JP6848936B2 - スイッチング素子の駆動回路 - Google Patents

スイッチング素子の駆動回路 Download PDF

Info

Publication number
JP6848936B2
JP6848936B2 JP2018121898A JP2018121898A JP6848936B2 JP 6848936 B2 JP6848936 B2 JP 6848936B2 JP 2018121898 A JP2018121898 A JP 2018121898A JP 2018121898 A JP2018121898 A JP 2018121898A JP 6848936 B2 JP6848936 B2 JP 6848936B2
Authority
JP
Japan
Prior art keywords
current
unit
drive
constant
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018121898A
Other languages
English (en)
Other versions
JP2020005085A (ja
Inventor
大祐 松本
大祐 松本
矩彦 井上
矩彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018121898A priority Critical patent/JP6848936B2/ja
Priority to PCT/JP2019/016316 priority patent/WO2020003699A1/ja
Publication of JP2020005085A publication Critical patent/JP2020005085A/ja
Application granted granted Critical
Publication of JP6848936B2 publication Critical patent/JP6848936B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Description

本発明は、電圧駆動型のスイッチング素子を駆動する回路に関する。
例えばIGBT等のパワー系のスイッチング素子を駆動する回路として、例えば特許文献1には、以下のような構成が開示されている。定電流生成部30から流れ込む定電流の大きさに応じたオン時間でスイッチング素子50をオンするドライバ回路40を備える。定電流生成部30は、スイッチング素子50がオンするオン時間に達するまで大きい定電流を流してスイッチング素子50の立上がり速度を高速に維持する。オン時間が経過した後は、小さい定電流を流してドライバ回路40の消費電流を低減する。
特開2012−129971号公報
ここで、駆動回路に定電流アンプ及び定電圧アンプを備え、スイッチング素子を定電流定電圧駆動することを想定する。このように構成される駆動回路では、IGBTのゲートに印加する電圧を立ち上げる初期の段階では、定電流アンプによりゲート電圧の立上り速度を制御し、立上りの後半では定電圧アンプによってゲート電圧を所定の電圧に制御することが考えられる。また、この構成では、2つのアンプを使用することで消費電流が多くなるという問題がある。
本発明は上記事情に鑑みてなされたものであり、その目的は、電圧駆動型のスイッチング素子を定電流定電圧駆動する際に、消費電流を最適に低減できるスイッチング素子の駆動回路を提供することにある。
請求項1記載のスイッチング素子の駆動回路によれば、スイッチング素子のゲートを定電流駆動する定電流駆動部,及び同ゲートを定電圧駆動する定電圧駆動部に、内部における消費電流を調整する消費電流調整部を備える。そして、電流制御部は、前記ゲートの駆動状態に基づき、定電流駆動部及び定電圧駆動部の消費電流調整部を個別に制御する。このように構成すれば、スイッチング素子のゲートを駆動する過程で、定電流駆動部,定電圧駆動部のそれぞれが動作する状況に応じて、それぞれの消費電流を最適に調整して低減することができる。
また、電流制御部は、駆動信号がオフレベルであれば定電流駆動部及び定電圧駆動部の消費電流を低減させ、駆動信号がオンレベルになった時点から第1期間までは定電圧駆動部のみに消費電流を低減させる。そして、第1期間に続く第2期間では定電流駆動部のみに消費電流を低減させ、第2期間が終了すると定電流駆動部及び定電圧駆動部の消費電流を低減させる。
すなわち、スイッチング素子のターンオンを開始させた直後からの第1期間は、定電流駆動部による定電流駆動を行うため、定電圧駆動部の消費電流を低減させる。そして、第1期間に続く第2期間では、定電圧駆動部による定電圧駆動を行うので、定電流駆動部の消費電流を低減させる。このように構成すれば、スイッチング素子のターンオンを制御する形態に応じて消費電流を効率的に低減できる。
第1実施形態であり、駆動回路の構成を示す図 アンプ部の詳細構成を示す図 消費電流調整部の詳細構成を示す図 動作タイミングチャート 第2実施形態であり、駆動回路の構成を示す図 動作タイミングチャート 第3実施形態であり、駆動回路の構成を示す図 動作タイミングチャート 第4実施形態であり、消費電流調整部の詳細構成を示す図 動作タイミングチャート(その1) 動作タイミングチャート(その2) 第5実施形態であり、駆動回路の構成を示す図 第6実施形態であり、駆動回路の構成を示す図
(第1実施形態)
図1に示すように、本実施形態の駆動回路1は、バッファ2及び駆動制御部3を備えている。外部より入力されるゲート駆動信号は、バッファ2を介して駆動制御部3に与えられる。駆動制御部3は、スイッチング素子である例えばIGBT(Insulated Gate Bipolar Transistor)4のゲートを駆動する。IGBT4は、コレクタ電流を検出するための電流検出用エミッタを有している。IGBT4は、例えばインバータ回路を構成する素子である。
駆動制御部3は、アンプ部5及び電流制御部6を備えている。アンプ部5は、IGBT4のゲートを定電流・定電圧駆動する。駆動回路1の入力端子7は、外付けの抵抗素子8を介して電源VDDに接続されている。駆動回路1の出力端子9は、外付けの抵抗素子10を介してIGBT4のゲートに接続されている。尚、駆動回路1は、集積回路として構成されている。
図2に示すように、アンプ部5は、定電流制御アンプ11及び定電圧制御アンプ12の組み合わせで構成されている。尚、アンプとして周知の詳細構成に関する説明は省略する。入力端子7は、定電流制御アンプ11の反転入力端子に接続されている。入力端子7と出力端子9との間には、PチャネルMOSFET13が接続されている。定電流制御アンプ11のもう1つの反転入力端子は、定電圧制御アンプ12の出力端子に接続されている。定電流制御アンプ11の非反転入力端子は、電圧源14の負極に接続されている。電圧源14の正極は、電源VDDに接続されている。定電流制御アンプ11の出力端子は、FET13のゲートに接続されている。
定電圧制御アンプ12の非反転入力端子は、電圧源15の正極に接続されている。定電圧制御アンプ12の反転入力端子は、抵抗素子16を介してグランドに接続されていると共に、抵抗素子17を介して出力端子9に接続されている。定電流制御アンプ11は定電流駆動部に相当し、定電圧制御アンプ12は定電圧駆動部に相当する。
ここで、電圧源14,15の電圧をそれぞれVref1,Vref2とし、抵抗素子8の抵抗値をRshunt,抵抗素子8に流れる電流をIgとする。この場合、定電流制御アンプ11の反転入力端子の電位は(VDD−Vref1)となるから、電流Igは
Ig=Vref1/Rshunt
となる。したがって、例えばVref1=1V,Rshunt=1Ωに設定すればIg=1Aとなり、FET13を介してIGBT4のゲートに1Aの電流を流すことができる。
また、定電圧制御アンプ12は、抵抗素子17及び16で分圧されたゲート電圧が、電圧Vref2に等しくなるように定電流制御アンプ11を制御する。
図1に示すように、定電流制御アンプ11及び定電圧制御アンプ12は、それぞれ消費電流調整部18及び19を備えている。これらは、例えば図3に示すように、スイッチ20及び電流源21の直列回路を複数並列に接続して構成されている。スイッチ20のオンオフ制御は、電流制御部6により行われる。電流制御部6は、カウンタ22及び制御信号出力部23を備え、カウンタ22には、バッファ2を介してゲート駆動信号が入力されている。カウンタ22は、ゲート駆動信号がハイレベルを示す期間にカウント動作を行う。制御信号出力部23は、そのカウント値に応じて消費電流調整部18及び19を制御する。カウンタ22は時間監視部に相当する。
次に、本実施形態の作用について説明する。図4に示すように、ゲート駆動信号がオフレベルのローを示している期間は、カウンタ22はゼロクリアされている。この期間はアンプ部5が動作しないので、制御信号出力部23は、定電流制御アンプ11及び定電圧制御アンプ12の消費電流を低減するように、消費電流調整部18及び19を制御する。そして、ゲート駆動信号がオンレベルのハイに変化するとアンプ部5が動作を開始し、カウンタ22がカウント動作を開始する。
制御信号出力部23は、カウンタ22のカウント値が変化し始めると、定電流制御アンプ11の消費電流を増加させるように消費電流調整部18,図4中のI_CCAMPを制御する。これに伴い定電流制御アンプ11が動作を開始して、IGBT4のゲートに一定の電流Igを流す。すると、IGBT4のゲート容量が充電されて、ゲート電圧は上昇を開始する。
ゲート電圧がミラー電圧を超えた後にカウンタ22のカウント値が第1所定値に達すると、制御信号出力部23は、定電流制御アンプ11の消費電流を低減させるように消費電流調整部18を制御する。同時に、制御信号出力部23は、定電圧制御アンプ12の消費電流を増加させるように消費電流調整部19,図4中のI_CVAMPを制御する。これに伴い定電圧制御アンプ12が動作を開始して、ゲート電圧は電圧Vref2に応じた電圧となるように制御される。
そして、ゲート電圧が前記電圧に達してIGBT4がフルオン状態になった後、カウンタ22のカウント値が第2所定値に達すると、制御信号出力部23は、定電圧制御アンプ12の消費電流を低減するように消費電流調整部19を制御する。この時点で、カウンタ22はゼロクリアされる。尚、カウンタ22のカウント値が第1所定値に達するまでの期間は第1期間に相当し、第1所定値に達してから第2所定値に達するまでの期間が第2期間に相当する。
以上のように本実施形態によれば、駆動回路1に、定電流制御アンプ11及び定電圧制御アンプ12,並びにそれらの消費電流をそれぞれ制御する消費電流調整部18及び19を備える。そして、電流制御部6は、IGBT4のゲートの駆動状態に基づき、消費電流調整部18及び19を個別に制御する。このように構成すれば、IGBT4のゲートを駆動する過程で、定電流制御アンプ11,定電圧制御アンプ12のそれぞれが動作する状況に応じて、それぞれの消費電流を最適に調整して低減することができる。
具体的には、ゲート駆動信号がオフレベルであれば定電流制御アンプ11及び定電圧制御アンプ12の消費電流を低減させ、ゲート駆動信号がオンレベルになった時点から第1期間までは定電圧制御アンプ12のみに消費電流を低減させる。そして、第1期間に続く第2期間では定電流制御アンプ11のみに消費電流を低減させ、第2期間が終了すると再び定電流制御アンプ11及び定電圧制御アンプ12の消費電流を低減させる。
すなわち、IGBT4のターンオンを開始させた直後からの第1期間は、定電流制御アンプ11による定電流駆動を行うため、定電圧制御アンプ12の消費電流を低減させる。そして、第1期間に続く第2期間では定電圧制御アンプ12による定電圧駆動を行うので、定電流制御アンプ11の消費電流を低減させる。このように構成すれば、IGBT4のターンオンを制御する形態に応じて消費電流を効率的に低減できる。
そして、電流制御部6は、ゲート駆動信号がオンレベルになった時点から、カウンタ22のカウント値が第1所定値に達することで一定時間が経過すると、第1期間を終了して第2期間を開始する。そして、カウンタ22のカウント値が第2所定値に達すると第2期間を終了する。これにより、カウンタ22のカウント値に応じて、第1期間及び第2期間の長さを調整できる。また、消費電流調整18及び19を、スイッチ20と電流源21との直列回路で構成し、その直列回路を複数並列に接続して構成したので、簡単な構成で消費電流を調整できる。
(第2実施形態)
以下、第1実施形態と同一部分には同一符号を付して説明を省略し、異なる部分について説明する。図5に示すように、第2実施形態の駆動回路31は、駆動制御部3に替わる駆動制御部32を備えている。駆動制御部32は、電流制御部6に替わる電流制御部33を備えている。電流制御部33は、ゲート電圧モニタ部34及び制御信号出力部35を備えている。
ゲート電圧モニタ部34には、駆動回路31の入力端子36を介してIGBT4のゲート電圧が入力されている。ゲート電圧モニタ部34は電圧監視部に相当する。ゲート電圧モニタ部34は、ゲート電圧が閾値Vthに達すると、制御信号出力部35にトリガ信号を出力する。制御信号出力部35には、バッファ2を介してゲート駆動信号が入力されている。
次に、第2実施形態の作用について説明する。図6に示すように、制御信号出力部35は、ゲート駆動信号がローレベルの期間は第1実施形態と同様に、定電流制御アンプ11及び定電圧制御アンプ12の消費電流を低減するように消費電流調整部18及び19を制御する。ゲート駆動信号がハイレベルに変化するとアンプ部5が動作を開始するが、制御信号出力部35は、アンプ部5がIGBT4のゲート電圧の上昇を開始させる前に、定電流制御アンプ11の消費電流を増加させるように消費電流調整部18を制御する。そして、定電流制御アンプ11による定電流駆動が行われる。
ゲート電圧がミラー電圧を超えた後閾値電圧Vthに達すると、ゲート電圧モニタ部34が制御信号出力部35にトリガ信号を出力する。これにより第1期間が終了し、第2期間の開始となる。すると、制御信号出力部35は、定電流制御アンプ11の消費電流を低減させるように消費電流調整部18を制御し、定電流駆動が終了する。また、制御信号出力部35は、定電圧制御アンプ12の消費電流を増加させるように消費電流調整部19を制御し、これに伴い定電圧制御アンプ12が動作を開始して定電圧駆動が行われる。
そして、制御信号出力部35は、トリガ信号が与えられてからIGBT4がフルオン状態になった後、一定時間が経過すると、定電圧制御アンプ12の消費電流を低減するように消費電流調整部19を制御する。これに伴い、定電圧駆動が終了する。
以上のように第2実施形態によれば、電流制御部33は、IGBT4のゲート電圧を監視するゲート電圧モニタ部34を備え、ゲート電圧が閾値Vthに達すると第2期間を開始する。これにより、IGBT4のゲート電圧の変化に応じて、定電流制御アンプ11及び定電圧制御アンプ12の消費電流を最適に低減することができる。
(第3実施形態)
図7に示すように、第3実施形態の駆動回路41は、駆動制御部42を備えている。駆動制御部42は、電流制御部43を備えている。電流制御部43は、第2実施形態のゲート電圧モニタ部34を電流モニタ部44に置き換えたものである。電流モニタ部44は、入力端子9とIGBT4のゲートとの間に流れる電流を監視する。そして、電流モニタ部44は、監視している電流値が減少する過程で閾値Itを下回ると、制御信号出力部35にトリガ信号を出力する。電流モニタ部44は電流監視部に相当する。
次に、第3実施形態の作用について説明する。図8に示すように、制御信号出力部35は、ゲート駆動信号がローレベルからハイレベルに変化すると、第2実施形態と同様に動作する。そして、IGBT4がフルオン状態に近付く直前にゲート電流Igが減少して閾値Itを下回ると、電流モニタ部44は制御信号出力部35にトリガ信号を出力する。これにより第1期間が終了し、第2期間の開始となる。すると、制御信号出力部35は、定電流制御アンプ11の消費電流を低減させるように消費電流調整部18を制御し、定電流駆動が終了する。また、制御信号出力部35は、定電圧制御アンプ12の消費電流を増加させるように消費電流調整部19を制御し、これに伴い定電圧制御アンプ12が動作を開始して定電圧駆動が行われる。以降の動作は第2実施形態と同様である。
以上ように第3実施形態によれば、電流制御部43は、IGBT4のゲート電流を監視する電流モニタ部44を備え、ゲート電流が閾値Ithを下回ると第2期間を開始する。これにより、ゲート電流の変化に応じて、定電流制御アンプ11及び定電圧制御アンプ12の消費電流を最適に低減することができる。
その他、電源VDDとFET13のソースとの間に流れる電流を監視しても良い。また、IGBT4の電流検出用エミッタにシャント抵抗を接続し、電流モニタ部44はシャント抵抗45の端子電圧により電流を監視しても良い。また、電流センサを用いても良い。
(第4実施形態)
第4実施形態は、図9に示すように、消費電流調整部18及び19に替えて、消費電流調整部45及び46を備える。定電流制御アンプ11及び定電圧制御アンプ12とグランドとの間には、PチャネルMOSFET47及び抵抗素子48の直列回路が接続されており、FET47のドレインは、オペアンプ49の反転入力端子に接続されている。オペアンプ49の非反転入力端子には、可変電圧源50の電圧が与えられている。消費電流調整部45及び46は、電流制御アンプとして構成されている。
次に、第4実施形態の作用について説明する。例えば第1実施形態の構成において、電流制御部6に可変電圧源50の電圧を制御させる。これにより、第1期間から第2期間に移行させる際に、消費電流調整部45により消費電流をリニアに減少させ、消費電流調整部46により消費電流をリニアに増加させる。
すなわち、第1実施形態のようにスイッチ20のオンオフで制御すると消費電流の変化量が大きくなり、第1期間から第2期間に移行する過程でゲート電圧にリンギングが発生する可能性が有る。これに対して、図10に示すように、消費電流の減少及び増加に一定の傾きを付与することで、ゲート電圧に与える影響を低減できる。
また、第4実施形態の構成によれば、図11に示すように、第1期間において消費電流調整部46により消費電流を低減するレベルを、第1実施形態よりも若干上昇させる制御も可能になる。これにより、消費電流は若干増加するが、第1期間から第2期間に移行する際の電流変化量が小さくなるので、図10のケースと同様の効果が得られる。尚、図10に示す制御と併せて行っても良い。
(第5実施形態)
図12に示すように、第5実施形態では、第1実施形態の駆動回路1によりIGBT4を駆動する際に、外付けのNPNトランジスタ51を追加してIGBT4とダーリントン接続する。トランジスタ51のコレクタは入力端子7に接続され、ベースは抵抗素子10に接続されている。そして、トランジスタ51のエミッタはIGBT4のゲートに接続されている。すなわち、駆動回路1がトランジスタ51を介してIGBT4を駆動する。これにより、IGBT4のゲートには、トランジスタ51を介して駆動電流が供給されるので、アンプ部5の消費電流を低減できる。
(第6実施形態)
図13に示すように、第6実施形態の駆動回路1Dは、駆動制御部3Dが2つのIGBT4A,4Bを並列に駆動するように、第1実施形態の駆動制御部3に対応する構成を2組備えている。この場合、駆動される負荷の消費電流量に応じてIGBT4A及び4Bを同時にオンオフさせても良いし、何れか一方のみを駆動させても良い。後者のケースについては、駆動させない方のIGBT4に対応する消費電流制御部18及び19の消費電流を低減した状態に維持するように、電流制御部6Dを調整する。
(その他の実施形態)
IGBT4は、電流検出用のエミッタを有しないものでも良い。
スイッチ20及び電流源21の直列回路を1組だけで消費電流調整部を構成しても良い。
スイッチング素子はIGBT4に限ることなく、電圧駆動型の素子であれば良い。
第6実施形態の構成において、3素子以上を並列に駆動するように構成しても良い。
各実施形態を適宜組み合わせて実施しても良い。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
図面中、1は駆動回路、3は駆動制御部、4はIGBT、5はアンプ部、6は電流制御部、11は定電流制御アンプ、12は定電圧制御アンプ、18及び19は消費電流調整部、20はスイッチ、21は電流源、22はカウンタ、23は制御信号出力部である。

Claims (10)

  1. 入力される駆動信号に応じて電圧駆動型のスイッチング素子(4)を駆動するもので、
    前記スイッチング素子のゲートを定電流駆動するもので、内部における消費電流を調整する消費電流調整部(18,45)を有する定電流駆動部(11)と、
    前記ゲートを定電圧駆動するもので、内部における消費電流を調整する消費電流調整部(19,46)を有する定電圧駆動部(12)と、
    前記ゲートの駆動状態に基づいて、前記定電流駆動部及び前記定電圧駆動部の消費電流調整部を個別に制御する電流制御部(6,6D,33,43)とを備え
    前記定電流駆動部は、前記電圧駆動部の出力端子と前記スイッチング素子のゲートとの間に接続されており、
    前記電流制御部は、
    前記駆動信号がオフレベルであれば、前記定電流駆動部及び前記定電圧駆動部に消費電流を低減させ、
    前記駆動信号がオンレベルになった時点から第1期間までは、前記定電圧駆動部のみに消費電流を低減させ、
    前記第1期間に続く第2期間では、前記定電流駆動部のみに消費電流を低減させ、
    前記第2期間が終了すると、前記定電流駆動部及び前記定電圧駆動部に消費電流を低減させるスイッチング素子の駆動回路。
  2. 前記電流制御部(33)は、前記ゲート電圧を監視する電圧監視部(34)を備え、
    前記ゲート電圧が閾値に達すると、前記第2期間を開始する請求項記載のスイッチング素子の駆動回路。
  3. 前記電流制御部(43)は、前記定電流駆動部より供給される電流を監視する電流監視部(44)を備え、
    前記電流が閾値を下回ると、前記第2期間を開始する請求項又は記載のスイッチング素子の駆動回路。
  4. 前記電流制御部(6)は、前記駆動信号がオンレベルになった時点から計時を行う時間監視部(22)を備え、
    前記計時時間が一定時間になると、前記第2期間を開始する請求項からの何れか一項に記載のスイッチング素子の駆動回路。
  5. 前記消費電流調整部(46)は、前記第1期間において、前記定電流駆動部の消費電流を一定量流すように制御する請求項からの何れか一項に記載のスイッチング素子の駆動回路。
  6. 前記消費電流調整部(18,19)は、電流源(21)とスイッチ(20)との直列回路で構成される請求項1からの何れか一項に記載のスイッチング素子の駆動回路。
  7. 前記消費電流調整部は、前記直列回路を複数備え、それらが並列に接続されて構成される請求項記載のスイッチング素子の駆動回路。
  8. 前記消費電流調整部(45,46)は、電流制御アンプで構成される請求項1からの何れか一項に記載のスイッチング素子の駆動回路。
  9. 本体が集積回路で構成され、前記集積回路の外部に、前記スイッチング素子に通電する電流量を増幅する電流増幅用素子(51)を備える請求項1からの何れか一項に記載のスイッチング素子の駆動回路。
  10. 複数のスイッチング素子を並列に駆動可能に構成される請求項1からの何れか一項に記載のスイッチング素子の駆動回路。
JP2018121898A 2018-06-27 2018-06-27 スイッチング素子の駆動回路 Active JP6848936B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018121898A JP6848936B2 (ja) 2018-06-27 2018-06-27 スイッチング素子の駆動回路
PCT/JP2019/016316 WO2020003699A1 (ja) 2018-06-27 2019-04-16 スイッチング素子の駆動回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018121898A JP6848936B2 (ja) 2018-06-27 2018-06-27 スイッチング素子の駆動回路

Publications (2)

Publication Number Publication Date
JP2020005085A JP2020005085A (ja) 2020-01-09
JP6848936B2 true JP6848936B2 (ja) 2021-03-24

Family

ID=68987022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018121898A Active JP6848936B2 (ja) 2018-06-27 2018-06-27 スイッチング素子の駆動回路

Country Status (2)

Country Link
JP (1) JP6848936B2 (ja)
WO (1) WO2020003699A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12052013B2 (en) * 2020-11-27 2024-07-30 Denso Corporation Gate drive device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023136689A (ja) 2022-03-17 2023-09-29 富士電機株式会社 スイッチング素子の駆動回路及びインテリジェントパワーモジュール

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228768A (ja) * 2003-01-21 2004-08-12 Toshiba Corp ゲート駆動回路
JP4315125B2 (ja) * 2005-05-11 2009-08-19 トヨタ自動車株式会社 電圧駆動型半導体素子の駆動装置
JP4915158B2 (ja) * 2006-07-14 2012-04-11 トヨタ自動車株式会社 電力用スイッチング素子の駆動装置
JP5434891B2 (ja) * 2010-11-22 2014-03-05 株式会社デンソー 負荷駆動装置の製造方法
JP5348115B2 (ja) * 2010-11-22 2013-11-20 株式会社デンソー 負荷駆動装置
JP5287916B2 (ja) * 2010-11-22 2013-09-11 株式会社デンソー 負荷駆動装置
JP5701176B2 (ja) * 2011-08-04 2015-04-15 三菱電機株式会社 ゲート駆動装置
JP5777537B2 (ja) * 2012-02-17 2015-09-09 三菱電機株式会社 パワーデバイス制御回路およびパワーデバイス回路
JP6119674B2 (ja) * 2014-06-06 2017-04-26 トヨタ自動車株式会社 駆動回路及び半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12052013B2 (en) * 2020-11-27 2024-07-30 Denso Corporation Gate drive device

Also Published As

Publication number Publication date
WO2020003699A1 (ja) 2020-01-02
JP2020005085A (ja) 2020-01-09

Similar Documents

Publication Publication Date Title
US20220209768A1 (en) Load driver
US8138819B2 (en) Driving transistor control circuit
US9979384B2 (en) Timing adjustment method for drive circuit and timing adjustment circuit for drive circuit
US20120299624A1 (en) Voltage controlled switching element gate drive circuit
EP3148077B1 (en) Driver for a p-channel mosfet
JP6848936B2 (ja) スイッチング素子の駆動回路
JP6104391B2 (ja) バッファ回路
KR101389854B1 (ko) 전원 제어 회로
JP4881582B2 (ja) 遅延回路および駆動制御回路
TWI441448B (zh) 具降低雜訊與切換功耗之電源控制電路、交換式電源轉換器與方法
JP2018098848A (ja) パワーモジュール及び半導体装置
US9318973B2 (en) Driving device
JP2018207276A (ja) ゲート駆動回路
JP6299416B2 (ja) 駆動回路システム
CN112912738A (zh) 负载驱动装置和变速机的驱动系统
JP6572804B2 (ja) ゲート駆動回路
US10924103B2 (en) Driver circuitry
JP2011171854A (ja) バッファリング回路および増幅回路
JP7528744B2 (ja) ゲート駆動装置
JP2005223804A (ja) スイッチ回路
JP6696360B2 (ja) ゲート駆動回路
JP3633540B2 (ja) 降圧コンバータおよび降圧コンバータのfet駆動方法
JPH09214313A (ja) Cmosインバータ回路
US20090295837A1 (en) Circuit for generating drive voltage
JP2010109884A (ja) 電圧振幅回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R151 Written notification of patent or utility model registration

Ref document number: 6848936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250