JP6830193B2 - 電力変換装置、電力変換システム - Google Patents

電力変換装置、電力変換システム Download PDF

Info

Publication number
JP6830193B2
JP6830193B2 JP2017017923A JP2017017923A JP6830193B2 JP 6830193 B2 JP6830193 B2 JP 6830193B2 JP 2017017923 A JP2017017923 A JP 2017017923A JP 2017017923 A JP2017017923 A JP 2017017923A JP 6830193 B2 JP6830193 B2 JP 6830193B2
Authority
JP
Japan
Prior art keywords
power
control unit
converter
bus
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017017923A
Other languages
English (en)
Other versions
JP2018126013A (ja
Inventor
直生 辻本
直生 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017017923A priority Critical patent/JP6830193B2/ja
Priority to PCT/JP2017/042630 priority patent/WO2018142737A1/ja
Publication of JP2018126013A publication Critical patent/JP2018126013A/ja
Application granted granted Critical
Publication of JP6830193B2 publication Critical patent/JP6830193B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Inverter Devices (AREA)

Description

本発明は、太陽電池等の直流電源から供給される電力を変換して出力する電力変換装置、及び電力変換システムに関する。
太陽光発電システムでは、太陽電池により発電された直流電力を交流電力に変換するインバータが用いられる。インバータの電源には、太陽電池により発電された直流電力を降圧して生成した電力を使用することが一般的である(例えば、特許文献1参照)。太陽電池は日射がない環境(例えば、夜間)では発電しないため、その環境では基本的にインバータを動作させる必要性がない。
近年、太陽光発電システムと蓄電システムを連携させたシステム(以下、本明細書では創蓄連携システムという)が普及してきている。創蓄連携システムでは、インバータの直流側のバスに、蓄電システムのDC−DCコンバータが接続されることが一般的である。この構成では、太陽電池が発電していない状態でも蓄電池の充放電により、インバータが動作する場合がある。そこでインバータの電源を、交流側の商用電力系統(以下単に、電力系統という)から取ることもできる構成が考えられる。しかしながらこの構成でも、日射がなく蓄電池が放電しない状態で電力系統が停電した場合、インバータへの電源供給が途絶えてインバータの動作が停止する。
創蓄連携システムは自立モードをサポートしており、電力系統が停電した場合、蓄電池から放電される電力を自立出力することができる。自立モードに切り替わるには、蓄電池を制御する制御部が電力系統の停電を認識する必要がある。
特開2014−45605号公報
創蓄連携システムには一体型と分離型があるが、近年、柔軟にシステム変更が可能な分離型が注目されている。分離型では既設の太陽光発電システムに蓄電システムを後付けすることができる。分離型の蓄電システムの制御部は基本的に、電力系統の停電を直接検出する装備を備えていない。蓄電システムに、停電を検出するための検出器を追加するとコストが増加する。
そこで、蓄電システムの制御部が太陽光発電システムの制御部から停電の通知を受ける構成が考えられる。しかしながら、一般的なシリアル通信規格を用いた通信では、太陽光発電システムの制御部が停電を検出してから、当該制御部が停電の検出信号を送信するまでに電源を喪失する可能性がある。
本発明はこうした状況に鑑みなされたものであり、その目的は、電力系統の状態を直接監視していない電力変換装置が、電力系統の停電の有無を低コストで高精度に認識できる技術を提供することにある。
上記課題を解決するために、本発明のある態様の電力変換装置は、第1直流電源から出力される直流電力を所望の電圧値の直流電力に変換して直流バスに出力する第1DC−DCコンバータと、前記直流バスの直流電力を交流電力に変換し、前記交流電力を電力系統へ出力するインバータと、前記インバータを制御する第1制御部と、を備える。前記直流バスには、第2直流電源から出力される直流電力を所望の電圧値の直流電力に変換して前記直流バスに出力する第2DC−DCコンバータが接続され、前記第1制御部は、前記第2DC−DCコンバータを制御する第2制御部と信号線で接続されており、前記電力系統が停電している否かを示す信号を前記信号線に出力する。
本発明によれば、電力系統の状態を直接監視していない電力変換装置が、電力系統の停電の有無を低コストで高精度に認識できる。
本発明の実施の形態に係る電力変換システムを説明するための図である。 図1のインバータと電力系統間の詳細な構成を示す図である。 図1の第1電源部と第1制御部の詳細な構成を示す図である。 停電通知信号線の制御例を示す図である。 電力系統の停電時の絶縁型AC−DCコンバータの出力電圧の推移例を示す図である。 本発明の実施の形態に係る電力変換システムの、停電発生時の動作を示すフローチャートである。 図7(a)、(b)は、復電を検出できない回路構成例を示す図である。
図1は、本発明の実施の形態に係る電力変換システム1を説明するための図である。電力変換システム1は、第1電力変換装置10及び第2電力変換装置20を備える。第1電力変換装置10は太陽電池2用のパワーコンディショナシステムであり、第2電力変換装置20は蓄電部3用のパワーコンディショナシステムである。図1では、太陽電池2用のパワーコンディショナシステムに、蓄電部3用のパワーコンディショナシステムを後付けした例を示している。
太陽電池2は、光起電力効果を利用し、光エネルギーを直接電力に変換する発電装置である。太陽電池2として、シリコン太陽電池、化合物半導体などを素材にした太陽電池、色素増感型(有機太陽電池)等が使用される。太陽電池2は第1電力変換装置10と接続され、発電した電力を第1電力変換装置10に出力する。
第1電力変換装置10は、第1DC−DCコンバータ11、インバータ12、第1電源部13、及び第1制御部14を備える。第1DC−DCコンバータ11とインバータ12間は直流バス15で接続される。
第1DC−DCコンバータ11は、太陽電池2から出力される直流電力を、所望の電圧値の直流電力に変換し、変換した直流電力を直流バス15に出力する。第1DC−DCコンバータ11は例えば、昇圧チョッパで構成することができる。
インバータ12は双方向インバータであり、直流バス15から入力される直流電力を交流電力に変換し、変換した交流電力を電力系統4に接続された配電線に出力する。当該配電線には負荷5が接続される。またインバータ12は、電力系統4から供給される交流電力を直流電力に変換し、変換した直流電力を直流バス15に出力する。
第1制御部14は第1DC−DCコンバータ11及びインバータ12を制御する。第1制御部14は、太陽電池2の出力電力が最大になるよう第1DC−DCコンバータ11を制御する。具体的には第1制御部14は、太陽電池2の出力電圧および出力電流である、第1DC−DCコンバータ11の入力電圧および入力電流を計測して太陽電池2の発電電力を推定する。第1制御部14は、計測した太陽電池2の出力電圧と推定した発電電力をもとに、太陽電池2の発電電力を最大電力点(最適動作点)にするための指令値を生成する。例えば、山登り法に従い動作点電圧を所定のステップ幅で変化させて最大電力点を探索し、最大電力点を維持するように指令値を生成する。第1DC−DCコンバータ11は、生成された指令値に基づく駆動信号に応じてスイッチング動作する。
第1制御部14は、直流バス15の電圧が目標値を維持するようにインバータ12を制御する。具体的には第1制御部14は、直流バス15の電圧を検出し、検出したバス電圧を目標値に一致させるための指令値を生成する。インバータ12は、生成された指令値に基づく駆動信号に応じてスイッチング動作する。
第1電源部13は、電力系統4からの交流電力を、所望の低い電圧値の直流電力に変換して制御電源電圧を生成する。例えば、電力系統4の202±20Vの交流電圧を、24Vの直流電圧(制御電源電圧)に変換する。また第1電源部13は、直流バス15からの直流電力を、所望の低い電圧値の直流電力に変換して制御電源電圧を生成する。例えば、直流バス15の300〜360Vの直流電圧を、24Vの直流電圧(制御電源電圧)に降圧する。第1電源部13は、生成した制御電源電圧を、第1制御部14を含むシステム内の各種負荷に供給する。第1電源部13の詳細な構成は後述する。
蓄電部3は、電力を充放電可能であり、リチウムイオン蓄電池、ニッケル水素蓄電池、鉛蓄電池、電気二重層キャパシタ、リチウムイオンキャパシタ等を含む。蓄電部3は第2電力変換装置20と接続される。
第2電力変換装置20は、第2DC−DCコンバータ21、第2電源部22、及び第2制御部23を備える。第2DC−DCコンバータ21は、蓄電部3と直流バス15の間に接続され、蓄電部3を充放電する双方向コンバータである。第2制御部23は、指令値をもとに第2DC−DCコンバータ21を制御して、蓄電部3を定電流(CC)/定電圧(CV)で充電/放電する。第2電源部22は、蓄電部3または直流バス15からの直流電力を、所望の低い電圧値の直流電力に変換して制御電源電圧を生成する。第2電源部223は、生成した制御電源電圧を、第2制御部23を含むシステム内の各種負荷に供給する。
操作表示部30は、本電力変換システム1のユーザインターフェイスであり、室内の所定の位置に設置される。操作表示部30は例えば、タッチパネルディスプレイで構成することができ、ユーザに所定の情報を提供すると共に、ユーザからの操作を受け付ける。本実施の形態では、操作表示部30と第1制御部14とが通信線43で接続され、両者の間で、所定のシリアル通信規格(例えば、例えばRS−485規格、TCP−IP規格)に準拠した通信が行われる。また操作表示部30は、第1電源部13と電源線で接続されており、第1電源部13により生成された制御電源電圧を受けて動作する。
なお、操作表示部30はACコンセントから系統電圧を取得して、操作表示部30の内部で制御電源電圧を生成してもよい。また操作表示部30は、壁などに固定されるのではなく、持ち運び可能な携帯端末であってもよい。この場合、操作表示部30と第1制御部14間は無線通信で接続される。
第1制御部14と第2制御部23は、通信線41と停電通知信号線42で接続される。第1制御部14と第2制御部23の間でも、所定のシリアル通信規格に準拠した通信が行われる。停電通知信号線42は、第1制御部14から第2制御部23に、電力系統4の停電発生の有無を通知するための専用の信号線である。
図2は、図1のインバータ12と電力系統4間の詳細な構成を示す図である。本実施の形態に係る電力変換システム1は、系統連系モードと自立モードをサポートしている。図2において、インバータ12と電力系統4間の配電線上に系統連系リレーS1が挿入される。第1電源部13は、系統連系リレーS1より電力系統4側の給電点から交流電力を取得している。インバータ12と系統連系リレーS1間の接続点から自立出力用の電力線が分岐しており、当該電力線は自立出力端子6に繋がる。当該電力線上に自立出力リレーS2が挿入される。
自立出力端子6の先端にはACプラグが装着されていてもよいし、予め設定された特定負荷が接続されていてもよい。特定負荷は、電力系統4の停電時に電力変換システム1から優先的に電力供給を受けることができる予め設定された負荷である。図2に示す構成は、一般の負荷5が系統連系リレーS1の外側に接続される構成であるため、自立モードでは電力変換システム1から負荷5に電力供給されず、自立出力端子6に接続された負荷にのみ電力が供給される構成である。
第1制御部14は、系統連系リレーS1のコイルへの通電/非通電を制御することにより系統連系リレーS1の開閉を制御でき、同様に自立出力リレーS2のコイルへの通電/非通電を制御することにより自立出力リレーS2の開閉を制御できる。ノーマルオープン型のリレーの場合はコイルに通電することにより接点が閉じ、ノーマルクローズ型のリレーの場合はコイルに通電することにより接点が開く。第1制御部14は系統連系モードでは系統連系リレーS1を閉じて自立出力リレーS2を開き、自立モードでは系統連系リレーS1を開いて自立出力リレーS2を閉じる。
図3は、図1の第1電源部13と第1制御部14の詳細な構成を示す図である。第1電源部13は、絶縁型AC−DCコンバータ13a、絶縁型DC−DCコンバータ13b及び分圧回路を含む。第1制御部14は、降圧回路14a、第1マイクロコンピュータ14b、トランジスタQ1及び第1フォトカプラP1を含む。
絶縁型AC−DCコンバータ13a及び絶縁型DC−DCコンバータ13bはそれぞれ例えば、フライバック式コンバータ又はフォワード式コンバータで構成される。絶縁型AC−DCコンバータ13aの場合、1次側に整流回路(例えば、ダイオードブリッジ回路)が追加される。
上記分圧回路は、第1抵抗R1と第2抵抗R2の直列回路で構成され、絶縁型AC−DCコンバータ13aの出力電圧を所定の分圧比(例えば、略2:1)で分圧する。第1抵抗R1と第2抵抗R2間の分圧点電圧は、第1マイクロコンピュータ14bのA/Dポートに入力される。
絶縁型AC−DCコンバータ13aは、電力系統4から供給される交流電力を12Vの直流電力に変換し、逆流防止用の第1ダイオードD1及び第2ダイオードD2を介して、システム内負荷7及び降圧回路14aに出力する。システム内負荷7には、操作表示部30やファン等の負荷が含まれる。当該ファンは、システム内の回路基板を冷却するためのファンである。
同様に、絶縁型DC−DCコンバータ13bは、直流バス15から供給される直流電力を12Vの直流電力に変換し、逆流防止用の第3ダイオードD3及び第4ダイオードD4を介して、システム内負荷7及び降圧回路14aに出力する。
降圧回路14aは、絶縁型AC−DCコンバータ13a及び/又は絶縁型DC−DCコンバータ13bから供給された直流電力を、所望の低い電圧値の直流電力に変換する。図3に示す例では、12Vの直流電力を5Vの直流電力に変換する。降圧回路14aは例えば、スイッチングレギュレータで構成される。降圧回路14aは、降圧した電圧を第1マイクロコンピュータ14bの電源端子VDDに出力すると共に、トランジスタQ1の一端に出力する。トランジスタQ1の他端は第1フォトカプラP1を介してグラウンドラインに接続されている。
図3ではトランジスタQ1に、npn型のバイポーラトランジスタを使用している。トランジスタQ1のコレクタ他端は電源ライン(5Vライン)に接続され、エミッタ他端はグラウンドラインに接続され、ベース端子は第1マイクロコンピュータ14bのI/Oポートに接続されている。なおバイポーラトランジスタの代わりにFETを使用してもよい。
第1フォトカプラP1のフォトダイオードは、トランジスタQ1のエミッタ端子とグラウンドラインとの間に挿入され、第1フォトカプラP1のフォトトランジスタは停電通知信号線42に接続される。
第1マイクロコンピュータ14bは、A/Dポートに入力される電圧を監視して、絶縁型AC−DCコンバータ13aの出力電圧を推定する。上記分圧点とA/Dポート間の配線には、第5ダイオードD5を介して電源電圧ラインが、第6ダイオードD6を介してグラウンドラインがそれぞれ接続されており、A/Dポートに、サージ等の異常電圧が入力されることが抑制されている。
以上の回路構成において、太陽電池2が発電を停止しており、蓄電部3が放電していない状態では、直流バス15から絶縁型DC−DCコンバータ13bに電力は供給されない。従って、この状態では第1マイクロコンピュータ14bは専ら、電力系統4からの交流電力をエネルギー源として動作していることになる。例えば、電気料金が安価な夜間では、蓄電部3は充電していることが多く、太陽電池2は停止している。
上記状況下において電力系統4が停電すると、絶縁型AC−DCコンバータ13aの出力がなくなり、降圧回路14aの出力がなくなり、第1マイクロコンピュータ14bが電源を喪失して動作を停止する。
上述のように第1マイクロコンピュータ14bは、絶縁型AC−DCコンバータ13aの出力電圧をA/Dポートで監視している。第1マイクロコンピュータ14bは、絶縁型AC−DCコンバータ13aの出力電圧が所定の閾値電圧Vthを下回ると、電力系統4が停電したと判定する。第1マイクロコンピュータ14bは、停電を検知すると、I/OポートからトランジスタQ1のベース端子に所定の値以上の電流を流して、トランジスタQ1を導通させる。
図4は、停電通知信号線42の制御例を示す図である。停電通知信号線42は、第1制御部14の第1マイクロコンピュータ14bから第2制御部23の第2マイクロコンピュータ23bに、電力系統4の停電発生の有無を2値(ハイレベル、ローレベル)で通知するための信号線である。図4に示す例は、ハイレベルが電力系統4が停電していない通常の状態を示し、ローレベルが電力系統4が停電している状態を示している。
第1制御部14の第1マイクロコンピュータ14bと、第2制御部23の第2マイクロコンピュータ23b間は、第1フォトカプラP1及び第2フォトカプラP2により絶縁されている。第1フォトカプラP1のフォトトランジスタは、フォトダイオードが導通していない状態でハイレベル(電源電圧)を出力し、フォトダイオードが導通した状態でローレベル(グラウンド電圧)を出力する。
第1マイクロコンピュータ14bが停電を検出すると、第1マイクロコンピュータ14bがトランジスタQ1をターンオフさせることにより、当該フォトダイオードが導通する。第2フォトカプラP2は、停電通知信号線42のレベルを反転させて、第2マイクロコンピュータ23bのI/Oポートに信号を入力する。なお、ハイレベルとローレベルの関係を図4とは逆に設計してもよい。
図5は、電力系統4の停電時の絶縁型AC−DCコンバータ13aの出力電圧の推移例を示す図である。降圧回路14a(スイッチングレギュレータ)は、低電圧ロックアウト電圧UVLOまで低下すると、発振を停止して出力を停止する。以下、低電圧ロックアウト電圧UVLOが7.5Vに設定されている降圧回路14aを使用する例を想定する。この例では、絶縁型AC−DCコンバータ13aの出力電圧が7.5Vまで低下すると、降圧回路14aが出力を停止し、第1マイクロコンピュータ14bが電源を喪失して動作を停止する。従って、第1マイクロコンピュータ14bは停電発生後、電源を喪失する前にトランジスタQ1をターンオフさせる必要がある。
本実施の形態に係る電力変換システム1において、夜間における、システム内負荷7及び第1制御部14の消費電力Pは約9Wと見積もることができる。従って、絶縁型AC−DCコンバータ13aの出力12Vラインに繋がった負荷Zは、下記式(1)により推定することができる。
Z=V/P=12V/9W=16Ω ・・・式(1)
16Ωの負荷が接続された絶縁型AC−DCコンバータ13aの出力電圧が12Vから7.5Vに低下する時間Tは、下記式(2)により推定することができる。
T=CRln(V1/V2)=1500μF×16Ω×ln(12V/7.5V)≒11msec ・・・式(2)
Cは、絶縁型AC−DCコンバータ13aの2次側の電解コンデンサの容量
第1マイクロコンピュータ14bが停電を検出する閾値電圧Vthを9Vに設定した場合、停電を検出した時点の9Vから7.5Vに低下する時間Tは、下記式(3)により推定することができる。
T=CRln(V1/V2)=1500μF×16Ω×ln(9V/7.5V)≒4msec ・・・式(3)
このように第1マイクロコンピュータ14bは、停電を検出してから動作が停止するまで約4msecの猶予期間があり、その期間内にトランジスタQ1をターンオフさせて、第2マイクロコンピュータ23bに停電発生を通知することができる。
図6は、本発明の実施の形態に係る電力変換システム1の、停電発生時の動作を示すフローチャートである。第1制御部14は、絶縁型AC−DCコンバータ13aの出力電圧の低下をもとに、電力系統4の停電を検出する(S10)。第1制御部14は、停電発生を、停電通知信号線42のレベルを反転させることにより第2制御部23に通知する(S11)。それと同時に第1制御部14及び第2制御部23の少なくとも一方は、電力系統4が停電したことを示すログ情報を、図示しない不揮発性メモリに記録してもよい。その後、第1電源部13及び第1制御部14が停止する。
停電発生の通知を受けた第2制御部23は、第2電力変換装置20を自立モードに遷移させて待機する(S12)。第2制御部23は直流バス15の電圧を検出し、バス電圧が規定電圧(例えば、80V)以下であるか否か判定する(S13)。バス電圧が規定電圧以下の場合(S13のY)、第2制御部23は蓄電部3から直流バス15への放電を開始する(S14)。バス電圧が規定電圧以下でない場合(S13のN)、バス電圧が規定電圧以下に低下するまで待機する(S12)。
蓄電部3からの放電によりバス電圧が上昇すると、第1電源部13が再起動する(S15)。再起動された第1電源部13の制御電源電圧により、第1制御部14及び操作表示部30が再起動する(S16)。第1制御部14は、ユーザに自立モードで起動するか否かを選択させるためのメッセージを、操作表示部30に表示させる(S17)。なお、画面表示の代わりに音声メッセージでユーザに報知してもよいし、両者を併用してもよい。蓄電池からの放電により第1電源部13が起動したか否かを検出するには、第1DC/DCコンバータの入力電圧の有無(入力電圧無:蓄電池からの放電により第1電源部13が起動したと判断できる)や、第2DC/DCコンバータから直流バスへ流れる電流の有無(電流有:蓄電池からの放電により第1電源部13が起動したと判断できる)により確認することができる。尚、これら以外の方法を用いても良い。
ユーザが自立モードでの起動を選択すると(S18のY)、第1制御部14は第1電力変換装置10を自立モードで起動させる(S19)。ユーザが自立モードでの起動を選択しない場合(S18のN)、第1電力変換装置10は停止したままである。なお、ユーザの選択操作を必要としない設定の場合、ステップS18の処理はスキップされる。
以上説明したように本実施の形態によれば、第2電力変換装置20は、電力系統4の停電を直接検出するセンサを備える必要がなく、第2電力変換装置20のコストを抑えることができる。
また、電力系統4から電力供給を受けて動作している絶縁型AC−DCコンバータ13aの出力電圧を監視することにより、停電発生を通知するまでの時間を確保しやすくなる。絶縁型AC−DCコンバータ13aの2次側のコンデンサは容量の大きいものを備えるのが一般的であるため、停電発生から降圧回路14aがロックアップするまでの時間を比較的長く確保することができる。また、ロックアップするまでの時間をさらに長く確保できる場合、第1マイクロコンピュータ14bが停電検出のログ情報を記録することも可能となる。
また、第1マイクロコンピュータ14bから第2マイクロコンピュータ23bへは、通信線41と別に設けた停電通知信号線42を使用して、停電の有無を2値レベルの信号で伝達する。これにより高速通信が可能となり、第2マイクロコンピュータ23bへの通知完了前に、絶縁型DC−DCコンバータ13bの電源が喪失することを防止することができる。従って信頼性が高い停電通知システムを構築することができる。これに対して通常の通信線41を用いた場合、所定の通信手順が必要となり時間がかかる。
また、絶縁型AC−DCコンバータ13aの出力電圧を監視することにより、絶縁型AC−DCコンバータ13aと第1マイクロコンピュータ14bとの絶縁が不要となり、回路構成をシンプルにすることができる。絶縁型AC−DCコンバータ13aにはトランスが含まれているため、さらに絶縁する必要はない。
また、本実施の形態に係る構成では、電力系統4の復電を検出することができる。従来の回路構成の中には、電力系統4の停電により自立モードに切り替わった後、電力系統4の復電を検出できない構成のものがあった。
図7(a)、(b)は、復電を検出できない回路構成例を示す図である。図7(a)、(b)に示す回路構成では、C接点タイプの系統/自立切替リレーS3が、電圧検出センサ8の入力端子の接続先を、系統連系線と自立出力線との間で選択的に切り替える構成になっている。図7(b)に示すように自立モードでは、系統/自立切替リレーS3は自立出力線と電圧検出センサを導通させており、電力系統4に接続された系統連系線の電圧が検出できなくなっている。これに対して本実施の形態によれば、第1電源部13内の絶縁型AC−DCコンバータ13aの出力電圧を監視しているため、自立モードでも系統連系線の電圧を監視することができる。
以上、本発明を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
上記実施の形態では、第1電力変換装置10に接続される直流電源として、太陽電池2を例に挙げたが、出力が停止する可能性がある電源であればよく、蓄電部、燃料電池、風力発電装置、マイクロ水力発電装置であってもよい。なお、風力発電装置、マイクロ水力発電装置の場合は第1DC−DCコンバータ11をAC−DCコンバータに置き換える必要がある。
また第2電力変換装置20に接続される直流電源として、蓄電部3を例に挙げたが、出力を制御できる電源であればよく、燃料電池であってもよい。
なお、実施の形態は、以下の項目によって特定されてもよい。
[項目1]
第1直流電源(2)から出力される直流電力を所望の電圧値の直流電力に変換して直流バス(15)に出力する第1DC−DCコンバータ(11)と、
前記直流バス(15)の直流電力を交流電力に変換し、前記交流電力を電力系統(4)へ出力するインバータ(12)と、
前記インバータ(12)を制御する第1制御部(14)と、を備え、
前記直流バス(15)には、第2直流電源(3)から出力される直流電力を所望の電圧値の直流電力に変換して前記直流バス(15)に出力する第2DC−DCコンバータ(21)が接続され、
前記第1制御部(14)は、前記第2DC−DCコンバータ(21)を制御する第2制御部(23)と信号線(42)で接続されており、前記電力系統(4)が停電している否かを示す信号を前記信号線(42)に出力することを特徴とする電力変換装置(10)。
これによれば、第2制御部(23)が電力系統(4)の停電発生を、コストを抑えつつ高精度に認識することができる。
[項目2]
前記信号線(42)は、前記電力系統(4)が停電している否かを示す2値信号を伝達する専用の信号線(42)であることを特徴とする項目1に記載の電力変換装置(10)。
これによれば、所定の通信手順が必要ないため、第1制御部(14)から第2制御部(23)に高速に停電の発生を通知することができる。
[項目3]
前記電力系統(4)の交流電力を、前記第1制御部(14)を動作するための直流電力に変換し、変換した直流電力を前記第1制御部(14)へ供給する電源部(13)をさらに備え、
前記第1制御部(14)は、前記電源部(13)から供給される直流電力の電圧が所定値より低くなったとき、前記電力系統(14)が停電していることを示す信号を前記信号線(42)に出力することを特徴とする項目1または2に記載の電力変換装置(10)。
これによれば、制御電源電圧を監視することにより、第1制御部(14)の電源が喪失する前に、停電を検出して停電の発生を第2制御部(23)に通知することができる。
[項目4]
前記第1制御部(14)及び前記第2制御部(23)の少なくとも一方は、前記電源部(13)から供給される直流電力の電圧が検出閾値以下になってから、前記所定値に到達するまでに、前記電力系統(4)が停電したことを示すログ情報を記録することを特徴とする項目3に記載の電力変換装置(10)。
これによれば、第1制御部(14)が停電のログを残すことができる。
[項目5]
前記電源部(13)は、前記直流バス(15)の直流電力を、前記第1制御部(14)を動作するための直流電力に変換し、変換した直流電力を前記第1制御部(14)へ供給することが可能であることを特徴とする項目3または4に記載の電力変換装置(10)。
これによれば、電力系統(4)の停電時においても、第1制御部(14)が動作することが可能となる。
[項目6]
前記インバータ(12)はスイッチ(S1)を介して前記電力系統(4)へ交流電力を供給し、
前記電源部(13)は、前記スイッチ(S1)より、前記電力系統(4)側の給電点から交流電力を取得することを特徴とする項目5に記載の電力変換装置(10)。
これによれば、電力系統(4)の復電を検出することができる。
[項目7]
前記第1直流電源(2)は太陽電池(2)であり、
前記第2直流電源(3)は蓄電部(3)であり、
前記インバータ(12)は、前記電力系統(4)の交流電力を直流電力に変換して前記直流バス(15)に出力することが可能であり、
前記第2DC−DCコンバータ(21)は、前記直流バス(15)から出力される直流電力を所望の電圧値の直流電力に変換して前記蓄電部(3)に出力することが可能であることを特徴とする項目1から6のいずれかに記載の電力変換装置(10)。
これによれば、太陽電池(2)が発電していない状態で電力系統(4)が停電した場合でも、蓄電部(3)の電力により第1制御部(14)が動作することができる。
[項目8]
前記第1制御部(14)は、前記電力系統(4)の停電後の停止状態から、前記蓄電部(3)から放電された直流電力により再起動したとき、本電力変換装置(10)を自立モードに遷移させる、または前記第1制御部(14)と有線または無線で接続されたユーザインタフェース部(30)に、自立モードに切り替えるか否かをユーザに選択させるためのメッセージを報知させることを特徴とする項目7に記載の電力変換装置(10)。
これによれば、自立モードに切り替えるか否かをユーザに選択させることができる。
[項目9]
項目1から8のいずれかに記載の電力変換装置(10)と接続される電力変換装置(20)であって、
第2直流電源(3)から出力される直流電力を所望の電圧値の直流電力に変換して前記直流バス(15)に出力する第2DC−DCコンバータ(21)と、
前記第2DC−DCコンバータ(21)を制御する第2制御部(23)と、を備え、
前記第2制御部(23)は、前記1制御部(14)と信号線(42)で接続されており、前記信号線(42)から前記電力系統(4)が停電している否かを示す信号を受け取ることを特徴とする電力変換装置(20)。
これによれば、第2制御部(23)が電力系統(4)の停電発生を、コストを抑えつつ高精度に認識することができる。
[項目10]
前記第2直流電源(3)は蓄電部(3)であり、
前記第2制御部(23)は、前記信号線(42)から前記電力系統(4)が停電していることを示す信号を受け取ると、前記蓄電部(3)から前記直流バス(15)に放電するよう、前記第2DC−DCコンバータ(21)を制御することを特徴とする項目9に記載の電力変換装置(20)。
これによれば、電源部(13)が直流バス(15)から電力を取得できるようになる。[項目11]
第1直流電源(2)から出力される直流電力を所望の電圧値の直流電力に変換して直流バス(15)に出力する第1DC−DCコンバータ(11)と、前記直流バス(15)の直流電力を交流電力に変換し、前方交流電力を前方電力系統へ出力するインバータ(12)と、前記インバータ(12)を制御する第1制御部(14)と、を有する第1電力変換装置(10)と、
第2直流電源(3)から出力される直流電力を所望の電圧値の直流電力に変換して前記直流バス(15)に出力する第2DC−DCコンバータ(21)と、前記第2DC−DCコンバータ(21)を制御する第2制御部(23)と、を有する第2電力変換装置(20)と、を備え、
前記第1制御部(14)は、前記第2制御部(13)と信号線(42)で接続されており、前記電力系統(4)が停電している否かを示す信号を前記信号線(42)に出力することを特徴とする電力変換システム(1)。
これによれば、第2制御部(23)が電力系統(4)の停電発生を、コストを抑えつつ高精度に認識することができる。
1 電力変換システム、 2 太陽電池、 3 蓄電部、 4 電力系統、 5 負荷、 6 自立出力端子、 7 システム内負荷、 8 電圧検出センサ、 10 第1電力変換装置、 11 第1DC−DCコンバータ、 12 インバータ、 13 第1電源部、 13a 絶縁型AC−DCコンバータ、 13b 絶縁型DC−DCコンバータ、 14 第1制御部、 14a 降圧回路、 14b 第1マイクロコンピュータ、 P1 第1フォトカプラ、 15 直流バス、 20 第2電力変換装置、 21 第2DC−DCコンバータ、 22 第2電源部、 23 第2制御部、 30 操作表示部、 41 通信線、 42 停電通知信号線、 43 通信線、 S1 系統連系リレー、 S2 自立出力リレー、 S3 系統/自立切替リレー、 R1 第1抵抗、 R2 第2抵抗、 D1 第1ダイオード、 D2 第2ダイオード、 D3 第3ダイオード、 D4 第4ダイオード、 D5 第5ダイオード、 D6 第6ダイオード、 Q1 トランジスタ、 23b 第2マイクロコンピュータ、 P2 第2フォトカプラ。

Claims (9)

  1. 第1直流電源から出力される直流電力を所望の電圧値の直流電力に変換して直流バスに出力する第1DC−DCコンバータと、
    前記直流バスの直流電力を交流電力に変換し、前記交流電力を電力系統へ出力するインバータと、
    前記インバータを制御する第1制御部と、
    前記電力系統の交流電力を、前記第1制御部を動作するための直流電力に変換し、変換した直流電力を前記第1制御部へ供給する電源部と、
    を備え、
    前記直流バスには、第2直流電源から出力される直流電力を所望の電圧値の直流電力に変換して前記直流バスに出力する第2DC−DCコンバータが接続され、
    前記第1制御部は、前記第2DC−DCコンバータを制御する第2制御部と信号線で接続されており、前記電源部の出力を監視して、前記電力系統が停電している否かを示す信号を前記信号線に出力することを特徴とする電力変換装置。
  2. 前記信号線は、前記電力系統が停電している否かを示す2値信号を伝達する専用の信号線であることを特徴とする請求項1に記載の電力変換装置。
  3. 第1直流電源から出力される直流電力を所望の電圧値の直流電力に変換して直流バスに出力する第1DC−DCコンバータと、
    前記直流バスの直流電力を交流電力に変換し、前記交流電力を電力系統へ出力するインバータと、
    前記インバータを制御する第1制御部と、
    前記電力系統の交流電力を、前記第1制御部を動作するための直流電力に変換し、変換した直流電力を前記第1制御部へ供給する電源部と、
    を備え、
    前記直流バスには、第2直流電源から出力される直流電力を所望の電圧値の直流電力に変換して前記直流バスに出力する第2DC−DCコンバータが接続され、
    前記第1制御部は、前記第2DC−DCコンバータを制御する第2制御部と信号線で接続されており、
    前記第1制御部は、前記電源部から供給される直流電力の電圧が所定値より低くなったとき、前記電力系統が停電していることを示す信号を前記信号線に出力することを特徴とする電力変換装置。
  4. 前記第1制御部及び前記第2制御部の少なくとも一方は、前記電源部から供給される直流電力の電圧が検出閾値以下になってから、前記所定値に到達するまでに、前記電力系統が停電したことを示すログ情報を記録することを特徴とする請求項に記載の電力変換装置。
  5. 前記電源部は、前記直流バスの直流電力を、前記第1制御部を動作するための直流電力に変換し、変換した直流電力を前記第1制御部へ供給することが可能であることを特徴とする請求項1から4のいずれか1項に記載の電力変換装置。
  6. 前記インバータはスイッチを介して前記電力系統へ交流電力を供給し、
    前記電源部は、前記スイッチより前記電力系統側の給電点から交流電力を取得することを特徴とする請求項5に記載の電力変換装置。
  7. 前記第1直流電源は太陽電池であり、
    前記第2直流電源は蓄電部であり、
    前記インバータは、前記電力系統の交流電力を直流電力に変換して前記直流バスに出力することが可能であり、
    前記第2DC−DCコンバータは、前記直流バスから出力される直流電力を所望の電圧値の直流電力に変換して前記蓄電部に出力することが可能であることを特徴とする請求項1から6のいずれかに記載の電力変換装置。
  8. 前記第1制御部は、前記電力系統の停電後の停止状態から、前記蓄電部から放電された直流電力により再起動したとき、本電力変換装置を自立モードに遷移させる、または前記第1制御部と有線または無線で接続されたユーザインタフェース部に、自立モードに切り替えるか否かをユーザに選択させるためのメッセージを報知させることを特徴とする請求項7に記載の電力変換装置。
  9. 第1直流電源から出力される直流電力を所望の電圧値の直流電力に変換して直流バスに出力する第1DC−DCコンバータと、前記直流バスの直流電力を交流電力に変換し、前記交流電力を電力系統へ出力するインバータと、前記インバータを制御する第1制御部と、前記電力系統の交流電力を、前記第1制御部を動作するための直流電力に変換し、変換した直流電力を前記第1制御部へ供給する電源部と、を有する第1電力変換装置と、
    第2直流電源から出力される直流電力を所望の電圧値の直流電力に変換して前記直流バスに出力する第2DC−DCコンバータと、前記第2DC−DCコンバータを制御する第2制御部と、を有する第2電力変換装置と、を備え、
    前記第1制御部は、前記第2制御部と信号線で接続されており、前記電源部の出力を監視して、前記電力系統が停電している否かを示す信号を前記信号線に出力することを特徴とする電力変換システム。
JP2017017923A 2017-02-02 2017-02-02 電力変換装置、電力変換システム Active JP6830193B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017017923A JP6830193B2 (ja) 2017-02-02 2017-02-02 電力変換装置、電力変換システム
PCT/JP2017/042630 WO2018142737A1 (ja) 2017-02-02 2017-11-28 電力変換装置、電力変換システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017017923A JP6830193B2 (ja) 2017-02-02 2017-02-02 電力変換装置、電力変換システム

Publications (2)

Publication Number Publication Date
JP2018126013A JP2018126013A (ja) 2018-08-09
JP6830193B2 true JP6830193B2 (ja) 2021-02-17

Family

ID=63039607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017017923A Active JP6830193B2 (ja) 2017-02-02 2017-02-02 電力変換装置、電力変換システム

Country Status (2)

Country Link
JP (1) JP6830193B2 (ja)
WO (1) WO2018142737A1 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5124114B2 (ja) * 2006-08-28 2013-01-23 シャープ株式会社 蓄電機能を有するパワーコンディショナ
JP2012161189A (ja) * 2011-02-01 2012-08-23 Tabuchi Electric Co Ltd 蓄電池への太陽電池電力の充放電制御方法
JP6043967B2 (ja) * 2011-07-22 2016-12-14 パナソニックIpマネジメント株式会社 蓄電システム、及びそれを利用した系統連系システム
JP2014128164A (ja) * 2012-12-27 2014-07-07 Noritz Corp パワーコンディショナ及び太陽光発電システム

Also Published As

Publication number Publication date
WO2018142737A1 (ja) 2018-08-09
JP2018126013A (ja) 2018-08-09

Similar Documents

Publication Publication Date Title
EP2793352B1 (en) Power supply system and power conditioner for charging and discharging
JP5742524B2 (ja) 制御装置、蓄電システム、電子機器、電動車両および電力システム
JP3687464B2 (ja) 太陽光発電装置
JP2011125124A (ja) サーバーとサーバーに収納される無停電電源装置
JP2009033797A (ja) 電力貯蔵型太陽光発電システム
JP2012161190A (ja) 太陽光発電システム
JP2014082867A (ja) 電源制御システム、制御装置及び制御方法
JP6024929B2 (ja) 制御装置および配電システム
JP2014168328A (ja) 分散型電源の自立運転システム及びその方法
JP5900889B2 (ja) 分散型電源の自立運転システム及びその方法
JP2008005565A (ja) 無停電電源機能付き電源装置
JP6141631B2 (ja) 電力供給システム
US7671538B2 (en) Method and system for economical emergency activation of electrical devices
JP6830193B2 (ja) 電力変換装置、電力変換システム
JP5450685B2 (ja) 電力変換装置
JP6145777B2 (ja) 電力変換装置
JPWO2013136655A1 (ja) 充放電制御装置
JP7201302B2 (ja) パワーコンディショナおよび蓄電システム
KR101663445B1 (ko) 에너지저장시스템을 이용한 무정전전원공급장치 및 상기 장치의 동작방법
KR102562951B1 (ko) 충전 예약 및 정전 인식 가능한 이동형 에너지 저장장치
JP6414894B2 (ja) 蓄電システムに備えられた電源装置
JP3186943U (ja) 非常用発電機付給電装置
JP3181861U (ja) 非常用発電機付給電装置
JP6051927B2 (ja) 電源装置および無線センサネットワーク装置
JP6209337B2 (ja) 給電システム、給電プログラムおよび給電方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210106

R151 Written notification of patent or utility model registration

Ref document number: 6830193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151