JPH0881769A - Sputtering device - Google Patents

Sputtering device

Info

Publication number
JPH0881769A
JPH0881769A JP22165594A JP22165594A JPH0881769A JP H0881769 A JPH0881769 A JP H0881769A JP 22165594 A JP22165594 A JP 22165594A JP 22165594 A JP22165594 A JP 22165594A JP H0881769 A JPH0881769 A JP H0881769A
Authority
JP
Japan
Prior art keywords
target
electromagnet
orthogonal electromagnetic
electromagnet group
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22165594A
Other languages
Japanese (ja)
Inventor
Akira Obara
朗 小原
Kunitaka Uejima
邦敬 上島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22165594A priority Critical patent/JPH0881769A/en
Publication of JPH0881769A publication Critical patent/JPH0881769A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To prevent the nonuniform erosion of a target and improve the use efficiency thereof by constituting a magnetron sputtering device in such a manner that the positions of orthogonal electromagnetic spaces on the target are made movable by operation from outside and that the operation is automated. CONSTITUTION: Electromagnet groups 4, 5 formed by arranging plural electromagnets 3 in series are arranged in plural columns to arc shapes drawing concentrical circles on the same plane around a permanent magnet 1 to form magnetic field constituting parts. Further, the changeover of the excitation wirings to these electromagnet groups 4, 5 and the adjustment of current values are made freely selectable. The movement of the central position of the orthogonal electromagnetic spaces toward the outer side according to an increase in the current value is made possible by successively changing over the excitation to the second electromagnet group 5 on the side outer than the first electromagnet group 4 on the central side. Then, the operation is automated and inverted by the programming operation, by which the distributions of the orthogonal electromagnetic spaces are equaled and the erosion of the target is made uniform.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はターゲットの消耗量を均
等化したスパッタ装置に関する。基板上に薄膜を形成す
る手段としては真空蒸着法とスパッタ法とが知られてお
り、両者とも一般的に使用されているが、前者は真空中
で薄膜形成材料を溶融し熱的に蒸発させて基板上に析出
させるのに対し、後者は電界により加速した不活性ガス
イオン〔主としてアルゴンイオン(Ar+ )〕を薄膜形
成材料(ターゲット)に衝突させ、衝撃により弾き出す
ものであることから、前者よりも高い運動エネルギーを
有しており、そのため付着力が強く、また、ターゲット
と同一組成の膜形成が可能であり、半導体素子の配線や
電極などの形成や液晶表示素子の配線や透明導電膜の形
成などに広く用いられている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sputtering apparatus in which the amount of target consumption is equalized. The vacuum deposition method and the sputtering method are known as means for forming a thin film on a substrate, and both are commonly used.The former is a method of melting and thermally evaporating a thin film forming material in a vacuum. In contrast to the former method, the latter is a method in which an inert gas ion [mainly argon ion (Ar + )] accelerated by an electric field collides with a thin film forming material (target) and is ejected by the impact. Since it has higher kinetic energy than that of the target, it has a strong adhesive force and can form a film having the same composition as the target. It can be used to form wirings and electrodes of semiconductor elements, wirings of liquid crystal display elements and transparent conductive films. It is widely used for the formation of

【0002】[0002]

【従来の技術】当初のスパッタ装置は電源として直流
か、13.56 MHz の高周波放電を使用する二極方式を採
っており、グロー放電を用いることからターゲット面で
のイオン電流密度が低く、そのため、真空蒸着に較べて
薄膜の成長速度が遅いと云う問題があった。
2. Description of the Related Art The original sputtering system employs a bipolar system that uses direct current or 13.56 MHz high frequency discharge as a power source. Since the glow discharge is used, the ion current density at the target surface is low, and therefore the vacuum There is a problem that the growth rate of the thin film is slower than vapor deposition.

【0003】そこで、この成長速度を向上する方法の一
つとして、マグネトロン放電を利用するマグネトロンス
パッタ法が開発され一般に使用されている。この方法
は、ターゲットの裏面に永久磁石を設けることによっ
て、ターゲット表面に近い空間に閉じた環状の磁界を発
生させるもので、ターゲットは元々電源の陰極に結線さ
れて垂直な電界が加えられていることから、直交電磁空
間が生じ、そのため、この空間では電子がトロコイダル
(Trochoidal)運動をして閉じ込められ、Arガスと衝突
してAr+ とすることを繰り返すことから、プラズマを
高密度化する結果としてイオン電流密度を上げることが
でき、この大電力化により薄膜成長速度が飛躍的に向上
して半導体装置や液晶表示装置などの量産工程に使用さ
れるようになった。
Therefore, as one of the methods for improving the growth rate, a magnetron sputtering method utilizing magnetron discharge has been developed and generally used. In this method, a permanent magnet is provided on the back surface of the target to generate a closed annular magnetic field in the space near the target surface. The target is originally connected to the cathode of the power supply and a vertical electric field is applied. Therefore, an orthogonal electromagnetic space arises, and therefore electrons are trochoidal in this space.
(Trochoidal) It is confined by motion and repeatedly collides with Ar gas to become Ar + , so that the ion current density can be increased as a result of densifying the plasma, and by increasing this power, thin film growth The speed has dramatically improved and it has come to be used in mass production processes of semiconductor devices and liquid crystal display devices.

【0004】図3は従来の磁界付与構造を示す斜視図で
あって、バリウム(Ba)フェライトやKSアルニコなど
からなる一組の永久磁石1,2から構成されており、こ
の永久磁石1,2がターゲットの裏面に装着されてお
り、水冷構造をとることによりターゲットを冷却するよ
う構成されている。
FIG. 3 is a perspective view showing a conventional magnetic field applying structure, which is composed of a pair of permanent magnets 1 and 2 made of barium (Ba) ferrite, KS Alnico, etc. Is attached to the back surface of the target and is configured to cool the target by adopting a water cooling structure.

【0005】そして、永久磁石1のN1 より出た磁力線
が同心円状に配置してある永久磁石2のS2 に行き、N
2 より永久磁石1のS1 に帰る際の水平成分が陽極ー陰
極間の電気力線と直交する結果、直交電磁空間が生じて
電子のトロコイダル運動を起こさせているのである。
Then, the magnetic field lines emitted from N 1 of the permanent magnet 1 go to S 2 of the permanent magnet 2 arranged concentrically, and N
Results horizontal component upon returning from 2 to S 1 of the permanent magnet 1 is orthogonal to the electric field lines between the anode over the cathode is the orthogonal electromagnetic space is to cause electrons trochoidal motion occurs.

【0006】然し、このマグネトロンスパッタの問題点
はターゲットの使用効率が悪いことで、ターゲット上で
の直交電磁空間の位置が決まっているためにターゲット
が不均一に侵食されるためである。
However, the problem of this magnetron sputtering is that the target is not efficiently used and the target is unevenly eroded because the position of the orthogonal electromagnetic space on the target is fixed.

【0007】この対策としてターゲットで侵食(以下エ
ロージョン)の大きな部分の厚みを増したり、永久磁石
の位置を移動させるなどの工夫が施されたが、成膜速度
の変動を生じたりして良い結果は得られていない。
As measures against this, measures such as increasing the thickness of a portion where the target has a large amount of erosion (hereinafter referred to as erosion) or moving the position of the permanent magnet have been taken. Has not been obtained.

【0008】[0008]

【発明が解決しようとする課題】マグネトロンスパッタ
においてはターゲット上での直交電磁空間の位置が決ま
っているためにターゲットが不均一に侵食されて使用効
率が悪い。そこで、ターゲットの使用効率を向上した装
置構成を実用化することが課題である。
In magnetron sputtering, since the position of the orthogonal electromagnetic space on the target is fixed, the target is unevenly eroded and the use efficiency is poor. Therefore, it is an object to put the device configuration in which the use efficiency of the target is improved into practical use.

【0009】[0009]

【課題を解決するための手段】上記の課題は装置の磁界
構成部が、永久磁石を中心として、直列接続した複数の
電磁石が同一平面上に同心円状に複数個配列して円弧状
の電磁石群を形成しており、この電磁石群への選択的な
配線の切り換えと電流値調整が可能に形成されているこ
とにより実現することができる。
SUMMARY OF THE INVENTION The above-mentioned problem is that the magnetic field forming section of the device has an arcuate electromagnet group in which a plurality of series-connected electromagnets are concentrically arranged on the same plane centering on a permanent magnet. Can be realized by selectively switching the wiring to the electromagnet group and adjusting the current value.

【0010】[0010]

【作用】本発明はターゲット上での直交電磁空間の位置
が外部からの操作により移行できるようにしたもので、
プログラミング操作により自動化することによりターゲ
ットのエロージョンを均一化することができ、使用効率
の向上が可能となる。
In the present invention, the position of the orthogonal electromagnetic space on the target can be changed by an operation from the outside.
By automating the programming operation, the erosion of the target can be made uniform and the use efficiency can be improved.

【0011】すなわち、従来の永久磁石の位置を機械的
に移動させる方法はターゲットの中心位置よりずれるこ
とから、スパッタ分布が不均一になり易く、また、移動
機構が複雑になり、良い結果が得られない。
That is, in the conventional method of mechanically moving the position of the permanent magnet, since the position is displaced from the center position of the target, the spatter distribution is likely to be non-uniform, and the moving mechanism is complicated, and good results are obtained. I can't.

【0012】これに対し、本発明は磁石の位置を固定し
た状態で磁力線の発生場所を変えるもので、操作を電気
的に行うことから直交電磁空間の位置をスムーズに変え
ることができる。
On the other hand, according to the present invention, the position of the magnetic field lines is changed while the position of the magnet is fixed. Since the operation is performed electrically, the position of the orthogonal electromagnetic space can be changed smoothly.

【0013】図1(A)は本発明に係る磁界付与構造を
示す斜視図であって、中央には従来と同様に永久磁石1
があり、これを中心として同図(B)に示すような微小
な単位の電磁石3が相互に直列接続された複数の電磁石
群が同心円状に配列されている。
FIG. 1A is a perspective view showing a magnetic field applying structure according to the present invention.
There is a plurality of electromagnet groups in which concentric circles of electromagnets 3 each having a minute unit as shown in FIG.

【0014】こゝでは第1の電磁石群4と第2の電磁石
群5からなる場合を示しているが、本発明はこの電磁石
群への励磁電流の強さを変え、また、電磁石群への励磁
電流を切り換えることにより直交電磁空間の位置をスム
ーズに変えるものである。
This figure shows the case of the first electromagnet group 4 and the second electromagnet group 5, but the present invention changes the strength of the exciting current to the electromagnet group, and The position of the orthogonal electromagnetic space is smoothly changed by switching the exciting current.

【0015】図2は直交電磁空間の中心位置を示す断面
模式図であって、図1の断面模式図に対応しており、永
久磁石1と電磁石群4,5よりなる磁界付与機構の上面
はターゲット6に接しており、また、下面は磁性板7に
より裏打ちされて磁気回路が形成されている。
FIG. 2 is a schematic cross-sectional view showing the center position of the orthogonal electromagnetic space and corresponds to the schematic cross-sectional view of FIG. 1, and the upper surface of the magnetic field applying mechanism including the permanent magnet 1 and the electromagnet groups 4 and 5 is It is in contact with the target 6 and the lower surface is lined with a magnetic plate 7 to form a magnetic circuit.

【0016】こゝで、第1の電磁石群4と第2の電磁石
群5には通電ぜず、永久磁石1のみが働く場合は磁極N
1 より出た磁力線8は最短距離を通って磁極S1 に戻る
ことから、直交電磁空間の中心位置は永久磁石1の近傍
のイの位置にある。
Here, when the first electromagnet group 4 and the second electromagnet group 5 are not energized and only the permanent magnet 1 works, the magnetic pole N
Since the magnetic force line 8 extending from 1 returns to the magnetic pole S 1 through the shortest distance, the center position of the orthogonal electromagnetic space is at the position of a in the vicinity of the permanent magnet 1.

【0017】次に、第1の電磁石群4の励磁コイルに通
電すると第1の電磁石群4のN2 極から出た磁力線10が
磁力線8に加わることから直交電磁空間の大きさが増す
と共に第1の電磁石群4への励磁電流の大きさが増すに
従って直交電磁空間の中心位置はロに位置に移行する。
Next, when the exciting coil of the first electromagnet group 4 is energized, the magnetic force line 10 emitted from the N 2 pole of the first electromagnet group 4 is added to the magnetic force line 8, so that the size of the orthogonal electromagnetic space increases and the As the magnitude of the exciting current to the electromagnet group 4 of No. 1 increases, the center position of the orthogonal electromagnetic space shifts to the position b.

【0018】次に、この状態で第2の電磁石群5の励磁
コイルに通電すると、永久磁石1を通る磁力線に第2の
電磁石群5の磁力線11が加わる結果として直交電磁空間
の大きさが更に増し、また、電磁石群5への励磁電流の
大きさが増すに従って直交電磁空間の中心位置はハに位
置に移行する。
Next, when the exciting coil of the second electromagnet group 5 is energized in this state, the magnetic force lines 11 of the second electromagnet group 5 are added to the magnetic force lines passing through the permanent magnet 1, and the size of the orthogonal electromagnetic space is further increased. In addition, as the magnitude of the exciting current to the electromagnet group 5 increases, the center position of the orthogonal electromagnetic space shifts to the position c.

【0019】このように複数の電磁石群へ順次に切り換
えることにより、直交電磁空間の中心位置を外側にずら
せることが可能になり、この動作を自動的に繰り返すこ
とにより直交電磁空間の分布を均等にすることができ、
従ってターゲットのエロージョンを均一化することがで
きる。
By sequentially switching to a plurality of electromagnet groups in this way, it is possible to shift the center position of the orthogonal electromagnetic space to the outside, and by repeating this operation automatically, the distribution of the orthogonal electromagnetic space is made uniform. Can be
Therefore, the erosion of the target can be made uniform.

【0020】[0020]

【実施例】図1に示す磁界付与構造において、単位の電
磁石3としては横・縦が2cm角で高さが5cmのフェライ
ト磁芯に300 ターンのコイルを巻回したものを用い、こ
れを直列に回路接続して第1の電磁石群4と第2の電磁
石群5を作り、永久磁石1を中心として同心円状に配置
した。
[Embodiment] In the magnetic field applying structure shown in FIG. 1, as the unit electromagnet 3, a coil having 300 turns is wound around a ferrite magnetic core having a length and a width of 2 cm and a height of 5 cm. A first electromagnet group 4 and a second electromagnet group 5 were formed by connecting to the circuit to and were arranged concentrically around the permanent magnet 1.

【0021】こゝで、永久磁石1の磁束密度は800 ガウ
スであり、また、第1の電磁石群4と第2の電磁石群5
は励磁電流を調節することにより0〜1Kガウスの範囲
で出力の調整が可能である。
Here, the magnetic flux density of the permanent magnet 1 is 800 gauss, and the first electromagnet group 4 and the second electromagnet group 5 are
The output can be adjusted in the range of 0 to 1 K gauss by adjusting the exciting current.

【0022】そして、まず、電磁石群4,5へのスイッ
チをOFFにした状態を始動の状態とし、次に、第1の
電磁石群4へのスイッチをONにし、磁束密度が600 ガ
ウスに達するまで、次第に励磁電流を増加してゆく。
First, the state where the switches to the electromagnet groups 4 and 5 are turned off is set to the starting state, and then the switch to the first electromagnet group 4 is turned on until the magnetic flux density reaches 600 gauss. , The exciting current is gradually increased.

【0023】そして、磁束密度が600 ガウスに達した
ら、更に第2の電磁石群5のスイッチをONにし、磁束
密度が600 ガウスに達するまで、次第に励磁電流を増加
してゆく。
When the magnetic flux density reaches 600 gausses, the switch of the second electromagnet group 5 is further turned on, and the exciting current is gradually increased until the magnetic flux density reaches 600 gausses.

【0024】そして、磁束密度が600 ガウスに達した
ら、第1の電磁石群4と第2の電磁石群5のスイッチを
OFFにし、永久磁石1のみの磁界とする。このような
磁界付与を繰り返して行うことにより、直交電磁空間の
中心位置をターゲット直上に一定の周期で同心円状に移
動させることができ、これによりターゲットのエロージ
ョンを均等化させることができる。
When the magnetic flux density reaches 600 gausses, the switches of the first electromagnet group 4 and the second electromagnet group 5 are turned off so that only the permanent magnet 1 has a magnetic field. By repeatedly applying such a magnetic field, the center position of the orthogonal electromagnetic space can be moved concentrically right above the target in a constant cycle, and thus the erosion of the target can be equalized.

【0025】[0025]

【発明の効果】本発明の実施によりターゲットの使用効
率を向上させることができる。
[Effects of the Invention] The use efficiency of the target can be improved by implementing the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る磁界付与構造を示す斜視図であ
る。
FIG. 1 is a perspective view showing a magnetic field applying structure according to the present invention.

【図2】 直交電磁空間の中心位置を説明する断面模式
図である。
FIG. 2 is a schematic sectional view illustrating a center position of an orthogonal electromagnetic space.

【図3】 従来の磁界付与構造を示す斜視図である。FIG. 3 is a perspective view showing a conventional magnetic field applying structure.

【符号の説明】[Explanation of symbols]

1,2 永久磁石 3 単位の電磁石 4 第1の電磁石群 5 第2の電磁石群 6 ターゲット 7 磁性板 8,10,11 磁力線 1, 2 permanent magnets 3 unit electromagnets 4 first electromagnet group 5 second electromagnet group 6 target 7 magnetic plate 8, 10, 11 magnetic field lines

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 マグネトロンスパッタを行うスパッタ装
置において、該装置の磁界構成部が、永久磁石を中心と
して、直列接続した複数の電磁石が同一平面上に同心円
状に複数個配列して円弧状の電磁石群を形成しており、
該電磁石群への選択的な配線の切り換えと電流値調整が
可能に形成されてなることを特徴とするスパッタ装置。
1. In a sputtering apparatus for performing magnetron sputtering, a magnetic field forming section of the apparatus has an arc-shaped electromagnet in which a plurality of series-connected electromagnets are concentrically arranged on the same plane with a permanent magnet as a center. Form a group,
A sputtering apparatus, which is formed so as to selectively switch wiring to the electromagnet group and adjust a current value.
JP22165594A 1994-09-16 1994-09-16 Sputtering device Withdrawn JPH0881769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22165594A JPH0881769A (en) 1994-09-16 1994-09-16 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22165594A JPH0881769A (en) 1994-09-16 1994-09-16 Sputtering device

Publications (1)

Publication Number Publication Date
JPH0881769A true JPH0881769A (en) 1996-03-26

Family

ID=16770184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22165594A Withdrawn JPH0881769A (en) 1994-09-16 1994-09-16 Sputtering device

Country Status (1)

Country Link
JP (1) JPH0881769A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001029874A1 (en) * 1999-10-15 2001-04-26 Cierra Photonics, Inc. Planar magnetron sputtering apparatus
EP1109166A1 (en) * 1999-12-14 2001-06-20 Fuji Photo Film Co., Ltd. Recording medium and method of manufacturing same
KR100710801B1 (en) * 2000-05-25 2007-04-23 삼성전자주식회사 Sputtering apparatus to produce film having uniform thickness
WO2009155394A3 (en) * 2008-06-18 2010-03-25 Angstrom Sciences, Inc. Magnetron with electromagnets and permanent magnets
CN102420091A (en) * 2011-11-24 2012-04-18 中国科学院电工研究所 Composite magnetic control sputtering cathode
JP2013524016A (en) * 2010-04-02 2013-06-17 ヌボサン, インコーポレイテッド Improved target utilization for a rotating magnetron
CN110140191A (en) * 2017-03-31 2019-08-16 Ulvac韩国股份有限公司 The magnet control system of magnetic controlled tube sputtering apparatus
KR20200138176A (en) 2019-05-28 2020-12-09 가부시키가이샤 알박 Sputtering device, thin film manufacturing method
WO2021052497A1 (en) * 2019-09-20 2021-03-25 深圳市晶相技术有限公司 Semiconductor device
WO2022051125A1 (en) * 2020-09-01 2022-03-10 Oem Group, Llc Systems and methods for an improved magnetron electromagnetic assembly

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001029874A1 (en) * 1999-10-15 2001-04-26 Cierra Photonics, Inc. Planar magnetron sputtering apparatus
US6432285B1 (en) 1999-10-15 2002-08-13 Cierra Photonics, Inc. Planar magnetron sputtering apparatus
EP1109166A1 (en) * 1999-12-14 2001-06-20 Fuji Photo Film Co., Ltd. Recording medium and method of manufacturing same
KR100710801B1 (en) * 2000-05-25 2007-04-23 삼성전자주식회사 Sputtering apparatus to produce film having uniform thickness
WO2009155394A3 (en) * 2008-06-18 2010-03-25 Angstrom Sciences, Inc. Magnetron with electromagnets and permanent magnets
JP2013524016A (en) * 2010-04-02 2013-06-17 ヌボサン, インコーポレイテッド Improved target utilization for a rotating magnetron
CN102420091A (en) * 2011-11-24 2012-04-18 中国科学院电工研究所 Composite magnetic control sputtering cathode
CN110140191A (en) * 2017-03-31 2019-08-16 Ulvac韩国股份有限公司 The magnet control system of magnetic controlled tube sputtering apparatus
JP2020515709A (en) * 2017-03-31 2020-05-28 アルバック コリア カンパニー リミテッド Magnet control system for magnetron sputtering equipment
KR20200138176A (en) 2019-05-28 2020-12-09 가부시키가이샤 알박 Sputtering device, thin film manufacturing method
WO2021052497A1 (en) * 2019-09-20 2021-03-25 深圳市晶相技术有限公司 Semiconductor device
WO2022051125A1 (en) * 2020-09-01 2022-03-10 Oem Group, Llc Systems and methods for an improved magnetron electromagnetic assembly
US11615947B2 (en) 2020-09-01 2023-03-28 Oem Group, Llc Systems and methods for an improved magnetron electromagnetic assembly

Similar Documents

Publication Publication Date Title
US6296742B1 (en) Method and apparatus for magnetically enhanced sputtering
US4299678A (en) Magnetic target plate for use in magnetron sputtering of magnetic films
US4956070A (en) Sputtering apparatus
SE511139C2 (en) Plasma processing apparatus with rotatable magnets
JPH0211760A (en) Magnetron type sputtering apparatus
US8377269B2 (en) Sputtering apparatus
US5106470A (en) Method and device for controlling an electromagnet for a magnetron sputtering source
JPH0881769A (en) Sputtering device
JPS5816068A (en) Target electrode structure for planer magnetron system spattering device
JPS6128029B2 (en)
KR100274433B1 (en) Sputtering apparatus and the same method
CN113056573B (en) Sputtering apparatus and thin film manufacturing method
JP2000156374A (en) Plasma processing apparatus applying sputtering process
JPH11172431A (en) Magnetron sputter film formation and device therefor
JP2000319780A (en) Sputtering cathode and magnetron type sputtering device equipped with the same
JPH04276069A (en) Method and device for sputtering
JPH0660393B2 (en) Plasma concentrated high-speed sputter device
JPS58199862A (en) Magnetron type sputtering device
JPH03257159A (en) Sputtering device formed by using dipole ring type magnetic circuit
JP3784203B2 (en) Magnetron sputtering method and apparatus
JPH01240645A (en) Vacuum deposition apparatus
JPH0517869A (en) Sputtering method and device
JPH07157874A (en) Magnetron sputtering device
CN211897094U (en) Hardware configuration and system for physical sputtering
JPH06116724A (en) Thin film forming device

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040303