JP4219925B2 - Magnetron sputtering equipment - Google Patents

Magnetron sputtering equipment Download PDF

Info

Publication number
JP4219925B2
JP4219925B2 JP2005361024A JP2005361024A JP4219925B2 JP 4219925 B2 JP4219925 B2 JP 4219925B2 JP 2005361024 A JP2005361024 A JP 2005361024A JP 2005361024 A JP2005361024 A JP 2005361024A JP 4219925 B2 JP4219925 B2 JP 4219925B2
Authority
JP
Japan
Prior art keywords
magnetic pole
magnetron
substrate
evaporation source
magnetron evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005361024A
Other languages
Japanese (ja)
Other versions
JP2006118052A (en
Inventor
孝一郎 赤理
利光 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005361024A priority Critical patent/JP4219925B2/en
Publication of JP2006118052A publication Critical patent/JP2006118052A/en
Application granted granted Critical
Publication of JP4219925B2 publication Critical patent/JP4219925B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明はマグネトロンスパッタリング法により真空中で薄膜を形成するためのマグネトロンスパッタ装置、特にプラズマ中のイオン化反応を促進し、基板へのイオン電流の増加が可能なマグネトロンスパッタ装置に関するものである。   The present invention relates to a magnetron sputtering apparatus for forming a thin film in a vacuum by a magnetron sputtering method, and more particularly to a magnetron sputtering apparatus capable of accelerating an ionization reaction in plasma and increasing an ion current to a substrate.

マグネトロンスパッタリング法により真空中で薄膜を形成するための従来のマグネトロンスパッタ装置には、図13に示すように、内側磁極31とリング状の外側磁極32とターゲット33を備えるマグネトロン蒸発源34を、真空チャンバ35内の基板36の外周を取り囲むように配置し、隣合うマグネトロン蒸発源34の各外側磁極32の極性を互いにが異ならせることにより、隣合うマグネトロン蒸発源34の外側磁極32間を順次結ぶように磁力線38を生じさせて該磁力線38で基板36の外周を取り囲み、これによりグロー放電により発生したプラズマを基板36の周囲に閉じ込め、マグネトロン蒸発源34より蒸発する金属原子のイオン化を促進し、基板36に高密度の金属の薄膜を形成するようにしたものがある。
特表平5−505215号公報
As shown in FIG. 13, a conventional magnetron sputtering apparatus for forming a thin film in a vacuum by a magnetron sputtering method includes a magnetron evaporation source 34 including an inner magnetic pole 31, a ring-shaped outer magnetic pole 32, and a target 33. It arrange | positions so that the outer periphery of the board | substrate 36 in the chamber 35 may be enclosed, and the polarity of each outer magnetic pole 32 of the adjacent magnetron evaporation source 34 mutually differs, and it connects between the outer magnetic poles 32 of the adjacent magnetron evaporation source 34 one by one. The magnetic field lines 38 are generated in such a manner that the magnetic field lines 38 surround the outer periphery of the substrate 36, thereby confining the plasma generated by the glow discharge around the substrate 36, and promoting ionization of metal atoms evaporated from the magnetron evaporation source 34, There is one in which a high-density metal thin film is formed on the substrate 36.
Japanese translation of PCT publication No. 5-505215

しかし、従来では、各マグネトロン蒸発源34の外側磁極32を順次結ぶように磁力線38を生じさせて該磁力線38で基板36の外周を取り囲むためには、隣接するマグネトロン蒸発源34の外側磁極32同士の磁極を互いに異ならせる必要があるため、外側磁極32と内側磁極31との極性が異なる2種類のマグネトロン蒸発源が必要となった。
また、従来では、マグネトロン蒸発源34の外側磁極32同士をつなぐ磁力線38によってのみ基板36を取り囲む磁場を形成するため、マグネトロン蒸発源34の数や配置によって磁場形状、強度が左右された。逆にプラズマを基板36の周囲に十分閉じ込めるのに必要な所望の磁場形状、強度を得るためには、マグネトロン蒸発源34の数や配置が制約を受けることになる。例えば、隣接するマグネトロン蒸発源34がある距離以内に配置されなければ、所望の磁場が得られないので、大きな基板36を処理する大型の装置では、多数のマグネトロン蒸発源34を並べなければならなくなった。
However, conventionally, in order to generate the magnetic lines 38 so as to sequentially connect the outer magnetic poles 32 of the magnetron evaporation sources 34 and surround the outer periphery of the substrate 36 by the magnetic lines 38, the outer magnetic poles 32 of the adjacent magnetron evaporation sources 34 are connected to each other. Therefore, two types of magnetron evaporation sources having different polarities between the outer magnetic pole 32 and the inner magnetic pole 31 are required.
Conventionally, since the magnetic field surrounding the substrate 36 is formed only by the magnetic field lines 38 that connect the outer magnetic poles 32 of the magnetron evaporation source 34, the shape and strength of the magnetic field depend on the number and arrangement of the magnetron evaporation sources 34. Conversely, in order to obtain a desired magnetic field shape and intensity necessary to sufficiently confine the plasma around the substrate 36, the number and arrangement of the magnetron evaporation sources 34 are restricted. For example, since a desired magnetic field cannot be obtained unless adjacent magnetron evaporation sources 34 are arranged within a certain distance, a large number of magnetron evaporation sources 34 must be arranged in a large apparatus for processing a large substrate 36. It was.

さらに、マグネトロン蒸発源34の配置が一旦決まってしまうと、磁場形状も決まってしまい、変化させることが困難である。マグネトロン蒸発源34の磁極を永久磁石ではなく、コイルで形成することにより、従来技術でも磁場形状を変えることは可能だが、マグネトロン蒸発源34中に複数のコイルを配置することはマグネトロン蒸発源34のサイズを大きくし、構造を複雑にしてしまうという問題があった。   Furthermore, once the arrangement of the magnetron evaporation source 34 is determined, the shape of the magnetic field is also determined and is difficult to change. By forming the magnetic pole of the magnetron evaporation source 34 with a coil instead of a permanent magnet, it is possible to change the shape of the magnetic field even in the prior art, but arranging a plurality of coils in the magnetron evaporation source 34 is not possible with the magnetron evaporation source 34. There was a problem of increasing the size and complicating the structure.

本発明は上記問題点に鑑み、従来技術と同様に基板の周囲にマグネトロン蒸発源より発生したプラズマが多く存在し、マグネトロン蒸発源より蒸発した金属原子のイオン化が促進され、更に、基板に形成される被膜がイオンの衝突をより多く受けることにより、基板との密着力や膜構造が改善することができるスパッタ装置において、マグネトロン蒸発源が1種類のマグネトロン磁場構成で済み、マグネトロン蒸発源の数、配置に関係なく所望の閉じ込め磁場を形成でき、また閉じ込め磁場形状が簡単に変えられるようにすることを目的とする。   In the present invention, in view of the above problems, a lot of plasma generated from the magnetron evaporation source exists around the substrate as in the prior art, and the ionization of the metal atoms evaporated from the magnetron evaporation source is promoted and further formed on the substrate. In the sputtering apparatus that can improve the adhesion and the film structure with the substrate by receiving more collisions of ions, the magnetron evaporation source needs only one magnetron magnetic field configuration, the number of magnetron evaporation sources, An object is to be able to form a desired confining magnetic field regardless of the arrangement and to easily change the shape of the confining magnetic field.

この技術的課題を解決するための本発明の技術的手段は、基板2の外周に複数のマグネトロン蒸発源3が設けられ、マグネトロン蒸発源3より蒸発した金属原子又はイオンを、基板2に付着させて基板2に薄膜を形成するようにしたマグネトロンスパッタ装置において、
隣合うマグネトロン蒸発源3の中間位置に、マグネトロン蒸発源3の外側磁極4の極性と同一の極性を持った補助磁極9が配置され、各々のマグネトロン蒸発源3の外側磁極4の極性がすべて同一とされることにより、各マグネトロン蒸発源3の外側磁極4と該外側磁極4に隣接する前記補助磁極9との中間付近で反発し合う磁場を生じさせると共に、各マグネトロン蒸発源3の内側磁極5と該内側磁極5に隣接する前記補助磁極9とを相互に結ぶ磁力線を生じさせている点にある。
The technical means of the present invention for solving this technical problem is that a plurality of magnetron evaporation sources 3 are provided on the outer periphery of the substrate 2, and metal atoms or ions evaporated from the magnetron evaporation source 3 are attached to the substrate 2. In a magnetron sputtering apparatus that forms a thin film on the substrate 2,
An auxiliary magnetic pole 9 having the same polarity as the polarity of the outer magnetic pole 4 of the magnetron evaporation source 3 is arranged at an intermediate position between the adjacent magnetron evaporation sources 3, and the polarities of the outer magnetic poles 4 of the respective magnetron evaporation sources 3 are all the same. As a result, a repulsive magnetic field is generated near the middle between the outer magnetic pole 4 of each magnetron evaporation source 3 and the auxiliary magnetic pole 9 adjacent to the outer magnetic pole 4, and the inner magnetic pole 5 of each magnetron evaporation source 3. And a magnetic field line that connects the auxiliary magnetic pole 9 adjacent to the inner magnetic pole 5 to each other.

従って、上記と同様にマグネトロン蒸発源3と補助磁極4によって基板2を取り囲む形状の磁場が形成され、基板2上に形成される被膜の密着力や膜構造を改善することができる。そして、マグネトロン蒸発源3のマグネトロン磁極自体は極性の同じ種類のものでもよくなるし、また搭載されるマグネトロン蒸発源3の個数に影響されず、基板2を取り囲む形状の磁場を確実に形成することができる。   Accordingly, a magnetic field having a shape surrounding the substrate 2 is formed by the magnetron evaporation source 3 and the auxiliary magnetic pole 4 in the same manner as described above, and the adhesion force and film structure of the film formed on the substrate 2 can be improved. The magnetron magnetic pole itself of the magnetron evaporation source 3 may be of the same polarity, and a magnetic field having a shape surrounding the substrate 2 can be reliably formed regardless of the number of magnetron evaporation sources 3 mounted. it can.

また、本発明の他の技術的手段は、マグネトロン蒸発源3より蒸発した金属原子又はイオンを、基板2に付着させて基板2に薄膜を形成するようにしたマグネトロンスパッタ装置において、
基板2の外周に、1個のマグネトロン蒸発源3が設けられると共に、1又は複数個の補助磁極9が、隣合う補助磁極9同士の極性が同一となりかつ隣合うマグネトロン蒸発源3の外側磁極4と補助磁極9との極性が同一となるように設けられ、前記マグネトロン蒸発源3の外側磁極4と該外側磁極4に隣接する前記補助磁極9との中間付近及び隣接する前記補助磁極9間の中間付近で反発し合う磁場を生じさせると共に、前記マグネトロン蒸発源3の内側磁極5と該内側磁極5に隣接する前記補助磁極9とを相互に結ぶ磁力線を生じさせている点にある。
Another technical means of the present invention is a magnetron sputtering apparatus in which metal atoms or ions evaporated from the magnetron evaporation source 3 are attached to the substrate 2 to form a thin film on the substrate 2.
One magnetron evaporation source 3 is provided on the outer periphery of the substrate 2, and one or a plurality of auxiliary magnetic poles 9 have the same polarity between adjacent auxiliary magnetic poles 9, and the outer magnetic pole 4 of the adjacent magnetron evaporation source 3. Between the outer magnetic pole 4 of the magnetron evaporation source 3 and the auxiliary magnetic pole 9 adjacent to the outer magnetic pole 4 and between the adjacent auxiliary magnetic poles 9. A magnetic field repelling near the middle is generated, and magnetic lines of force connecting the inner magnetic pole 5 of the magnetron evaporation source 3 and the auxiliary magnetic pole 9 adjacent to the inner magnetic pole 5 are generated.

従って、1個のマグネトロン蒸発源3と1又は複数個の補助磁極4によって基板2を取り囲む形状の磁場が形成され、基板2上に形成される被膜の密着力や膜構造を改善することができる。そして、マグネトロン蒸発源3の個数を1個で済ますことができて、基板2を取り囲む形状の磁場を確実に形成することができる。
また、本発明の他の技術的手段は、基板2の外周に複数個のマグネトロン蒸発源3が設けられ、マグネトロン蒸発源3より蒸発した金属原子又はイオンを、基板2に付着させて基板2に薄膜を形成するようにしたマグネトロンスパッタ装置において、
隣合うマグネトロン蒸発源3の間に、1又は複数個の補助磁極9が、隣合う補助磁極9同士の極性が同一となりかつ隣合うマグネトロン蒸発源3の外側磁極4と補助磁極9との極性とが同一となるように設けられ、各々のマグネトロン蒸発源3の外側磁極4の極性がすべて同一とされることにより、各マグネトロン蒸発源3の外側磁極4と該外側磁極4に隣接する前記補助磁極9との中間付近及び隣接する前記補助磁極9間の中間付近で反発し合う磁場を生じさせると共に、各マグネトロン蒸発源3の内側磁極5と該内側磁極5に隣接する前記補助磁極9とを相互に結ぶ磁力線を生じさせている点にある。
Accordingly, a magnetic field having a shape surrounding the substrate 2 is formed by one magnetron evaporation source 3 and one or a plurality of auxiliary magnetic poles 4, and the adhesion force and film structure of the film formed on the substrate 2 can be improved. . The number of magnetron evaporation sources 3 can be reduced to one, and a magnetic field having a shape surrounding the substrate 2 can be reliably formed.
Further, according to another technical means of the present invention, a plurality of magnetron evaporation sources 3 are provided on the outer periphery of the substrate 2, and metal atoms or ions evaporated from the magnetron evaporation source 3 are attached to the substrate 2 to adhere to the substrate 2. In a magnetron sputtering apparatus designed to form a thin film,
Between adjacent magnetron evaporation sources 3, one or a plurality of auxiliary magnetic poles 9 have the same polarity between the adjacent auxiliary magnetic poles 9, and the polarity between the outer magnetic pole 4 and the auxiliary magnetic pole 9 of the adjacent magnetron evaporation source 3. Are made the same, and the polarities of the outer magnetic poles 4 of the respective magnetron evaporation sources 3 are all the same, whereby the outer magnetic pole 4 of each magnetron evaporation source 3 and the auxiliary magnetic pole adjacent to the outer magnetic pole 4 are arranged. 9 and a magnetic field that repels in the vicinity of the middle between adjacent auxiliary magnetic poles 9, and the inner magnetic pole 5 of each magnetron evaporation source 3 and the auxiliary magnetic pole 9 adjacent to the inner magnetic pole 5 are mutually connected. It is in the point which produces the magnetic force line tied to.

従って、補助磁極4があるため、マグネトロン蒸発源3のマグネトロン磁極自体は極性の同じ種類のものでもよくなるし、また搭載されるマグネトロン蒸発源3の個数に影響されずに、基板2を取り囲む形状の磁場を確実に形成することができ、上記と同様に基板2に向かう金属原子のイオンを増やして基板2に高密度の薄膜を形成することができるようになる。   Therefore, since the auxiliary magnetic pole 4 is provided, the magnetron magnetic pole itself of the magnetron evaporation source 3 may be of the same type, and the shape surrounding the substrate 2 is not affected by the number of magnetron evaporation sources 3 mounted. A magnetic field can be reliably formed, and a high-density thin film can be formed on the substrate 2 by increasing the number of metal atom ions toward the substrate 2 as described above.

また、本発明の他の技術的手段は、前記マグネトロン蒸発源3が、マグネトロンを形成する外側磁極4の強度が内側磁極5の強度よりも強い非平衡型のマグネトロン蒸発源3である点にある。
従って、マグネトロン蒸発源3自体から補助磁極9へ漏洩する磁力線が増大し、基板2を取り囲む形状の磁場の強度を増大させることができる。
Another technical means of the present invention is that the magnetron evaporation source 3 is a non-equilibrium magnetron evaporation source 3 in which the strength of the outer magnetic pole 4 forming the magnetron is stronger than the strength of the inner magnetic pole 5. .
Accordingly, the lines of magnetic force leaking from the magnetron evaporation source 3 itself to the auxiliary magnetic pole 9 increase, and the strength of the magnetic field surrounding the substrate 2 can be increased.

また、本発明の他の技術的手段は、前記補助磁極9が、永久磁石により構成されると共に、基板2に対して接離する方向に移動可能である点にある。
従って、マグネトロン蒸発源3の配置を固定したままでも、補助磁極9によって、全体の閉じ込め磁場の形状、強度を変更することができ、配置される基板2のサイズ等に応じて最適な磁場形状に設定できる。
Another technical means of the present invention is that the auxiliary magnetic pole 9 is composed of a permanent magnet and is movable in a direction in which the auxiliary magnetic pole 9 is in contact with and away from the substrate 2.
Therefore, even if the arrangement of the magnetron evaporation source 3 is fixed, the shape and intensity of the entire confined magnetic field can be changed by the auxiliary magnetic pole 9, and the optimum magnetic field shape can be obtained according to the size of the substrate 2 to be arranged. Can be set.

また、本発明の他の技術的手段は、前記補助磁極9がコイルにより形成され、コイル電流を変化させることにより磁場形状、強度を変化させることができるようにした点にある。
従って、補助磁極9のコイル電流を変化させることにより閉じ込め磁場を調整し、配置される基板2のサイズ等に応じた最適な磁場を形成することができる。 また、本発明の他の技術的手段は、前記補助磁極9が基板2を格納した真空チャンバ1の大気側に配置されている点にある。
Another technical means of the present invention is that the auxiliary magnetic pole 9 is formed of a coil, and the magnetic field shape and strength can be changed by changing the coil current.
Therefore, the confinement magnetic field can be adjusted by changing the coil current of the auxiliary magnetic pole 9 to form an optimum magnetic field according to the size of the substrate 2 to be arranged. Another technical means of the present invention is that the auxiliary magnetic pole 9 is disposed on the atmosphere side of the vacuum chamber 1 in which the substrate 2 is stored.

従って、補助磁極9の冷却や真空シールの問題を除外でき、装置構成を簡素化できる。   Therefore, the problem of cooling of the auxiliary magnetic pole 9 and the vacuum seal can be eliminated, and the apparatus configuration can be simplified.

本発明によれば、マグネトロン蒸発源3が1種類のマグネトロン磁場構成で済む。マグネトロン蒸発源3の数、配置に関係なく所望の閉じ込め磁場を形成できる。また、閉じ込め磁場形状を簡単に変えることができる。   According to the present invention, the magnetron evaporation source 3 only needs to have one type of magnetron magnetic field configuration. A desired confined magnetic field can be formed regardless of the number and arrangement of the magnetron evaporation sources 3. In addition, the shape of the confined magnetic field can be easily changed.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は本発明の代表的な実施の形態として、非平衡(不平衡)型マグネトロンスパッタ蒸発源マグネトロン4式を搭載した、マグネトロンスパッタ装置を示している。
図1において、真空チャンバ1内の中央部に基板(被蒸着物)2が設けられ、真空チャンバ1内に基板2の外周を取り囲むように4個のマグネトロン蒸発源3が設けられている。各マグネトロン蒸発源3は互いに同一の構成であって、リング状の外側磁極4と外側磁極4の中央に内嵌配置された内側磁極5とソース材料により構成されたターゲット6とを備えている。前記各マグネトロン蒸発源3は、マグネトロンを形成する外側磁極4の強度が内側磁極5の強度よりも強い非平衡型(不平衡)のマグネトロン蒸発源により構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a magnetron sputtering apparatus equipped with four types of non-equilibrium (unbalanced) magnetron sputtering evaporation source magnetron as a typical embodiment of the present invention.
In FIG. 1, a substrate (deposition object) 2 is provided in the center of the vacuum chamber 1, and four magnetron evaporation sources 3 are provided in the vacuum chamber 1 so as to surround the outer periphery of the substrate 2. Each magnetron evaporation source 3 has the same configuration, and includes a ring-shaped outer magnetic pole 4, an inner magnetic pole 5 fitted in the center of the outer magnetic pole 4, and a target 6 made of a source material. Each of the magnetron evaporation sources 3 is composed of an unbalanced (unbalanced) magnetron evaporation source in which the strength of the outer magnetic pole 4 forming the magnetron is stronger than the strength of the inner magnetic pole 5.

各マグネトロン蒸発源3は基板2の外周に等間隔をおいて環状に配置され、基板2から等間隔の位置にある。隣合うマグネトロン蒸発源3の中央位置に夫々補助磁極9が設けられている。この補助磁極9は、永久磁石により構成され、基板2に対して接離する方向に移動可能になっている。各補助磁極9は、マグネトロン蒸発源3の外側磁極4の極性と相異なる極性を持つように配置されており、各マグネトロン蒸発源3の外側磁極4及び各補助磁極9を順次交互に結ぶように磁力線11が生じ、これによりマグネトロン蒸発源3と補助磁極4によって基板2を取り囲む形状の磁場が形成され、マグネトロン蒸発源3より発生したプラズマを基板3の周囲に閉じ込めることができるようになっている。   Each magnetron evaporation source 3 is annularly arranged on the outer periphery of the substrate 2 at equal intervals, and is located at an equal interval from the substrate 2. Auxiliary magnetic poles 9 are respectively provided at the central positions of the adjacent magnetron evaporation sources 3. The auxiliary magnetic pole 9 is composed of a permanent magnet and is movable in a direction in which the auxiliary magnetic pole 9 is in contact with or separated from the substrate 2. Each auxiliary magnetic pole 9 is arranged to have a polarity different from the polarity of the outer magnetic pole 4 of the magnetron evaporation source 3 so that the outer magnetic pole 4 and each auxiliary magnetic pole 9 of each magnetron evaporation source 3 are connected alternately one after another. Magnetic field lines 11 are generated, whereby a magnetic field having a shape surrounding the substrate 2 is formed by the magnetron evaporation source 3 and the auxiliary magnetic pole 4, and the plasma generated from the magnetron evaporation source 3 can be confined around the substrate 3. .

上記実施の形態によれば、アルゴンなどの不活性ガスが真空チャンバ1内に注入され、アースされた真空チャンバ1に対して、各マグネトロン蒸発源3にスパッタ電源(図示しない)によりマイナス電圧が印加されると、真空チャンバ1と各マグネトロン蒸発源3との間でグロー放電が生じ、真空チャンバ1内にプラズマ(電子及びアルゴンイオン)が発生する。真空チャンバ1内に存在するアルゴンイオンは、ソース材料でできたマグネトロン蒸発源3のターゲット6に衝突し、これによりマグネトロン蒸発源3(ターゲット6)より金属原子が蒸発(スパッタ)され、基板2上に付着して、薄膜を形成する。また、一部の金属原子は真空チャンバ1内でイオン化され、電気的に負にバイアスされた基板2により高いエネルギーで付着する。   According to the above-described embodiment, an inert gas such as argon is injected into the vacuum chamber 1, and a negative voltage is applied to each magnetron evaporation source 3 from the sputtering power supply (not shown) to the grounded vacuum chamber 1. Then, glow discharge occurs between the vacuum chamber 1 and each magnetron evaporation source 3, and plasma (electrons and argon ions) is generated in the vacuum chamber 1. Argon ions existing in the vacuum chamber 1 collide with the target 6 of the magnetron evaporation source 3 made of the source material, and thereby, metal atoms are evaporated (sputtered) from the magnetron evaporation source 3 (target 6), and the substrate 2 To form a thin film. Some metal atoms are ionized in the vacuum chamber 1 and adhere to the substrate 2 that is electrically negatively biased with high energy.

このとき、複数のマグネトロン蒸発源3の中間位置にそのマグネトロン磁極を構成する外側磁極4の極性と相異なる極性をもった補助磁極9を配置しているため、各マグネトロン蒸発源3の外側磁極4及び各補助磁極9を順次結ぶように磁力線11が生じ、これにより従来技術と同様にマグネトロン蒸発源3と補助磁極4によって基板2を取り囲む形状の磁場が形成され、前記グロー放電により発生したプラズマ(電子及びアルゴンイオン)を基板2の周囲に閉じ込めることができる。従って、基板2の周囲にマグネトロン蒸発源3より発生したプラズマ(アルゴンイオン)が多く存在し、また、マグネトロン蒸発源3より蒸発した金属原子のイオン化も促進される為、基板2上に形成される被膜がアルゴンイオン、金属イオンの衝突をより多く受けることにより、被膜と基板2との密着力や被膜の膜構造が改善される。   At this time, since the auxiliary magnetic pole 9 having a polarity different from the polarity of the outer magnetic pole 4 constituting the magnetron magnetic pole 4 is disposed at an intermediate position between the plurality of magnetron evaporation sources 3, the outer magnetic pole 4 of each magnetron evaporation source 3 is arranged. Magnetic field lines 11 are generated so as to connect the auxiliary magnetic poles 9 in order, and as a result, a magnetic field having a shape surrounding the substrate 2 is formed by the magnetron evaporation source 3 and the auxiliary magnetic poles 4 as in the prior art, and the plasma ( Electrons and argon ions) can be confined around the substrate 2. Accordingly, a large amount of plasma (argon ions) generated from the magnetron evaporation source 3 is present around the substrate 2, and ionization of metal atoms evaporated from the magnetron evaporation source 3 is promoted, so that it is formed on the substrate 2. By receiving more collisions of argon ions and metal ions with the film, the adhesion between the film and the substrate 2 and the film structure of the film are improved.

また、マグネトロン蒸発源3間に補助磁極9があるため、マグネトロン蒸発源3のマグネトロン磁極自体は極性の同じ種類のものでよく、また搭載されるマグネトロン蒸発源3の個数に影響されず、基板2を取り囲む形状の磁場を確実に形成することができる。
また、マグネトロンスパッタ蒸発源3として、マグネトロンを形成する外側磁極4の強度が内側磁極5の強度よりも強い、非平衡(不平衡)型マグネトロン蒸発源を使用することで、マグネトロン蒸発源3自体から補助磁極9へ漏洩する磁力線が増大し、基板2を取り囲む形状の磁場の強度を増大させることができる。
更に、補助磁極9を永久磁石により形成し、その位置が基板3方向に対して可変とすることで、マグネトロン蒸発源3の配置を固定したままでも、全体の閉じ込め磁場の形状、強度を変更することができ、配置される基板2のサイズ等に応じて最適な磁場形状に設定できる。
Further, since the auxiliary magnetic pole 9 is provided between the magnetron evaporation sources 3, the magnetron magnetic poles themselves of the magnetron evaporation source 3 may be of the same type, and are not affected by the number of magnetron evaporation sources 3 to be mounted. Can be reliably formed.
Further, by using an unbalanced (unbalanced) magnetron evaporation source in which the strength of the outer magnetic pole 4 forming the magnetron is stronger than that of the inner magnetic pole 5 as the magnetron sputter evaporation source 3, The lines of magnetic force that leak to the auxiliary magnetic pole 9 increase, and the strength of the magnetic field that surrounds the substrate 2 can be increased.
Further, the auxiliary magnetic pole 9 is formed of a permanent magnet, and its position is variable with respect to the direction of the substrate 3, so that the shape and strength of the entire confined magnetic field can be changed even when the arrangement of the magnetron evaporation source 3 is fixed. It can be set to an optimum magnetic field shape according to the size of the substrate 2 to be arranged.

図2は、図1に示す実施の形態において、補助磁極9がある場合と無い場合について、アルゴンガスプラズマを形成した場合の基板2のバイアス電流の測定結果を示している。この測定結果によって、補助磁極9の配置により基板3のバイアス電流が増加し、磁場の閉じ込め効果が確認された。
図3は他の実施の形態を示し、基板3の外周に2個のマグネトロン蒸発源3が設けられ、マグネトロン蒸発源3は基板2を中心とした径方向に対応するように配置され、隣合うマグネトロン蒸発源3の間に3個の補助磁極9(補助磁極9a、補助磁極9b、補助磁極9a)が等間隔をおいて配置され、各マグネトロン蒸発源3と各補助磁極9とによって基板2の外周を取り囲んでいる。前記補助磁極9のうちマグネトロン蒸発源3に隣接する補助磁極9aは、マグネトロン蒸発源3の外側磁極4と相異なる極性であり、また中央側の補助磁極9bは、マグネトロン蒸発源3に隣接する補助磁極9aと異なる極性となっている。従って、各マグネトロン蒸発源3の外側磁極4及び各補助磁極9を順次結ぶように磁束を生じさせて該磁束で基板2の外周を取り囲むようになっている。各マグネトロン蒸発源3及び各補助磁極9により、基板2を取り囲む形状の磁力線11が形成される。その他の点は前記実施の形態と同様の構成である。
FIG. 2 shows the measurement results of the bias current of the substrate 2 when argon gas plasma is formed with and without the auxiliary magnetic pole 9 in the embodiment shown in FIG. From this measurement result, the bias current of the substrate 3 was increased by the arrangement of the auxiliary magnetic pole 9, and the magnetic field confinement effect was confirmed.
FIG. 3 shows another embodiment, in which two magnetron evaporation sources 3 are provided on the outer periphery of the substrate 3, and the magnetron evaporation sources 3 are arranged so as to correspond to the radial direction centering on the substrate 2 and are adjacent to each other. Three auxiliary magnetic poles 9 (an auxiliary magnetic pole 9a, an auxiliary magnetic pole 9b, and an auxiliary magnetic pole 9a) are arranged at equal intervals between the magnetron evaporation sources 3, and each of the magnetron evaporation sources 3 and each of the auxiliary magnetic poles 9 Surrounds the perimeter. Of the auxiliary magnetic poles 9, the auxiliary magnetic pole 9 a adjacent to the magnetron evaporation source 3 has a different polarity from the outer magnetic pole 4 of the magnetron evaporation source 3, and the auxiliary magnetic pole 9 b on the center side is adjacent to the magnetron evaporation source 3. The polarity is different from that of the magnetic pole 9a. Accordingly, a magnetic flux is generated so as to connect the outer magnetic pole 4 and the auxiliary magnetic pole 9 of each magnetron evaporation source 3 in order, and the outer periphery of the substrate 2 is surrounded by the magnetic flux. Each magnetron evaporation source 3 and each auxiliary magnetic pole 9 form magnetic field lines 11 having a shape surrounding the substrate 2. Other points are the same as those in the above embodiment.

なお、図3では、各マグネトロン蒸発源3間に3個の補助磁極9が配置されているが、補助磁極9の個数は補助磁極9aと補助磁極9bとを交互に奇数個配置したものであれば、更に補助磁極9の個数を増やしても良い。この場合、補助磁極9の個数を増やし、補助磁極9間の間隔が縮まる程、プラズマの閉じ込め効果を増大させることができる。
図4は他の実施の形態を示し、基板2の外周に、1個のマグネトロン蒸発源3が設けられと共に、奇数個の補助磁極9が設けられ、1個のマグネトロン蒸発源3と奇数個の補助磁極9とによって基板2の外周を取り囲んでいる。前記補助磁極9のうちマグネトロン蒸発源3に隣接する補助磁極9aは、マグネトロン蒸発源3の外側磁極4と相異なる極性であり、また補助磁極9のうち隣合う補助磁極9aと補助磁極9bとの極性が相異なっている。従って、マグネトロン蒸発源3及び異なる極性を持った補助磁極9a、9bを交互に配置することで、各マグネトロン蒸発源3の外側磁極4及び各補助磁極9を順次結ぶように磁束11を生じさせて該磁束11で基板2の外周を取り囲むようになっており、やはり閉じ込め磁場を形成している。その他の点は前記実施の形態と同様の構成である。
In FIG. 3, three auxiliary magnetic poles 9 are arranged between the magnetron evaporation sources 3, but the number of auxiliary magnetic poles 9 may be an odd number of auxiliary magnetic poles 9a and auxiliary magnetic poles 9b arranged alternately. For example, the number of auxiliary magnetic poles 9 may be increased. In this case, the plasma confinement effect can be increased as the number of the auxiliary magnetic poles 9 is increased and the interval between the auxiliary magnetic poles 9 is reduced.
FIG. 4 shows another embodiment, in which one magnetron evaporation source 3 and an odd number of auxiliary magnetic poles 9 are provided on the outer periphery of the substrate 2, and one magnetron evaporation source 3 and an odd number of magnetron evaporation sources 3 are provided. The auxiliary magnetic pole 9 surrounds the outer periphery of the substrate 2. Among the auxiliary magnetic poles 9, the auxiliary magnetic pole 9a adjacent to the magnetron evaporation source 3 has a polarity different from that of the outer magnetic pole 4 of the magnetron evaporation source 3, and among the auxiliary magnetic poles 9, the auxiliary magnetic pole 9a and the auxiliary magnetic pole 9b are adjacent to each other. The polarities are different. Therefore, by alternately arranging the magnetron evaporation source 3 and the auxiliary magnetic poles 9a and 9b having different polarities, the magnetic flux 11 is generated so as to sequentially connect the outer magnetic pole 4 and the auxiliary magnetic poles 9 of each magnetron evaporation source 3. The magnetic flux 11 surrounds the outer periphery of the substrate 2 to form a confined magnetic field. Other points are the same as those in the above embodiment.

図5は他の実施の形態を示し、図1、3、4の各実施の形態では補助磁極9として永久磁石を使用しているが、これに代え、図5の場合は、補助磁極9として空心コイルを使用し、これを、マグネトロン蒸発源3の外側磁極4と相異なる極性となるように励磁するようにしたものである。この場合も、図1の実施の形態の場合と同様に、各マグネトロン蒸発源3の外側磁極4及び各補助磁極9を順次交互に結ぶように磁力線11を生じさせて、該磁力線11で基板2の外周を取り囲むようになっている。しかも、補助磁極4として空心コイルを用いたため、励磁電流を変化させることで簡単に磁場形状を変化させることが可能になり、閉じ込め磁場を調整し、配置される基板2のサイズ等に応じた最適な磁場を形成することができる。   FIG. 5 shows another embodiment, and in each of the embodiments of FIGS. 1, 3, and 4, a permanent magnet is used as the auxiliary magnetic pole 9, but in the case of FIG. An air-core coil is used and excited so as to have a polarity different from that of the outer magnetic pole 4 of the magnetron evaporation source 3. Also in this case, similarly to the embodiment of FIG. 1, the magnetic lines 11 are generated so that the outer magnetic poles 4 and the auxiliary magnetic poles 9 of the magnetron evaporation sources 3 are alternately connected to each other, and the magnetic lines 11 generate the substrate 2 It is designed to surround the outer periphery. In addition, since an air-core coil is used as the auxiliary magnetic pole 4, it is possible to easily change the magnetic field shape by changing the exciting current, and the confinement magnetic field is adjusted, and the optimum according to the size of the substrate 2 to be arranged, etc. A strong magnetic field can be formed.

図6は他の実施の形態を示し、マグネトロン蒸発源3間に配置される補助磁極9が真空チャンバ1の大気側に配置されている。また、形成される閉じ込め磁場ができるだけ基板2に対し均等になるように、マグネトロン蒸発源3と基板2との間の距離と、補助磁極9と基板2との間の距離とが同程度となるように構成されている。なお、補助磁極9としては図6に示す永久磁石の場合以外に空心コイルを使用することもできるが、何れの場合も図1、5に示した実施の形態に比べ、補助磁極9の冷却機構や真空チャンバ1内に空心コイルの配線を導入するためのフィードスルーが省略でき、装置構成が簡略化することができる。   FIG. 6 shows another embodiment, in which an auxiliary magnetic pole 9 disposed between the magnetron evaporation sources 3 is disposed on the atmosphere side of the vacuum chamber 1. Further, the distance between the magnetron evaporation source 3 and the substrate 2 and the distance between the auxiliary magnetic pole 9 and the substrate 2 are approximately the same so that the confined magnetic field formed is as uniform as possible with respect to the substrate 2. It is configured as follows. As the auxiliary magnetic pole 9, an air-core coil can be used in addition to the permanent magnet shown in FIG. 6, but in any case, the cooling mechanism for the auxiliary magnetic pole 9 is compared with the embodiment shown in FIGS. In addition, the feedthrough for introducing the air core coil wiring into the vacuum chamber 1 can be omitted, and the apparatus configuration can be simplified.

この実施の形態の場合、補助磁極9を真空チャンバ1の外部に配置することで、補助磁極の冷却や真空シールの問題を除外でき、装置構成を簡素化できる。
図7は本発明の代表的な他の実施の形態として、非平衡(不平衡)型マグネトロンスパッタ蒸発源マグネトロン4式を搭載した、マグネトロンスパッタ装置を示している。
図7において、真空チャンバ1内の中央部に基板(被蒸着物)2が設けられ、真空チャンバ1内に基板2の外周を取り囲むように4個のマグネトロン蒸発源3が設けられている。各マグネトロン蒸発源3は互いに同一の構成であって、リング状の外側磁極4と外側磁極4の中央に内嵌配置された内側磁極5とソース材料により構成されたターゲット6とを備えている。前記各マグネトロン蒸発源3は、マグネトロンを形成する外側磁極4の強度が内側磁極5の強度よりも強い非平衡型(不平衡)のマグネトロン蒸発源により構成されている。
In the case of this embodiment, by arranging the auxiliary magnetic pole 9 outside the vacuum chamber 1, problems of cooling of the auxiliary magnetic pole and vacuum sealing can be eliminated, and the device configuration can be simplified.
FIG. 7 shows a magnetron sputtering apparatus equipped with four types of non-equilibrium (unbalanced) type magnetron sputter evaporation source magnetrons as another typical embodiment of the present invention.
In FIG. 7, a substrate (deposition object) 2 is provided in the center of the vacuum chamber 1, and four magnetron evaporation sources 3 are provided in the vacuum chamber 1 so as to surround the outer periphery of the substrate 2. Each magnetron evaporation source 3 has the same configuration, and includes a ring-shaped outer magnetic pole 4, an inner magnetic pole 5 fitted in the center of the outer magnetic pole 4, and a target 6 made of a source material. Each of the magnetron evaporation sources 3 is composed of an unbalanced (unbalanced) magnetron evaporation source in which the strength of the outer magnetic pole 4 forming the magnetron is stronger than the strength of the inner magnetic pole 5.

各マグネトロン蒸発源3は基板2の外周に等間隔をおいて環状に配置され、基板2から等間隔の位置にある。隣合うマグネトロン蒸発源3の中央位置に夫々補助磁極9が設けられている。この補助磁極9は、永久磁石により構成され、基板2に対して接離する方向に移動可能になっている。各補助磁極9は、マグネトロン蒸発源3の外側磁極4の極性と同一の極性を持つように配置されている。   Each magnetron evaporation source 3 is annularly arranged on the outer periphery of the substrate 2 at equal intervals, and is located at an equal interval from the substrate 2. Auxiliary magnetic poles 9 are respectively provided at the central positions of the adjacent magnetron evaporation sources 3. The auxiliary magnetic pole 9 is composed of a permanent magnet and is movable in a direction in which the auxiliary magnetic pole 9 is in contact with or separated from the substrate 2. Each auxiliary magnetic pole 9 is arranged to have the same polarity as that of the outer magnetic pole 4 of the magnetron evaporation source 3.

上記実施の形態によれば、アルゴンなどの不活性ガスが真空チャンバ1内に注入され、アースされた真空チャンバ1に対して、各マグネトロン蒸発源3にスパッタ電源(図示しない)によりマイナス電圧が印加されると、真空チャンバ1と各マグネトロン蒸発源3との間でグロー放電が生じ、真空チャンバ1内にプラズマ(電子及びアルゴンイオン)が発生する。真空チャンバ1内に存在するアルゴンイオンは、ソース材料でできたマグネトロン蒸発源3のターゲット6に衝突し、これによりマグネトロン蒸発源3(ターゲット6)より金属原子が蒸発(スパッタ)され、基板2上に付着して、薄膜を形成する。また、一部の金属原子は真空チャンバ1内でイオン化され、電気的に負にバイアスされた基板2により高いエネルギーで付着する。   According to the above-described embodiment, an inert gas such as argon is injected into the vacuum chamber 1, and a negative voltage is applied to each magnetron evaporation source 3 from the sputtering power supply (not shown) to the grounded vacuum chamber 1. Then, glow discharge occurs between the vacuum chamber 1 and each magnetron evaporation source 3, and plasma (electrons and argon ions) is generated in the vacuum chamber 1. Argon ions existing in the vacuum chamber 1 collide with the target 6 of the magnetron evaporation source 3 made of the source material, and thereby, metal atoms are evaporated (sputtered) from the magnetron evaporation source 3 (target 6), and the substrate 2 To form a thin film. Some metal atoms are ionized in the vacuum chamber 1 and adhere to the substrate 2 that is electrically negatively biased with high energy.

このとき、複数のマグネトロン蒸発源3の中間位置にそのマグネトロン磁極を構成する外側磁極4の極性と同一の極性をもった補助磁極9を配置しているため、各マグネトロン蒸発源3の外側磁極4及び各補助磁極9の中間付近で反発し合う磁場が生じるが、この部分は磁力線が集中しているため、ミラー効果によって、前記グロー放電により発生したプラズマ(電子及びアルゴンイオン)を基板2の周囲に閉じ込めることができる。また、隣接するマグネトロン蒸発源3と補助磁極9の磁場が反発し合うために、蒸発源3前方の磁場はより基板2方向に膨らみ、また、蒸発源3の内側磁極5と補助磁極9を結ぶ磁力線も生じるため、プラズマが基板2方向に広がり、基板2位置で高密度のプラズマが得られる。従って、基板2の周囲にマグネトロン蒸発源3より発生したプラズマ(アルゴンイオン)が多く存在し、また、マグネトロン蒸発源3より蒸発した金属原子のイオン化も促進される為、基板2上に形成される被膜がアルゴンイオン、金属イオンの衝突をより多く受けることにより、被膜と基板2との密着力や被膜の膜構造が改善される。   At this time, since the auxiliary magnetic pole 9 having the same polarity as the polarity of the outer magnetic pole 4 constituting the magnetron magnetic pole is disposed at an intermediate position between the plurality of magnetron evaporation sources 3, the outer magnetic pole 4 of each magnetron evaporation source 3 is disposed. In addition, a repulsive magnetic field is generated in the vicinity of the middle of each auxiliary magnetic pole 9, but the magnetic field lines are concentrated in this portion, so that the plasma (electrons and argon ions) generated by the glow discharge is surrounded by the mirror effect around the substrate 2. Can be trapped in. Further, since the magnetic fields of the adjacent magnetron evaporation source 3 and auxiliary magnetic pole 9 repel each other, the magnetic field in front of the evaporation source 3 swells further toward the substrate 2, and connects the inner magnetic pole 5 of the evaporation source 3 and the auxiliary magnetic pole 9. Since magnetic lines of force are also generated, the plasma spreads in the direction of the substrate 2 and high-density plasma is obtained at the substrate 2 position. Accordingly, a large amount of plasma (argon ions) generated from the magnetron evaporation source 3 is present around the substrate 2, and ionization of metal atoms evaporated from the magnetron evaporation source 3 is promoted, so that it is formed on the substrate 2. By receiving more collisions of argon ions and metal ions with the film, the adhesion between the film and the substrate 2 and the film structure of the film are improved.

また、マグネトロン蒸発源3間に補助磁極9があるため、マグネトロン蒸発源3のマグネトロン磁極自体は極性の同じ種類のものでよく、また搭載されるマグネトロン蒸発源3の個数に影響されず、基板2を取り囲む形状の磁場を確実に形成することができる。
また、マグネトロンスパッタ蒸発源3として、マグネトロンを形成する外側磁極4の強度が内側磁極5の強度よりも強い、非平衡(不平衡)型マグネトロン蒸発源を使用することで、マグネトロン蒸発源3自体から補助磁極9へ漏洩する磁力線が増大し、基板2を取り囲む形状の磁場の強度を増大させることができる。
更に、補助磁極9を永久磁石により形成し、その位置が基板3方向に対して可変とすることで、マグネトロン蒸発源3の配置を固定したままでも、全体の閉じ込め磁場の形状、強度を変更することができ、配置される基板2のサイズ等に応じて最適な磁場形状に設定できる。
Further, since the auxiliary magnetic pole 9 is provided between the magnetron evaporation sources 3, the magnetron magnetic poles themselves of the magnetron evaporation source 3 may be of the same type, and are not affected by the number of magnetron evaporation sources 3 to be mounted. Can be reliably formed.
Further, by using an unbalanced (unbalanced) magnetron evaporation source in which the strength of the outer magnetic pole 4 forming the magnetron is stronger than that of the inner magnetic pole 5 as the magnetron sputter evaporation source 3, The lines of magnetic force that leak to the auxiliary magnetic pole 9 increase, and the strength of the magnetic field that surrounds the substrate 2 can be increased.
Further, the auxiliary magnetic pole 9 is formed of a permanent magnet, and its position is variable with respect to the direction of the substrate 3, so that the shape and strength of the entire confined magnetic field can be changed even when the arrangement of the magnetron evaporation source 3 is fixed. It can be set to an optimum magnetic field shape according to the size of the substrate 2 to be arranged.

図8は、図7に示す実施の形態において、補助磁極9が無い場合、マグネトロン蒸発源3のマグネトロン磁極を構成する外側磁極4の極性と相異なる極性をもった補助磁極9を配置した場合、マグネトロン蒸発源3のマグネトロン磁極を構成する外側磁極4の極性と同一の極性をもった補助磁極9を配置した場合について、アルゴンガスプラズマを形成した場合の基板2のバイアス電流の測定結果を示している。この測定結果によって、同一の極性をもった補助磁極9の配置により基板3のバイアス電流が大幅に増加し、大きな磁場の閉じ込め効果が確認された。   In the embodiment shown in FIG. 7, when the auxiliary magnetic pole 9 is not provided, the auxiliary magnetic pole 9 having a polarity different from the polarity of the outer magnetic pole 4 constituting the magnetron magnetic pole of the magnetron evaporation source 3 is arranged. The measurement result of the bias current of the substrate 2 when argon gas plasma is formed in the case where the auxiliary magnetic pole 9 having the same polarity as that of the outer magnetic pole 4 constituting the magnetron magnetic pole of the magnetron evaporation source 3 is arranged is shown. Yes. From this measurement result, the bias current of the substrate 3 was greatly increased by the arrangement of the auxiliary magnetic poles 9 having the same polarity, and a large magnetic field confinement effect was confirmed.

図9は他の実施の形態を示し、基板3の外周に2個のマグネトロン蒸発源3が設けられ、マグネトロン蒸発源3は基板2を中心とした径方向に対応するように配置され、隣合うマグネトロン蒸発源3の間に3個の補助磁極9が等間隔をおいて配置され、各マグネトロン蒸発源3と各補助磁極9とによって基板2の外周を取り囲んでいる。前記補助磁極9のうちマグネトロン蒸発源3に隣接する補助磁極9は、マグネトロン蒸発源3の外側磁極4と同一の極性であり、また中央側の補助磁極9は、マグネトロン蒸発源3に隣接する補助磁極9と同一の極性となっている。従って、各マグネトロン蒸発源3の外側磁極4及び各補助磁極9の中間付近で反発し合う磁場が生じるが、この部分は磁力線が集中しているため、ミラー効果によって、グロー放電により発生したプラズマ(電子及びアルゴンイオン)を基板2の周囲に閉じ込めることができる。また、隣接するマグネトロン蒸発源3と補助磁極9の磁場が反発し合うために、蒸発源3前方の磁場はより基板2方向に膨らみ、また、蒸発源3の内側磁極5と補助磁極9を結ぶ磁力線も生じるため、プラズマが基板2方向に広がり、基板2位置で高密度のプラズマが得られる。その他の点は前記実施の形態と同様の構成である。   FIG. 9 shows another embodiment, in which two magnetron evaporation sources 3 are provided on the outer periphery of the substrate 3, and the magnetron evaporation sources 3 are arranged so as to correspond to the radial direction centering on the substrate 2 and are adjacent to each other. Three auxiliary magnetic poles 9 are arranged at equal intervals between the magnetron evaporation sources 3 and each magnetron evaporation source 3 and each auxiliary magnetic pole 9 surround the outer periphery of the substrate 2. Of the auxiliary magnetic poles 9, the auxiliary magnetic pole 9 adjacent to the magnetron evaporation source 3 has the same polarity as the outer magnetic pole 4 of the magnetron evaporation source 3, and the auxiliary auxiliary magnetic pole 9 on the center side is adjacent to the magnetron evaporation source 3. It has the same polarity as the magnetic pole 9. Therefore, a repulsive magnetic field is generated in the vicinity of the middle between the outer magnetic pole 4 and each auxiliary magnetic pole 9 of each magnetron evaporation source 3, but the magnetic field lines are concentrated in this portion, so that plasma generated by glow discharge by the mirror effect ( Electrons and argon ions) can be confined around the substrate 2. Further, since the magnetic fields of the adjacent magnetron evaporation source 3 and auxiliary magnetic pole 9 repel each other, the magnetic field in front of the evaporation source 3 swells further toward the substrate 2, and connects the inner magnetic pole 5 of the evaporation source 3 and the auxiliary magnetic pole 9. Since magnetic lines of force are also generated, the plasma spreads in the direction of the substrate 2 and high-density plasma is obtained at the substrate 2 position. Other points are the same as those in the above embodiment.

なお、図9では、各マグネトロン蒸発源3間に3個の補助磁極9が配置されているが、更に補助磁極9の個数を増やしても良い。この場合、補助磁極9の個数を増やし、補助磁極9間の間隔が縮まる程、プラズマの閉じ込め効果を増大させることができる。
図10は他の実施の形態を示し、基板2の外周に、1個のマグネトロン蒸発源3が設けられと共に、複数個の補助磁極9が設けられ、1個のマグネトロン蒸発源3と複数個の補助磁極9とによって基板2の外周を取り囲んでいる。前記補助磁極9のうちマグネトロン蒸発源3に隣接する補助磁極9は、マグネトロン蒸発源3の外側磁極4と同一の極性であり、また隣合う補助磁極9同士の極性も同一になっている。従って、マグネトロン蒸発源3及び同一の極性を持った補助磁極9を配置することで、各マグネトロン蒸発源3の外側磁極4及び各補助磁極9の中間付近で反発し合う磁場が生じるが、この部分は磁力線が集中しているため、ミラー効果によって、グロー放電により発生したプラズマ(電子及びアルゴンイオン)を基板2の周囲に閉じ込めることができる。また、隣接するマグネトロン蒸発源3と補助磁極9の磁場が反発し合うために、蒸発源3前方の磁場はより基板2方向に膨らみ、また、蒸発源3の内側磁極5と補助磁極9を結ぶ磁力線も生じるため、プラズマが基板2方向に広がり、基板2位置で高密度のプラズマが得られる。その他の点は前記実施の形態と同様の構成である。
In FIG. 9, three auxiliary magnetic poles 9 are disposed between the magnetron evaporation sources 3, but the number of auxiliary magnetic poles 9 may be further increased. In this case, the plasma confinement effect can be increased as the number of the auxiliary magnetic poles 9 is increased and the interval between the auxiliary magnetic poles 9 is reduced.
FIG. 10 shows another embodiment, in which one magnetron evaporation source 3 is provided on the outer periphery of the substrate 2 and a plurality of auxiliary magnetic poles 9 are provided, and one magnetron evaporation source 3 and a plurality of magnetron evaporation sources 3 are provided. The auxiliary magnetic pole 9 surrounds the outer periphery of the substrate 2. Of the auxiliary magnetic poles 9, the auxiliary magnetic pole 9 adjacent to the magnetron evaporation source 3 has the same polarity as the outer magnetic pole 4 of the magnetron evaporation source 3, and the adjacent auxiliary magnetic poles 9 also have the same polarity. Therefore, by arranging the magnetron evaporation source 3 and the auxiliary magnetic pole 9 having the same polarity, a repulsive magnetic field is generated near the middle between the outer magnetic pole 4 and each auxiliary magnetic pole 9 of each magnetron evaporation source 3. Since magnetic field lines are concentrated, plasma (electrons and argon ions) generated by glow discharge can be confined around the substrate 2 by the mirror effect. Further, since the magnetic fields of the adjacent magnetron evaporation source 3 and auxiliary magnetic pole 9 repel each other, the magnetic field in front of the evaporation source 3 swells further toward the substrate 2, and connects the inner magnetic pole 5 of the evaporation source 3 and the auxiliary magnetic pole 9. Since magnetic lines of force are also generated, the plasma spreads in the direction of the substrate 2 and high-density plasma is obtained at the substrate 2 position. Other points are the same as those in the above embodiment.

図11は他の実施の形態を示し、図7、9、10の各実施の形態では補助磁極9として永久磁石を使用しているが、これに代え、図11の場合は、補助磁極9として空心コイルを使用し、これを、マグネトロン蒸発源3の外側磁極4と同一の極性となるように励磁するようにしたものである。この場合も、図7の実施の形態の場合と同様に、各マグネトロン蒸発源3の外側磁極4及び各補助磁極9の中間付近で反発し合う磁場が生じるが、この部分は磁力線が集中しているため、ミラー効果によって、グロー放電により発生したプラズマ(電子及びアルゴンイオン)を基板2の周囲に閉じ込めることができる。また、隣接するマグネトロン蒸発源3と補助磁極9の磁場が反発し合うために、蒸発源3前方の磁場はより基板2方向に膨らみ、また、蒸発源3の内側磁極5と補助磁極9を結ぶ磁力線も生じるため、プラズマが基板2方向に広がり、基板2位置で高密度のプラズマが得られる。しかも、補助磁極4として空心コイルを用いたため、励磁電流を変化させることで簡単に磁場形状を変化させることが可能になり、閉じ込め磁場を調整し、配置される基板2のサイズ等に応じた最適な磁場を形成することができる。   FIG. 11 shows another embodiment, and in each of the embodiments of FIGS. 7, 9, and 10, a permanent magnet is used as the auxiliary magnetic pole 9, but in the case of FIG. An air-core coil is used and excited so as to have the same polarity as the outer magnetic pole 4 of the magnetron evaporation source 3. Also in this case, as in the case of the embodiment of FIG. 7, a repulsive magnetic field is generated near the middle of the outer magnetic pole 4 and each auxiliary magnetic pole 9 of each magnetron evaporation source 3, but the magnetic field lines are concentrated in this part. Therefore, plasma (electrons and argon ions) generated by glow discharge can be confined around the substrate 2 by the mirror effect. Further, since the magnetic fields of the adjacent magnetron evaporation source 3 and auxiliary magnetic pole 9 repel each other, the magnetic field in front of the evaporation source 3 swells further toward the substrate 2, and connects the inner magnetic pole 5 of the evaporation source 3 and the auxiliary magnetic pole 9. Since magnetic lines of force are also generated, the plasma spreads in the direction of the substrate 2 and high-density plasma is obtained at the substrate 2 position. In addition, since an air-core coil is used as the auxiliary magnetic pole 4, it is possible to easily change the magnetic field shape by changing the exciting current, and the confinement magnetic field is adjusted, and the optimum according to the size of the substrate 2 to be arranged, etc. A strong magnetic field can be formed.

図12は他の実施の形態を示し、マグネトロン蒸発源3間に配置される補助磁極9が真空チャンバ1の大気側に配置されている。また、形成される閉じ込め磁場ができるだけ基板2に対し均等になるように、マグネトロン蒸発源3と基板2との間の距離と、補助磁極9と基板2との間の距離とが同程度となるように構成されている。なお、補助磁極9としては図12に示す永久磁石の場合以外に空心コイルを使用することもできるが、何れの場合も図7、11に示した実施の形態に比べ、補助磁極9の冷却機構や真空チャンバ1内に空心コイルの配線を導入するためのフィードスルーが省略でき、装置構成が簡略化することができる。   FIG. 12 shows another embodiment, and an auxiliary magnetic pole 9 disposed between the magnetron evaporation sources 3 is disposed on the atmosphere side of the vacuum chamber 1. Further, the distance between the magnetron evaporation source 3 and the substrate 2 and the distance between the auxiliary magnetic pole 9 and the substrate 2 are approximately the same so that the confined magnetic field formed is as uniform as possible with respect to the substrate 2. It is configured as follows. As the auxiliary magnetic pole 9, an air-core coil can be used in addition to the permanent magnet shown in FIG. 12, but in any case, the cooling mechanism of the auxiliary magnetic pole 9 is compared with the embodiment shown in FIGS. In addition, the feedthrough for introducing the air core coil wiring into the vacuum chamber 1 can be omitted, and the apparatus configuration can be simplified.

この実施の形態の場合、補助磁極9を真空チャンバ1の外部に配置することで、補助磁極の冷却や真空シールの問題を除外でき、装置構成を簡素化できる。
尚、補助磁極4を、真空チャンバ1の大気側に配置された永久磁石またはコイルと、これに対応する位置で真空チャンバ1内に配置される磁性体とから構成することで、真空チャンバ1の外部の永久磁石又はコイルで発生した磁力線のロスを少なくしつつ、真空チャンバ1の内部に導入することができ、装置の簡素化を図ると共に、閉じ込め磁場の強度低下を防ぐことができる。
In the case of this embodiment, by arranging the auxiliary magnetic pole 9 outside the vacuum chamber 1, problems of cooling of the auxiliary magnetic pole and vacuum sealing can be eliminated, and the device configuration can be simplified.
The auxiliary magnetic pole 4 is composed of a permanent magnet or coil disposed on the atmosphere side of the vacuum chamber 1 and a magnetic body disposed in the vacuum chamber 1 at a position corresponding to the permanent magnet or coil. While reducing the loss of magnetic lines of force generated by an external permanent magnet or coil, it can be introduced into the vacuum chamber 1, thereby simplifying the apparatus and preventing the strength of the confined magnetic field from being lowered.

本発明の一実施の形態を示す構成図である。It is a block diagram which shows one embodiment of this invention. 同基板バイアス電流と基板バイアス電圧との関係を示すグラフである。It is a graph which shows the relationship between the substrate bias current and a substrate bias voltage. 本発明の他の実施の形態を示す構成図である。It is a block diagram which shows other embodiment of this invention. 本発明の他の実施の形態を示す構成図である。It is a block diagram which shows other embodiment of this invention. 本発明の他の実施の形態を示す構成図である。It is a block diagram which shows other embodiment of this invention. 本発明の他の実施の形態を示す構成図である。It is a block diagram which shows other embodiment of this invention. 本発明の他の実施の形態を示す構成図である。It is a block diagram which shows other embodiment of this invention. 同基板バイアス電流と基板バイアス電圧との関係を示すグラフである。It is a graph which shows the relationship between the substrate bias current and a substrate bias voltage. 本発明の他の実施の形態を示す構成図である。It is a block diagram which shows other embodiment of this invention. 本発明の他の実施の形態を示す構成図である。It is a block diagram which shows other embodiment of this invention. 本発明の他の実施の形態を示す構成図である。It is a block diagram which shows other embodiment of this invention. 本発明の他の実施の形態を示す構成図である。It is a block diagram which shows other embodiment of this invention. 従来例を示す構成図である。It is a block diagram which shows a prior art example.

符号の説明Explanation of symbols

1 真空チャンバ
2 基板
3 マグネトロン蒸発源
4 外側磁極
5 内側磁極
9 補助磁極
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Substrate 3 Magnetron evaporation source 4 Outer magnetic pole 5 Inner magnetic pole 9 Auxiliary magnetic pole

Claims (7)

基板(2)の外周に複数のマグネトロン蒸発源(3)が設けられ、マグネトロン蒸発源(3)より蒸発した金属原子又はイオンを、基板(2)に付着させて基板(2)に薄膜を形成するようにしたマグネトロンスパッタ装置において、
隣合うマグネトロン蒸発源(3)の中間位置に、マグネトロン蒸発源(3)の外側磁極(4)の極性と同一の極性を持った補助磁極(9)が配置され、各々のマグネトロン蒸発源(3)の外側磁極(4)の極性がすべて同一とされることにより、各マグネトロン蒸発源(3)の外側磁極(4)と該外側磁極(4)に隣接する前記補助磁極(9)との中間付近で反発し合う磁場を生じさせると共に、各マグネトロン蒸発源(3)の内側磁極(5)と該内側磁極(5)に隣接する前記補助磁極(9)とを相互に結ぶ磁力線を生じさせていることを特徴とするマグネトロンスパッタ装置。
A plurality of magnetron evaporation sources (3) are provided on the outer periphery of the substrate (2), and metal atoms or ions evaporated from the magnetron evaporation source (3) are attached to the substrate (2) to form a thin film on the substrate (2). In the magnetron sputtering device designed to
An auxiliary magnetic pole (9) having the same polarity as the polarity of the outer magnetic pole (4) of the magnetron evaporation source (3) is disposed at an intermediate position between the adjacent magnetron evaporation sources (3), and each magnetron evaporation source (3 ) Of the outer magnetic poles (4) are all the same in polarity so that the outer magnetic pole (4) of each magnetron evaporation source (3) is intermediate between the auxiliary magnetic pole (9) adjacent to the outer magnetic pole (4). A magnetic field repelling in the vicinity is generated, and a magnetic line of force connecting the inner magnetic pole (5) of each magnetron evaporation source (3) and the auxiliary magnetic pole (9) adjacent to the inner magnetic pole (5) is generated. A magnetron sputtering apparatus.
マグネトロン蒸発源(3)より蒸発した金属原子又はイオンを、基板(2)に付着させて基板(2)に薄膜を形成するようにしたマグネトロンスパッタ装置において、
基板(2)の外周に、1個のマグネトロン蒸発源(3)が設けられると共に、1又は複数個の補助磁極(9)が、隣合う補助磁極(9)同士の極性が同一となりかつ隣合うマグネトロン蒸発源(3)の外側磁極(4)と補助磁極(9)との極性が同一となるように設けられ、前記マグネトロン蒸発源(3)の外側磁極(4)と該外側磁極(4)に隣接する前記補助磁極(9)との中間付近及び隣接する前記補助磁極(9)間の中間付近で反発し合う磁場を生じさせると共に、前記マグネトロン蒸発源(3)の内側磁極(5)と該内側磁極(5)に隣接する前記補助磁極(9)とを相互に結ぶ磁力線を生じさせていることを特徴とするマグネトロンスパッタ装置。
In the magnetron sputtering apparatus in which metal atoms or ions evaporated from the magnetron evaporation source (3) are attached to the substrate (2) to form a thin film on the substrate (2).
One magnetron evaporation source (3) is provided on the outer periphery of the substrate (2), and one or a plurality of auxiliary magnetic poles (9) are adjacent to each other and have the same polarity. The outer magnetic pole (4) of the magnetron evaporation source (3) and the auxiliary magnetic pole (9) are provided to have the same polarity. The outer magnetic pole (4) of the magnetron evaporation source (3) and the outer magnetic pole (4) A magnetic field repelling in the vicinity of the middle of the auxiliary magnetic pole (9) adjacent to the intermediate magnetic field and in the vicinity of the middle of the auxiliary magnetic pole (9) adjacent to each other, and the inner magnetic pole (5) of the magnetron evaporation source (3) 2. A magnetron sputtering apparatus characterized by generating magnetic lines of force connecting the auxiliary magnetic pole (9) adjacent to the inner magnetic pole (5).
基板(2)の外周に複数個のマグネトロン蒸発源(3)が設けられ、マグネトロン蒸発源(3)より蒸発した金属原子のイオンを、基板(2)に衝突させて基板(2)に薄膜を形成するようにしたマグネトロンスパッタ装置において、
隣合うマグネトロン蒸発源(3)の間に、1又は複数個の補助磁極(9)が、隣合う補助磁極(9)同士の極性が同一となりかつ隣合うマグネトロン蒸発源(3)の外側磁極(4)と補助磁極(9)との極性とが同一となるように設けられ、各々のマグネトロン蒸発源(3)の外側磁極(4)の極性がすべて同一とされることにより、各マグネトロン蒸発源(3)の外側磁極(4)と該外側磁極(4)に隣接する前記補助磁極(9)との中間付近及び隣接する前記補助磁極(9)間の中間付近で反発し合う磁場を生じさせると共に、各マグネトロン蒸発源(3)の内側磁極(5)と該内側磁極(5)に隣接する前記補助磁極(9)とを相互に結ぶ磁力線を生じさせていることを特徴とするマグネトロンスパッタ装置。
A plurality of magnetron evaporation sources (3) are provided on the outer periphery of the substrate (2). Metal ions evaporated from the magnetron evaporation source (3) collide with the substrate (2) to form a thin film on the substrate (2). In the magnetron sputtering apparatus designed to form,
Between adjacent magnetron evaporation sources (3), one or a plurality of auxiliary magnetic poles (9) have the same polarity between adjacent auxiliary magnetic poles (9), and the outer magnetic poles of adjacent magnetron evaporation sources (3) ( 4) and the auxiliary magnetic pole (9) are provided so that the polarities thereof are the same, and the polarities of the outer magnetic poles (4) of the respective magnetron evaporation sources (3) are all the same. A repulsive magnetic field is generated near the middle between the outer magnetic pole (4) of (3) and the auxiliary magnetic pole (9) adjacent to the outer magnetic pole (4) and near the middle between the adjacent auxiliary magnetic poles (9). In addition, a magnetron sputtering apparatus is characterized in that magnetic lines of force connecting the inner magnetic pole (5) of each magnetron evaporation source (3) and the auxiliary magnetic pole (9) adjacent to the inner magnetic pole (5) are generated. .
前記マグネトロン蒸発源(3)が、マグネトロンを形成する外側磁極(4)の強度が内側磁極(5)の強度よりも強い非平衡型のマグネトロン蒸発源であることを特徴とする請求項1〜3のいずれかに記載のマグネトロンスパッタ装置。     The magnetron evaporation source (3) is a non-equilibrium magnetron evaporation source in which the strength of the outer magnetic pole (4) forming the magnetron is higher than the strength of the inner magnetic pole (5). The magnetron sputtering apparatus according to any one of the above. 前記補助磁極(9)が、永久磁石により構成されると共に、基板(2)に対して接離する方向に移動可能であることを特徴とする請求項1〜3のいずれかに記載のマグネトロンスパッタ装置。   The magnetron sputtering according to any one of claims 1 to 3, wherein the auxiliary magnetic pole (9) is composed of a permanent magnet and is movable in a direction in which the auxiliary magnetic pole (9) is in contact with and away from the substrate (2). apparatus. 前記補助磁極(9)がコイルにより形成され、コイル電流を変化させることにより磁場形状、強度を変化させることができるようにしたことを特徴とする請求項1〜3のいずれかに記載のマグネトロンスパッタ装置。   The magnetron sputtering according to any one of claims 1 to 3, wherein the auxiliary magnetic pole (9) is formed of a coil, and the magnetic field shape and strength can be changed by changing a coil current. apparatus. 前記補助磁極(9)が基板(2)を格納した真空チャンバ(1)の大気側に配置されていることを特徴とする請求項1〜3のいずれかに記載のマグネトロンスパッタ装置。   The magnetron sputtering apparatus according to any one of claims 1 to 3, wherein the auxiliary magnetic pole (9) is arranged on the atmosphere side of the vacuum chamber (1) in which the substrate (2) is stored.
JP2005361024A 1998-08-19 2005-12-14 Magnetron sputtering equipment Expired - Lifetime JP4219925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005361024A JP4219925B2 (en) 1998-08-19 2005-12-14 Magnetron sputtering equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP23292798 1998-08-19
JP2005361024A JP4219925B2 (en) 1998-08-19 2005-12-14 Magnetron sputtering equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22837799A Division JP3766569B2 (en) 1998-08-19 1999-08-12 Magnetron sputtering equipment

Publications (2)

Publication Number Publication Date
JP2006118052A JP2006118052A (en) 2006-05-11
JP4219925B2 true JP4219925B2 (en) 2009-02-04

Family

ID=36536194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005361024A Expired - Lifetime JP4219925B2 (en) 1998-08-19 2005-12-14 Magnetron sputtering equipment

Country Status (1)

Country Link
JP (1) JP4219925B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5713872B2 (en) * 2011-10-28 2015-05-07 株式会社神戸製鋼所 Film forming apparatus and film forming method

Also Published As

Publication number Publication date
JP2006118052A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
KR100396456B1 (en) High target utilization magnetic arrangement for a truncated conical sputtering target
US6156170A (en) Magnetron sputtering apparatus
KR890004880B1 (en) Method and device for sputtering
US6497803B2 (en) Unbalanced plasma generating apparatus having cylindrical symmetry
EP0660372B1 (en) Plasma beam generating method and apparatus which can generate a high-power plasma beam
US6224725B1 (en) Unbalanced magnetron sputtering with auxiliary cathode
EP1369898B1 (en) Magnetic field generator for magnetron plasma
JPS5952957B2 (en) Cathode part of magnetron type sputtering equipment
JP2005060841A (en) Cathodic sputtering apparatus
US8377269B2 (en) Sputtering apparatus
JP5934227B2 (en) Sputtering source and sputtering method for high pressure sputtering with large targets
JP3766569B2 (en) Magnetron sputtering equipment
JP4219925B2 (en) Magnetron sputtering equipment
JP2007224343A (en) Magnetron sputtering device
US20090159441A1 (en) Plasma Film Deposition System
WO2001092595A1 (en) Unbalanced plasma generating apparatus having cylindrical symmetry
JPH0696680A (en) Metal ion source
JP2005290442A (en) Ecr sputtering system
JPH0845457A (en) Ion source device
JP3100242B2 (en) Plasma processing equipment
JPH076061B2 (en) Magnetron sputtering equipment
JP2006161062A (en) Magnetron sputtering film deposition apparatus, and electrode structure thereof
JP2000144413A (en) Device for coating substrate with thin film
JP2002004044A (en) Sputtering system
JP2870473B2 (en) Ion source device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4219925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

EXPY Cancellation because of completion of term