JP6885233B2 - フーリエ変換赤外分光光度計 - Google Patents

フーリエ変換赤外分光光度計 Download PDF

Info

Publication number
JP6885233B2
JP6885233B2 JP2017133439A JP2017133439A JP6885233B2 JP 6885233 B2 JP6885233 B2 JP 6885233B2 JP 2017133439 A JP2017133439 A JP 2017133439A JP 2017133439 A JP2017133439 A JP 2017133439A JP 6885233 B2 JP6885233 B2 JP 6885233B2
Authority
JP
Japan
Prior art keywords
voltage
signal processing
unit
detector
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017133439A
Other languages
English (en)
Other versions
JP2019015616A5 (ja
JP2019015616A (ja
Inventor
加藤 大二郎
大二郎 加藤
真也 和久田
真也 和久田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2017133439A priority Critical patent/JP6885233B2/ja
Priority to CN201810738365.2A priority patent/CN109211406B/zh
Priority to EP18182122.4A priority patent/EP3425355B1/en
Priority to US16/028,531 priority patent/US10670518B2/en
Publication of JP2019015616A publication Critical patent/JP2019015616A/ja
Publication of JP2019015616A5 publication Critical patent/JP2019015616A5/ja
Application granted granted Critical
Publication of JP6885233B2 publication Critical patent/JP6885233B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4535Devices with moving mirror
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J2003/4538Special processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

本発明はフーリエ変換赤外分光光度計(FTIR: Fourier Transform Infrared Spectrometer)に関する。
フーリエ変換赤外分光法では、ビームスプリッタ、固定鏡、及び移動鏡を含むマイケルソン型干渉計等の干渉計が用いられる。干渉計では、移動鏡の位置を移動して固定鏡により反射される光と移動鏡により反射される光に光路長差を付与することにより、該光路長差に応じて異なる位相で干渉した光を得ることができる。試料に含まれる測定対象化合物の吸収波長を含む波長幅を有する赤外光を干渉計に導入して干渉光を生成し、試料に照射して透過光を測定するという動作を、移動鏡を順次移動させて行うことにより、移動鏡の移動距離に対する透過光強度の変化を示すインターフェログラムが得られる(図1)。このインターフェログラムをフーリエ変換することにより、縦軸を強度、横軸を波数とするパワースペクトルが得られる(例えば特許文献1〜3)。
図2に、従来用いられているフーリエ変換赤外分光光度計の要部構成を示す。フーリエ変換赤外分光光度計100は大別して、気密室101内に配置された干渉部と、気密室101外に配置される測定部で構成される。干渉部は、光源102、集光鏡103、コリメータ鏡104、ビームスプリッタ105、固定鏡106、移動鏡107を備えている。また、測定部は、放物面鏡112、試料室113、楕円面鏡115、及び検出器116を備えており、試料室113内に試料114が配置される。
光源102から出射された赤外光は、集光鏡103、コリメータ鏡104を介してビームスプリッタ105に照射され、ビームスプリッタ105により固定鏡106及び移動鏡107に向かう二方向に分割される。固定鏡106及び移動鏡107でそれぞれ反射した赤外光はビームスプリッタ105に戻って合流し、気密室101の窓108から出射して放物面鏡112に向かう。放物面鏡112で集光された光は試料室113内の試料114に照射される。試料114を通過した光は楕円面鏡115により検出器116の検出面に集光され検出される。移動鏡107を前後(図2の矢印Mの方向)に往復動させると、固定鏡106で反射される赤外光の光路と移動鏡107で反射される赤外光の光路長に差が生じ、該光路長差に応じて異なる位相で干渉した赤外干渉光が生成される。試料114を通過した赤外干渉光は検出器116で検出される。
検出器116としては、例えば焦電素子と接合型電界効果トランジスタを有する焦電検出器が用いられる。焦電素子は、赤外光の入射光量に応じた電荷を生成して電流を発生させる。接合型電界効果トランジスタのゲートには焦電素子が接続され、またソースには抵抗が接続されている。赤外光が入射すると、焦電素子が接続されたゲートの電圧が変化してソースから流出する電流量が変化し、ソースに接続された抵抗の両端の電位差が変化する。この電位差を検出することにより赤外光の入射光量に応じた電圧値が得られる。赤外光が照射されていないときにはドレインからゲートへの漏れ電流と焦電素子の抵抗に相当する電圧がゲートに印加されており、前記抵抗の両端にはオフセット電圧が発生している。焦電検出器では、このオフセット電圧からの変動が正負の電圧値として出力される(図3に実線で示す波形)。図1に示すインターフェログラムと区別するため、以下では図3に示す波形を「減算波形」と呼ぶ。
特開2012-7964号公報 特開2002-22536号公報 特開2003-14543号公報 特開2007-205793号公報
フーリエ変換赤外分光光度計では、移動鏡107がある特定の位置にあるときに、該移動鏡107で反射された赤外光と固定鏡106で反射される光の光路長が一致する。この状態においては、全ての波長で、ビームスプリッタ105で合流した両反射光の位相が一致して強めあい、最も高強度の赤外光が検出される。これに対応する、インターフェログラム上のピークはセンターバーストと呼ばれる(図1参照)。このセンターバーストは、図3に実線で示す減算波形の正電圧側に現れる最大ピークに対応する。移動鏡107が前記特定の位置からずれると両反射光に光路長差が生じ、波長毎に異なる位相で両反射光が干渉するようになるため、検出される赤外光の強度が波打つように変化する。
しかし、実際の測定では、ビームスプリッタ105として用いられる、表面にGe等の薄膜を蒸着した1対の窓材を赤外光が通過する際の屈折率が波長によって異なり、また該1対の窓材の厚さも厳密に均一ではない。そのため、全ての波長の赤外光について両反射光の位相が同時に揃わず、逆に前記両反射光の位相差がπとなり光が弱めあう波長が多くなって最大のピークが下向きに現れる(つまり負電圧側に最大ピークが現れる)場合がある。同じ装置でも試料を入れた際には、どこの波長を強く吸収するかによって正電圧側に最大ピークが現れたり、負電圧側に最大ピークが現れたりする。試料の無い状態では一定である。装置ごとの最大ピークの高さや正負はある程度事前に予測することが可能であるが、正電圧のピークと負電圧のピークのいずれが現れるかを事前に予測することはできない。
このように、正電圧と負電圧のいずれの最大ピークが現れるかを事前に予測することはできないため、いずれが現れた場合でもA/D変換器の入力レンジ内に収まるように増幅器での増幅率が設定される。しかし、実際の測定では正電圧側と負電圧側のいずれか一方にのみ最大ピークが現れるため、図3に実線で示す減算波形のように正電圧側に最大ピークが現れた場合は負電圧側の入力レンジの多くが使用されず、破線で示す減算波形のように負電圧側に最大ピークが現れた場合は正電圧側の入力レンジの多くが使用されないため、A/D変換器の入力レンジの一部が無駄になるという問題があった。
本発明が解決しようとする課題は、正電圧の最大ピークと負電圧の最大ピークのいずれが現れる場合でもA/D変換器の入力レンジを有効に使用することができるフーリエ変換赤外分光光度計を提供することである。
上記課題を解決するために成された本発明に係るフーリエ変換赤外分光光度計の第1の態様は、
a) 分析対象化合物の吸収波長を含む波長幅を有する赤外光を発生する光源と、
b) 固定鏡及び移動鏡を含み、前記赤外光から干渉光を生成する干渉計と、
c) 前記干渉光の強度に応じた大きさの電圧を生成し、該電圧から予め決められた大きさの電圧を差し引いた電圧を出力する検出器と、
d) 入力された電圧の極性を反転させて出力する極性反転部と、
e) 入力された電圧に予め決められた大きさのバイアス電圧を加算するバイアス電圧加算部と、
f) 入力された電圧を予め決められた倍率で増幅する増幅部と、
g) 入力された電圧をデジタル信号に変換するA/D変換部と、
h) 前記検出器から出力される電圧を、前記バイアス電圧加算部及び前記増幅部で順に処理する第1信号処理を実行する第1信号処理部と、
i) 前記検出器から出力される電圧を、前記極性反転部、前記バイアス電圧加算部、及び前記増幅部により順に処理する第2信号処理を実行する第2信号処理実行部と、
j) 前記第1信号処理後の電圧及び前記第2信号処理後の電圧を前記A/D変換部に入力し、該第1信号処理後の電圧及び該第2信号処理後の電圧がそれぞれ前記A/D変換部の入力レンジ内であるかを判定する判定部と、
k) 前記判定部による判定の結果に基づき、実測定時に前記検出器から出力される電圧を前記第1信号処理と前記第2信号処理のいずれにより処理するかを決定する信号処理決定部と
を備え、
前記第1信号処理又は第2信号処理によって前記検出器からの出力電圧の波形が正電圧側と負電圧側に等分に広がる波形に変換されるように前記バイアス電圧の大きさが定められていることを特徴とする。
前記検出器は例えば焦電検出器であり、該焦電検出器では、干渉光の強度に応じた大きさの電圧が生成され、該電圧から予め決められた大きさの直流電圧(オフセット電圧)を差し引いた電圧が出力される。検出器としては焦電検出器のほか、干渉光の強度に応じた大きさの電圧からその直流成分を差し引いた電圧を出力するものを用いることもできる。例えば、量子型検出器であるMCT検出器やInGaAs検出器などを用いることができる。この直流成分はフーリエ変換後の吸収スペクトルを構成する周波数成分の情報を含まない成分に相当し、これには、例えば光源から発せられた赤外光を干渉させずに検出したときに生成される電圧値を用いることができる。あるいは、光源から発せられる赤外光の強度と、干渉計等に含まれる各光学部品による光吸収の大きさに基づく計算値を用いてもよい。
前記判定部による判定は、A/D変換部からの出力信号が飽和信号であるか否かを確認することにより行うことができる。
フーリエ変換赤外分光光度計では、減算波形の最大ピークが正電圧側と負電圧側のいずれに現れるかを予測することは困難であるが、そのピーク高さ(絶対値)はほぼ一定である。従って、前記バイアス電圧の大きさや前記予め決められた倍率は、予備実験や過去の測定の結果から決定することができる。
上記第1の態様のフーリエ変換赤外分光光度計では、検出器から出力された電圧にバイアス電圧を加算して増幅する第1信号処理と、検出器から出力された電圧の極性を反転させ、バイアス電圧を加算して増幅する第2信号処理とを行い、両処理後の電圧がA/D変換部の入力レンジ内であるかを判定する。例えば、最大ピークが正電圧側に現れており前記バイアス電圧が負の値である場合、図4(a)に示すように、第1信号処理ではバイアス電圧の加算によって電圧信号が負方向にシフトされ、減算波形の最大ピークの高さが低く(絶対値が小さく)なった後に増幅器で増幅される。このように、バイアス電圧の加算によって最大ピークの高さの絶対値を小さくするように電圧信号がシフトされると、増幅後の電圧信号はA/D変換器の入力レンジ内に収まる。一方、極性を反転させる第2信号処理では、図4(b)に示すように、バイアス電圧の加算により最大ピークの高さがさらに高く(絶対値が大きく)なり、その後に増幅器で増幅されるため、該増幅後の電圧信号はA/D変換器の入力レンジを外れて飽和信号が出力される。従って、この場合には、信号処理決定部により第1信号処理が実測定時の処理方法として決定される。逆に、減算波形の最大ピークが負電圧側である場合には、第1信号処理の場合に増幅後の電圧信号がA/D変換器の入力レンジを外れ、第2信号処理の場合に増幅後の電圧信号がA/D変換器の入力レンジ内に収まり、第2信号処理が実測定時の処理方法として決定される。このように、第1の態様のフーリエ変換赤外分光光度計では、実測定時に、最大ピークの高さを低くする方向に減算波形全体をシフトさせ、正電圧側又は負電圧側に偏在する波形を両方に等分に広がる波形に変換したあとに電圧信号を増幅する処理が行われるため、A/D変換器の正電圧側と負電圧側の両方の入力レンジを有効に用いることができる。
また、本発明に係るフーリエ変換赤外分光光度計の第2の態様は、
a) 分析対象化合物の吸収波長を含む波長幅を有する赤外光を発生する光源と、
b) 固定鏡及び移動鏡を含み、前記赤外光から干渉光を生成する干渉計と、
c) 前記干渉光の強度に応じた大きさの電圧を生成し、該電圧から予め決められた大きさの電圧を差し引いた電圧を出力する検出器と、
d) 入力された電圧に予め決められた、絶対値が同じである正のバイアス電圧又は負のバイアス電圧を加算するバイアス電圧加算部と、
e) 入力された電圧を予め決められた倍率で増幅する増幅部と、
f) 入力された電圧をデジタル信号に変換するA/D変換部と、
g) 前記検出器から出力される電圧に前記正のバイアス電圧を加算して前記予め決められた倍率で増幅する第3信号処理を実行する第3信号処理実行部と、
h) 前記検出器から出力される電圧に前記負のバイアス電圧を加算して前記予め決められた倍率で増幅する第4信号処理を実行する第4信号処理実行部と、
i) 前記第3信号処理後の電圧及び前記第4信号処理後の電圧を前記A/D変換部に入力し、該第3信号処理後の電圧及び該第4信号処理後の電圧がそれぞれA/D変換部の入力レンジ内であるかを判定する判定部と、
j) 前記判定部による判定の結果に基づき、実測定時に前記検出器から出力される電圧を前記第3信号処理と前記第4信号処理のいずれにより処理するかを決定する信号処理決定部と
を備え、
前記第3信号処理又は第4信号処理によって前記検出器からの出力電圧の波形が正電圧側と負電圧側に等分に広がる波形に変換されるように前記バイアス電圧の絶対値が定められていることを特徴とする。
上記第2の態様のフーリエ変換赤外分光光度計では、正電圧側に最大ピークが現れている場合には前記第4信号処理により、また負電圧側に最大ピークが現れている場合には前記第3信号処理により、そのピーク高さを低くするように減算波形全体がシフトされ、正電圧側又は負電圧側に偏在する波形が両方に等分に広がる波形に変換される。従って、上記第1の態様のフーリエ変換赤外分光光度計と同様に、A/D変換器の正電圧側と負電圧側の両方の入力レンジを有効に用いることができる。
さらに、本発明に係るフーリエ変換赤外分光光度計の第3の態様は、
a) 分析対象化合物の吸収波長を含む波長幅を有する赤外光を発生する光源と、
b) 固定鏡及び移動鏡を含み、前記赤外光から干渉光を生成する干渉計と、
c) 前記干渉光の強度に応じた大きさの電圧を生成し、該電圧から予め決められた大きさの電圧を差し引いた電圧を出力する検出器と、
d) 前記検出器からの出力電圧に含まれる、該出力電圧の波形を正電圧側と負電圧側に等分に広がる波形に変換するように予め決められた周波数以上の成分を通過させるハイパスフィルタと、
e) 前記ハイパスフィルタからの出力電圧を予め決められた倍率で増幅する増幅部と、
f) 前記増幅部からの出力電圧をデジタル信号に変換するA/D変換部と
を備えることを特徴とする。
第3の態様のフーリエ変換赤外分光光度計では、ハイパスフィルタを用いて検出器から出力される電圧のうち、予め決められた周波数以上の成分を通過させる。ハイパスフィルタは微分回路としても知られている(例えば特許文献4)。第3の態様のフーリエ変換赤外分光光度計では、ハイパスフィルタを用いて前記予め決められた周波数を、減算波形に含まれる主な周波数に近い値に設定することにより、正電圧側又は負電圧側に偏在する波形を微分処理して両方向にほぼ等分に広がる波形に変換する。従って、A/D変換器の正電圧側と負電圧側の両方の入力レンジを有効に用いることができる。
本発明に係る第1から第3の態様のフーリエ変換赤外分光光度計を用いることにより、正電圧の最大ピークと負電圧の最大ピークのいずれが現れる場合でもA/D変換器の入力レンジを有効に使用することができる。
フーリエ変換赤外分光光度計で得られるインターフェログラムの一例。 従来のフーリエ変換赤外分光光度計の要部構成図。 従来のフーリエ変換赤外分光光度計における減算波形とA/D変換器の入力レンジの関係を説明する図。 本発明に係るフーリエ変換赤外分光光度計の第1の態様における信号処理を模式的に示す図。 実施例1〜3のフーリエ変換赤外分光光度計に共通の構成を説明する図。 実施例1のフーリエ変換赤外分光光度計において用いられる信号処理部及び制御/処理部の構成を説明する図。 実施例1のフーリエ変換赤外分光光度計における信号処理の流れを説明する図。 実施例2のフーリエ変換赤外分光光度計において用いられる信号処理部及び制御/処理部の構成を説明する図。 実施例2のフーリエ変換赤外分光光度計における信号処理の流れを説明する図。 実施例3のフーリエ変換赤外分光光度計において用いられる信号処理部及び制御/処理部の構成を説明する図。 実施例3のフーリエ変換赤外分光光度計における信号処理の流れを説明する図。 1kHz正弦波の正側半波に対して1kHzのハイパスフィルタを入れた場合のシミュレーション波形。
本発明に係るフーリエ変換赤外分光光度計に関する3つの実施例について、以下、図面を参照して説明する。
図5は、3つの実施例のフーリエ変換赤外分光光度計に共通する要部構成図である。フーリエ変換赤外分光光度計には、インターフェログラムを得るための主干渉計と、移動鏡の摺動速度を制御したり主干渉計の検出器で得られる信号をサンプリングするタイミング信号を生成したりするためのコントロール干渉計とが設けられている。主干渉計は、光源11、集光鏡12、コリメータ鏡13、ビームスプリッタ14、固定鏡15、移動鏡16を含み、スペクトル測定を行うための干渉赤外光を発生させる。光源11から出射された赤外光は、集光鏡12、コリメータ鏡13を介してビームスプリッタ14に照射され、ここで固定鏡15及び移動鏡16の二方向に向かう光に分割される。固定鏡15及び移動鏡16にてそれぞれ反射した光はビームスプリッタ14によって再び合一され、放物面鏡21へ向かう光路に送られる。このとき、移動鏡16は移動鏡駆動部16aにより前後(図5中の矢印Mの方向)に往復駆動されているため、合一された光は時間的に強度が変動する干渉光となる。放物面鏡21にて集光された光は試料室22内に照射され、試料室22に配置された試料23を通過した光は楕円面鏡24により検出器25へ集光される。
一方、コントロール干渉計は、レーザ光源17、ミラー18、(前記の)ビームスプリッタ14、(前記の)固定鏡15、(前記の)移動鏡16を含み、干渉縞信号を得るためのレーザ干渉光を発生させる。レーザ光源17から出射された光はミラー18を介してビームスプリッタ14に照射され、上記赤外光と同様に干渉光となって放物面鏡21の方向に向かう。このレーザ干渉光は非常に小さな径の光束となって進行し、放物面鏡21に至る光路の途中に挿入されたミラー19により反射されて検出器20に導入される。
主干渉計及びコントロール干渉計を構成する光学部品は気密室10内に配置されており、気密室10内は湿度がコントロールされている。これは、主として、潮解性を有するKBrを基板とするビームスプリッタ14等の光学素子を保護するためである。
検出器20の受光信号、つまり干渉縞信号は信号生成部29に入力され、ここで赤外干渉光に対する受光信号をサンプリングするためのパルス信号が生成される。また、このレーザ光干渉縞信号は移動鏡16の摺動制御を行うためにも利用される。
試料室22内に配置された試料23を通過した干渉光は、楕円面鏡24により集光され検出器25で検出される。本実施例の検出器25は焦電素子と接合型電界効果トランジスタを有する焦電検出器であり、赤外光の強度に応じて焦電素子で生成された量の電荷に対応する電圧と接合型電界効果トランジスタのオフセット電圧との差に相当する正負の電圧が出力される。
検出器25で得られた受光信号には、信号処理部26(36、46)において後述する実施例にそれぞれ特有の処理が施され、A/D変換器27でデジタル信号に変換されて制御/処理部30(40、50)に送られる。制御/処理部30(40、50)では、所定のデータ処理を実行した後にフーリエ変換演算を行って吸収スペクトルを作成する。
制御/処理部30(40、50)は記憶部31を備えた専用の制御/処理装置とすることもできるが、一般的には、その実体は専用の制御/処理ソフトウエアをインストールしたパーソナルコンピュータであって、各種の入力操作を行うためのキーボードやポインティングデバイス(マウスなど)による入力部60や測定結果等を表示する液晶ディスプレイ等の表示部70が接続されている。
図6に実施例1のフーリエ変換赤外分光光度計において用いられる信号処理部26と制御/処理部30の構成を示す。実施例1の信号処理部26は、入力された電圧の極性を反転させて出力する極性反転部261と、入力された電圧に予め決められた大きさのバイアス電圧を加算するバイアス電圧加算部262と、入力された電圧を予め決められた倍率で増幅する増幅器263とを備えている。なお、極性反転部261、バイアス電圧加算部262、及び増幅器263の実体はそれぞれ電気回路であり、従来知られた各種の電気回路の組み合わせにより後述する各部の機能が実現される。制御/処理部30は、記憶部31のほか、機能ブロックとして判定部32と信号処理決定部33を備えている。これらの機能ブロックは、例えば制御/処理部30として用いられるコンピュータにインストールされた所定のプログラムを実行することにより具現化される。
実施例1のフーリエ変換赤外分光光度計では、実試料の測定前に、その測定時に使用する信号処理の方法を決定するための予備測定を行う。この予備測定は、例えば入力部60を通じた使用者からの指示に基づき、制御/処理部30がフーリエ変換赤外分光光度計の各部を動作させることにより行われる。あるいは、フーリエ変換赤外分光光度計の電源が投入された時や、前回の実試料の測定後、予め決められた時間以上の時間が経過している場合に、制御/処理部30が自動的に予備測定を行うようにしてもよい。
予備測定では、移動鏡16の位置を移動させつつ、検出器25に入射する赤外干渉光の強度を順次、測定する。この予備測定は2度行われ、最初の測定時には第1信号処理が、2度目の測定時には第2信号処理が施される。
最初の予備測定時に行う第1信号処理では、検出器25から出力され極性反転部261に入力される電圧の極性を反転させず、そのままバイアス電圧加算部262に入力する。あるいは、極性反転部261の手前に配設された信号経路の切り換えスイッチを用いて極性反転部261に電圧を入力せず、直接バイアス電圧加算部262に入力するようにしてもよい。バイアス電圧加算部262では、順次入力される電圧に予め決められたバイアス電圧を加算して出力る。バイアス電圧が加算された電圧は、増幅器263により予め決められた倍率に増幅され出力される。増幅器263から出力された電圧はA/D変換器27でデジタル信号に変換され制御/処理部30内の記憶部31に保存される。
2度目の予備測定時に行う第2信号処理では、検出器25から出力され極性反転部261に入力された電圧の極性を反転させてバイアス電圧加算部262に入力する。バイアス電圧加算部262では、順次入力される極性反転後の電圧に予め決められたバイアス電圧を加算して出力る。バイアス電圧が加算された電圧は、増幅器263より予め決められた倍率に増幅され出力される。増幅器263から出力された電圧はA/D変換器27でデジタル信号に変換され制御/処理部30内の記憶部31に保存される。このように、第1信号処理と第2信号処理は、検出器25からの出力電圧の極性を反転させるか否かという点で異なる。
図7に、模式的な減算波形を用いて具体的な信号処理の一例を示す。図7では、実施例1における信号処理の特徴についての理解を容易にするために波形を簡素化しているが、実際の測定で得られる減算波形はより複雑である。後述の実施例2及び3において説明に使用する波形についても同様である。ここでは、検出器25から、最大ピークの電圧の絶対値が4V、該最大ピークの極性と反対側の最大出力電圧の絶対値が1Vである減算波形が出力される場合を想定し、バイアス電圧を-1.5V、増幅率を2倍としている。また、A/D変換器27の入力レンジは-5V〜+5Vである。フーリエ変換赤外分光光度計で取得されるインターフェログラム(図)において上向きに最大ピークが現れるか下向きに最大ピークが現れるか(言い換えると、図のような減算波形において正電圧側に最大ピークが現れるか負電圧側に最大ピークが現れるか)を事前に予測することはできないが、その最大ピークの大きさ(電圧の絶対値)はほぼ一定であるため、事前に減算波形を構成する電圧の範囲を想定しておくことができる。従って、その電圧範囲とA/D変換器27の入力レンジに基づいて、バイアス電圧の大きさ及び増幅率を決めておくことができる。
減算波形の最大ピークが正電圧側に現れる(即ち減算波形の出力電圧範囲が-1V〜+4Vである)場合、第1信号処理では図7(a)に示すように減算波形が処理される。その結果、増幅器263から出力される電圧の範囲は-5V〜+5Vとなり、A/D変換器27の入力レンジ内に収まる。一方、第2信号処理では図7(b)に示すように減算波形が処理される。その結果、増幅器263から出力される電圧の範囲が-11V〜-1Vとなり、A/D変換器27の入力レンジから外れる。このような電圧が入力されると、A/D変換器27からは飽和信号が出力され記憶部31に保存されるため、判定部32は、記憶部31に保存された信号が飽和しているか否かを確認することにより、第1信号処理後の出力電圧と第2信号処理後の出力電圧のそれぞれがA/D変換器27の入力レンジ内に収まっているかを判定することができる。判定部32による判定後、信号処理決定部33は、第1信号処理と第2信号処理のうち、処理後の電圧がA/D変換器27の入力レンジ内に収まる方を実測定時に使用する信号処理方法として決定する。
ここでは、減算波形の最大ピークが正電圧側に現れる例を説明したが、負電圧側に現れる場合も同様に処理され、信号処理決定部33は、2信号処理を実測定時の信号処理方法として決定する。また、ここではバイアス電圧を負電圧としたがバイアス電圧を正電圧とすることもできる。
図8に実施例2のフーリエ変換赤外分光光度計において用いられる信号処理部36及び制御/処理部40の構成を示す。実施例2の信号処理部36は、入力された電圧に絶対値が同じである正のバイアス電圧又は負のバイアス電圧を加算するバイアス電圧加算部362と、入力された電圧を予め決められた倍率で増幅する増幅器363とを備えている。バイアス電圧加算部362、及び増幅器363の実体はそれぞれ電気回路であり、従来知られた各種の電気回路の組み合わせにより後述する各部の機能が実現される。制御/処理部40も、実施例1の制御/処理部30と同様に、記憶部31のほか、機能ブロックとして判定部42と信号処理決定部43を備えている。これらの機能ブロックは、例えば制御/処理部40として用いられるコンピュータにインストールされた所定のプログラムを実行することにより具現化される。
実施例2のフーリエ変換赤外分光光度計でも、実試料の測定前に、その測定時に使用する信号処理の方法を決定するための予備測定を行う。この予備測定は、例えば入力部60を通じた使用者からの指示に基づき、制御/処理部40がフーリエ変換赤外分光光度計の各部を動作させることにより行われる。あるいは、フーリエ変換赤外分光光度計の電源が投入された時や、前回の実試料の測定後、予め決められた時間以上の時間が経過している場合に、制御/処理部40が自動的に予備測定を行うようにしてもよい。
予備測定では、移動鏡16の位置を移動させつつ、検出器25に入射する赤外干渉光の強度を順次、測定する。この予備測定は2度行われ、最初の測定時には第3信号処理が、2度目の測定時には第4信号処理が施される。
最初の予備測定時に行う第3信号処理では、バイアス電圧加算部362が、検出器25から順次出力される電圧に正のバイアス電圧を加算して出力する。正のバイアス電圧が加算された電圧は、増幅器363において予め決められた倍率で増幅され出力される。増幅器363から出力された電圧はA/D変換器27でデジタル信号に変換され制御/処理部40内の記憶部31に保存される。
2度目の予備測定時に行う第4信号処理では、バイアス電圧加算部362が、検出器25から順次出力される電圧に、前記正のバイアス電圧と絶対値が同じである負のバイアス電圧を加算して出力する。負のバイアス電圧が加算された電圧は、増幅器363において予め決められた倍率で増幅され出力される。増幅器363から出力された電圧はA/D変換器27でデジタル信号に変換され制御/処理部40内の記憶部31に保存される。つまり、第3信号処理と第4信号処理では、バイアス電圧加算部362において検出器25からの出力電圧に加算するバイアス電圧の極性が異なる。
図9に、模式的な減算波形を用いた具体的な信号処理の一例を示す。ここでも、図7と同様に、検出器25から最大ピークの電圧の絶対値が4V、該最大ピークの極性と反対側の最大出力電圧の絶対値が1Vである減算波形が出力される場合を想定し、バイアス電圧を±1.5V、増幅率を2倍としている。また、A/D変換器の入力レンジは-5V〜+5Vである。実施例1において説明したように、減算波形において正電圧側に最大ピークが現れるか負電圧側に最大ピークが現れるかを事前に予測することはできないが、その最大ピークの大きさ(電圧の絶対値)はほぼ一定であるため、事前に減算波形を構成する電圧の範囲を想定し、これとA/D変換器27の入力レンジに基づいて、バイアス電圧の大きさ(絶対値)を決めておくことができる。
減算波形の最大ピークが正電圧側に現れる(即ち減算波形の出力電圧範囲が-1V〜+4Vである)場合、上述の第3信号処理では図9(a)に示すように減算波形が処理される。その結果、増幅器363から出力される電圧の範囲は+1V〜+11Vとなり、A/D変換器27の入力レンジから外れる。一方、第4信号処理では図9(b)に示すように減算波形が処理される。その結果、増幅器363から出力される電圧の範囲が-5V〜+5Vとなり、A/D変換器27の入力レンジ内に収まる。判定部42は、記憶部31に保存された信号が飽和しているか否かを確認することにより、第3信号処理後の出力電圧と第4信号処理後の出力電圧のそれぞれがA/D変換器27の入力レンジ内に収まっているかを判定することができる。判定部42による判定後、信号処理決定部43は、第3信号処理と第4信号処理のうち、処理後の電圧がA/D変換器27の入力レンジ内に収まる方を実測定時に使用する信号処理方法として決定する。
ここでも、減算波形の最大ピークが正電圧側に現れる例を説明したが、負電圧側に現れる場合も同様に処理され、信号処理決定部43は、3信号処理を実測定時の信号処理方法として決定する。
図10に実施例3のフーリエ変換赤外分光光度計において用いられる信号処理部46及び制御/処理部50の構成を示す。実施例3の信号処理部46は、入力された電圧信号のうち所定の周波数以上の成分の信号のみを通過させるハイパスフィルタ(HPF)464と、入力された電圧を予め決められた倍率で増幅する増幅器463とを備えている。ハイパスフィルタ464、及び増幅器463の実体はそれぞれ電気回路であり、従来知られた各種の電気回路の組み合わせにより後述する各部の機能が実現される。制御/処理部50は、実施例1の制御/処理部30や実施例2の制御/処理部40と同様に記憶部31は備えているが、判定部や信号処理決定部は備えていない。
実施例3のフーリエ変換赤外分光光度計では実施例1及び2と異なり、予備測定を行わない。従って、例えば装置の電源を投入し、光路調整等を行ったあと、そのまま実測定を行うことができる。もちろん、ハイパスフィルタ464を通過させる周波数の範囲、増幅率、あるいはA/D変換器のレンジを決定するために必要であれば、予備測定を行っても構わない。
図11に、模式的な減算波形を用いた具体的な信号処理の一例を示す。ここでも、図7及び図9と同様に、検出器25から最大ピークの電圧の絶対値が4V、該最大ピークの極性と反対側の最大出力電圧の絶対値が1Vである減算波形が出力される場合を想定し、増幅率を2倍としている。また、A/D変換器の入力レンジは-5V〜+5Vである。
実施例3のフーリエ変換赤外分光光度計では、ハイパスフィルタ464を用いて、検出器から出力される電圧のうち予め決められた周波数以上の成分を通過させる。ここでいう予め決められた周波数は減算波形(あるいはインターフェログラム)に含まれる主な周波数に近い値とすればよい。この値は光源の発光スペクトルにおいて強度が大きい波長や、干渉計等の光学系の構成に依存する。減算波形に含まれる主な周波数は、移動鏡16の速度と赤外光の波長によって決まる。赤外光の波長は、試料に含まれる測定対象化合物により吸収される光の波長であり、光源11には、その波長における発光強度が大きいものが用いられる。例えば、移動鏡16の速度が2.8mm/s、測定波長(に対応する波数)を2000cm-1である場合、周波数f=2×2.8(mm/s)×2,000(cm-1)=1,120Hzとなり、1kHz付近の周波数が支配的になることから、ハイパスフィルタ464のカットオフ周波数を1kHz近傍に設定すればよい。
ハイパスフィルタ464は微分回路としても知られており、実施例3のフーリエ変換赤外分光光度計では、ハイパスフィルタ464を通過させることで減算波形が微分処理され、該微分処理後の波形が増幅器463で増幅されA/D変換器27でデジタル信号に変換される。
一般的な分析装置では信号周波数はノイズ周波数よりも小さいことが多く、従って測定信号の周波数帯域でフィルタを用いることは少ない。一方、フーリエ変換赤外分光では測定により取得したデータをフーリエ変換するため、信号周波数とノイズ周波数の帯域がほぼ同じになることから、測定信号の主な周波数帯域の近傍においてハイパスフィルタを使用する。例えば1kHzの測定信号に対して1kHzのハイパスフィルタを使用すると測定信号とノイズの両方が1/√2に減少するが、これと同時に正電圧側又は負電圧側に偏在している最大ピークの波形がそれら両方に等分に(対称に)広がる波形へと変換され、A/D変換器27の入力レンジを変えることなく増幅器463における増幅率を2倍にすることができる。図12に、1kHz正弦波の正側半波に対し、1kHzのハイパスフィルタを入れた場合のシミュレーション波形を示す。
上記実施例1〜3のいずれにおいても、正電圧側又は負電圧側に偏在する減算波形が、それぞれの実施例に特有の信号処理によって正電圧側と負電圧側の両方に(ほぼ)等分に広がる波形に変換される。そのため、従来のように、A/D変換器の入力レンジにおいて、正電圧側と負電圧側のうち、減算波形の最大ピークが現れない側の入力レンジの多くが使用されず無駄になることがない。つまり、A/D変換器の入力レンジ全体を有効に利用し、そのビット数を最大限活用し、高い分解能で測定データを取得することができる。
ここで、従来のフーリエ変換赤外分光光度計、実施例1と2のフーリエ変換赤外分光光度計、及び実施例3のフーリエ変換赤外分光光度計において得られる測定信号のS/N比を比較する。計算の前提条件としてそれぞれの信号処理部に入力される時点でのS/Nを1とした。また、上記実施例1〜3と同様に、信号処理部に入力される減算波形の形状は最大ピークのピーク電圧の絶対値を4V(即ち+4V又は-4V)とし、またA/D変換器の入力レンジを-5V〜+5Vとした。
従来のフーリエ変換赤外分光光度計では、正電圧側と負電圧側のいずれに最大ピーク(絶対値4V)が現れた場合でもA/D変換器の入力レンジ(-5V〜+5V)の範囲内に収まるように、増幅器での増幅率が1.25倍に設定される。一方、実施例1及び2では増幅器263(363)における信号の増幅率が2倍に設定される。また、実施例3ではハイパスフィルタ464を通過した時点で信号とノイズの両方が1/√2(=0.71)倍され、増幅器463で2倍に増幅される。これらに基づきそれぞれで得られるA/D変換後のS/N比を計算したものを下表に示す。
Figure 0006885233
上表におけるVn(AD)はA/D変換器に特有のノイズであり、これは従来、実施例1及び2、実施例3のフーリエ変換赤外分光光度計のいずれにおいても同じである。従って、上表から実施例1及び2、実施例3、従来のフーリエ変換赤外分光光度計の順にA/D変換後のS/N比が高くなることが分かる。このように、実施例1及び2のフーリエ変換赤外分光光度計を用いると実施例3のフーリエ変換赤外分光光度計よりも高いS/N比の測定データが得られる。一方、実施例1及び2のフーリエ変換赤外分光光度計では、極性変換やバイアス電圧を加算するための回路を設計し追加する必要があるが、実施例3のフーリエ変換赤外分光光度計では従来用いられているハイパスフィルタをそのまま用いるのみでよく、従って実施例1及び2に比べて容易に構成できるという利点がある。また、実施例3のフーリエ変換赤外分光光度計では実試料の測定前に予備測定を行って信号処理方法を決定する必要がないため、測定に係る手順も簡素化できる。
上記実施例は一例であって、本発明の主旨に沿って適宜に変更することができる。上記実施例1〜3に共通の構成として図5に示したフーリエ変換赤外分光光度計の構成は一例であり、上記実施例1〜3において説明した信号処理方法は同様にフーリエ変換赤外分光を実行可能な各種装置において用いることができる。
上記実施例1及び2では、移動鏡16を移動させつつ第1(第3)信号処理を行って減算波形を取得し、その後、再び移動鏡16を移動させつつ第2(第4)信号処理を行って減算波形を取得したが、同じ移動鏡16の位置で第1(第3)信号処理と第2(第4)信号処理を行うという処理を移動鏡16の位置を順次、移動させて行うようにしても良い。
10…気密室
11…光源
12…集光鏡
13…コリメータ鏡
14…ビームスプリッタ
15…固定鏡
16…移動鏡
16a…移動鏡駆動部
17…レーザ光源
18、19…ミラー
20…検出器
21…放物面鏡
22…試料室
23…試料
24…楕円面鏡
25…検出器
26、36、46…信号処理部
261…極性反転部
262、362…バイアス電圧加算部
263、363、463…増幅器
464…ハイパスフィルタ
27…A/D変換器
29…信号生成部
30、40、50…制御/処理部
31…記憶部
32、42…判定部
33、43…信号処理決定部
0…入力部
70…表示部

Claims (3)

  1. a) 分析対象化合物の吸収波長を含む波長幅を有する赤外光を発生する光源と、
    b) 固定鏡及び移動鏡を含み、前記赤外光から干渉光を生成する干渉計と、
    c) 前記干渉光の強度に応じた大きさの電圧を生成し、該電圧から予め決められた大きさの電圧を差し引いた電圧を出力する検出器と、
    d) 前記検出器からの出力電圧に含まれる、該出力電圧の波形を正電圧側と負電圧側に等分に広がる波形に変換するように予め決められた周波数以上の成分を通過させるハイパスフィルタと、
    e) 前記ハイパスフィルタからの出力電圧を予め決められた倍率で増幅する増幅部と、
    f) 前記増幅部からの出力電圧をデジタル信号に変換するA/D変換部と
    を備えることを特徴とするフーリエ変換赤外分光光度計。
  2. a) 分析対象化合物の吸収波長を含む波長幅を有する赤外光を発生する光源と、
    b) 固定鏡及び移動鏡を含み、前記赤外光から干渉光を生成する干渉計と、
    c) 前記干渉光の強度に応じた大きさの電圧を生成し、該電圧から予め決められた大きさの電圧を差し引いた電圧を出力する検出器と、
    d) 入力された電圧の極性を反転させて出力する極性反転部と、
    e) 入力された電圧に予め決められた大きさのバイアス電圧を加算するバイアス電圧加算部と、
    f) 入力された電圧を予め決められた倍率で増幅する増幅部と、
    g) 入力された電圧をデジタル信号に変換するA/D変換部と、
    h) 前記検出器から出力される電圧を、前記バイアス電圧加算部及び前記増幅部で順に処理する第1信号処理を実行する第1信号処理部と、
    i) 前記検出器から出力される電圧を、前記極性反転部、前記バイアス電圧加算部、及び前記増幅部により順に処理する第2信号処理を実行する第2信号処理実行部と、
    j) 前記第1信号処理後の電圧及び前記第2信号処理後の電圧を前記A/D変換部に入力し、該第1信号処理後の電圧及び該第2信号処理後の電圧がそれぞれ前記A/D変換部の入力レンジ内であるかを判定する判定部と、
    k) 前記判定部による判定の結果に基づき、実測定時に前記検出器から出力される電圧を前記第1信号処理と前記第2信号処理のいずれにより処理するかを決定する信号処理決定部と
    を備え、
    前記第1信号処理又は第2信号処理によって前記検出器からの出力電圧の波形が正電圧側と負電圧側に等分に広がる波形に変換されるように前記バイアス電圧の大きさが定められていることを特徴とするフーリエ変換赤外分光光度計。
  3. a) 分析対象化合物の吸収波長を含む波長幅を有する赤外光を発生する光源と、
    b) 固定鏡及び移動鏡を含み、前記赤外光から干渉光を生成する干渉計と、
    c) 前記干渉光の強度に応じた大きさの電圧を生成し、該電圧から予め決められた大きさの電圧を差し引いた電圧を出力する検出器と、
    d) 入力された電圧に予め決められた、絶対値が同じである正のバイアス電圧又は負のバイアス電圧を加算するバイアス電圧加算部と、
    e) 入力された電圧を予め決められた倍率で増幅する増幅部と、
    f) 入力された電圧をデジタル信号に変換するA/D変換部と、
    g) 前記検出器から出力される電圧に前記正のバイアス電圧を加算して前記予め決められた倍率で増幅する第3信号処理を実行する第3信号処理実行部と、
    h) 前記検出器から出力される電圧に前記負のバイアス電圧を加算して前記予め決められた倍率で増幅する第4信号処理を実行する第4信号処理実行部と、
    i) 前記第3信号処理後の電圧及び前記第4信号処理後の電圧を前記A/D変換部に入力し、該第3信号処理後の電圧及び該第4信号処理後の電圧がそれぞれA/D変換部の入力レンジ内であるかを判定する判定部と、
    j) 前記判定部による判定の結果に基づき、実測定時に前記検出器から出力される電圧を前記第3信号処理と前記第4信号処理のいずれにより処理するかを決定する信号処理決定部と
    を備え、
    前記第3信号処理又は第4信号処理によって前記検出器からの出力電圧の波形が正電圧側と負電圧側に等分に広がる波形に変換されるように前記バイアス電圧の絶対値が定められていることを特徴とするフーリエ変換赤外分光光度計。
JP2017133439A 2017-07-07 2017-07-07 フーリエ変換赤外分光光度計 Active JP6885233B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017133439A JP6885233B2 (ja) 2017-07-07 2017-07-07 フーリエ変換赤外分光光度計
CN201810738365.2A CN109211406B (zh) 2017-07-07 2018-07-06 傅立叶变换红外分光光度计
EP18182122.4A EP3425355B1 (en) 2017-07-07 2018-07-06 Fourier transform infrared spectrophotometer
US16/028,531 US10670518B2 (en) 2017-07-07 2018-07-06 Fourier transform infrared spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017133439A JP6885233B2 (ja) 2017-07-07 2017-07-07 フーリエ変換赤外分光光度計

Publications (3)

Publication Number Publication Date
JP2019015616A JP2019015616A (ja) 2019-01-31
JP2019015616A5 JP2019015616A5 (ja) 2019-12-12
JP6885233B2 true JP6885233B2 (ja) 2021-06-09

Family

ID=63254486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017133439A Active JP6885233B2 (ja) 2017-07-07 2017-07-07 フーリエ変換赤外分光光度計

Country Status (4)

Country Link
US (1) US10670518B2 (ja)
EP (1) EP3425355B1 (ja)
JP (1) JP6885233B2 (ja)
CN (1) CN109211406B (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20195572A1 (en) * 2019-06-27 2020-12-28 Gasmet Tech Oy Back-to-back spectrometer arrangement
CN111337441B (zh) * 2020-03-12 2023-03-14 深圳市朗诚科技股份有限公司 一致性调节方法及相关设备
US11474029B2 (en) * 2020-08-03 2022-10-18 Shimadzu Corporation Spectrophotometer
JP2022125549A (ja) * 2021-02-17 2022-08-29 株式会社島津製作所 フーリエ変換赤外分光光度計
JP7468406B2 (ja) 2021-02-26 2024-04-16 株式会社島津製作所 フーリエ変換赤外分光光度計

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126426A (en) 1981-01-27 1982-08-06 Nippon Oil Co Ltd Preparation of 4-methyl-1-pentene
JPS6344131A (ja) * 1986-08-12 1988-02-25 Shimadzu Corp 分光光度計
US5285167A (en) * 1992-07-22 1994-02-08 On-Line Technologies, Inc. Method and apparatus for signal compression
JP2606495Y2 (ja) * 1993-08-20 2000-11-06 日本分光株式会社 フーリエ変換分光光度計における信号処理回路
JP3660472B2 (ja) * 1997-07-08 2005-06-15 日本分光株式会社 インターフェログラム補正方法
JP4206618B2 (ja) 2000-07-12 2009-01-14 株式会社島津製作所 フーリエ変換赤外分光光度計
FI110893B (fi) * 2001-03-05 2003-04-15 Jyrki Kauppinen Menetelmä ja järjestelmä näytteiden ottamiseksi interferogrammista Fourier-muunnosspektrin muodostamiseksi
JP3695360B2 (ja) 2001-07-04 2005-09-14 株式会社島津製作所 フーリエ変換赤外分光光度計
JP4644132B2 (ja) 2006-01-31 2011-03-02 株式会社アドバンテスト 測定装置、試験装置、及び測定方法
JP5545065B2 (ja) 2010-06-24 2014-07-09 株式会社島津製作所 フーリエ変換赤外分光光度計
CN102865927B (zh) * 2012-09-07 2015-05-27 北京空间机电研究所 一种基于交流耦合的tdi红外探测器信号处理系统

Also Published As

Publication number Publication date
US20190011357A1 (en) 2019-01-10
CN109211406B (zh) 2021-06-15
EP3425355A1 (en) 2019-01-09
US10670518B2 (en) 2020-06-02
CN109211406A (zh) 2019-01-15
EP3425355B1 (en) 2023-02-22
JP2019015616A (ja) 2019-01-31

Similar Documents

Publication Publication Date Title
JP6885233B2 (ja) フーリエ変換赤外分光光度計
JP4978546B2 (ja) 膜厚測定装置及び方法
US10317283B2 (en) Spectrum measurement method using fourier transform type spectroscopic device
JP2019015616A5 (ja)
JP2019002791A (ja) 光検出器の出力補正用演算式の算出方法、及び光検出器の出力補正方法
JP3761734B2 (ja) 光計測方法および装置
JP5358890B2 (ja) 干渉分光光度計
KR20190096294A (ko) 광대역 여기광에 의한 라만 분광법 및 장치
US20170045397A1 (en) Device for analysing a specimen and corresponding method
US9134246B2 (en) Light source adjustment unit, optical measurement device, subject information obtaining system, and wavelength adjustment program
JP2006220600A (ja) 光熱変換測定装置及びその方法
US9970867B2 (en) Method of determining the concentration of a gas component and spectrometer therefor
JP2006300808A (ja) ラマン分光測定装置
Höhl et al. Efficient procedure for the measurement of preresonant excitation profiles in UV Raman spectroscopy
KR102088163B1 (ko) 라만분광법을 이용한 휴대용 농식품 미량성분 측정 장치
JP2011196766A (ja) 光透過性を有する被測定物の形状測定方法
Tanichev et al. Effect of Helium on the Raman Spectrum of Methane in the 2500–3300 cm− 1 Range
WO2023084946A1 (ja) ラマン散乱光測定システム、ラマン散乱光測定方法
EP1595135A1 (en) Method of performing optical measurement on a sample
JP2006300664A (ja) フーリエ分光装置,測定タイミング検出方法
JPH08313348A (ja) 赤外光時間応答測定装置
WO2023105758A1 (ja) 遠赤外分光装置、及び遠赤外分光方法
JP6782849B2 (ja) 分光測定装置
JP4398261B2 (ja) 4次の非線形光学効果に基づく界面の時間領域振動分光法および装置
JP2015021956A (ja) フーリエ変換赤外分光光度計

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210426

R151 Written notification of patent or utility model registration

Ref document number: 6885233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151