JP6877767B2 - バイオプシー鉗子ツール - Google Patents

バイオプシー鉗子ツール Download PDF

Info

Publication number
JP6877767B2
JP6877767B2 JP2018510060A JP2018510060A JP6877767B2 JP 6877767 B2 JP6877767 B2 JP 6877767B2 JP 2018510060 A JP2018510060 A JP 2018510060A JP 2018510060 A JP2018510060 A JP 2018510060A JP 6877767 B2 JP6877767 B2 JP 6877767B2
Authority
JP
Japan
Prior art keywords
pair
jaws
coaxial cable
biopsy forceps
forceps tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018510060A
Other languages
English (en)
Other versions
JP2018537135A (ja
Inventor
ハンコック,クリストファー
アモア,フランシス
ホワイト,マルコム
クレイブン,トーマス
ソーンダーズ,ブライアン
ツィアモウロス,ザカリアス・ピィ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Creo Medical Ltd
Original Assignee
Creo Medical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Creo Medical Ltd filed Critical Creo Medical Ltd
Publication of JP2018537135A publication Critical patent/JP2018537135A/ja
Application granted granted Critical
Publication of JP6877767B2 publication Critical patent/JP6877767B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/04Endoscopic instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/06Biopsy forceps, e.g. with cup-shaped jaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B18/1445Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/0034Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means adapted to be inserted through a working channel of an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2932Transmission of forces to jaw members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00071Electrical conductivity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00089Thermal conductivity
    • A61B2018/00101Thermal conductivity low, i.e. thermally insulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00107Coatings on the energy applicator
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00797Temperature measured by multiple temperature sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00821Temperature measured by a thermocouple
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1861Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument inserted into a body lumen or cavity, e.g. a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/18Shielding or protection of sensors from environmental influences, e.g. protection from mechanical damage
    • A61B2562/182Electrical shielding, e.g. using a Faraday cage

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Surgical Instruments (AREA)
  • Endoscopes (AREA)

Description

本発明は、生体組織のサンプルの収集のためのバイオプシー鉗子ツールに関する。具体的には、本発明は、サンプルが収集された後に、マイクロウェーブ周波数エネルギを送って、残りの組織を凝固させるか、焼灼させるか、シールするように構成された、電気外科的バイオプシー鉗子ツールに関する。具体的には、鉗子は、サンプルが除去された(たとえば、引き抜かれたか、切り取られたか、切除された)、出血表面を凝固させるために使用され得る。本発明のバイオプシー鉗子ツールは、内視鏡または胃カメラの器具チャネルを通して挿入され得るか、腹腔鏡手術または開腹手術で使用され得る。
把持した生体組織に熱エネルギを伝えることが可能である鉗子が知られている。熱エネルギにより、把持された組織が焼灼され、凝固または管のシールが促進され得る。
US 6,585,735には、鉗子のアゴ部がバイポーラエネルギを、間に保持した組織を通して伝達するように構成された、内視鏡バイポーラ鉗子が記載されている。
EP 2 233 098には、アゴ部のシール表面が、鉗子のアゴ部間に把持した組織内にマイクロウェーブ周波数エネルギを放射するための1つまたは複数のマイクロウェーブアンテナを含んでいる、組織をシールするためのマイクロウェーブ鉗子が記載されている。
多くのバイオプシー手順が、微小な細胞のサンプルを抽出するためにニードルを使用して実施される。しかし、より大であるサンプルが必要とされる場合、その組織のサンプルが患者から抽出され、生体外でテストされ得るように、バイオプシー鉗子ツールを使用して組織のサンプルを把持し、隣接する組織からこの組織のサンプルを分離することが知られている。バイオプシー鉗子が、サンプルを除去するために、鋭いカッティングエッジを有する一対のアゴ部を備えていることが一般的である。
DE 10 2006 027 873には、ウォータージェット治療または無線周波数(RF)エネルギが、一対のアゴ部によって把持された際に、組織を選択的に除去するために使用される、バイオプシー鉗子ツールが開示されている。この文献は、低電流のモノポーラ電極を使用するか、一対のアゴ部を、凝固を実施するためのバイポーラ電極として構成することをも提案している。
もっとも一般的には、本発明は、生体組織のサンプルが一対のアゴ部の間に収集された後に、マイクロウェーブエネルギが、出血の凝固のために使用される、(好ましくは、内視鏡の用途のための)バイオプシー鉗子ツールを提供する。一対のアゴ部は、マイクロウェーブエネルギ自体から隔離され、マイクロウェーブエネルギの印加に起因して生じる熱的変化から絶縁された囲みを規定している。
本発明によれば、マイクロウェーブエネルギを運ぶための同軸ケーブルであって、この同軸ケーブルが、内側導電体、外側導電体、及び、内側導電体を外側導電体から分離する誘電材料の層を有している、同軸ケーブルと、同軸ケーブルの遠位端に取り付けられたアゴ部アセンブリであって、アゴ部アセンブリが一対のアゴ部を備え、一対のアゴ部の各々が、電気伝導性のシェルを備え、アゴ部アセンブリが、電気伝導性のシェルが互いに係合して、組織のサンプルを保持するための内部容量を囲む閉じた位置と、組織のサンプルを受領するために、電気伝導性のシェルが分離して、内部容量を露出させている開いた位置との間で、一対のアゴ部の相対位置を変更するように操作可能である、アゴ部アセンブリと、を備え、電気伝導性のシェルが、閉じた位置にある場合に内部容量の周りにファラデーケージを形成し、同軸ケーブルが、マイクロウェーブエネルギをアゴ部アセンブリに搬送するように接続されている、バイオプシー鉗子ツールが提供される。マイクロウェーブエネルギは、一対のアゴ部が閉じた位置にある際に、アゴ部アセンブリの外側を囲む生体組織における凝固を生じるか促すために供給され得る。これにより、組織のサンプルの清潔で安全な除去を補助することができる。マイクロウェーブエネルギは、一対のアゴ部が開いた位置にある場合にも供給され得る。このシナリオでは、一対のアゴ部は、ツールから生体組織にマイクロウェーブエネルギを放射する場合がある。
バイオプシー鉗子ツールは、このため、一対のアゴ部が閉じた位置にある間、(たとえば、内視鏡を通して)処置のための適切な位置に挿入することができる。定位置に置かれると、一対のアゴ部は、サンプリングされることになる組織の領域周りで、開いた位置に移行し得る。このプロセスの間、マイクロウェーブエネルギは供給されなくてもよい。すなわち、デバイスは「冷間(cold)」で作動し得る。サンプリングされることになる組織の領域が内部容量内にある場合、一対のアゴ部は閉じた位置に移行し、それにより、組織のその領域が把持され、次いで、周囲の組織から物理的に分離される(すなわち、切り取られるか、引き離される)。一対のアゴ部の縁部は鋭利にされているか、波形にされているか、鋸歯状にされているか、この「冷間」の切取手順を促進するように別様に最適化され得る。一対のアゴ部が閉じた位置に達すると、組織のサンプルは、内部容量内に完全に囲まれ、出血表面がツールの外に残る。出血表面の迅速な凝固を促すために、マイクロウェーブエネルギが、同軸ケーブルから一対のアゴ部及びスリーブに送られる(同軸ケーブルの近位端は、適切な電気外科ジェネレータに接続されている)。アゴ部アセンブリは、同軸ケーブルからのマイクロウェーブエネルギを有効に、アゴ部アセンブリの遠位端と接触した組織にマッチさせるように、トランス構造を形成するように構成され得る。囲まれた組織のサンプルは、一対のアゴ部の電気伝導性のシェルがファラデーケージを形成することから、マイクロウェーブエネルギから保護されている。換言すると、マイクロウェーブエネルギの周波数における、内部容量内への電場の浸入深さは、無視することができる。たとえば、5.8GHzの周波数では、浸入深さは10μm未満である。
凝固の間、囲まれたサンプルを熱の影響から保護するために、一対のアゴ部の各々は、電気伝導性のシェルを内部容量から分離する断熱層を有し得る。断熱層は、プラスチック(たとえば、PEEK、ナイロン、Teflon)、セラミック、または、熱伝導率が低い金属からさえ、形成され得る。熱伝導率の低いプラスチックが好ましい。一実施形態では、一対のアゴ部は、その外側表面を覆って設けられた金属層を有する、単一片の材料(たとえば、成型されたプラスチック)から形成され得る。この実施例では、一対のアゴ部間が、材料片の固有の可撓性、または、一体丁番などにより、旋回可能にされ得る。
好ましくは、電気伝導性のシェルの厚さは、マイクロウェーブエネルギの周波数における、表皮深さの5倍以上の深さである。このことは、電場が、アゴ部の表面におけるその値の1%に低減されることになり、場合によっては、内部容量内の加熱を生じ得る出力が、その表面におけるその値の0.5%未満になることを意味している。たとえば、マイクロウェーブエネルギの周波数が5.8GHzであり、電気伝導性のシェルの材料として銀が使用されている場合、表皮深さは0.83μmであり、そのため、電気伝導性のシェルの厚さは、好ましくは4μmより大である。
一対のアゴ部が閉じた位置にある場合、電気伝導性のシェルは、対向する周縁部に沿って互いに係合する。たとえば、電気伝導性のシェルの各々は、上向きにされたボウル、または溝に似ている場合があり、そのリムは、周縁部を形成する。対向する周縁部は、鋭利にされているか、鋸歯状またはノコギリの歯のプロファイルを有する場合がある。鋭利に起伏しているプロファイルにより、マイクロウェーブの場が内部容量内に侵入することを防止する補助になる場合がある。一対のアゴ部が閉じた位置にある場合、対向する周縁部は重なり合っている場合がある。たとえば、対向する周縁部の一方が、他方の周縁部を受領するように構成された凹状の溝を含む場合がある。
一対のアゴ部は、互いに対し、旋回可能に接続されている場合がある。本明細書では、「pivotably connected(旋回可能に接続されている)」とのフレーズは、一方または両方のアゴ部が、アゴ部間の角度を増大または減少させるように、他方のアゴ部に対して旋回軸周りに回転移動可能であることを意味し得る。
一実施形態では、一対のアゴ部は、その近位端において、ヒンジ周りに旋回可能である場合がある。一対のアゴ部は、たとえばヒンジ内にバネを設けることにより、開いた位置に向けてバイアスがかけられている場合がある。この構成は、一対のアゴ部の径方向の拘束を除去することで、一対のアゴ部を自動的に開くことを可能にする場合がある。たとえば、スリーブは、一対のアゴ部が閉じた位置にある場合に、一対のアゴ部を囲むように構成される場合がある。径方向の拘束は、スリーブによって提供される場合がある。径方向の拘束を除去することは、スリーブと、一対のアゴ部との間の軸方向の相対移動によって影響を受ける場合がある。
たとえば、スリーブは、このスリーブが一対のアゴ部をカバーする前進位置と、一対のアゴ部がスリーブから外側に突出した後退位置との間で、一対のアゴ部に対して軸方向に滑動可能である場合がある。このため、スリーブが前進位置にある場合、一対のアゴ部が、閉じた位置を占めるように強いることができ、スリーブが後退位置に滑動した場合、一対のアゴ部が開いた位置を採用することができる。
別の実施例では、一対のアゴ部は、スリーブが一対のアゴ部をカバーする後退位置と、一対のアゴ部がスリーブから突出した延長位置との間で、スリーブに対して軸方向に滑動可能である場合がある。このため、一対のアゴ部が後退位置にある場合、一対のアゴ部は、閉じた位置を占めるように強いられており、一対のアゴ部が延長位置に滑動した場合、一対のアゴ部は開いた位置を採用することができる。
同軸ケーブルは、その遠位端において端子コネクタを有し得、端子コネクタが、同軸ケーブルの内側導電体に電気的に接続された、軸方向に延びる導電性のピンを有している。アゴ部アセンブリは、導電性のピンと滑動可能に係合した導電性のチューブを含む場合があり、導電性のチューブが、一対のアゴ部の電気伝導性のシェルに電気的に接続されている。一対のアゴ部は、導電性のチューブの軸方向の移動によって軸方向に移動し得る。
スリーブまたは導電性のチューブの軸方向の移動は、同軸ケーブルに対して軸方向に移動可能である制御ロッド(たとえば、プッシュロッド)によって影響される場合がある。たとえば、制御ロッドは、導電性のチューブに接続され得、それにより、導電性のチューブが、制御ロッドの同軸ケーブルに対する移動により、導電性のピンに対して滑動可能である。代替的には、制御ロッドは、スリーブに接続され得、それにより、スリーブが、制御ロッドの同軸ケーブルに対する移動により、一対のアゴ部に対して移動可能である。
制御ロッドは、同軸ケーブルの横に延びている場合がある。代替的には、同軸ケーブルの内側導電体は中空である場合があり、制御ロッドは、中空の内側導電体内に滑動可能に配置され得る。
スリーブは、内部の誘電層と、同軸ケーブルの外側導電体に電気的に接続された外部の導電層とを備える場合がある。代替的には、スリーブは、同軸ケーブルから絶縁されている場合があるが、望ましくないマイクロウェーブの場の形成を妨げるために、近位のチョークを備えている場合がある。電気伝導性のシェルは、同軸ケーブルの内側導電体に電気的に接続されている場合がある。この構成により、マイクロウェーブエネルギがアゴ部アセンブリに送られる。
スリーブの内部の誘電層は、スリーブの外側導電体層への当接(すなわち、物理的接触)と、一対のアゴ部の電気伝導性のシェルからの、スリーブの外側導電体層の電気的な絶縁との両方をし得る。
上述の実施例の両方で、一対のアゴ部を開く速度は、スリーブの遠位端と係合する電気伝導性のシェルの外側プロファイルを形成することによって制御され得る。
一実施形態では、制御ロッドは、一対のアゴ部の相対位置を変化させるように、より直接的に作用し得る。たとえば、制御ロッドは、同軸ケーブルに対して軸方向に移動可能である場合があり、アゴ部アセンブリは、制御ロッドの軸方向の動きを一対のアゴ部間の旋回する相対移動に変換するための、制御ロッドと係合したカム機構を含んでいる場合がある。
一実施形態では、制御ロッドは回転可能である場合があり、アゴ部アセンブリは、制御ロッドの回転の動きを一対のアゴ部間の旋回する相対移動に変換するための、制御ロッドと係合した回転ジョイントを含んでいる場合がある。
本ツールは、同軸ケーブル及びアゴ部アセンブリを囲む、保護給電ケーブルを有する場合がある。スリーブは、保護給電ケーブルの遠位部分である場合がある。
温度センサは、たとえば、凝固の、囲まれたサンプルの温度への影響を監視するために、内部容量内に取り付けられ得る。凝固が首尾良く達成されることを確実にするために、アゴ部アセンブリの外側表面に、1つまたは複数の温度センサを取り付けて、組織の温度を監視することも望ましい場合がある。温度センサは、熱電対である場合がある。
本明細書では、「microwave energy(マイクロウェーブエネルギ)」は、400MHzから100GHzの範囲の周波数であるが、好ましくは1GHzから60GHzの範囲、より好ましくは、2.45GHzから30GHzまたは5GHzから30GHzの範囲の、電磁エネルギを示すために、広く使用され得る。本発明は、915MHz、2.45GHz、3.3GHz、5.8GHz、10GHz、14.5GHz、及び24GHzのいずれか1つまたは複数などの、単一の特定の周波数において使用され得る。
本発明のバイオプシー鉗子は、内視鏡の器具チャネルを通しての挿入のために構成され得るか、腹腔鏡手術またはNOTES手順または一般的な開腹手術での使用のために構成され得る。内視鏡内の器具チャネルの直径は、1.5mm、1.6mm、1.8mm、2.2mm、2.8mm、または3.2mmである場合があるが、これら値には限定されない。
本発明のバイオプシー鉗子は、たとえば、腸、食道、肺、肝臓、腎臓、前立腺などの、身体の任意の領域の組織のサンプルを収集するために使用され得る。
アゴ部が閉じられると、デバイスは、組織の切除または切取が別のデバイスを使用して実施される場合、出血している血管をふさぐか、血管を予め凝固させて、血管の出血を防止するための、多目的の止血鉗子としても使用され得る。
本発明の各実施形態を、添付図面を参照して、以下に詳細に記載する。
本発明の一実施形態である、内視鏡のバイオプシー鉗子ツールの概略図である。 閉じた構成の、本発明の一実施形態である、バイオプシー鉗子ツールの遠位端を通る概略断面図である。 開いた構成の、図2Aのバイオプシー鉗子ツールの遠位端を通る概略断面図である。 閉じた構成の、本発明の別の実施形態である、バイオプシー鉗子ツールの遠位端を通る概略断面図である。 開いた構成の、図3Aのバイオプシー鉗子ツールの遠位端を通る概略断面図である。 血液内における、シミュレーションした出力損失の密度を示す、モデル化されたバイオプシー鉗子ツールの側面図である。 図4に示すモデル化されたバイオプシー鉗子ツールの反射損失を示すグラフである。 本発明の別の実施形態である、バイオプシー鉗子ツールの遠位端の概略斜視図である。 本発明のさらに別の実施形態である、バイオプシー鉗子ツールの遠位端の概略斜視図である。
図1は、本発明の一実施形態である、内視鏡のバイオプシー鉗子ツール100の概略図を示している。この実施形態では、以下に論じるツールなどのバイオプシー鉗子ツールは、内視鏡104の器具チャネル102を通して挿入される。以下に論じるように、バイオプシー鉗子ツールは、器具チャネルを通り、生体組織のサンプルを収集するための遠位のアゴ部アセンブリ114で終端する、長い可撓性の給電ケーブルを備えることができる。給電ケーブル106の近位端は、取手108において終端している。この取手108は、遠位のアゴ部アセンブリを操作するためのプルトリガ110を含んでいる(以下により詳細に論じる)。ハンドグリップ112は、給電ケーブル上にクランプされて、ケーブルを回転させる手段を提供し得、したがって、遠位のアゴ部アセンブリ114の向きを制御する。プルトリガは、滑動部であるか、サムホイールであるか、回転ノブである場合がある。
給電ケーブルは、マイクロウェーブエネルギを遠位のアゴ部アセンブリに搬送するための同軸ケーブルと、遠位のアゴ部アセンブリを機械的に作動させるためのプッシュロッドを含む外部スリーブを備え得る。マイクロウェーブ出力は、内視鏡104(具体的には、給電ケーブルに搭載された同軸ケーブル)に、電源ライン116を介して、離れたマイクロウェーブジェネレータ(図示せず)から供給され得る。
給電ケーブルの外部スリーブは、トルクの安定性を与える、すなわち、同軸ケーブルに対するスリーブのねじれに抗する、内部編組を含み得る。理想的には、デバイスの近位端における取手の回転と、遠位端におけるアゴ部の円形移動との間の変換は、1:1となるが、より小さい変換比、たとえば1:2が十分である場合がある。
図2Aは、閉じた構成にある際の、第1の実施形態に係る遠位のアゴ部アセンブリ114の断面図の概略的表示を示している。上述のように、遠位のアゴ部アセンブリ114は、給電ケーブル202の遠位端から突出している。給電ケーブル202によって運ばれる同軸ケーブル204は、内側導電体206、外側導電体208、及び、内側導電体206を外側導電体208から分離する誘電材料210を備えている。同軸ケーブル204の遠位端では、一対のアゴ部212a、212bが配されている。一対のアゴ部212a、212bは、たとえば、一対のアゴ部212a、212bの近位端において、ヒンジ214により、互いに対して旋回可能に接続されている。一対のアゴ部212a、212bは、生体組織のサンプルを収集するための、ある容量を包むシェルを形成する。この実施形態では、シェルは、薬用ドロップに似ているが、実際には、シェルの形状に対する限定は存在しない。一対のアゴ部の旋回可能な機能は、アゴ部が離れるように移動して、アゴ部アセンブリの遠位端に向かって面する、ある容量に対する入口を形成することを可能にするように作用する(図2B参照)。一対のアゴ部212a、212bの各々は、電気伝導性の外側シェルを備えている(たとえば、銅、銀、金、またはアルミニウムなどの金属で形成されている)。一実施例では、電気伝導性の外側シェルは、外側の表面に銀または金が被覆されたステンレス鋼で形成されている。内側のステンレス鋼の層は、外側の被覆よりも熱伝導率が低く、このことは、内部容量と外側の表面との間の熱バリアを向上させて、組織のサンプルが、加熱されることに起因して損傷しないようにすることを確実にしている。図2Aに示す実施形態では、一対のアゴ部212a、212bの各々は、断熱材の薄い層218を備えている。この層は、熱伝導率が低い材料で形成され得る。たとえば、ポリスチレンなどのプラスチック材料が使用され得る。断熱材層218は、対応する電気伝導性の外側シェルの内側表面に形成され得る(たとえば、接着されるか、別様に固定される)。代替的には、断熱材層は、最初に成型され、金属で覆われた層または被覆がその上に形成されて、電気伝導性のシェルを提供し得る。この実施形態では、一対のアゴ部212a、212bの各々は、開いた縁部において互いに対向した、開いたカップ状の構造を形成する。一対のアゴ部212a、212bの対向する縁部216は、鋸歯状であるか、ノコギリの歯のプロファイルを有し得る。対向する縁部216は、アゴ部アセンブリが閉じた構成である場合に、嵌合する(すなわち、ともにフィットする)ように構成されている。場がアゴ部の内側に存在することを確実にするように、縁部に沿って溝がある場合がある。すなわち、これにより、EMガスケットまたはシールを形成して、マイクロウェーブの場が内部に包含される組織に入ることを防止する。マイクロウェーブの場が入ると、組織の加熱につながる場合がある。電気伝導性の外側シェルは、閉じた構成において、電気的に接続されている。このことは、導電材料のシェルがファラデーケージとして作用して、電場(具体的には、同軸ケーブルから供給されるエネルギからの、マイクロウェーブの場)が、遠位のアゴ部アセンブリが閉じられている場合に、囲まれた容量の中に存在することを防止するか妨げ得る。
電場が一対のアゴ部212a、212bの電気伝導性の外側シェルを通って侵入することを防止するために、これらシェルを形成する電気伝導性の材料は、同軸ケーブルによって運ばれるマイクロウェーブエネルギの周波数における材料の表皮深さの少なくとも3倍の厚さを有している。理想的には、この厚さは、表皮深さの5倍以上である。
一対のアゴ部212a、212bの電気伝導性の外側シェルは、同軸ケーブル204の内側導電体206に、たとえばヒンジ214を通って延びる接続を介して、電気的に接続されている。
遠位のアゴ部アセンブリ114は、滑動スリーブ220をさらに備えている。この滑動スリーブ220は、遠位のアゴ部アセンブリ114を、閉じた構成と開いた構成との間で変更するように、同軸ケーブル204に対して軸方向に移動可能である。滑動スリーブ220は、同軸ケーブル204周りに、給電ケーブル202内に取り付けられている。代替的実施形態では、スリーブは、給電ケーブル自体の一部である場合がある。すなわち、給電ケーブルが、同軸ケーブルに対し、同軸ケーブル内に引込可能である場合がある。滑動スリーブの近位端は、プッシュロッド222に接続されている。プッシュロッド222は、近位が給電ケーブル202を通って延びており、上述のプルトリガ110によって制御可能である。
外部スリーブ220は、外部の電気伝導性の層と、内部の誘電層224とを備えている。内部の誘電層224は、一対のアゴ部212a、212bの外部表面に当接し、これら表面を、外部の電気伝導性の層から絶縁している。外部の電気伝導性の層は、同軸ケーブル204の外側導電体208に、接続部分226により、電気的に接続されている。接続部分226は、一対のアゴ部212a、212bから空間的に離れた領域において、内部の誘電層224を通って延びている。
この実施形態では、一対のアゴ部212a、212bは、たとえば、ヒンジ214内にバネを含むことにより、互いから離れるようにバイアスがかけられており、それにより、これらアゴ部が、滑動スリーブ220に対して付勢されるようになっている。このため、滑動スリーブが、一対のアゴ部212a、212bに対して近位の方向(図2Aでは左)に滑動する際、一対のアゴ部212a、212bは、スリーブから突出し、バイアスの力の影響下で、囲まれた容量にアクセスするように開く。移動の性質は、適切な外部プロファイルを一対のアゴ部212a、212bの外側シェルに提供することによって制御される。
図2Bは、開いた構成にある場合、すなわち、スリーブ220が近位にスライドして、一対のアゴ部212a、212bを露出させた際の、図2Aに示した遠位のアゴ部アセンブリの概略的表示を示している。一対のアゴ部212a、212bはこうして、生体組織のサンプルを受領するように開く。
使用時には、このデバイスは、閉じた構成の状態で、処置(サンプルの抽出)の位置に挿入される。定位置に置かれると、スリーブ220が後退して、一対のアゴ部212a、212bが開かれ得る。開いたアゴ部が組織の所望の部分に対する位置にある場合、スリーブ220は、アゴ部上を遠位へと押され、これにより、このため、生体組織のサンプルを把持するとともに除去する。一対のアゴ部212a、212bの対向する縁部は、切取の効率を上げるために、鋭利にされている場合がある。組織のサンプルが除去され、アゴ部のシェル内に囲まれると、マイクロウェーブエネルギが同軸ケーブルを通って供給されて、サンプルが除去された後に残る出血表面を凝固させる。スリーブの外側導電体層及び一対のアゴ部によって放出されるマイクロウェーブの場は、以下により詳細に論じられる。閉じたアゴ部がファラデーケージとして作用し、マイクロウェーブの場の浸入深さが、シェルの厚さに比べ、無視できることから、サンプルは、マイクロウェーブの場から保護され、したがって、望ましくない組織の影響が回避される。
温度センサ228(たとえば、微細な熱電対など)は、組織のサンプルの温度を監視するように、囲まれた容量の中に取り付けられ得る。温度センサ228は、外部のプロセッサに、ワイヤ230によって接続され得る。このワイヤ230は、ヒンジ214を通って、給電ケーブルの内側に沿って延び得る。温度センサは、マイクロウェーブによる凝固が必要である場合、組織の温度を測定するために、外部のアゴ部、すなわちシェルにも接続され得る。
図3Aは、閉じた構成にある際の、第2の実施形態に係る遠位のアゴ部アセンブリ114の断面図の概略的表示を示している。図2A及び図2Bに示す遠位のアゴ部アセンブリと同じ方法で構成された構成要素は、同じ参照符号が与えられており、再度記載しない。
図3A及び図3Bに示す実施形態は、一対のアゴ部212a、212bがプッシュロッド222に接続されており、かつ、アセンブリを閉じた構成と開いた構成との間で移動するように、同軸ケーブル204に対して軸方向に滑動可能である点で、図2A及び図2Bの実施形態とは異なっている。
この実施形態では、同軸ケーブル204は、その遠位端で、コネクタ240により、終端している。コネクタ240は、遠位に延びる中心の導電体242を有している。中心の導電体242は、同軸ケーブル204の内側導電体206に電気的に接続されている。ガイドスリーブ244は、コネクタ240に取り付けられており、コネクタ240から遠位に延びて、一対のアゴ部212a、212bが内部を通ってスライド可能であるチャネルを形成する。ガイドスリーブ244は、このガイドスリーブ244が電気伝導性の外部の層246と、この電気伝導性の外部の層246を、一対のアゴ部212a、212bの電気伝導性の外側シェルから絶縁する誘電性の内部の層224とを有する点で、上述の可動スリーブ220と同様の方法で構成されている。
導電性のチューブ248は、コネクタ240の中心の導電体242に滑動可能に取り付けられている。導電性のチューブ248は、中心の導電体242に、たとえば物理的接触を通して、電気的に接続されており、それにより、組み合わせで、これら構成要素が、望遠鏡またはトロンボーンのような方式で軸方向に延びることができる。導電性のチューブ248は次いで、一対のアゴ部212a、212bの外部の導電体のシェルに、たとえば、フォイル片250または他の可撓性導電体を使用して、電気的に接続されている。これら電気接続の両方は、ミスマッチを制限するか最小にするために、インピーダンスに関する完全性を確実にするように、たとえばシミュレーションなどを使用して、設計され得る。最大出力が組織量内に搬送されることを確実にするために、接続されたセクション間でインピーダンスを良好にマッチさせることが望ましい。代替的には、関係する距離が、物理的長さに渡る電気的な相転移が無視できるようになっている。この接続は、2つの滑動可能なチューブ、可撓性の基板、たとえば、Rogers CorporationのRflex 8080を使用するか、回転可能な同軸ジョイントを使用することにより、形成することができる。導電性のチューブ248は、たとえば剛性の支持注252を介して、プッシュロッド222に物理的に接続され、このプッシュロッド222とともに移動可能である。スロット状のアパーチャ254は、支持注252が、スリーブの外部のプッシュロッドに接続することを可能にするように、ガイドスリーブ244内に形成されている。他の実施形態では、ガイドスリーブは、給電ケーブル202の内部の表面によって形成され得る。この場合、アパーチャは必要ない場合がある。
図3Aは、ガイドスリーブ244内に完全に後退した、一対のアゴ部212a、212bを示している。このことは、サンプルが収集された後に、マイクロウェーブエネルギを、同軸ケーブルを通して印加して、器具の遠位端において凝固の影響を生じることが望ましい場合に、遠位のアゴ部アセンブリ114によって採用される構成である。
図3Bは、導電性のチューブ248を滑動させることにより、ガイドスリーブ244の外に延びた一対のアゴ部212a、212bを示している。導電性のチューブ248は、中心の導電体242に沿って、表皮深さの約5倍(5.8GHzでは約5μm)の壁厚を有し得る。一対のアゴ部212a、212bは、アゴ部を離れるように付勢するようにバイアスがかけられたヒンジ214を含んでいる。この開いた構成では、一対のアゴ部は、収集され、閉じた構成の際にアゴ部によって囲まれる容量に保持される、生体組織の一部分を把持することができる。組織のサンプルに対する望ましくない熱のダメージを避けるために、アゴ部が開いた構成である場合、マイクロウェーブエネルギが搬送されないことが好ましい場合がある。
上述の器具は、バイオプシープローブの機能と、凝固/切除ツールの機能とを合わせ得る。凝固/切除ツールは、バイオプシーサンプルを得、また、やはり、サンプルの穴をシールするとともに、生きている切除された組織がバイオプシーのそば、または後ろに拡散することを防止するために使用することができる。このことは、除去されることになる組織がガンの組織である場合に、特に重要である。多くのバイオプシーツールは、数ミリメートルにわたる小さいサンプルを切除するように閉じることができる2つのアゴ部を有する、約2mmの直径の小さいツールを有している。上述の議論により、類似のアゴ部にどのように、マイクロウェーブ出力を使用してエネルギを与え、それにより、別のツールを導入することなく、それらアゴ部が、サンプルが取得された直後にバイオプシーの場所を処置するための凝固/切除ツールの一部として使用され得るようにすることができるかが示されている。このデバイスは、スタンドアロンの止血鉗子としても使用され得る。
そのようなツールを有用とするためには、以下のことが望ましい。
−マイクロウェーブによる直接の加熱を通して、または、凝固/切除される組織からの熱伝導により、サンプルを過度に加熱しない。
−制御された方式で、マイクロウェーブエネルギがツールの適切な部分から所望のターゲットの組織に伝達される。
−ツールが、挿入損失が少なく、反射損失が高いように設計され、それにより、供給されたマイクロウェーブエネルギの割合の多くが、供給ケーブルまたはツールを過度に加熱することなく、所望の組織に印加される。
上で説明したように、一対のアゴ部を、閉じた際にこれらアゴ部がファラデーケージを形成するように構成し、これらアゴ部を、表皮深さの数倍の厚さの、金属で覆われた層をともなう絶縁材料で形成するか、アゴ部を金属のみで形成することにより、サンプルの直接の加熱を除去するか、実質的に低減することが可能である。アゴ部を金属のみで形成することによっても、電磁場の浸入深さが限定されることに起因して、サンプルが低温に維持されることになる。ファラデーケージは、ある容量が中空の電気伝導性のシェルによって囲まれている場合に存在する。中空の電気伝導性のシェルは、ファラデーケージである。ファラデーケージがある場合、ケージ内の電場は、ゼロであるか、実際には、ケージの外の電場よりもかなり小さい。ファラデーケージは、マイクロウェーブの場を、ケージに囲まれた容量から除外し、その容量内のサンプルの、直接のマイクロウェーブによる加熱を防止する。
実際にこのことを達成するためには、アゴ部が閉じた際にサンプル周りに導電性のケージを形成するように、バイオプシーツールの大部分にわたり、導電性のシェルが存在する必要がある。このシェルの部分は、電気的にともに接続されていることと、電流がシェルの一方側から他方側に通り抜けないように、十分な厚さを有していることとが必要である。電流がシェルの一方側から他方側に通り抜けることを防止するために、シェルは、通常、表皮深さの少なくとも3倍の厚さである必要がある。ここで、表皮深さは、材料の電気的特性及び磁気的特性、ならびにマイクロウェーブ周波数により、
Figure 0006877767
として判定される。ここで、δは(mでの)表皮深さ、fは(Hzでの)周波数、ρは(Ω・mでの)抵抗率、μは(Hm−1での)導電体の(磁気の)透過率である。銅、銀、金、及びアルミニウムの表皮深さは、5.8GHzでは1ミクロンに近く、鉄及びスチールに関しては、この値の約10分の1であり、そのため、導電性のシェルが非常に厚い必要はない。やはり、シェルは、導電材料の連続した層である必要はないが、もっとも大である寸法にわたる波長よりも穴が著しく小さい場合は、これら穴をシェル内に有する場合がある。5.8GHzでは、幅が0.5mmより小である穴は、無視することができる。
2つのアゴ部が存在する場合、これらアゴ部の各々は、導電性の外側コーティングを有し、ヒンジがある後部において接触するが、2つの半体間で、アゴ部の縁部に沿う他のどの部分にも接触せず、このため、理論上、マイクロウェーブ放射が、アゴ部間に浸入することが可能である。このことが生じるには、アゴ部間の隙間に対して垂直な、強力なマイクロウェーブの電場が存在する必要がある。マイクロウェーブの信号が、アゴ部が接続されている、アゴ部の後部から導入される場合、アゴ部の構成の対称性は、そのような信号が給電またはツールで生成されないことを意味している。しかし、そのような信号は、組織との接触がアゴ部の一方側でのみされている場合、凝固/切除されることになる組織からの反射によって生成することができる。これが起こることを防止するために、アゴ部の前側の歯、または先の尖った部分を組み入れることが所望である。これにより、アゴ部が閉じた際に良好な導電性の接触が形成される。このことは、負荷が非対称になる影響をかなり低減することになる。
周囲の組織からの導電により、組織のサンプルが加熱されることの影響を低減するために、バイオプシーのアゴ部が、断熱層を組み込むことが望ましい。代替的または追加的に、アゴ部の熱容量は、アゴ部から、熱容量がより高いヒートシンクへの、熱の経路を設けることにより、増大させることができる。たとえば、同軸ケーブルは、ヒートシンクとして作用し得る。
バイオプシーツールの内部におけるサンプルの導電加熱は、見積もることができるが、アゴ部内に小さいセンサを組み込んで、実際の測定を行うことを可能にし得ることが好ましい場合がある。そのような測定により、出力の入力を、周りの組織からの熱伝導に起因するバイオプシーサンプル内の温度上昇に正確に関連させることが可能になり得る。
マイクロウェーブ出力を遠位のアゴ部アセンブリに供給するのに使用される同軸ケーブルは、50Ωの一般的なインピーダンスを有する場合がある。アゴ部周りの、マイクロウェーブ出力が供給される伝達線の断面は、このインピーダンスよりも低いインピーダンスを有している。この断面の端部における組織とのマッチは、この断面の長さを最適にすることにより、向上させることができる。
図4は、本発明に係る遠位のアゴ部アセンブリのシミュレーションを示している。遠位のアゴ部アセンブリは、一対のアゴ部の外側導電体層と、外部スリーブ(この実施例では、一対のアゴ部上を滑動可能である)の導電体層との間に形成されたトランスとして扱われ得る。外部スリーブの導電体層は、4分の1波長のチョークを形成するように、十分な長さ(たとえば、約7mm)続いていない限り、同軸ケーブルの外側導電体と電気的に接触していなければならない。この場合、スリーブの内側全体が、薄い絶縁層、たとえばPTFEで裏打ちされている場合がある。このシミュレーションでは、バイオプシーのアゴ部周りの低いインピーダンスの断面は、長さが14.7mm、マイクロウェーブエネルギの周波数が5.8GHzである。この場合、組織とのマッチは非常に良好である。14.7mmは、この伝達線における半波長に近い。このことは、半波長に近いトランスが1に近い比のトランスを有することから、バイオプシープローブの端部において、組織によって提供されるインピーダンスが、50オームに近いことを暗示している。
図4では、最大出力密度は116dBm/mであり、このことは、(1011.6×10−3)/10W/mm=0.398W/mmに変形される。血液の平均的な比熱容量は、3617J/kg・K(3300J/kg・Kから3900J/kg・Kの範囲)であり、血液の平均比重は1050kg/m(1025kg/mから1060kg/mの範囲)である。したがって、血液の平均的な比熱容量は約3.6mJ/mg・Kであり、組織の比重は約1.05mg/mmであり、それにより、組織の容量の熱容量は、おおよそ、3.6mJ/mg・K×1.05mg/mm=3.78×10−3J/K.mmである。したがって、0.398W/mmのソースを使用することにより、血液の、0.398÷3.78×10−3=105Ks−11mmの組織の加熱量が提供される。図5は、図4の構成の反射損失を示している。この良好な結果により、使用可能な反射損失が、複数の条件に関して達成可能であるものとし、また、出力の搬送に影響することなく、一対のアゴ部の正確な形状を変形することに関するいくらかの範囲があるものとすることが示されている。
図6は、本発明の別の実施形態に係る、内視鏡のバイオプシー鉗子ツール600の概略的表示を示している。鉗子ツール600は、内視鏡または類似の検査デバイスの器具チャネルを通るのに適したサイズの外径を有する給電ケーブル602を備えている。この実施形態では、給電ケーブル602は、同軸ケーブル606を包含する外部スリーブ604を備えている。同軸ケーブル606、及び、この同軸ケーブル606を包含するスリーブの部分は、内視鏡が、器具を定位置に誘導することを可能にするように、可撓性である場合がある。
同軸ケーブルは、誘電材料610に囲まれた内側導電体608を備えている。誘電材料610は次いで、外側導電体612によって囲まれている。外側導電体612及び誘電材料610は、スリーブ604内で終端して、同軸ケーブルの遠位端を形成している。内側導電体608は、以下に論じるように、遠位のアゴ部アセンブリ614に接続されるように、同軸ケーブルの遠位端を越えて突出している。
スリーブ604の遠位部分616は、同軸ケーブルの遠位端を越えて延び、遠位のアゴ部アセンブリ614において終端している。遠位部分616は、遠位のアゴ部アセンブリを物理的に支持するために、短い剛性のセクションで形成され得る。
遠位のアゴ部アセンブリ614は、一対のアゴ部618a、618bを備えており、一対のアゴ部618a、618bの各々は、細長い溝またはカップ形状を有している。一対のアゴ部618a、618bは、遠位部分616において、互いに対向するように配置され、それらの細長い溝によって形成された内部容量を囲む閉じた位置と、それらが、生体組織を受領するために、離れるように角度が付けられている開いた位置との間で、互いに対して移動可能である。遠位のアゴ部アセンブリは、図6に開いた構成で示されている。
この実施形態では、一対のアゴ部618a、618bは、ヒンジ周りに回転可能である。このヒンジは、スリーブ604の遠位部分616の開口にわたって延びる横方向のロッドから形成されている。一対のアゴ部618a、618bの各々は、横方向のロッド状に回転可能に取り付けられた、近位の取り付けリングを有している。内側導電体608は、同軸ケーブルによって一対のアゴ部に運ばれるマイクロウェーブエネルギを供給するために、横方向のロッドに接続されている。
この実施形態では、一対のアゴ部は、アクチュエータスリーブ(図示せず)を給電ケーブル602に沿って、スリーブ604の遠位部分606を越えて滑動させることにより、開いた構成と閉じた構成との間で移動し得る。開くことを補助するために、ヒンジは、一対のアゴ部が開いた構成になるようにバイアスをかけるための、バネなどを含んでいる場合がある。
図7は、別の実施形態に係る、内視鏡のバイオプシー鉗子ツール700の概略的表示を示している。鉗子ツール700は、内視鏡または類似の検査デバイスの器具チャネルを通るのに適したサイズの外径を有する給電ケーブル702を備えている。この実施形態では、給電ケーブル702は、管腔を規定する中空スリーブ704を備えている。同軸ケーブル706及び制御ロッド707は、管腔を通って、管腔の近位端から遠位端に延びている。
この実施形態では、固定アゴ部要素708は、スリーブ704の遠位端において固定されている。固定アゴ部要素708は、同軸ケーブル706及び制御ロッド707の遠位端を受領するための支持フレームを提供するように、スリーブ704内に置かれた近位部分を有している。支持フレームは、同軸ケーブルの外側表面にフィットするような形状の凹部を含み得る。
固定アゴ部要素708は、スリーブ704から突出して、一対のアゴ部712a、712bの一方を形成する遠位部分を有している。これにより、上述の一対のアゴ部と同様の機能が提供される。具体的には、固定アゴ部要素のアゴ部712aは、細長い溝形状を有し得、それにより、このアゴ部712aが、一対のアゴ部間に把持された生体組織を受領するための、内部容量を規定する。固定アゴ部要素708は、導電材料(たとえば、ステンレス鋼316L)で構成され得、それにより、やはり完全に組み立てられた際の製品の先端の強度を向上させつつ、アゴ部712aと、同軸ケーブルの外側導電体との間の帰路を形成している。同軸ケーブルは、固定アゴ部要素にハンダ付けされる場合がある。
可動アゴ部要素714は、スリーブ704の遠位端に取り付けられている。可動アゴ部要素は、固定アゴ部要素及びスリーブに対して固定された旋回軸周りに回転するように、固定アゴ部要素708に旋回可能に接続されている。したがって、固定アゴ部要素708は、可動アゴ部要素のための旋回軸と、同軸ケーブル706のための固定ポイントとの両方として作用する。旋回接続は、固定アゴ部要素の協同穴に受領される、可動アゴ部要素上に横方向に突出する旋回バーによって形成され得る。可動アゴ部要素714は、制御ロッドに形成された横方向の係合フィンガ718と係合する細長いスロット716を含む近位部分を有している。細長いスロット716は、制御ロッド707の、スリーブに対する長手方向の動きを、可動アゴ部要素712bの、固定アゴ部要素712aに対する旋回の動きに変換するカムとして作用する。制御ロッドは、ニチノールなどで形成され得る。可動アゴ部要素714は、スリーブ704から突出して、アゴ部712bを形成する遠位部分を有し、固定アゴ部要素のアゴ部712aとともに一対のアゴ部を形成する。この実施形態では、アゴ部712bは、他方のアゴ部712aに面している、隆起した(ノコギリ状の歯)表面716を有している。可動アゴ部712aは、アゴ部712aの底縁部に当接して、内部容量を囲む閉じた位置と、アゴ部712aとアゴ部712bとの間に、生体組織を受領するための空間が存在する開いた位置(図7に示す)との間で旋回するように構成されている。
可動アゴ部要素は、基本的には、セラミックまたはPEEKなどの、非導電性の材料で構成され得る。導電性のコーティングまたは層またはトラック(図示せず)が、隆起した表面上に形成されている。同軸ケーブルの内側導電体は、導電性のコーティングに接続されており、それにより、同軸ケーブルによって運ばれたマイクロウェーブエネルギが一対のアゴ部に搬送されて、血液の凝固を補助するようになっている。
上述のカム機構の動作のための空間を設けるために、スリーブ704は、その遠位部分に開口718を有し得る。スリーブの遠位の開口は、やはり、一対のアゴ部が完全に開くことを許容するような形状である場合がある。

Claims (24)

  1. マイクロウェーブエネルギを運ぶための同軸ケーブルであって、前記同軸ケーブルが、内側導電体、外側導電体、および、前記内側導電体を前記外側導電体から分離する誘電材料の層を有している、前記同軸ケーブルと、
    前記同軸ケーブルの遠位端に取り付けられたアゴ部アセンブリであって、前記アゴ部アセンブリが一対のアゴ部を備え、前記一対のアゴ部の各々が、電気伝導性のシェルを備え、前記アゴ部アセンブリが、前記電気伝導性のシェルが互いに係合して、組織のサンプルを保持するための内部容量を囲む閉じた位置と、前記組織のサンプルを受領するために、前記電気伝導性のシェルが分離して、前記内部容量を露出させている開いた位置との間で、前記一対のアゴ部の相対位置を変更するように操作可能である、前記アゴ部アセンブリと、を備え、
    前記電気伝導性のシェルが、前記閉じた位置にある場合に前記内部容量の周りにファラデーケージを形成し、
    前記同軸ケーブルが、マイクロウェーブの場として放出されるように、マイクロウェーブエネルギを前記アゴ部アセンブリに搬送するように接続され、
    前記ファラデーケージが、前記内部容量を、前記同軸ケーブルによって供給される前記マイクロウェーブエネルギからシールドするように構成されており、
    前記一対のアゴ部が前記閉じた位置にある場合に、前記一対のアゴ部を囲むように構成されたスリーブを含み、
    前記スリーブが、前記スリーブが前記一対のアゴ部をカバーする前進位置と、前記一対のアゴ部が前記スリーブから外側に突出した後退位置との間で、前記一対のアゴ部に対して軸方向に滑動可能である、バイオプシー鉗子ツール。
  2. 前記一対のアゴ部の各々が、前記電気伝導性のシェルを前記内部容量から分離する断熱層を有している、請求項1に記載のバイオプシー鉗子ツール。
  3. 前記一対のアゴ部が前記閉じた位置にある場合、前記電気伝導性のシェルが、対向する周縁部に沿って互いに係合する、請求項1または請求項2に記載のバイオプシー鉗子ツール。
  4. 前記対向する周縁部が、鋸歯状であるか、ノコギリの歯のプロファイルを有している、請求項3に記載のバイオプシー鉗子ツール。
  5. 前記一対のアゴ部が前記閉じた位置にある場合、前記対向する周縁部が重なり合っている、請求項3または請求項4に記載のバイオプシー鉗子ツール。
  6. 前記一対のアゴ部が互いに対し、旋回可能に接続されている、先行請求項のいずれかに記載のバイオプシー鉗子ツール。
  7. 前記一対のアゴ部が、その近位端において、ヒンジ周りに旋回可能である、先行請求項のいずれかに記載のバイオプシー鉗子ツール。
  8. 前記一対のアゴ部が、前記開いた位置に向けてバイアスがかけられている、先行請求項のいずれかに記載のバイオプシー鉗子ツール。
  9. 前記スリーブが前記前進位置にある場合、前記一対のアゴ部が、前記閉じた位置を占めるように強いられており、前記スリーブが前記後退位置に滑動した場合、前記一対のアゴ部が前記開いた位置を採用することができる、請求項1に記載のバイオプシー鉗子ツール。
  10. マイクロウェーブエネルギを運ぶための同軸ケーブルであって、前記同軸ケーブルが、内側導電体、外側導電体、および、前記内側導電体を前記外側導電体から分離する誘電材料の層を有している、前記同軸ケーブルと、
    前記同軸ケーブルの遠位端に取り付けられたアゴ部アセンブリであって、前記アゴ部アセンブリが一対のアゴ部を備え、前記一対のアゴ部の各々が、電気伝導性のシェルを備え、前記アゴ部アセンブリが、前記電気伝導性のシェルが互いに係合して、組織のサンプルを保持するための内部容量を囲む閉じた位置と、前記組織のサンプルを受領するために、前記電気伝導性のシェルが分離して、前記内部容量を露出させている開いた位置との間で、前記一対のアゴ部の相対位置を変更するように操作可能である、前記アゴ部アセンブリと、を備え、
    前記電気伝導性のシェルが、前記閉じた位置にある場合に前記内部容量の周りにファラデーケージを形成し、
    前記同軸ケーブルが、マイクロウェーブの場として放出されるように、マイクロウェーブエネルギを前記アゴ部アセンブリに搬送するように接続され、
    前記ファラデーケージが、前記内部容量を、前記同軸ケーブルによって供給される前記マイクロウェーブエネルギからシールドするように構成されている、バイオプシー鉗子ツールであって、
    前記バイオプシー鉗子ツールは、前記一対のアゴ部が前記閉じた位置にある場合に、前記一対のアゴ部を囲むように構成されたスリーブを含み、
    前記一対のアゴ部が、前記スリーブが前記一対のアゴ部をカバーする後退位置と、前記一対のアゴ部が前記スリーブから突出した延長位置との間で、前記スリーブに対して軸方向に滑動可能であり、
    前記同軸ケーブルが、その遠位端において端子コネクタを有し、前記端子コネクタが、軸方向に延びる、前記同軸ケーブルの前記内側導電体に電気的に接続された導電性のピンを有し、前記アゴ部アセンブリが、前記導電性のピンと滑動可能に係合した導電性のチューブを含み、前記導電性のチューブが、前記一対のアゴ部の前記電気伝導性のシェルに電気的に接続されている、バイオプシー鉗子ツール。
  11. 前記一対のアゴ部が前記後退位置にある場合、前記一対のアゴ部が、前記閉じた位置を占めるように強いられており、前記一対のアゴ部が前記延長位置に滑動した場合、前記一対のアゴ部が前記開いた位置を採用することができる、請求項10に記載のバイオプシー鉗子ツール。
  12. 前記一対のアゴ部が、前記導電性のチューブの軸方向の移動によって軸方向に移動する、請求項10に記載のバイオプシー鉗子ツール。
  13. 前記導電性のチューブに接続され、前記同軸ケーブルに対して軸方向に移動可能である制御ロッドを有し、それにより、前記導電性のチューブが、前記制御ロッドの前記同軸ケーブルに対する移動により、前記導電性のピンに対して滑動可能である、請求項10または請求項12に記載のバイオプシー鉗子ツール。
  14. 前記制御ロッドが、前記同軸ケーブルの横に延びている、請求項13に記載のバイオプシー鉗子ツール。
  15. 前記同軸ケーブルの前記内側導電体が中空であり、前記制御ロッドが前記中空の内側導電体を通って延びる、請求項13に記載のバイオプシー鉗子ツール。
  16. 前記スリーブが、内部の誘電層と、前記同軸ケーブルの前記外側導電体に電気的に接続された外部の導電層とを備え、前記電気伝導性のシェルが、前記同軸ケーブルの前記内側導電体に電気的に接続されている、請求項1から請求項15のいずれか一項に記載のバイオプシー鉗子ツール。
  17. 前記スリーブの前記内部の誘電層が、前記一対のアゴ部の前記電気伝導性のシェルに当接するとともに、前記一対のアゴ部の前記電気伝導性のシェルから前記スリーブの前記外部の導電層を電気的に絶縁する、請求項16に記載のバイオプシー鉗子ツール。
  18. 前記同軸ケーブルの横に延びている制御ロッドを有し、前記制御ロッドが、前記一対のアゴ部の相対位置を変更するように移動可能である、請求項6から請求項8のいずれか一項に記載のバイオプシー鉗子ツール。
  19. 前記制御ロッドが、前記同軸ケーブルに対して軸方向に移動可能であり、前記アゴ部アセンブリが、前記制御ロッドの軸方向の動きを前記一対のアゴ部間の旋回する相対移動に変換するための、前記制御ロッドと係合したカム機構を含んでいる、請求項18に記載のバイオプシー鉗子ツール。
  20. 前記制御ロッドが回転可能であり、前記アゴ部アセンブリが、前記制御ロッドの回転の動きを前記一対のアゴ部間の旋回する相対移動に変換するための、前記制御ロッドと係合した回転ジョイントを含んでいる、請求項18に記載のバイオプシー鉗子ツール。
  21. 前記アゴ部アセンブリおよび同軸ケーブルが、内視鏡、気管支鏡、胃カメラ、または任意の他のタイプのスコープの、器具チャネル内にフィットするような寸法である、先行請求項のいずれかに記載のバイオプシー鉗子ツール。
  22. 前記同軸ケーブルおよびアゴ部アセンブリを囲む、保護給電ケーブルを有する、先行請求項のいずれかに記載のバイオプシー鉗子ツール。
  23. 前記内部容量に取り付けられた温度センサを有する、先行請求項のいずれかに記載のバイオプシー鉗子ツール。
  24. 前記アゴ部アセンブリの外側表面に取り付けられた温度センサを有する、先行請求項のいずれかに記載のバイオプシー鉗子ツール。
JP2018510060A 2015-10-02 2016-09-30 バイオプシー鉗子ツール Active JP6877767B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1517427.9 2015-10-02
GB1517427.9A GB2543039A (en) 2015-10-02 2015-10-02 Electrosurgical device
PCT/EP2016/073493 WO2017055595A2 (en) 2015-10-02 2016-09-30 Biopsy forceps tool

Publications (2)

Publication Number Publication Date
JP2018537135A JP2018537135A (ja) 2018-12-20
JP6877767B2 true JP6877767B2 (ja) 2021-05-26

Family

ID=54605994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018510060A Active JP6877767B2 (ja) 2015-10-02 2016-09-30 バイオプシー鉗子ツール

Country Status (15)

Country Link
US (1) US10898172B2 (ja)
EP (1) EP3355798B1 (ja)
JP (1) JP6877767B2 (ja)
KR (1) KR20180063048A (ja)
CN (1) CN108633251B (ja)
AU (1) AU2016329516B2 (ja)
BR (1) BR112018003923B1 (ja)
CA (1) CA2996831A1 (ja)
DK (1) DK3355798T3 (ja)
ES (1) ES2764755T3 (ja)
GB (1) GB2543039A (ja)
IL (1) IL257278B (ja)
PT (1) PT3355798T (ja)
WO (1) WO2017055595A2 (ja)
ZA (1) ZA201800805B (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2579493B (en) * 2017-07-14 2022-10-26 Actuated Medical Inc Device for aiding in the positioning and anchoring of an endoscope during gastronintestinal procedures
KR102013989B1 (ko) * 2017-07-28 2019-10-22 재단법인대구경북과학기술원 탄성수단을 이용한 탄성고정 힌지를 구비한 생검 모듈 및 그 작동방법
GB2567469A (en) 2017-10-13 2019-04-17 Creo Medical Ltd Electrosurgical apparatus
DK201800522A1 (en) * 2018-08-31 2020-04-28 Maersk Supply Service A/S A method and system of installing a crane on a portion of an offshore wind turbine generator and a removeable crane adapter therefor
GB2583492B (en) * 2019-04-30 2022-11-23 Creo Medical Ltd Electrosurgical instrument with non-liquid thermal transfer
EP3984469A4 (en) * 2019-06-14 2023-06-21 Tam, Chi Chun Terence SAMPLING SYSTEM
CN110292401A (zh) * 2019-07-25 2019-10-01 郑州大学第一附属医院 多级定位组织活检装置
US11596467B2 (en) * 2020-02-04 2023-03-07 Covidien Lp Articulating tip for bipolar pencil
CN113907870B (zh) * 2021-11-06 2023-08-15 嘉兴市中医医院 一种止血辅助电凝活检钳
CN117462065B (zh) * 2023-12-26 2024-04-12 深圳市宏济医疗技术开发有限公司 一种泌尿内科用内窥镜

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320070A (ja) 1988-06-21 1989-12-26 Olympus Optical Co Ltd 温熱治療用プローブ
US5295990A (en) 1992-09-11 1994-03-22 Levin John M Tissue sampling and removal device
AU5822094A (en) * 1993-01-18 1994-08-15 John Crowe Endoscope forceps
US5626607A (en) * 1995-04-03 1997-05-06 Heartport, Inc. Clamp assembly and method of use
US6585735B1 (en) 1998-10-23 2003-07-01 Sherwood Services Ag Endoscopic bipolar electrosurgical forceps
WO2005016163A1 (ja) * 2003-08-19 2005-02-24 River Seiko Medical Limited Company バイポーラ高周波処置具
US8632461B2 (en) * 2005-06-21 2014-01-21 Koninklijke Philips N.V. System, method and apparatus for navigated therapy and diagnosis
DE102006027873B4 (de) 2006-06-16 2009-10-15 Erbe Elektromedizin Gmbh Endoskopisches Multifunktions-Chirurgiegerät
JP5380705B2 (ja) * 2008-05-15 2014-01-08 株式会社リバーセイコー 内視鏡用高周波止血鉗子
US20100249769A1 (en) * 2009-03-24 2010-09-30 Tyco Healthcare Group Lp Apparatus for Tissue Sealing
JP5031925B2 (ja) * 2009-09-15 2012-09-26 オリンパスメディカルシステムズ株式会社 高周波処置具
US8876814B2 (en) * 2009-09-29 2014-11-04 Covidien Lp Fluid cooled choke dielectric and coaxial cable dielectric
US20110237975A1 (en) 2010-03-24 2011-09-29 United States Endoscopy Group, Inc. Multiple biopsy device
CN201996592U (zh) 2011-02-28 2011-10-05 邵伟 定标活体取样钳
EP3095407A3 (en) * 2011-04-08 2017-03-08 Covidien LP Flexible microwave catheters for natural or artificial lumens
DE102011081464A1 (de) * 2011-08-24 2013-02-28 Karl Storz Gmbh & Co. Kg Werkzeug für ein mikroinvasiv-chirurgisches Instrument
CN108262741A (zh) * 2011-12-21 2018-07-10 美的洛博迪克斯公司 用于具有链节装置的高度铰接探针的稳固装置,该装置的形成方法,以及该装置的使用方法

Also Published As

Publication number Publication date
ES2764755T3 (es) 2020-06-04
AU2016329516A1 (en) 2018-02-22
WO2017055595A2 (en) 2017-04-06
WO2017055595A3 (en) 2017-05-11
US10898172B2 (en) 2021-01-26
ZA201800805B (en) 2019-07-31
US20180353162A1 (en) 2018-12-13
DK3355798T3 (da) 2020-01-20
GB2543039A (en) 2017-04-12
IL257278B (en) 2021-07-29
BR112018003923A2 (pt) 2018-09-25
IL257278A (en) 2018-03-29
KR20180063048A (ko) 2018-06-11
EP3355798B1 (en) 2019-10-23
PT3355798T (pt) 2020-01-15
GB201517427D0 (en) 2015-11-18
CN108633251B (zh) 2020-12-01
CN108633251A (zh) 2018-10-09
BR112018003923B1 (pt) 2022-05-17
EP3355798A2 (en) 2018-08-08
JP2018537135A (ja) 2018-12-20
AU2016329516B2 (en) 2020-09-24
CA2996831A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP6877767B2 (ja) バイオプシー鉗子ツール
RU2740678C2 (ru) Электрохирургический зонд для доставки радиочастотной и микроволновой энергии
JP4578912B2 (ja) オーバーチューブを備えた内視鏡的粘膜切除装置及びその使用方法
JP4509722B2 (ja) 導電性組織ストッパーを備えた内視鏡的粘膜切除装置及びその使用方法
JP7482550B2 (ja) 電気外科装置
JP7280626B2 (ja) 電気外科焼灼器具
GB2562877A (en) Electrosurgical instrument
CA3008243C (en) Microwave and radiofrequency energy-transmitting tissue ablation systems
US20090076412A1 (en) Apparatus and Methods for Obtaining a Sample of Tissue
KR20200042442A (ko) Rf 및/또는 마이크로파 에너지를 생물학적 조직에 전달하기 위한 전기수술 장치
CN113164202A (zh) 电外科器械
GB2541946A (en) Electrosurgical snare
JP2010162300A (ja) 関節運動する切除デバイスおよび方法

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A529

Effective date: 20180222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201013

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210421

R150 Certificate of patent or registration of utility model

Ref document number: 6877767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250