JP6812894B2 - 周辺監視装置 - Google Patents

周辺監視装置 Download PDF

Info

Publication number
JP6812894B2
JP6812894B2 JP2017085150A JP2017085150A JP6812894B2 JP 6812894 B2 JP6812894 B2 JP 6812894B2 JP 2017085150 A JP2017085150 A JP 2017085150A JP 2017085150 A JP2017085150 A JP 2017085150A JP 6812894 B2 JP6812894 B2 JP 6812894B2
Authority
JP
Japan
Prior art keywords
value
pedestrian
vehicle
peripheral monitoring
traveling direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017085150A
Other languages
English (en)
Other versions
JP2018185557A (ja
Inventor
俊宏 高木
俊宏 高木
雄樹 水瀬
雄樹 水瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017085150A priority Critical patent/JP6812894B2/ja
Priority to US15/958,619 priority patent/US10691960B2/en
Priority to DE102018109638.0A priority patent/DE102018109638A1/de
Publication of JP2018185557A publication Critical patent/JP2018185557A/ja
Application granted granted Critical
Publication of JP6812894B2 publication Critical patent/JP6812894B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/04Mounting of cameras operative during drive; Arrangement of controls thereof relative to the vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/30Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing
    • B60R2300/301Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing combining image information with other obstacle sensor information, e.g. using RADAR/LIDAR/SONAR sensors for estimating risk of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/30Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing
    • B60R2300/302Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing combining image information with GPS information or vehicle data, e.g. vehicle speed, gyro, steering angle data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/80Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement
    • B60R2300/8033Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement for pedestrian protection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • G06T2207/30261Obstacle

Description

本発明は、車両の進行方向の領域を撮影した画像に含まれる歩行者が車両と衝突する可能性が高いか否かを判定する周辺監視装置に関する。
従来から知られるこの種の周辺監視装置の一つ(以下、「従来装置」とも称呼される。)は、車両の進行方向の領域を撮影する2つのカメラ(所謂、ステレオカメラ)を備える。従来装置は、その2つのカメラを用いて一対の画像を適当なタイミングにて取得する。従来装置は、一対の画像のそれぞれから歩行者の輪郭を抽出すると共に、一対の画像間における歩行者の輪郭の視差に基づいて車両と歩行者との距離を取得する。
加えて、従来装置は、歩行者の身長及び脚部の開度を取得する。従来装置は、身長に対する脚部の開度の比率(開度比率)が大きいと、開度比率が小さい場合と比較して「歩行者の進行方向と車両の進行方向とのなす角度」が大きいと推定し、以て、歩行者が車両の進行方向を横切る可能性が高いと判定する(例えば、特許文献1を参照。)。
特開2007−264778号公報
ところで、周辺監視装置が車両の進行方向の領域を撮影するカメラを1つのみ備えている場合(所謂、単眼カメラを備えている場合)がある。この場合、周辺監視装置は、視差に基づいて車両と歩行者との距離を取得することができない。そのため、歩行者の画像上の位置に基づいて車両と歩行者との距離を取得(推定)することが考えられる。具体的には、周辺監視装置は、歩行者の画像上の足元位置が当該画像の上方であるほど車両と歩行者との距離が大きいと推定する。
しかしながら、画像に含まれる歩行者の輪郭抽出における誤差が大きくなり、以て、歩行者の画像における足元位置の抽出誤差が大きくなると、歩行者との距離の推定誤差が大きくなる。例えば、歩行者の歩行経路上に水たまりがあると、足元位置の抽出誤差が一時的に大きくなる場合がある。具体的には、歩行者の足元と「水たまりに反射した足元」とが隣接して進行方向画像に写っていると、周辺監視装置は、水たまりに反射した足元も歩行者の一部であると誤解した状態にて歩行者の輪郭を抽出する場合がある。この場合、周辺監視装置は、画像上の足元位置が実際の足元位置よりも下にあると認識する可能性が高い。
或いは、歩行者の歩行経路上にある道路表示と、歩行者が履いている靴と、が色彩において互いに類似していると、足元位置の抽出誤差が一時的に大きくなる場合がある。具体的には、歩行者の輪郭抽出において、道路標示が歩行者の一部として抽出される可能性がある。歩行者の靴の色と道路の色とが類似している場合、歩行者の靴が背景として認識され、その結果、歩行者の靴の部分が歩行者の一部として抽出されない可能性もある。
これらの場合のように、足元位置の抽出誤差の増大に起因して車両と歩行者との距離の推定誤差が一時的に大きくなると、その歩行者と衝突する可能性が高いか否かを精度良く判定できなくなる虞がある。そこで、本発明の目的の一つは、1つのカメラによって撮影された画像に含まれる歩行者の輪郭抽出における誤差が一時的に大きくなっても、車両がその歩行者と衝突する可能性が高いか否かを精度良く判定することができる周辺監視装置を提供することである。
上記目的を達成するための車両周辺監視装置(以下、「本発明装置」とも称呼される。)は、1つのカメラ、歩行者位置取得部、位置処理部、及び、衝突判定部を備える。
前記カメラ(後方カメラ45)は、
車両(10)に搭載され、前記車両の進行方向の領域を撮影することにより進行方向画像を取得する。
前記歩行者位置取得部は、
前記進行方向画像に含まれる歩行者の当該進行方向画像における位置(画像縦位置Px及び画像横位置Py)に基づいて当該歩行者の前記車両に対する位置を表す歩行者位置値(縦位置Dx及び横位置Dy)を取得する位置取得処理を所定時間(時間間隔Ts)が経過する毎に実行する(図8のステップ825)。
前記位置処理部は、
前記歩行者位置値が取得される毎に当該取得された歩行者位置値に基づいて位置処理値(処理後縦位置Dpx及び処理後横位置Dpy)を決定する(図8のステップ830及び図9)。
前記衝突判定部は、
前記位置処理値が新たに決定された時点である第1時点において当該新たに決定された位置処理値に基づいて前記車両が前記歩行者と衝突する可能性が高いか否かを判定する(図8のステップ855)。
加えて、前記位置処理部は、
前記第1時点にて取得された前記歩行者位置値が、前記第1時点から前記所定時間だけ前の時点である第2時点での前記位置処理値(前回縦位置Dox及び前回横位置Doy)に所定の第1限界値(第1縦限界値Dxth1及び第1横限界値Dyth1)を加えた値である第1特定値よりも大きいとき、前記第1特定値を前記第1時点での前記位置処理値として決定する(図9のステップ915及びステップ940)。
更に、前記位置処理部は、
前記第1時点にて取得された前記歩行者位置値が、前記第2時点での前記位置処理値から所定の第2限界値(第2縦限界値Dxth2及び第2横限界値Dyth2)を減じた値である第2特定値よりも小さいとき、前記第2特定値を前記第1時点での前記位置処理値として決定する(図9のステップ925及びステップ950)。
加えて、前記位置処理部は、
前記第1時点にて取得された前記歩行者位置値が、前記第1特定値以下であり且つ前記第2特定値以上であるとき、前記第1時点にて取得された前記歩行者位置値を前記第1時点での前記位置処理値として決定する(図9のステップ930及びステップ955)。
一般に、歩行者の移動速度(歩行速度)は比較的小さい。そのため、「第1特定値から第2特定値を減じた値である位置相関値差分」の大きさは過大とはならない。一方、上述したように、足元位置の抽出誤差が一時的に大きくなると、位置相関値差分の大きさが大きくなる。そこで、本発明装置は、位置相関値差分の大きさが第1限界値又は第2限界値よりも大きくなると、足元位置の抽出誤差の一時的な増大が発生していると判定する。
その場合、上記位置処理部は、第1特定値又は第2特定値を位置処理値として決定し、上記衝突判定部はその位置処理値に基づいて車両が歩行者と衝突する可能性が高いか否かを判定する。そのため、本発明装置は、カメラによって撮影された進行方向画像に含まれる歩行者の輪郭抽出における誤差が一時的に大きくなる場合であっても、本発明装置が認識する歩行者の位置が、実際の歩行者の位置から大きく乖離することを回避することができる。従って、本発明装置によれば、1つのカメラによって撮影された画像に含まれる歩行者の輪郭抽出における誤差が一時的に大きくなっても、車両がその歩行者と衝突する可能性が高いか否かを精度良く判定することができる。
上記衝突判定部は、位置処理値に対応する位置(即ち、歩行者の車両に対する推定された位置)の手前で停止するために必要な加速度(必要加速度)の大きさが所定値よりも大きければ、車両が歩行者と衝突する可能性が高いと判定しても良い。或いは、衝突判定部は、車両の走行速度が不変であると仮定したときの歩行者と衝突するまでの時間(衝突時間)が所定値よりも小さければ、車両が歩行者と衝突する可能性が高いと判定しても良い。衝突判定部によって車両が歩行者と衝突する可能性が高いと判定されたとき、本発明装置は、その旨を車両の運転者へ告知(警告)しても良く、或いは、車両が備える制動装置に制動力を発生させ、以て、車両を停止させても良い。
本発明装置の一態様において、
前記位置処理部は、
前記車両の走行速度の大きさが大きくなるほど前記第1限界値及び前記第2限界値のうちの少なくとも一方の値が大きくなるように当該少なくとも一方の値を変更する。
歩行者の移動速度が変化しなければ、車両の走行速度の大きさが大きくなるほど位置相関値差分が大きくなる。本態様においては、走行速度の大きさの増加に起因する位置相関値差分の増加に応じて第1限界値及び/又は前記第2限界値が大きな値に設定される。そのため、本態様によれば、車両の走行速度の大きさに依らず車両が歩行者と衝突する可能性が高いか否かを精度良く判定することができる。
本発明装置の他の態様において、
前記カメラは、
前記車両と前記進行方向に存在する物体との距離が長いほど前記進行方向画像における当該物体の位置(画像縦位置Px)が同画像中の上方に位置するように当該進行方向画像を取得し、
前記歩行者位置取得部は、
前記歩行者位置値として前記車両と前記歩行者との前記車両進行方向の距離を表す値(縦位置Dx)を取得するように構成され、且つ、前記進行方向画像において前記歩行者の足元の位置が上方であるほど前記歩行者位置値が表す前記距離が大きくなるように、前記歩行者位置値を取得する。
本発明装置は1つのカメラを備えているので、車両と歩行者との距離を従来装置のように視差に基づいて取得することができない。しかし、この態様によれば、1つのカメラによって撮影された1つの進行方向画像に基づいて簡易な処理によって歩行者位置値を取得することができる。
本発明装置の他の態様において、
前記衝突判定部は、
前記位置処理値が、前記車両が走行したときに通過すると推定される領域である経路領域(Ap)内であることを表す値であることを、前記車両が前記歩行者と衝突する可能性が高いと判定するための必要条件として採用する(条件(A)及び図8のステップ840)。
位置処理部によって決定された位置処理値が表す歩行者の位置が経路領域に含まれていれば、車両が走行したときに車両がその歩行者と衝突する可能性がある。例えば、衝突判定部は、その歩行者に対して上述した必要加速度又は衝突時間し、衝突の可能性が高いか否かを判定することができる。従って、本態様によれば、車両がその歩行者と衝突する可能性が高いか否かを精度良く判定することができる。
或いは、本発明装置のもう一つの態様において、
前記衝突判定部は、
前記位置処理値に基づいて所定時間(予想時間Tf)経過後の前記歩行者の前記車両に対する位置である予想位置(予想縦位置Dfx及び予想横位置Dfy)を推定し、且つ、
前記予想位置が、前記車両が走行したときに通過すると推定される領域である経路領域(Ap)内であることを表す値であることを、前記車両が前記歩行者と衝突する可能性が高いと判定するための必要条件として採用する(条件(B)及び図8のステップ840)。
例えば、位置相関値差分を上記時間間隔により除することによって歩行者の移動速度に相関を有する値(速度相関値)を算出し、その速度相関値に基づいて予想位置を取得することが可能である。現時点において歩行者が経路領域の外にいても、その後、歩行者が経路領域に侵入し、以て、車両が歩行者と衝突する場合がある。本態様によれば、車両が「現時点において経路領域の外にいる歩行者」と衝突する可能性が高いか否かを精度よく判定することができる。
上記説明においては、本発明の理解を助けるために、後述する実施形態に対応する発明の構成に対し、その実施形態で用いた名称及び/又は符号を括弧書きで添えている。しかしながら、本発明の各構成要素は、前記名称及び/又は符号によって規定される実施形態に限定されるものではない。本発明の他の目的、他の特徴及び付随する利点は、以下の図面を参照しつつ記述される本発明の実施形態についての説明から容易に理解されるであろう。
本発明の実施形態に係る周辺監視装置(本監視装置)が搭載される車両(本車両)の概略図である。 本監視装置のブロック図である。 進行方向画像に写る歩行者の例を示した図である。 本車両の車速と距離閾値との関係を表したグラフである。 時間の経過と共に変化する歩行者の実際の縦位置、位置取得処理によって取得された縦位置、及び、位置補正処理によって取得された処理後縦位置を表したグラフである。 本車両が直線的に後進する場合の経路領域を示した図である。 本車両が旋回しながら後進する場合の経路領域を示した図である。 本監視装置が実行する衝突回避制御ルーチンを表したフローチャートである。 本監視装置が実行する位置補正処理ルーチンを表したフローチャートである。
以下、図面を参照しながら本発明の実施形態に係る周辺監視装置(以下、「本監視装置」とも称呼される。)について説明する。本監視装置は、図1に示される車両10に適用される。加えて、本監視装置のブロック図が図2に示される。本監視装置は、それぞれが電子制御ユニット(ECU:Electronic Control Unit)である「周辺監視ECU20、エンジンECU31及びブレーキECU32」を含んでいる。
周辺監視ECU20は、CPU、ROM及びRAMを備えている。CPUは、所定のプログラム(ルーチン)を逐次実行することによってデータの読み込み、数値演算、及び、演算結果の出力等を行う。ROMは、CPUが実行するプログラム及びルックアップテーブル(マップ)等を記憶している。RAMは、データを一時的に記憶する。
エンジンECU31及びブレーキECU32のそれぞれは、周辺監視ECU20と同様に、CPU、ROM及びRAMを備えている。これらのECUは、CAN(Controller Area Network)34を介して互いにデータ通信可能(データ交換可能)となっている。加えて、これらのECUは、他のECUに接続されたセンサの出力値をその「他のECU」からCAN34を介して受信することができる。
周辺監視ECU20は、シフトポジションセンサ41、車速センサ42、加速度センサ43、操舵角センサ44、後方カメラ45、入出力装置46及びスピーカー47と接続されている。
シフトポジションセンサ41は、運転者によるシフトレバー(不図示)の操作によって選択された車両10の走行モード(シフトポジション)を表す信号を周辺監視ECU20へ出力する。シフトポジションには、駐車のためのパーキング(P)レンジ、前進走行のためのドライブ(D)レンジ、後進走行のためのリバース(R)レンジ、車両10の駆動源であるエンジン62から駆動輪(不図示)へのトルク伝達を遮断するニュートラル(N)レンジ、及び、駆動輪の回転速度に対するエンジン62の回転速度の比であるギア比Rgがドライブ(D)レンジよりも高い値に維持されるロー(L)レンジが含まれている。
車速センサ42は、車両10の車速Vsの大きさを表す信号を周辺監視ECU20へ出力する。シフトポジションがリバース(R)レンジ以外のポジションであれば、車速Vsは正の値で表される。一方、シフトポジションがリバース(R)レンジであれば、車速Vsは負の値で表される。
加速度センサ43は、車両10の前後方向の加速度As(車速Vsの単位時間あたりの変化量)を表す信号を周辺監視ECU20へ出力する。
操舵角センサ44は、操舵ハンドル51に連結されたステアリングシャフト(不図示)に配設されている。操舵角センサ44は、操舵ハンドル51のステアリングシャフトの回転角度である操舵角度θsを表す信号を周辺監視ECU20へ出力する。操舵角度θsは、操舵ハンドル51が中立位置にあるときに「0」となる。操舵角度θsは、操舵ハンドル51が中立位置から右回転方向(時計回り方向)に操作されたとき正の値となり、操舵ハンドル51が中立位置から左回転方向に操作されたとき負の値となる。
後方カメラ45は、車両10の後端中央部に配設されている。後方カメラ45は、車両10の後方領域を撮影した画像(車両10が後進する場合における車両10の進行方向を撮影した画像であるので、以下、「進行方向画像」とも称呼される。)を取得し、進行方向画像を表す信号を周辺監視ECU20へ出力する。
後方カメラ45の水平方向の視野(画角)は、図1に示された直線RLと直線RRとがなす角度(180°未満の角度)によって表される範囲に等しい。直線RLと、車両10の車幅方向中心を通り且つ車両10の直進前方方向に延びる中心軸Csと、のなす角度はθwである。加えて、直線RRと、中心軸Csと、のなす角度はθwである。従って、車両10の後方にあって中心軸Cs上の被写体は、進行方向画像における左右方向中心の位置に写る。
なお、図1に示されるように、車両10の前後方向(中心軸Csと平行な方向)をx軸と規定し、車両10の左右方向(車幅方向)をy軸と規定する。車両10の後方端部であって左右方向の中心部が、x=0且つy=0となる原点である。x座標は、車両10の後ろ方向において正の値となり、車両10の前方向において負の値となる。y座標は、車両10が後進する場合の進行方向に向かって左方向において正の値となり、車両10が後進する場合の進行方向に向かって右方向において負の値となる。本明細書において、操舵角度θsが正の値であるとき車両10が後進した場合に車両10が旋回する方向を「左方向」と称呼する。一方、操舵角度θsが負の値であるとき車両10が後進した場合に車両10が旋回する方向を「右方向」と称呼する。
入出力装置46は、車両10のダッシュボードに配設されている。入出力装置46は、表示装置(液晶ディスプレイ)を備えている。入出力装置46の表示装置に表示される文字及び図形等は、周辺監視ECU20によって制御される。入出力装置46の表示装置は、タッチパネルとしても作動する。従って、運転者は表示装置に触れることによって周辺監視ECU20に対して指示を送ることができる。
スピーカー47は、車両10の左右のフロントドア(不図示)のそれぞれの内側(車室内側)に配設されている。スピーカー47は、周辺監視ECU20の指示に応じて警告音及び音声メッセージ等の発音を行うことができる。
エンジンECU31は、複数のエンジンセンサ61と接続され、これらのセンサの検出信号を受信するようになっている。エンジンセンサ61は、エンジン62の運転状態量を検出するセンサである。エンジンセンサ61は、アクセルペダル操作量センサ、スロットル弁開度センサ、機関回転速度センサ、及び、吸入空気量センサ等を含んでいる。
更に、エンジンECU31は、スロットル弁アクチュエータ及び燃料噴射弁等のエンジンアクチュエータ63、及び、トランスミッション64と接続されている。エンジンECU31は、エンジンアクチュエータ63及びトランスミッション64を制御することによってエンジン62が発生する駆動トルクTq及びトランスミッション64のギア比Rgを変更し、以て、車両10の駆動力を調整して加速度Asを制御するようになっている。一方、周辺監視ECU20は、エンジンECU31に指示を送ることによってエンジンアクチュエータ63及びトランスミッション64を駆動し、それにより車両10の駆動力を変更することができる。
ブレーキECU32は、複数のブレーキセンサ65と接続され、これらのセンサの検出信号を受信するようになっている。ブレーキセンサ65は、図示しない「車両10に搭載された制動装置(油圧式摩擦制動装置)」を制御する際に使用されるパラメータを検出するセンサである。ブレーキセンサ65は、ブレーキペダル(不図示)の操作量センサ、及び、各車輪の回転速度を検出する車輪速度センサ等を含んでいる。
更に、ブレーキECU32は、ブレーキアクチュエータ66と接続されている。ブレーキアクチュエータ66は油圧制御アクチュエータである。ブレーキアクチュエータ66は、ブレーキペダルの踏力によって作動油を加圧するマスタシリンダと、各車輪に設けられる周知のホイールシリンダを含む摩擦ブレーキ装置と、の間の油圧回路(何れも、不図示)に配設される。ブレーキアクチュエータ66はホイールシリンダに供給する油圧を調整する。ブレーキECU32は、ブレーキアクチュエータ66を駆動することにより各車輪に制動力(摩擦制動力)Bfを発生させ、以て、車両10の加速度Asを制御する(具体的には、車速Vsの大きさ|Vs|を減少させる)ようになっている。一方、周辺監視ECU20は、ブレーキECU32に指示を送ることによってブレーキアクチュエータ66を駆動し、それにより制動力Bfを変更することができる。
(衝突回避制御)
周辺監視ECU20は、車両10が後進するとき、車両10の後方にいる歩行者と衝突する可能性が高ければ、車両10の運転者へその旨を告知(警告)すると共にブレーキアクチュエータ66に制動力Bfを発生させ、以て、車両10を停止させる衝突回避制御を実行する。
車両10が歩行者と衝突する可能性が高いか否かを判定するため、周辺監視ECU20は、所定の時間間隔Ts(固定値)が経過する毎に進行方向画像に含まれる歩行者の「x座標値である縦位置Dx」及び「y座標値である横位置Dy」を取得する。具体的には、周辺監視ECU20は、縦位置Dx及び横位置Dyを進行方向画像における歩行者の位置に基づいて推定する「位置取得処理」を実行する。縦位置Dx及び横位置Dyは、便宜上「歩行者位置値」とも称呼される。
周辺監視ECU20は、位置取得処理の実行時、進行方向画像における「予め記憶している多数の歩行者テンプレート(歩行者パターン)の何れかと類似する部分」を探索する。周辺監視ECU20は、歩行者テンプレートのうちの一つと類似する進行方向画像の一部(即ち、進行方向画像における歩行者が写された部分)が見つかれば、その歩行者テンプレートに対応する「進行方向画像に写された歩行者」の輪郭を抽出する。即ち、周辺監視ECU20は、パターンマッチング処理によって進行方向画像に含まれる歩行者の輪郭を抽出する。
進行方向画像に含まれる歩行者の輪郭が抽出されると、周辺監視ECU20は、進行方向画像における歩行者の足元位置を表す画像縦位置Px及び画像横位置Pyを取得する。図3は、図1にも示されている歩行者81の輪郭が抽出された場合の進行方向画像IMである。図3に示されるように、画像縦位置Pxは、進行方向画像における歩行者81の下端部Fpに相当する位置と、進行方向画像IMの下端IMkと、の間の上下方向の長さである。一方、画像横位置Pyの大きさ|Py|は、進行方向画像における歩行者81の左右方向中心と、進行方向画像の左右方向中心である中心線Pcと、の間の左右方向の長さである。
画像縦位置Pxは、歩行者の下端部が進行方向画像の下端にあるとき「0」となり、歩行者の下端部が進行方向画像における上方であるほど大きな値となる。一方、画像横位置Pyは、歩行者の左右方向中心が中心線Pc上にあるとき「0」となる。画像横位置Pyは、歩行者の左右方向中心が中心線Pcよりも左にあるとき正の値となり、歩行者の左右方向中心が中心線Pcから左方に離れるほど大きな値となる。加えて、画像横位置Pyは、歩行者の左右方向中心が中心線Pcよりも右にあるとき負の値となり、歩行者の左右方向中心が中心線Pcから右方に離れるほど画像横位置Pyの大きさ|Py|が大きな値となる。
周辺監視ECU20は、画像縦位置Px及び画像横位置Pyに基づいて縦位置Dx及び横位置Dyを取得(推定)する。より具体的に述べると、実際の縦位置Dxが大きいほど画像縦位置Pxが大きくなる。加えて、実際の横位置Dyの大きさ|Dy|が大きいほど画像横位置Pyの大きさ|Py|が大きくなる。更に、加えて、横位置Dyの大きさ|Dy|が同一であれば、縦位置Dxが大きくなるほど画像横位置Pyの大きさ|Py|が小さくなる。
そこで、周辺監視ECU20は、予め記憶している「画像縦位置Px及び縦位置Dxの関係を規定したルックアップテーブル」に画像縦位置Pxを適用することによって縦位置Dxを取得する。加えて、周辺監視ECU20は、予め記憶している「画像縦位置Px及び画像横位置Py並びに横位置Dyとの関係を規定したルックアップテーブル」に画像縦位置Px及び画像横位置Pyを適用することによって横位置Dyを取得する。
ところで、進行方向画像に写された歩行者の輪郭抽出における誤差が大きければ、画像縦位置Px及び画像横位置Pyの組合せが含む誤差が大きくなり、以て、縦位置Dx及び横位置Dyの組合せが含む誤差が大きくなる。
例えば、歩行者の歩行経路上に水たまりがあるために歩行者の足元に隣接して「水たまりに反射した足元」が進行方向画像に写っている場合、歩行者の輪郭抽出における誤差が一時的に大きくなる場合がある。或いは、歩行者の歩行経路上にある道路標示の色と歩行者が履いている靴の色とが類似していると、歩行者の輪郭抽出における誤差が一時的に大きくなる場合がある。
そこで、周辺監視ECU20は、歩行者の輪郭抽出における誤差が一時的に大きくなっても車両10が歩行者と衝突する可能性が高いか否かを精度良く判定するため、「位置補正処理」を実行する。周辺監視ECU20は、位置補正処理によって処理後縦位置Dpx及び処理後横位置Dpyを取得する。周辺監視ECU20は、後述する処理により、処理後縦位置Dpx及び処理後横位置Dpyに基づいて車両10が歩行者と衝突する可能性が高いか否かを良く判定する。処理後縦位置Dpx及び処理後横位置Dpyのそれぞれは、便宜上「位置処理値」とも称呼される。
位置補正処理について説明する。以下の説明において、最後に実行された位置取得処理によって取得された縦位置Dxと、位置取得処理及び位置補正処理が前回実行されたときに取得された処理後縦位置Dpxである前回縦位置Doxと、の差分は、縦位置差分ΔDxとも称呼される(即ち、ΔDx=Dx−Dox)。一方、最後に実行された位置取得処理によって取得された横位置Dyと、位置取得処理及び位置補正処理が前回実行されたときに取得された処理後横位置Dpyである前回横位置Doyと、の差分は、横位置差分ΔDyとも称呼される(即ち、ΔDy=Dy−Doy)。
一般に、歩行者の移動速度(歩行速度)は比較的小さいので、縦位置差分ΔDxの大きさは、通常、大きな値とはならない。そこで、周辺監視ECU20は、位置補正処理の実行時、縦位置差分ΔDxが所定の第1縦限界値Dxth1よりも大きければ(即ち、ΔDx>Dxth1)、前回縦位置Doxに第1縦限界値Dxth1を加えた値を処理後縦位置Dpxとして決定する(即ち、Dpx←Dox+Dxth1)。前回縦位置Doxに第1縦限界値Dxth1を加えた値は、便宜上「第1特定値」とも称呼される。
或いは、周辺監視ECU20は、縦位置差分ΔDxが所定の第2縦限界値Dxth2に「−1」を乗じた値(−Dxth2)よりも小さければ(即ち、ΔDx<−Dxth2)、前回縦位置Doxから第2縦限界値Dxth2を減じた値を処理後縦位置Dpxとして決定する(即ち、Dpx←Dox−Dxth2)。前回縦位置Doxから第2縦限界値Dxth2を減じた値は、便宜上「第2特定値」とも称呼される。
一方、周辺監視ECU20は、縦位置差分ΔDxが第1縦限界値Dxth1以下であり、且つ、縦位置差分ΔDxが第2縦限界値Dxth2に「−1」を乗じた値以上であれば(即ち、−Dxth2≦Dx≦Dxth1)、前回縦位置Doxを処理後縦位置Dpxとして決定する(即ち、Dx←Dox)。
即ち、周辺監視ECU20は、縦位置差分ΔDxの大きさが大きければ、縦位置Dxが含む誤差が一時的に大きくなっていると判定し、補正された値を処理後縦位置Dpxとして決定する。一方、周辺監視ECU20は、縦位置差分ΔDxの大きさが小さければ、縦位置Dxの誤差が小さいと判定し、縦位置Dxを処理後縦位置Dpxとして決定する。
同様に、周辺監視ECU20は、位置補正処理の実行時、横位置差分ΔDyが所定の第1横限界値Dyth1よりも大きければ(即ち、ΔDy>Dyth1)、前回横位置Doyに第1横限界値Dyth1を加えた値を処理後横位置Dpyとして決定する(即ち、Dpy←Doy+Dyth1)。前回横位置Doyに第1横限界値Dyth1を加えた値は、便宜上「第1特定値」とも称呼される。
或いは、周辺監視ECU20は、横位置差分ΔDyが所定の第2横限界値Dyth2に「−1」を乗じた値(−Dyth2)よりも小さければ(即ち、ΔDy<−Dyth2)、前回横位置Doyから第2横限界値Dyth2を減じた値を処理後横位置Dpyとして決定する(即ち、Dpy←Doy−Dyth2)。前回横位置Doyから第2横限界値Dyth2を減じた値は、便宜上「第2特定値」とも称呼される。
一方、周辺監視ECU20は、横位置差分ΔDyが第1横限界値Dyth1以下であり、且つ、横位置差分ΔDyが第2横限界値Dyth2に「−1」を乗じた値以上であれば(即ち、−Dyth2≦Dy≦Dyth1)、前回横位置Doyを処理後横位置Dpyとして決定する(即ち、Dy←Doy)。
本実施形態において、第1縦限界値Dxth1、第2縦限界値Dxth2、第1横限界値Dyth1及び第2横限界値Dyth2のそれぞれは、いずれも距離閾値Dthに等しい。なお、第1縦限界値Dxth1、第2縦限界値Dxth2、第1横限界値Dyth1及び第2横限界値Dyth2の一部又は全部は互いに異なる値であっても良い。
ところで、歩行者の移動速度が変化しなければ、車速Vsが大きくなるほど縦位置差分ΔDxの大きさ|ΔDx|、及び、横位置差分ΔDyの大きさ|ΔDy|が大きくなる。そこで、周辺監視ECU20は、車速Vsの大きさ|Vs|が大きくなるほど距離閾値Dth(即ち、第1縦限界値Dxth1、第2縦限界値Dxth2、第1横限界値Dyth1及び第2横限界値Dyth2)を大きな値に設定する。車速Vsと距離閾値Dthとの関係が図4に示される。図4から理解されるように、車速Vsが「0」であるとき、距離閾値Dthは距離D1である。車速Vsが「0」よりも小さい範囲にて小さくなるほど、距離閾値Dthは大きくなる。
上述した位置補正処理について、図5を参照しながらより具体的に説明する。図5は、時間tが時刻t0から時刻t12まで時間間隔Tsずつ経過する毎の実際の歩行者位置のx座標値、位置取得処理によって取得された縦位置Dx、及び、位置補正処理によって取得された処理後縦位置Dpxのそれぞれの変化の例を示している。図5の例において、歩行者のx座標値は、時間の経過と共に減少している。なお、横位置Dyに対する位置補正処理は、縦位置Dxに対する位置補正処理と同様であるので、図5のような図を用いた説明を省略する。
図5の時刻t4において、歩行者の実際のx座標値はx4aである。時刻t4における位置取得処理によって取得された縦位置Dxは、x4aに略等しいx4bである(即ち、Dx=x4b≒x4a)。加えて、時刻t4における位置補正処理によって取得された処理後縦位置Dpxは、縦位置Dx(=x4b)に等しいx4cである(即ち、Dpx=x4c=x4b)。
時刻t4から時間間隔Tsだけ経過した時刻t5において、歩行者の実際のx座標値はx5aである。一方、時刻t5にて実行された位置取得処理における輪郭抽出誤差が大きかったため、縦位置Dxは、実際のx座標値x5aよりも比較的小さいx5bとなっている(即ち、Dx=x5b<x5a)。その結果、時刻t5における縦位置差分ΔDxは、第2縦限界値Dxth2に「−1」を乗じた値よりも小さくなっている(即ち、ΔDx=x5b−x4c<−Dxth2)。そのため、時刻t5における位置補正処理によって取得された処理後縦位置Dpxは、前回縦位置Dox(この場合、時刻t4における処理後縦位置Dpxであるx4c)から第2縦限界値Dxth2を減じた値であるx5cとなる(即ち、Dpx=x5c=x4c−Dxth2)。
時刻t5から時間間隔Tsだけ経過した時刻t6において、歩行者の実際のx座標値はx6aである。一方、時刻t6における位置取得処理によって取得された縦位置Dxは、x6aに略等しいx6bである(即ち、Dx=x6b≒x6a)。時刻t6における縦位置差分ΔDx(=x6b−x5c)は第1横限界値Dyth1以下であり、且つ、縦位置差分ΔDxは第2横限界値Dyth2に「−1」を乗じた値(−Dyth2)以上である(即ち、−Dyth2≦ΔDx≦Dyth1)。そのため、時刻t6における位置補正処理によって取得された処理後縦位置Dpxは、縦位置Dx(=x6b)に等しいx6cである(即ち、Dpx=x6c=x6b)。
その後、時刻t9となったとき、歩行者の実際のx座標値はx9aであり、縦位置Dxはx9aに略等しいx9bであり(即ち、Dx=x9b≒x9a)、且つ、処理後縦位置Dpxは縦位置Dx(=x9b)に等しいx9cである(即ち、Dpx=x9c=x9b)。
時刻t9から時間間隔Tsだけ経過した時刻t10において、歩行者の実際のx座標値はx10aである。一方、時刻t10にて実行された位置取得処理における輪郭抽出誤差が大きかったため、縦位置Dxは、実際のx座標値x10aよりも比較的大きいx10bとなっている(即ち、Dx=x10b>x10a)。その結果、時刻t10における縦位置差分ΔDxは、第1縦限界値Dxth1よりも大きくなっている(即ち、ΔDx=x10b−x9c>Dxth1)。そのため、位置補正処理によって取得された処理後縦位置Dpxは、前回縦位置Dox(この場合、時刻t9における処理後縦位置Dpxであるx9c)に第1縦限界値Dxth1を加えた値であるx10cとなる(即ち、Dpx=x10c=x9c+Dxth1)。
時刻t10から時間間隔Tsだけ経過した時刻t11において、歩行者の実際のx座標値はx11aである。時刻11における位置取得処理によって取得された縦位置Dxは、x11aに略等しいx11bである(即ち、Dx=x11b≒x11a)。時刻t11における縦位置差分ΔDxは、第2縦限界値Dxth2に「−1」を乗じた値(−Dyth2)よりも小さくなっている(即ち、ΔDx=x11b−x10c<−Dxth2)。そのため、位置補正処理によって取得された処理後縦位置Dpxは、前回縦位置Dox(この場合、時刻t10における処理後縦位置Dpxであるx10c)から第2縦限界値Dxth2を減じた値であるx11cとなる(即ち、Dpx=x11c=x10c−Dxth2)。
時刻t11から時間間隔Tsだけ経過した時刻t12において、歩行者の実際のx座標値はx12aである。時刻t12における位置取得処理によって取得された縦位置Dxは、x12aに略等しいx12bである(即ち、Dx=x12b≒x12a)。時刻t12における縦位置差分ΔDx(=x12b−x11c)は第1横限界値Dyth1以下であり、且つ、縦位置差分ΔDxは第2横限界値Dyth2に「−1」を乗じた値(−Dyth2)以上である(即ち、−Dyth2≦ΔDx≦Dyth1)。そのため、時刻t12における位置補正処理によって取得された処理後縦位置Dpxは、縦位置Dx(=x12b)に等しいx12cである(即ち、Dpx=x12c=x12b)。
位置取得処理及び位置補正処理によって進行方向画像に含まれる歩行者に対応する処理後縦位置Dpx及び処理後横位置Dpyが取得されると、周辺監視ECU20は、その歩行者が「経路上歩行者」であるか否かを判定する。経路上歩行者は、車両10が後進したときに車両10と衝突する可能性が高い歩行者である。
周辺監視ECU20は、以下の条件(A)及び条件(B)の何れか一方又は両方を満たす歩行者を経路上歩行者であると判定する。
(A)現時点において経路領域Ap内にいる歩行者。
(B)現時点から所定の予想時間Tf(本実施形態において、2秒)が経過したときに経路領域Ap内にいる歩行者。
経路領域Apは、操舵角度θsが「0」であるとき、図6に示されるように、車両10の後方に延びる領域であって、中心軸Csを中心とし、幅が車両10の車幅Lwに車幅マージンLmを加えた長さである領域である。即ち、経路領域Apは、車両10の後端部の左側面の位置から車幅マージンLmの半分(Lm/2)だけ左に位置する点PLを通り且つ中心軸Csに平行に車両10の後端から車両後方に延びる直線LLと、車両10の後端部の右側面の位置から車幅マージンLmの半分(Lm/2)だけ右に位置する点PRを通り且つ中心軸Csに平行に車両10の後端から車両後方に延びる直線LRと、の間の領域である。
一方、操舵角度θsが「0」ではないとき、経路領域Apは、操舵角度θsに応じて左右の何れかに湾曲する。具体的には、操舵角度θsが負の値であれば、経路領域Apは、図7に示されるように、車両10から離れるほど右に向かう(即ち、x座標が大きくなるほど経路領域Apの右端のy座標が小さくなる)。この場合、経路領域Apは、点PLを通る左側円弧YLと、点PRを通る右側円弧YRと、の間の領域である。一方、操舵角度θsが正の値であれば、経路領域Apは、車両10から離れるほど左に向かう(即ち、x座標が大きくなるほど経路領域Apの左端のy座標が大きくなる)。
周辺監視ECU20は、処理後縦位置Dpx及び処理後横位置Dpyによって表される位置が経路領域Apに含まれていれば、上記条件(A)が成立していると判定する。更に、周辺監視ECU20は、上記条件(B)が成立しているか否かを判定するため、現時点から予想時間Tfが経過したときの歩行者のx座標の予想値である予想縦位置Dfxを取得する。加えて、周辺監視ECU20は、現時点から予想時間Tf経過後の歩行者のy座標の予想値である予想横位置Dfyを取得する。予想縦位置Dfx及び予想横位置Dfyによって表される位置が経路領域Apに含まれていれば、周辺監視ECU20は、上記条件(B)が成立していると判定する。
周辺監視ECU20が実行する予想縦位置Dfx及び予想横位置Dfyを取得する処理は、便宜上「位置予想処理」とも称呼される。位置予想処理の実行時、周辺監視ECU20は、歩行者の縦方向(x軸方向)の速度成分である縦速度Vx及び横方向(y軸方向)の速度成分である横速度Vyを取得する。
具体的には、周辺監視ECU20は、縦位置差分ΔDxを時間間隔Tsにより除することによって縦速度Vxを算出する(即ち、Vx=ΔDx/Ts)。同様に、周辺監視ECU20は、横位置差分ΔDyを時間間隔Tsにより除することによって横速度Vyを算出する(即ち、Vy=ΔDy/Ts)。
周辺監視ECU20は、処理後縦位置Dpxに「縦速度Vxに予想時間Tfを乗じた値」を加えることによって予想縦位置Dfxを算出する(即ち、Dfx←Dpx+Vx×Tf)。同様に、周辺監視ECU20は、処理後横位置Dpyに「横速度Vyに予想時間Tfを乗じた値」を加えることによって予想横位置Dfyを算出する(即ち、Dfy←Dpy+Vy×Tf)。
経路上歩行者が存在していれば(即ち、上記条件(A)及び/又は条件(B)が成立していれば)、周辺監視ECU20は、車両10が経路上歩行者の手前にて停車するために必要な加速度Asである必要減速度Dcreqを算出する。必要減速度Dcreqは、車両10が後進している場合(即ち、Vs<0である場合)に車速Vsの大きさ|Vs|が減少するときの加速度Asであるので、正の値である(即ち、Dcreq>0)。
具体的には、周辺監視ECU20は、車両10が走行距離Ddだけ走行したときに停止させるために必要な加速度Asとして必要減速度Dcreqを下式(1)により算出する。

Dcreq=(1/2)・Vs/Dd ……(1)
周辺監視ECU20は、操舵角度θsが不変であると仮定した場合の経路上歩行者と衝突するまでの車両10の走行距離(道のり)Dwと、所定の長さ(停止位置マージン)Lvと、の差を走行距離Ddとして式(1)に代入することによって必要減速度Dcreqを算出する(即ち、Dd=Dw−Lv)。必要減速度Dcreqが所定の加速度閾値Athよりも大きければ(即ち、Dcreq>Ath)、周辺監視ECU20は、車両10が経路上歩行者と衝突する可能性が高いと判定する。
周辺監視ECU20は、車両10が経路上歩行者と衝突する可能性が高いと判定したとき、その旨を入出力装置46及びスピーカー47を介して車両10の運転者へ告知(警告)する。加えて、周辺監視ECU20は、実際の加速度Asが必要減速度Dcreqと等しくなるようにエンジンECU31及びブレーキECU32に要求信号を送信する「自動制動処理」を実行する。
具体的には、周辺監視ECU20は、ブレーキECU32に対して実際の加速度Asが必要減速度Dcreqと等しくなるような制動力Bfを発生させることを要求する要求信号を送信する。加えて、周辺監視ECU20は、エンジンECU31に対して駆動トルクTqを「0」にすることを要求する要求信号を送信する。この結果、車速Vsの大きさ|Vs|が減少し、やがて「0」となる。
(具体的作動)
次に、周辺監視ECU20の具体的作動について説明する。周辺監視ECU20のCPU(以下、単に「CPU」とも称呼される。)は、時間間隔Tsが経過する毎に図8にフローチャートにより表された「衝突回避制御ルーチン」を実行する。
従って、適当なタイミングとなると、CPUは、図8のステップ800から処理を開始してステップ805に進み、衝突回避制御の要求状態がオン状態であるか否かを判定する。運転者による入出力装置46に対する操作によって衝突回避制御の要求状態がオフ状態に設定されていれば、CPUは、ステップ805にて「No」と判定してステップ895に直接進み、本ルーチンを終了する。
一方、衝突回避制御の要求状態がオン状態であれば、CPUは、ステップ805にて「Yes」と判定してステップ810に進み、自動制動処理が既に開始されていないか否かを判定する。自動制動処理が開始されていなければ、CPUは、ステップ810にて「Yes」と判定してステップ815に進み、シフトポジションセンサ41によって検出されたのシフトポジションがリバース(R)レンジであるか否かを判定する。
シフトポジションがリバース(R)レンジであれば、CPUは、ステップ815にて「Yes」と判定してステップ820に進み、進行方向画像に歩行者が含まれているか否かを判定する。進行方向画像に歩行者が含まれていれば、CPUは、ステップ820にて「Yes」と判定してステップ825に進み、位置取得処理を実行して「進行方向画像に含まれている歩行者のうちの特定の歩行者」の縦位置Dx及び横位置Dyを取得する。次いで、CPUは、ステップ830に進み、図9にフローチャートにより表された「位置補正処理ルーチン」を実行することによって処理後縦位置Dpx及び処理後横位置Dpyを取得する。図9に示される位置補正処理ルーチンについては、後述される。
図9の「位置補正処理ルーチン」の実行後、CPUは、ステップ835に進み、位置予想処理を実行して予想縦位置Dfx及び予想横位置Dfyを取得する。更に、CPUは、ステップ840に進み、歩行者が経路上歩行者であるか否かを判定する。具体的には、CPUは、上述した条件(A)及び/又は条件(B)が成立しているか否かを判定する。
条件(A)及び/又は条件(B)が成立していれば、CPUは、ステップ840にて「Yes」と判定してステップ845に進み、上記式(1)に基づいて必要減速度Dcreqを取得し、特定の歩行者に関連付けて必要減速度DcreqをRAMに記憶する。次いで、CPUは、ステップ850に進む。
一方、条件(A)及び条件(B)が共に成立していなければ、CPUは、ステップ840にて「No」と判定してステップ850に直接進む。
ステップ850にてCPUは、進行方向画像に含まれる全ての歩行者に対して上述した処理が実行されたか否かを判定する。上述した処理が実行されていない歩行者がいれば、CPUは、ステップ850にて「No」と判定し、別の歩行者を選択したうえでステップ825に進む。
一方、進行方向画像に含まれる全ての歩行者に対して上述した処理が実行されていれば、CPUは、ステップ850にて「Yes」と判定してステップ855に進み、経路上歩行者が存在し且つ必要減速度Dcreqが加速度閾値Athよりも大きいか否かを判定する。複数の経路上歩行者が存在しているために複数の必要減速度Dcreqが取得されていれば、CPUは、必要減速度Dcreqの最大値を加速度閾値Athと比較する。
経路上歩行者が存在し且つ必要減速度Dcreq(或いは、必要減速度Dcreqの最大値)が加速度閾値Athよりも大きければ、CPUは、ステップ855にて「Yes」と判定してステップ860に進み、車両10の後方にいる歩行者と衝突する可能性が高いことを車両10の運転者に告知する。具体的には、CPUは、歩行者と衝突する可能性が高いことを表す記号を入出力装置46に表示させると共にスピーカー47に警告音を再生させる。
次いで、CPUは、ステップ865に進み、自動制動処理を開始する。より具体的に述べると、CPUは、必要減速度DcreqをブレーキECU32に対してCAN34を介して送信する。複数の必要減速度Dcreqが取得されていれば、CPUは、必要減速度Dcreqの最大値をブレーキECU32に対して送信する。その結果、ブレーキECU32は、図示しないルーチンを実行することによって実際の加速度Asが必要減速度Dcreqと等しくなるようにブレーキアクチュエータ66を制御し、必要となる制動力Bfを発生させる。
更に、CPUは、目標駆動トルクTqtgtの値を「0」に設定し、目標駆動トルクTqtgtをエンジンECU31に対してCAN34を介して送信する。その結果、エンジンECU31は、図示しないルーチンを実行することによって実際の駆動トルクTqが目標駆動トルクTqtgtと等しくなるようにエンジンアクチュエータ63及びトランスミッション64を制御する。その後、CPUは、ステップ595に進む。
なお、ステップ810の判定条件が成立していなければ(即ち、自動制動処理が既に開始されていれば)、CPUは、ステップ810にて「No」と判定してステップ895に直接進む。更に、ステップ815の判定条件が成立していなければ(即ち、シフトポジションがリバース(R)レンジ以外であれば)、CPUは、ステップ815にて「No」と判定してステップ895に直接進む。
加えて、ステップ820の判定条件が成立していなければ(即ち、進行方向画像に歩行者が含まれていなければ)、CPUは、ステップ820にて「No」と判定してステップ895に直接進む。更に、ステップ855の判定条件が成立していなければ(即ち、必要減速度Dcreqが加速度閾値Ath以下であれば)、CPUは、ステップ855にて「No」と判定してステップ895に直接進む。
なお、自動制動処理の実行中に所定の終了条件が成立すると、CPUは、図示しないルーチンを実行して自動制動処理、及び、入出力装置46及びスピーカー47を介した運転者への告知を終了する。自動制動処理の終了条件は、車速Vsが「0」となったとき、及び、自動制動処理の実行中における操舵角度θsの変化量の大きさが所定の閾値よりも大きくなったときに成立する条件である。
次に、「位置補正処理ルーチン」について説明する。CPUは、図8のステップ830に進むと、図9のステップ900から処理を開始してステップ905に進み、縦位置差分ΔDx及び横位置差分ΔDyを算出する。
より具体的に述べると、CPUは、図8のステップ825が最後に実行されたときに取得された縦位置Dxから前回縦位置Doxを減じた値を縦位置差分ΔDxとして取得する。前回縦位置Doxは、本ルーチンが前回実行されたときに後述されるステップ960の処理によってRAMに記憶された値である。同様に、CPUは、ステップ825が最後に実行されたときに取得された横位置Dyから前回横位置Doyを減じた値を横位置差分ΔDyとして取得する。前回横位置Doyは、本ルーチンが前回実行されたときにステップ960の処理によってRAMに記憶された値である。
次いで、CPUは、ステップ910に進み、縦位置差分ΔDxが第1縦限界値Dxth1よりも大きいか否かを判定する。縦位置差分ΔDxが第1縦限界値Dxth1よりも大きければ、CPUは、ステップ910にて「Yes」と判定してステップ915に進み、処理後縦位置Dpxを前回縦位置Doxに第1縦限界値Dxth1を加えた値として算出(決定)する。次いで、CPUは、ステップ935に進む。
一方、縦位置差分ΔDxが第1縦限界値Dxth1以下であれば、CPUは、ステップ910にて「No」と判定してステップ920に進み、縦位置差分ΔDxが第2縦限界値Dxth2に「−1」を乗じた値よりも小さいか否かを判定する。縦位置差分ΔDxが第2縦限界値Dxth2に「−1」を乗じた値よりも小さければ、CPUは、ステップ920にて「Yes」と判定してステップ925に進み、処理後縦位置Dpxを前回縦位置Doxから第2縦限界値Dxth2を減じた値として算出(決定)する。次いで、CPUは、ステップ935に進む。
或いは、縦位置差分ΔDxが第2縦限界値Dxth2に「−1」を乗じた値以上であれば、CPUは、ステップ920にて「No」と判定してステップ930に進み、処理後縦位置Dpxを縦位置Dxに等しい値として取得(決定)する。次いで、CPUは、ステップ935に進む。
ステップ935にてCPUは、横位置差分ΔDyが第1横限界値Dyth1よりも大きいか否かを判定する。横位置差分ΔDyが第1横限界値Dyth1よりも大きければ、CPUは、ステップ935にて「Yes」と判定してステップ940に進み、処理後横位置Dpyを前回横位置Doyに第1横限界値Dyth1を加えた値として算出(決定)する。次いで、CPUは、ステップ960に進む。
一方、横位置差分ΔDyが第1横限界値Dyth1以下であれば、CPUは、ステップ935にて「No」と判定してステップ945に進み、横位置差分ΔDyが第2横限界値Dyth2に「−1」を乗じた値よりも小さいか否かを判定する。横位置差分ΔDyが第2横限界値Dyth2に「−1」を乗じた値よりも小さければ、CPUは、ステップ945にて「Yes」と判定してステップ950に進み、処理後横位置Dpyを前回横位置Doyから第2横限界値Dyth2を減じた値として算出(決定)する。次いで、CPUは、ステップ960に進む。
或いは、横位置差分ΔDyが第2横限界値Dyth2に「−1」を乗じた値以上であれば、CPUは、ステップ945にて「No」と判定してステップ955に進み、処理後横位置Dpyを横位置Dyに等しい値として取得(決定)する。次いで、CPUは、ステップ960に進む。
ステップ960にてCPUは、前回縦位置Doxとして処理後縦位置DpxをRAMに記憶し、且つ、前回横位置Doyとして処理後横位置DpyをRAMに記憶する。次いで、CPUは、ステップ995に進み、本ルーチンを終了する。即ち、CPUは、図8のステップ835に進む。
以上、説明したように、本監視装置は、後方カメラ45によって撮影された進行方向画像に含まれる歩行者の輪郭抽出における誤差が一時的に大きくなる場合であっても、本監視装置が認識する「車両10と歩行者との位置関係(縦位置及び横位置)」が実際の位置関係から大きく乖離することを回避することができる。よって、本監視装置によれば、車両10がその歩行者と衝突する可能性が高いか否かを精度良く判定することができる。
以上、本発明に係る車両周辺監視装置の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。例えば、本実施形態に係る周辺監視ECU20は、車両10が後進するときに衝突回避制御を実行していた。しかし、周辺監視ECU20は、車両10が前進するときに衝突回避制御を実行しても良い。この場合、車両10は前方領域を撮影する車載カメラ(前方カメラ)を備え、前方カメラは撮影した画像(進行方向画像)を表す信号を周辺監視ECU20へ出力する。
加えて、本実施形態に係る周辺監視ECU20は、縦位置Dx及び横位置Dyの両方に対して位置補正処理を実行していた。しかし、周辺監視ECU20は、縦位置Dx及び横位置Dyの一方のみに対して位置補正処理を実行しても良い。例えば、周辺監視ECU20が縦位置Dxに対してのみ位置補正処理を実行する場合、周辺監視ECU20は、位置取得処理によって取得された横位置Dyをそのまま処理後横位置Dpyとして扱う。
加えて、本実施形態に係る周辺監視ECU20は、位置取得処理を実行して歩行者の縦位置Dx及び横位置Dyを取得していた。しかし、周辺監視ECU20は、縦位置Dx及び横位置Dyに代わり、歩行者の車両10に対する角度(歩行者の位置と原点とを結ぶ直線と中心軸Csとのなす角度)θv及び歩行者の位置と原点と間の直線距離Dvを取得しても良い。この場合、周辺監視ECU20は、時間間隔Tsあたりの角度θvの変化量の大きさが所定の角度閾値を越えないように位置補正処理を実行しても良い。加えて、周辺監視ECU20は、時間間隔Tsあたりの直線距離Dvの変化量が所定の距離閾値を越えないように位置補正処理を実行しても良い。
加えて、本実施形態に係る周辺監視ECU20は、図4に示されるように、車速Vsに応じて距離閾値Dth(即ち、第1縦限界値Dxth1、第2縦限界値Dxth2、第1横限界値Dyth1及び第2横限界値Dyth2)を変化させていた。しかし、第1縦限界値Dxth1、第2縦限界値Dxth2、第1横限界値Dyth1及び第2横限界値Dyth2の一部又は全部は、車速Vsに依らず固定値であっても良い。
加えて、本実施形態に係る周辺監視ECU20は、条件(A)及び条件(B)の何れか一方又は両方を満たす歩行者を経路上歩行者であると判定していた。しかし、条件(B)を満たすか否かの判定処理は割愛されても良い。
加えて、本実施形態に係る周辺監視ECU20は、必要減速度Dcreqが加速度閾値Athよりも大きければ、経路上歩行者と衝突する可能性が高いと判定していた。しかし、周辺監視ECU20は、これとは異なる方法によって経路上歩行者と衝突する可能性が高いか否かを判定してもよい。例えば、周辺監視ECU20は、車速Vsが不変であると仮定したときの経路上歩行者と衝突するまでの時間(衝突時間)を取得し、衝突時間が所定値よりも小さければ、経路上歩行者と衝突する可能性が高いと判定しても良い。
加えて、本実施形態において、経路領域Apの長さは限定されていなかった。しかし、車両10の後方に延びる経路領域Apの長さは有限であっても良い。この場合、経路領域Apに含まれる経路上歩行者が存在していれば、周辺監視ECU20は、必要減速度Dcreqを算出することなく、車両10が経路上歩行者と衝突する可能性が高いと判定しても良い。
加えて、本実施形態において、周辺監視ECU20は、車両10が経路上歩行者と衝突する可能性が高いと判定したとき、実際の加速度Asが必要減速度Dcreqと等しくなるようにエンジンECU31及びブレーキECU32を制御していた。しかし、周辺監視ECU20は、車両10が経路上歩行者と衝突する可能性が高いと判定したとき、必要減速度Dcreqの値に依らず、ブレーキアクチュエータ66が「車両10の車輪と路面との間のスリップが発生しない範囲における最大の摩擦制動力」を発生するようにブレーキECU32を制御しても良い。
加えて、本実施形態に係る周辺監視ECU20は、位置取得処理を実行して歩行者の縦位置Dx及び横位置Dyを取得していた。しかし、位置取得処理は周辺監視ECU20とは異なる装置(例えば、カメラECU)によって実行されても良い。この場合、周辺監視ECU20は、カメラECUから歩行者の縦位置Dx及び横位置Dyを表す信号を受信する。
加えて、本実施形態に係る周辺監視ECU20は、歩行者と衝突する可能性が高いと判定したとき、車両10の運転者への告知(警告)及び自動制動処理を実行していた。しかし、運転者への告知及び自動制動処理のうちの一方は、割愛されても良い。
10…車両、20…周辺監視ECU、31…エンジンECU、32…ブレーキECU、34…CAN、41…シフトポジションセンサ、42…車速センサ、43…加速度センサ、44…操舵角センサ、45…後方カメラ、46…入出力装置、47…スピーカー、51…操舵ハンドル、61…エンジンセンサ、62…エンジン、63…エンジンアクチュエータ、64…トランスミッション、65…ブレーキセンサ、66…ブレーキアクチュエータ。

Claims (5)

  1. 車両に搭載され、前記車両の進行方向の領域を撮影することにより進行方向画像を取得する1つのカメラと、
    前記進行方向画像に含まれる歩行者の当該進行方向画像における位置に基づいて当該歩行者の前記車両に対する位置を表す歩行者位置値を取得する位置取得処理を所定時間が経過する毎に実行する歩行者位置取得部と、
    前記歩行者位置値が取得される毎に当該取得された歩行者位置値に基づいて位置処理値を決定する位置処理部と、
    前記位置処理値が新たに決定された時点である第1時点において当該新たに決定された位置処理値に基づいて前記車両が前記歩行者と衝突する可能性が高いか否かを判定する衝突判定部と、
    を備える周辺監視装置において、
    前記位置処理部は、
    前記第1時点にて取得された前記歩行者位置値が、前記第1時点から前記所定時間だけ前の時点である第2時点での前記位置処理値に所定の第1限界値を加えた値である第1特定値よりも大きいとき、前記第1特定値を前記第1時点での前記位置処理値として決定し、
    前記第1時点にて取得された前記歩行者位置値が、前記第2時点での前記位置処理値から所定の第2限界値を減じた値である第2特定値よりも小さいとき、前記第2特定値を前記第1時点での前記位置処理値として決定し、
    前記第1時点にて取得された前記歩行者位置値が、前記第1特定値以下であり且つ前記第2特定値以上であるとき、前記第1時点にて取得された前記歩行者位置値を前記第1時点での前記位置処理値として決定する、
    ように構成された周辺監視装置。
  2. 請求項1に記載の周辺監視装置において、
    前記位置処理部は、
    前記車両の走行速度の大きさが大きくなるほど前記第1限界値及び前記第2限界値のうちの少なくとも一方の値が大きくなるように当該少なくとも一方の値を変更するように構成された周辺監視装置。
  3. 請求項1又は請求項2に記載の周辺監視装置において、
    前記カメラは、
    前記車両と前記進行方向に存在する物体との距離が長いほど前記進行方向画像における当該物体の位置が同画像中の上方に位置するように当該進行方向画像を取得するように構成され、
    前記歩行者位置取得部は、
    前記歩行者位置値として前記車両と前記歩行者との前記車両進行方向の距離を表す値を取得するように構成され、且つ、前記進行方向画像において前記歩行者の足元の位置が上方であるほど前記歩行者位置値が表す前記距離が大きくなるように、前記歩行者位置値を取得するように構成された、
    周辺監視装置。
  4. 請求項1乃至請求項3の何れか一項に記載の周辺監視装置において、
    前記衝突判定部は、
    前記位置処理値が、前記車両が走行したときに通過すると推定される領域である経路領域内であることを表す値であることを、前記車両が前記歩行者と衝突する可能性が高いと判定するための必要条件として採用するように構成された、
    周辺監視装置。
  5. 請求項1乃至請求項4の何れか一項に記載の周辺監視装置において、
    前記衝突判定部は、
    前記位置処理値に基づいて所定時間経過後の前記歩行者の前記車両に対する位置である予想位置を推定し、且つ、
    前記予想位置が、前記車両が走行したときに通過すると推定される領域である経路領域内であることを表す値であることを、前記車両が前記歩行者と衝突する可能性が高いと判定するための必要条件として採用する、
    ように構成された周辺監視装置。
JP2017085150A 2017-04-24 2017-04-24 周辺監視装置 Active JP6812894B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017085150A JP6812894B2 (ja) 2017-04-24 2017-04-24 周辺監視装置
US15/958,619 US10691960B2 (en) 2017-04-24 2018-04-20 Surrounding monitoring apparatus
DE102018109638.0A DE102018109638A1 (de) 2017-04-24 2018-04-23 Umfeldüberwachungsvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017085150A JP6812894B2 (ja) 2017-04-24 2017-04-24 周辺監視装置

Publications (2)

Publication Number Publication Date
JP2018185557A JP2018185557A (ja) 2018-11-22
JP6812894B2 true JP6812894B2 (ja) 2021-01-13

Family

ID=63714368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017085150A Active JP6812894B2 (ja) 2017-04-24 2017-04-24 周辺監視装置

Country Status (3)

Country Link
US (1) US10691960B2 (ja)
JP (1) JP6812894B2 (ja)
DE (1) DE102018109638A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7238670B2 (ja) * 2019-07-23 2023-03-14 トヨタ自動車株式会社 画像表示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4536674B2 (ja) 2006-03-27 2010-09-01 本田技研工業株式会社 歩行者認識装置
JP5251800B2 (ja) 2009-09-16 2013-07-31 株式会社豊田中央研究所 対象物追跡装置及びプログラム
JP6337377B2 (ja) * 2014-08-21 2018-06-06 パナソニックIpマネジメント株式会社 検知装置、検知システム、およびプログラム
JP2016115211A (ja) * 2014-12-16 2016-06-23 ダイムラー・アクチェンゲゼルシャフトDaimler AG 位置認識方法
JP6409680B2 (ja) * 2015-05-29 2018-10-24 株式会社デンソー 運転支援装置、運転支援方法
JP6772059B2 (ja) * 2016-12-28 2020-10-21 株式会社デンソーテン 電子制御装置、電子制御システムおよび電子制御方法

Also Published As

Publication number Publication date
US10691960B2 (en) 2020-06-23
US20180307923A1 (en) 2018-10-25
DE102018109638A1 (de) 2018-10-25
JP2018185557A (ja) 2018-11-22

Similar Documents

Publication Publication Date Title
US10479363B2 (en) Driving assist apparatus
CN108238047B (zh) 驾驶辅助装置
JP6961995B2 (ja) 運転支援装置
CN109017777B (zh) 驾驶辅助装置
US9574538B2 (en) Idling stop control system for vehicle
JP6252548B2 (ja) 車速制限装置及び車速制御装置
JP5890803B2 (ja) 車両の運転支援制御装置
US8384561B2 (en) Parking assist device
JP6372228B2 (ja) 衝突予想時間算出装置
JP6816658B2 (ja) 物標情報取得装置
JP6805992B2 (ja) 周辺監視装置
JP6828602B2 (ja) 物標検出装置
US20230382455A1 (en) Collision avoidance support apparatus
JP6812894B2 (ja) 周辺監視装置
JP6828603B2 (ja) 物標検出装置
JP2019012345A (ja) 右左折時衝突被害軽減装置
JP6455380B2 (ja) 車両の運転支援装置、及び運転支援方法
JP7144271B2 (ja) 道路形状認識装置
CN114084163A (zh) 用于车辆的停止范围指示装置和方法
JP2007320459A (ja) 車両の制御装置
JP2020023249A (ja) 制動力制御装置
JP5915768B2 (ja) 車両用加速抑制装置
JP6082293B2 (ja) 車両用白線認識装置
JP2022009030A (ja) 運転支援装置
JP2023117563A (ja) 走行環境認識装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201130

R151 Written notification of patent or utility model registration

Ref document number: 6812894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151