JP6834226B2 - 杭基礎および鉄塔建替工法 - Google Patents

杭基礎および鉄塔建替工法 Download PDF

Info

Publication number
JP6834226B2
JP6834226B2 JP2016151721A JP2016151721A JP6834226B2 JP 6834226 B2 JP6834226 B2 JP 6834226B2 JP 2016151721 A JP2016151721 A JP 2016151721A JP 2016151721 A JP2016151721 A JP 2016151721A JP 6834226 B2 JP6834226 B2 JP 6834226B2
Authority
JP
Japan
Prior art keywords
existing
foundation
steel tower
tower
pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016151721A
Other languages
English (en)
Other versions
JP2018021322A (ja
Inventor
和田 収司
収司 和田
大地 斉藤
大地 斉藤
了 広中
了 広中
田邉 成
成 田邉
Original Assignee
東京電力ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京電力ホールディングス株式会社 filed Critical 東京電力ホールディングス株式会社
Priority to JP2016151721A priority Critical patent/JP6834226B2/ja
Publication of JP2018021322A publication Critical patent/JP2018021322A/ja
Application granted granted Critical
Publication of JP6834226B2 publication Critical patent/JP6834226B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鉄塔の各主脚材を支持する梁部と、その中央に構築された杭部とを含む杭基礎に関するもの、および複数の主脚材にそれぞれ個別の既設基礎を有する既設鉄塔を、かかる杭基礎を有する新設鉄塔に立て替える鉄塔建替工法に関するものである。
電気事業者の発電所で発電された電気は、地上に建設された鉄塔に張架されている送電線を通じて長距離にわたって送電される。山岳地に立地する送電鉄塔は巨大な構造物であるため、その脚部は直接基礎や深礎基礎(例えば特許文献1)に支持される。平地であれば、深礎基礎に代えて場所打ち杭が使用される。
図13は、鉄塔10の基礎について説明する図である。図13(a)は、直接基礎12を用いた例であり、図13(b)は、深礎基礎14を用いた例である。図13(a)に示すように、直接基礎12は逆T字形状であり、土台部分が地中に埋設されている。これに対し、図13(b)に示すように深礎基礎14は、高さ方向に延びる杭形状である。
図13(b)に示す深礎基礎14は、図13(a)に示す直接基礎12と比較すると横幅が小さい。したがって、鉄塔の基礎に深礎基礎を用いることにより、従来用いられていた逆T字状の直接基礎を用いる場合に比して、鉄塔の建設、特に基礎に要する用地を減らすことができる。また深礎基礎は、土止め等の仮設が施工しやすく、支持層の違いに対しては深さの変更で対応できる等のメリットも有する。
特許第3745027号
山岳地に深礎基礎を構築する場合、大部分の施工は人力または小型の孔内掘削機を用いて行うことになる。このため、鉄塔は一般に4本の主脚材を含んで構成されるが、各主脚材それぞれに対して深礎基礎を形成する従来の工法であると、建設コストが大きく、建設期間が長くなってしまう。また山岳地において地形による立地地点の制約上、尾根幅が極端に小さい場所では、4本の主脚材を安定した場所に設置することが難しく、ルート設定上の制約が厳しくなってしまう。
そこで、鉄塔の中心となる位置に配置される1本の深礎基礎からなる杭部、およびかかる杭部に対して主脚材を支持する梁部とを有する杭基礎を用いた工法の開発が検討されている。この工法によれば、深礎基礎が1本で済むため、建設コストおよび建設期間を大幅に削減することができると考えられる。
ここで、風等によって送電線が揺れると、鉄塔の基礎に対して、主脚材には引っ張り応力や圧縮応力がかかる。これらの応力によって主脚材が基礎から抜けることを防止するために、主脚材にはいかり材が設けられる。
上述したように主脚材には引張応力および圧縮応力がかかるため、いかり材は梁の厚み(高さ方向)の中間位置に配置される。すると、応力に耐える梁の厚みはその半分程度となるため、梁の厚みや幅を十分に確保する必要がある。すると、梁が大きくなってしまうため建設用地を広く確保しなければならず、深礎基礎を用いることによる利点が失われてしまう。
また他の課題として、鉄塔は、経年等により老朽化した場合や、更に大容量の電気を送電する送電線を張架するために鉄塔の高さが不足する場合等に建替が必要となる。この際、既設の鉄塔(以下、既設鉄塔と称する)周辺の既設建造物の存在や、張架されている電線の配線等の都合上、新しい鉄塔(以下、新設鉄塔と称する)は、撤去される既設鉄塔と同じ位置、すなわち元位置に設置されることが多い。
鉄塔の立替工法としては、既設鉄塔の替わりに送電線を張架する仮設鉄塔を建設する仮工事を行う仮工事工法の他に、既設鉄塔を残した状態でその外側または内側に新設鉄塔を建設する工法がある。新設鉄塔を既設鉄塔の外側に建設する場合には、新設鉄塔は必然的に既設鉄塔よりも大きくなる。このため、既設鉄塔周辺の用地の買い増しが必要となり、建設コストが増大してしまう。一方、新設鉄塔を既設鉄塔の内側に建設する場合には、新設鉄塔は必然的に既設鉄塔よりも小さくなる。このため、新設鉄塔の大きさが制限されてしまう。
本発明は、このような課題に鑑み、破壊強度を高めることで梁を小型化することができ、建設コストを削減することが可能な杭基礎、ならびに既設鉄塔を建て替える際の用地の拡大およびそれに起因する用地の買い増しを抑制することにより建設コストの削減を図ることが可能な鉄塔建替工法を提供することを目的としている。
上記課題を解決するために、本発明にかかる杭基礎の代表的な構成は、鉄塔の各主脚材を支持する梁部と、その中央に構築された杭部とを含む杭基礎において、主脚材のうち梁部内に配置される部分に取り付けられる複数の支圧板と、梁部内で主脚材を取り囲むように巻回された螺旋鉄筋またはリング鉄筋と、を備えることを特徴とする。
上記構成によれば、梁部内において主脚材の周囲に配置された螺旋鉄筋またはリング鉄筋により、主脚材の周囲のコンクリートを螺旋鉄筋またはリング鉄筋で拘束する。したがって、主脚材にかかった引張応力および圧縮応力を梁の厚み全体で受けることができるため、応力による破壊強度を高めることができ、梁部ひいては杭基礎の小型化、および建設コストの削減を図ることが可能となる。
上記課題を解決するために、本発明にかかる杭基礎の他の構成は、鉄塔の各主脚材を支持する梁部と、その中央に構築された杭部とを含む杭基礎において、主脚材の下端に取り付けられるアンカープレートと、梁部に埋め込まれてアンカープレートを梁部に締結する複数のアンカーボルトと、複数のアンカーボルトの外側に巻回された螺旋鉄筋またはリング鉄筋と、を備えることを特徴とする。かかる構成によれば、アンカープレートおよびアンカーボルトによって主脚材を梁部に接続する場合においても、上記と同様の効果を得ることが可能である。
上記杭部に対する梁部の高さは、鉄塔の設置箇所の地表の傾斜に応じて異なるとよい。
これにより、地表面の傾斜によって複数の主脚材の設置高さが異なる場合であっても、梁部を介して各主脚材(複数の主脚材)をそれぞれ杭部に接続することができる。
上記課題を解決するために、本発明にかかる鉄塔建替工法の代表的な構成は、複数の主脚材にそれぞれ個別の既設基礎を有する既設鉄塔を、上記に記載の杭基礎を有する新設鉄塔に立て替える鉄塔建替工法であって、梁部が既設基礎に重なるように杭基礎を設置することを特徴とする。
上述した杭基礎によれば、杭基礎における梁を小型化することができる。そして、上記構成によれば、杭基礎における梁が既設基礎に重なるように配置される。これにより、新設鉄塔の基礎である杭基礎が既設鉄塔の建設用地外に張り出す面積を減らすことができる。したがって、既設鉄塔を建て替える際の用地の拡大およびそれに起因する用地の買い増しを抑制し、建設コストの削減を図ることが可能となる。
上記鉄塔建替工法では、既設鉄塔を残したままで既設基礎に重なるように梁を配置し、既設鉄塔の外側または内側に新設鉄塔を建設した後に既設鉄塔を撤去するとよい。かかる構成によれば、既設鉄塔を残したままで新設鉄塔を建設する際に、既設鉄塔の外側または内側のいずれに新設鉄塔を建設する場合であっても新設鉄塔に要する用地を従来に比して縮小することができる。
上記鉄塔建替工法では、既設鉄塔を撤去し、既設基礎を梁部の下面の深さまではつって既設鉄塔の主脚材を露出させ、露出させた主脚材に支圧板を取り付けて、主脚材を埋め込むように梁部のコンクリートを打つとよい。
上記鉄塔建替工法では、既設鉄塔を撤去し、既設基礎を梁部の下面の深さまではつって既設鉄塔の主脚材を露出させ、露出させた主脚材を切断し、既設基礎に乗るように梁部のコンクリートを打つとよい。
かかる構成によれば、既設基礎によって新設鉄塔の基礎を補強することができる。したがって、新設鉄塔における応力への強度を高めることが可能となる。また既設基礎を有効活用することでそれを撤去する必要がなくなるため、撤去に要する作業やコストを削減することができる。
本発明によれば、破壊強度を高めることで梁を小型化することができ、建設コストを削減することが可能な杭基礎、ならびに既設鉄塔を建て替える際の用地の拡大およびそれに起因する用地の買い増しを抑制することにより建設コストの削減を図ることが可能な鉄塔建替工法を提供することが可能となる。
第1実施形態にかかる杭基礎を説明する図である。 第1実施形態にかかる杭基礎の詳細な断面図である。 図2の支圧板を説明する斜視図である。 図2の梁部における配筋を説明する斜視図である。 杭基礎における応力の作用について説明する図である。 梁部の他の例を説明する図である。 第2実施形態にかかる杭基礎の詳細な断面図である。 第3実施形態にかかる杭基礎を説明する図である。 第4実施形態の鉄塔建替工法について説明する図である。 第5実施形態の鉄塔建替工法について説明する図である。 第6実施形態の鉄塔建替工法を説明する図である。 第7実施形態の鉄塔建替工法を説明する図である。 鉄塔の基礎について説明する図である。
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
(第1実施形態の杭基礎)
図1は、第1実施形態にかかる杭基礎100を説明する図であり、図1(a)は、第1実施形態の杭基礎100を側方から観察した状態を示していて、図1(b)は、第1実施形態の杭基礎100を上方から観察した状態を示している。なお、杭基礎100は大部分が地中に埋設されているが、理解を容易にするために、図1(a)および(b)では埋設された杭基礎100を側方または上方から観察した状態を示している。
図1(a)および(b)に示すように、第1実施形態の杭基礎100は、梁部120a・120b・120c・120d、およびその中央に構築される杭部110を有する。杭部110は、深礎工法によって地中に構築された杭である。
図1(b)に示すように、第1実施形態の杭基礎100では、梁部120a〜120dは杭部110を中心として4方向に張り出している。すなわち杭基礎100は、上方から観察した際に全体として十字形状となっている。梁部120a〜120dは、それぞれ主脚材10a〜10dを支持する。
図2は、第1実施形態にかかる杭基礎100の詳細な断面図である。図3は、図2の支圧板130を説明する斜視図である。なお、4つの梁部120a〜120dは同様の構成を有するため、本実施形態では梁部120aを例示して説明する。
図2に示すように、本実施形態の杭基礎100は、複数の支圧板130、複数の配力筋140および螺旋鉄筋150を含んで構成される。なお、螺旋鉄筋に代えてリング鉄筋を使用してもよい。図3(a)に示すように、本実施形態では支圧板130はL字鋼によって構成される。図2に示すように、支圧板130は、主脚材10aのうち、梁部120a内に配置される部分に複数取り付けられる。これにより、後述するようにコンクリートからなる梁部120aへの主脚材10aの定着強度を高めることが可能となる。
図3(b)は支圧板の他の例を示している。主脚材10fが鋼管である場合には、複数のリング鋼130aを主脚材に溶接することによって支圧板にすることができる。
図4は、図2の梁部120aにおける配筋を説明する斜視図である。図4では、図2に示した主脚材10aおよび支圧板130を不図示としている。図2および図4に示すように、梁部120aの内部では、上部および下部に複数配置される主配筋122によって梁部120aの骨格が形成されている。主配筋122は、水平方向および垂直方向に複数配置される配力筋124によって連結されている。なお図4では配力筋124として端部補強鉄筋(Tヘッド工法鉄筋)を描いているが、通常の曲げ鉄筋を使用してもよい。
図2に示すように、梁部120a内では主脚材10aの周囲に複数の配力筋140が配置される。図4に示すように、配力筋140は、主脚材10a(図2参照)を取り囲むように複数配置される。そして図2および図4に示すように、複数の配力筋140の周囲には螺旋鉄筋150が巻回されている。
図5は、杭基礎における応力の作用について説明する図である。図5(a)は、本実施形態の杭基礎100を例示した模式的な断面図であり、図5(b)は、図5(a)に示す杭基礎100の平面図である。図5(c)は、比較例の杭基礎20を例示した模式的な断面図であり、図5(d)は、図5(c)に示す杭基礎20の平面図である。
図5(c)および(d)に示すように、比較例の杭基礎20は、主脚材10eのうち、梁部20aの内部に配置される領域にいかり材16が取り付けられている。いかり材16は、主脚材10eにかかる引張応力および圧縮応力の両方の応力に対して耐える必要がある。このため、いかり材16は、梁部20aの厚み(高さ方向)の中間位置に配置される。すると、梁部20aでは、いかり材16よりも上方の領域が引張応力を受け、いかり材16よりも下方の領域が圧縮応力を受けることとなる、すなわちそれぞれの応力に耐える梁部20aの厚みはその半分程度となる。故に、引張応力および圧縮応力に対して十分な強度を確保するべく、梁部20aの厚みT2が厚くなってしまう。
これに対し、図5(a)および(b)に示すように、本実施形態の杭基礎では、梁部120aに引張応力や圧縮応力がかかると、複数の支圧板130においてせん断応力が発生する。このとき、配力筋140の周囲に巻回された螺旋鉄筋150によって主脚材10aの周囲のコンクリートを拘束している。したがって、螺旋配筋150がかかるせん断応力を受けることにより、引張応力および圧縮応力を梁部120a厚み全体において受けることが可能となる。したがって、梁部120aにおける応力に対する強度を高めることができるため、梁部120aの厚みT1をT2に比べて薄くすることが可能となる。
また比較例の杭基礎20では、図5(c)および(d)に示すように、引張応力がかかった際に生じたせん断応力による破壊面F2が大きい。これをカバーするために、梁部20aの幅W2を破壊面F2よりも大きく確保する必要がある。これに対し、本実施形態の杭基礎100では、せん断応力による破壊面F1は螺旋鉄筋150の幅よりも小さくなる。したがって、破壊面F2の幅を、比較例のようにいかり材16を用いた場合よりも大幅に小さくすることができ、ひいては梁部120aの幅を狭めることが可能となる。
上記説明したように、本実施形態の杭基礎100によれば、主脚材10aの周囲に螺旋鉄筋150を配置することにより、主脚材10aにかかった引張応力および圧縮応力を梁部120aの厚み全体で受けることができる。これにより、応力による破壊強度が高まり、且つせん断応力による破壊面が小さくなるため、梁部120aひいては杭基礎100の小型化、および建設コストの削減を図ることが可能となる。
図6は、梁部の他の例を説明する図である。本実施形態の杭基礎100では、図1(b)に示すように杭部110を中心として4つの梁部120a〜120dが設けられている構成、すなわち杭基礎100が平面視において十字形状となっている構成を例示したが、これに限定するものではない。
図6(a)では、梁部120eは円形状であり、円形状の1つの梁部120eにおいて4つの主脚材10a〜10dを支持する。また図6(b)では、梁部120fは四角形状であり、四角形状の1つの梁部120fにおいて4つの主脚材10a〜10dを支持する。このような形状の梁部120e・120f、すなわち梁部120e・120fに代えてマット床板を採用しても、上記と同様の効果を得ることが可能である。
(第2実施形態の杭基礎)
図7は、第2実施形態にかかる杭基礎200の詳細な断面図である。なお、以下の実施形態では、第1実施形態の杭基礎100の構成要素と同一の機能を有する要素については、同一の符号を付すことにより説明を省略する。また図7に示す梁部220a・梁部220bは同一の構成を有するため、梁部220aを例示して説明する。
図7に示すように、第2実施形態の杭基礎200では、主脚材10aは、梁部220a内に埋設されず、主脚材の下端に取り付けられたアンカープレート202によって梁部220aの上面に取り付けられる。アンカープレート202は、アンカーボルト204によって梁部220aに締結される。これにより、アンカープレート202およびアンカーボルト204を介して主脚材10aが梁部220aに固定される。また梁部の下面近傍に位置するアンカーボルト204の下端、端部補強板206が取り付けられている。
第2実施形態の杭基礎200では、梁部220aの上面において圧縮応力を受け、梁部220a内の端部補強板206において引張応力を受けるため、それらの応力は梁部220a厚み全体で受けることとなる。したがって、第1実施形態の杭基礎100と同様に梁部220aにおける応力に対する強度を高めることができ、梁部220aの厚みを薄くすることが可能となる。また第2実施形態の杭基礎200においてもアンカーボルト204の周囲に螺旋鉄筋150が配置されているため、第1実施形態と同様にせん断応力による破壊面を小さくすることができ、梁部220aひいては杭基礎200全体の小型化を図ることが可能である。
(第3実施形態の杭基礎)
図8は、第3実施形態にかかる杭基礎300を説明する図であり、杭基礎300を側方から観察した状態を示している。図8に示すように、第3実施形態の杭基礎300では、複数の梁部320a・320bの杭部110に対する高さは、鉄塔10の設置箇所の地表1の傾斜に応じて異なっている。このように、杭基礎300が鉄塔10の複数の主脚材10a・10bそれぞれに対する複数の梁部320a・320bを備える構成であることにより、各主脚材の設置高さが異なる場合であってもそれらをそれぞれ杭部110に接続することができる。
(第4実施形態の鉄塔建替工法)
次に、複数の主脚材にそれぞれ個別の既設基礎を有する既設鉄塔を、上記説明した杭基礎を有する新設鉄塔に立て替える鉄塔建替工法について説明する。図9は、第4実施形態の鉄塔建替工法について説明する図であり、図9(a)は、鉄塔および杭基礎100を側方から観察した状態を示していて、図9(b)は、図9(a)の杭基礎100を上方から観察した状態を示している。なお、図9(a)および(b)では、既設鉄塔50を破線にて図示している。
第4実施形態の鉄塔建替工法では、既設鉄塔50を残したままで、まず既設鉄塔50の既設基礎52a・52b・52c・52dの内側に、杭部110のための掘削孔(不図示)を形成する。そして、掘削孔にコンクリートを打設することにより、図9(a)に示す杭部110を構築する。杭部110を構築したら、図9(b)に示すように既設基礎52a〜52dに重なるように梁部120a〜120dを設置することにより、梁部120a〜120dが既設基礎52a〜52dに重なるように鉄塔10(新設鉄塔)の杭基礎100が設置される。そして、既設鉄塔50の外側に鉄塔10を建設し、既設鉄塔50を撤去する(いわゆるつつみこみ工法)。
上記構成によれば、図9(b)に示すように、新設鉄塔の基礎、すなわち本実施形態の杭基礎100は、従来のつつみこみ工法の基礎位置Pよりも内側に位置し、既設鉄塔50の既設基礎52a〜52dとほぼ同じ位置に配置される。したがって、従来工法では既設鉄塔50の周辺の用地を買い増す必要があったが、本実施形態の鉄塔建替工法では用地の買い増しが不要である。これにより、鉄塔建替に要する建設コストの削減を図ることが可能となる。
また、既設基礎52a〜52dを新設基礎に利用することから、新設基礎の剛性をあげることができる。特に、梁部120a〜120dは片持ち梁であるところ、既設基礎52a〜52dによって梁の先端近傍を支持すれば、梁の腕の長さを短くすることができる。したがって飛躍的に剛性を上げられると共に、梁の断面積の低減を図ることができる。
さらに、既設基礎を新設基礎に利用していることから、既設基礎を撤去する必要がなくなる。既設基礎の撤去は作業負担が大きく、また重量物であるコンクリート基礎が廃棄物となるため、運搬の負担も大きい。山中に設置された既設基礎となるとなおさらである。したがって、既設基礎の撤去が不要となることは多大な利益がある。
(第5実施形態の鉄塔建替工法)
図10は、第5実施形態の鉄塔建替工法について説明する図である。図10(a)は、鉄塔および杭基礎100を側方から観察した状態を示していて、図10(b)は、図10(a)の杭基礎100を上方から観察した状態を示している。なお、図10(a)および(b)では、既設鉄塔50を破線にて図示している。
図10に示すように、第5実施形態の鉄塔建替工法では、第4実施形態と同様に既設鉄塔50を残したままで杭部110を構築する。杭部110を構築したら、図10(b)に示すように既設基礎52a〜52dに重なるように梁部120a〜120dを設置する。これにより、梁部120a〜120dが既設基礎52a〜52dに重なるように鉄塔10(新設鉄塔)の杭基礎100が設置される。そして、既設鉄塔50の内側に鉄塔10を建設し、既設鉄塔50を撤去する(いわゆるつつみこまれ工法)。
上記構成によれば、図10(b)に示すように、新設鉄塔の基礎である杭基礎100は、梁部120a〜120dが既設基礎52a〜52dに重なるように配置され、既設基礎52a〜52dよりも内側に納まっている。したがって、新設鉄塔の基礎が既設鉄塔50の建設用地外に張り出すことがないため、用地の買い増しが不要であり、鉄塔建替に要する建設コストの削減を図ることが可能となる。
また、既設基礎52a〜52dを新設基礎に利用することから、新設基礎の剛性をあげることができる。特に、梁部120a〜120dは片持ち梁であるところ、既設基礎52a〜52dによって梁の先端近傍を支持すれば、両持ち梁になる。したがって飛躍的に剛性を上げられると共に、梁の断面積の低減を図ることができる。
(第6実施形態の鉄塔建替工法)
図11は、第6実施形態の鉄塔建替工法を説明する図であり、鉄塔および基礎を側方から観察した状態を示している。なお、理解を容易にするために、図11(b)および(c)では、既設鉄塔50を破線にて図示している。
図11(a)に示すように、既設鉄塔50を構成する主脚材(以下、既設主脚材50a・50bと称する)は、それぞれ既設基礎52a・52bに支持されている。第6実施形態の鉄塔建替工法では、まず図11(a)の既設鉄塔50を撤去する。そして、図11(b)に示すように、杭基礎100の杭部110を構築する掘削孔110aを形成する。
次に、杭基礎100の梁部120a・120bの下面に相当する深さDまで既設基礎52a・52bをはつり、既設主脚材50a・50bを露出させる。露出した既設主脚材50a・50bには、図11(b)に示すように支圧板130が取り付けられる。支圧板130を取り付けたら、図11(c)に示すように、既設主脚材50a・50bを埋め込むようにコンクリートを打設し、梁部120a・120bを構築する。
上記構成によれば、梁部120a・120bに埋め込まれた既設主脚材50a・50bにより、梁部120a・120bの引張応力および圧縮応力に対する強度を高めることができる。また既設基礎50a・50bを有効活用することにより、それを撤去する必要がなくなるため、撤去に要する作業やコストを削減することが可能となる。なお、本実施形態では露出した既設主脚材50a・50bに支圧板130を取り付ける構成を例示したが、これに限定するものではなく、支圧板130を取り付けない構成とすることも可能である。
(第7実施形態の鉄塔建替工法)
図12は、第7実施形態の鉄塔建替工法を説明する図であり、鉄塔および基礎を側方から観察した状態を示している。なお、第6実施形態の鉄塔建替工法と同一の機能や構成を有する要素については、同一の符号を付すことにより説明を省略する。
第7実施形態の鉄塔建替工法においても、まず図12(a)の既設鉄塔50を撤去し、掘削孔110aを形成する。次に、杭基礎100の梁部120a・120bの下面に相当する深さDまで既設基礎52a・52bをはつって既設主脚材50a・50bを露出させ、露出させた既設主脚材50a・50bを切断する。そして、既設基礎52a・52bに乗るようにコンクリートを打設することにより、既設基礎52a・52b上に梁部120a・120bが構築される。
上記構成によっても、既設基礎52a・52bを有効活用することができるため、第6実施形態の鉄塔建替工法と同様に撤去に要する作業やコストを削減することができる。また梁部120a・120bの下方に残存する既設基礎52a・52bにより、梁部120a・120bにおける圧縮応力に対する強度を高めることが可能である。なお、第7実施形態では露出させた既設主脚材50a・50bを切断しているため引張応力に対する強度は補強されないが、1つの主脚材に引張応力がかかる場合、反対側の主脚材には圧縮応力がかかる。したがって、応力がかかる際にはいずれかの主脚材において常に補強効果が得られる。
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
本発明は、鉄塔の各主脚材を支持する梁部と、その中央に構築された杭部とを含む杭基礎、および複数の主脚材にそれぞれ個別の既設基礎を有する既設鉄塔を、かかる杭基礎を有する新設鉄塔に立て替える鉄塔建替工法に利用することができる。
10…鉄塔、10a〜f…主脚材、12…直接基礎、14…深礎基礎、16…いかり材、20…杭基礎、20a…梁部、50…既設鉄塔、50a…既設主脚材、50b…既設主脚材、52a…既設基礎、52b…既設基礎、52c…既設基礎、52d…既設基礎、100…杭基礎、110…杭部、110a…掘削孔、120a〜f…梁部、122…主配筋、124…配力筋、130、130a…支圧板、140…配力筋、150…螺旋鉄筋、200…杭基礎、202…アンカープレート、204…アンカーボルト、206…端部補強板、220a…梁部、220b…梁部、300…杭基礎、320a…梁部、320b…梁部

Claims (6)

  1. 鉄塔の各主脚材を支持する梁部と、その中央に構築された杭部とを含む杭基礎において、
    前記主脚材のうち前記梁部内に配置される部分に取り付けられる複数の支圧板と、
    前記梁部内で前記主脚材を取り囲むように巻回された螺旋鉄筋またはリング鉄筋と、
    を備え
    前記杭部に対する前記梁部の高さは、前記主脚材ごとに、前記鉄塔の設置箇所の地表の傾斜に応じて異なることを特徴とする杭基礎。
  2. 鉄塔の各主脚材を支持する梁部と、その中央に構築された杭部とを含む杭基礎において、
    前記主脚材の下端に取り付けられるアンカープレートと、
    前記梁部に埋め込まれて前記アンカープレートを該梁部に締結する複数のアンカーボルトと、
    前記複数のアンカーボルトの外側に巻回された螺旋鉄筋またはリング鉄筋と、
    を備え
    前記杭部に対する前記梁部の高さは、前記主脚材ごとに、前記鉄塔の設置箇所の地表の傾斜に応じて異なることを特徴とする杭基礎。
  3. 複数の主脚材にそれぞれ個別の既設基礎を有する既設鉄塔を、請求項1または2に記載の杭基礎を有する新設鉄塔に立て替える鉄塔建替工法であって、
    前記梁部が前記既設基礎に重なるように前記杭基礎を設置することを特徴とする鉄塔建替工法。
  4. 前記既設鉄塔を残したままで前記既設基礎に重なるように前記梁を配置し、
    前記既設鉄塔の外側または内側に新設鉄塔を建設した後に前記既設鉄塔を撤去することを特徴とする請求項に記載の鉄塔建替工法。
  5. 前記既設鉄塔を撤去し、
    前記既設基礎を前記梁部の下面の深さまではつって該既設鉄塔の主脚材を露出させ、
    前記露出させた主脚材に支圧板を取り付けて、
    前記主脚材を埋め込むように前記梁部のコンクリートを打つことを特徴とする請求項に記載の鉄塔建替工法。
  6. 前記既設鉄塔を撤去し、
    前記既設基礎を前記梁部の下面の深さまではつって該既設鉄塔の主脚材を露出させ、
    前記露出させた主脚材を切断し、
    前記既設基礎に乗るように前記梁部のコンクリートを打つことを特徴とする請求項に記載の鉄塔建替工法。
JP2016151721A 2016-08-02 2016-08-02 杭基礎および鉄塔建替工法 Active JP6834226B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016151721A JP6834226B2 (ja) 2016-08-02 2016-08-02 杭基礎および鉄塔建替工法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016151721A JP6834226B2 (ja) 2016-08-02 2016-08-02 杭基礎および鉄塔建替工法

Publications (2)

Publication Number Publication Date
JP2018021322A JP2018021322A (ja) 2018-02-08
JP6834226B2 true JP6834226B2 (ja) 2021-02-24

Family

ID=61164418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016151721A Active JP6834226B2 (ja) 2016-08-02 2016-08-02 杭基礎および鉄塔建替工法

Country Status (1)

Country Link
JP (1) JP6834226B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110144928B (zh) * 2019-05-28 2021-01-15 中冶建工集团有限公司 一种梁板式设备基础施工方法
CN110144929B (zh) * 2019-05-28 2021-01-12 中冶建工集团有限公司 一种梁板式设备基础梁的支挡安装方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421792B2 (ja) * 1985-02-20 1992-04-13 Kansai Denryoku Kk
JP2000345571A (ja) * 1999-03-31 2000-12-12 Tokyo Electric Power Co Inc:The 鉄塔用基礎の構築方法
JP3413599B2 (ja) * 2000-11-10 2003-06-03 中国電力株式会社 無停電高架基礎切替工法
JP2002256573A (ja) * 2001-03-02 2002-09-11 Chubu Electric Power Co Inc 既設基礎補強型鉄塔用基礎及びその構築工法
JP2003074213A (ja) * 2001-08-30 2003-03-12 Taisei Corp 新設鉄塔の構築方法及び既存鉄塔の改修方法
JP2004036235A (ja) * 2002-07-03 2004-02-05 Eito Kogyo Kk 鉄塔嵩上げ工法
JP4957894B2 (ja) * 2007-02-27 2012-06-20 東京電力株式会社 送電用鉄塔の補強方法
JP2008208632A (ja) * 2007-02-27 2008-09-11 Tokyo Electric Power Co Inc:The 鉄塔の工事方法
JP5136798B2 (ja) * 2009-03-03 2013-02-06 東京電力株式会社 鉄塔基礎の構築方法
JP5131645B2 (ja) * 2009-03-03 2013-01-30 東京電力株式会社 鉄塔基礎の構築方法
JP5020357B2 (ja) * 2010-06-30 2012-09-05 中国電力株式会社 塔状構造物の基礎構築方法およびその基礎構造
JP5679305B2 (ja) * 2011-02-17 2015-03-04 東京電力株式会社 送電用鉄塔の補強方法
CN103225441A (zh) * 2013-04-12 2013-07-31 中国能源建设集团广东省电力设计研究院 一种具有悬翘结构的架空式电缆终端场
US9845612B2 (en) * 2015-06-26 2017-12-19 General Electric Company System and method for assembling tower sections of a wind turbine lattice tower structure
CN205140158U (zh) * 2015-11-05 2016-04-06 国家电网公司 山区输电线路基础应急预警系统

Also Published As

Publication number Publication date
JP2018021322A (ja) 2018-02-08

Similar Documents

Publication Publication Date Title
US10822765B2 (en) Foundations system for towers and method for installing the foundations system for towers
RU2714745C1 (ru) Фундамент для ветроэнергетической установки
JP6834226B2 (ja) 杭基礎および鉄塔建替工法
RU2720210C2 (ru) Фундамент для ветроэнергетической установки
KR101319784B1 (ko) 철탑 보강구조 및 보강방법
JP4705513B2 (ja) 基礎構造
JP2017096063A (ja) 山留掘削工法及び躯体構築方法
US20210190043A1 (en) Wind turbine foundation and method of constructing a wind turbine foundation
JP2010133206A (ja) 既存杭を利用した新設構造物の構造および既存杭を利用した新設構造物の構築方法
JP2005002671A (ja) アンダーピニング方法および高架橋
JP2006316495A (ja) 橋脚基礎構造とその施工方法
CN103967018B (zh) 深大基坑角支撑水平抗剪结构
JP2019100070A (ja) 洋上風力発電施設の基礎構造およびその施工方法
JP4634829B2 (ja) 免震建物の基礎構造
JP2005068859A (ja) 耐震土間床
US20210348597A1 (en) Pile foundation and construction method of pile foundation
CN213539041U (zh) 一种施工电梯基础装置
JP6886811B2 (ja) 基礎構造及び基礎構造の構築方法
RU190916U1 (ru) Подземное сооружение
KR100542141B1 (ko) 송전선 철탑의 산악형 기초 구조물
CN105113387A (zh) 桥梁承台改造结构及其施工方法
KR20210117024A (ko) 파형 강판 벽체
JP6441029B2 (ja) 地下施設増設方法
JP6840457B2 (ja) 単柱構造物の補強方法
JP6206841B2 (ja) 構造物の支持構造

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6834226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150