份有限公司 Sputter coating device and equipment and sputter coating assembly thereof
CN114855136A (en) * 2022-05-09 2022-08-05 哈尔滨工业大学 Film coating system and method for regulating and controlling film structure and components by variable magnetic control target magnetic field

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2907620B2 (en) 1992-02-04 1999-06-21 株式会社日立製作所 Magnetron electrode
JPH0881769A (en) 1994-09-16 1996-03-26 Fujitsu Ltd Sputtering device
JP3720101B2 (en) * 1995-10-27 2005-11-24 アネルバ株式会社 Cathode electrode for magnetron sputtering
JP3934709B2 (en) * 1996-09-11 2007-06-20 キヤノンアネルバ株式会社 Low pressure discharge sputtering apparatus and sputtering control method
JPH1192927A (en) * 1997-09-17 1999-04-06 Hitachi Ltd Magnetron sputtering device
JPH11172431A (en) * 1997-12-10 1999-06-29 Sony Corp Magnetron sputter film formation and device therefor
JP3649933B2 (en) * 1999-03-01 2005-05-18 シャープ株式会社 Magnetron sputtering equipment
JP2004115841A (en) 2002-09-25 2004-04-15 Shin Meiwa Ind Co Ltd Magnetron sputtering electrode, film deposition system, and film deposition method
JP2007224343A (en) * 2006-02-22 2007-09-06 Victor Co Of Japan Ltd Magnetron sputtering device
WO2009139434A1 (en) * 2008-05-15 2009-11-19 国立大学法人山口大学 Sputtering system for depositing thin film and method for depositing thin film
JP5004931B2 (en) * 2008-11-25 2012-08-22 株式会社アルバック Sputtering source, sputtering apparatus, and sputtering method
TWI391514B (en) * 2009-07-16 2013-04-01 Univ Nat Sun Yat Sen Magnetron sputter
US8398834B2 (en) * 2010-04-02 2013-03-19 NuvoSun, Inc. Target utilization improvement for rotatable magnetrons
JP2012241250A (en) 2011-05-21 2012-12-10 Promatic Kk Plasma source and method for forming thin film using the same
JP2015001734A (en) 2013-06-14 2015-01-05 吉村 徹三 Method of manufacturing self-alignment optical coupling self-organization waveguide
CN108884556B (en) * 2016-04-21 2020-11-03 应用材料公司 Method for coating substrate and coater
KR101885123B1 (en) 2017-03-31 2018-08-03 한국알박(주) Magnet control system of magnetron sputtering apparatus
KR101924143B1 (en) 2017-03-31 2018-11-30 한국알박(주) Magnet structure, magent unit and sputtering apparatus having the same
CN107083537B (en) * 2017-05-02 2019-10-01 三河市衡岳真空设备有限公司 Novel high target utilization ratio planar magnetic control sputtering cathode

Also Published As

Publication number Publication date
KR20200138176A (en) 2020-12-09
JPWO2020241010A1 (en) 2021-09-13
KR102443757B1 (en) 2022-09-15
CN113056573B (en) 2023-07-21
WO2020241010A1 (en) 2020-12-03
TW202100787A (en) 2021-01-01
CN113056573A (en) 2021-06-29
TWI839503B (en) 2024-04-21

Similar Documents

Publication Publication Date Title
EP2553138B1 (en) Target utilization improvement for rotatable magnetrons
US8741115B2 (en) Sputtering devices and methods
TWI287048B (en) Equipment for cathode-sputtering
JP6895589B2 (en) Sputtering equipment, thin film manufacturing method
JP6870045B2 (en) Sputtering equipment
JP5611039B2 (en) Sputtering equipment
US5688388A (en) Apparatus for coating a substrate
KR20140004785A (en) Racetrack-shape magnetic field generator for magnetron sputtering
US5182001A (en) Process for coating substrates by means of a magnetron cathode
KR101927881B1 (en) Sputtering cathode and sputtering apparatus for high density plasma formation
JP5080294B2 (en) Ion gun and film forming apparatus
KR100274433B1 (en) Sputtering apparatus and the same method
EP3336217B1 (en) Machine for the deposition of material by the cathodic sputtering technique
JP2019199646A5 (en)
JP5201814B2 (en) Sputtering equipment
JP7189030B2 (en) Deposition equipment
JP7114401B2 (en) Sputtering equipment
JP2013104073A (en) Magnetron spattering device and magnetron spattering method
RU2119275C1 (en) Plasma accelerator
JP4219925B2 (en) Magnetron sputtering equipment
JP2000129438A (en) Magnetron sputtering apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200706

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200727

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210607

R150 Certificate of patent or registration of utility model

Ref document number: 6895589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250