JP6810045B2 - 線形検出器アレイ用のギャップ分解能 - Google Patents

線形検出器アレイ用のギャップ分解能 Download PDF

Info

Publication number
JP6810045B2
JP6810045B2 JP2017539420A JP2017539420A JP6810045B2 JP 6810045 B2 JP6810045 B2 JP 6810045B2 JP 2017539420 A JP2017539420 A JP 2017539420A JP 2017539420 A JP2017539420 A JP 2017539420A JP 6810045 B2 JP6810045 B2 JP 6810045B2
Authority
JP
Japan
Prior art keywords
gap
current pixel
lda
radiograph
imaging system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017539420A
Other languages
English (en)
Other versions
JP2018509600A (ja
Inventor
シュレヒト ヨーゼフ
シュレヒト ヨーゼフ
ファーリー エリック
ファーリー エリック
ノエル ジュリアン
ノエル ジュリアン
ル フロシュ ロラン
ル フロシュ ロラン
Original Assignee
イリノイ トゥール ワークス インコーポレイティド
イリノイ トゥール ワークス インコーポレイティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イリノイ トゥール ワークス インコーポレイティド, イリノイ トゥール ワークス インコーポレイティド filed Critical イリノイ トゥール ワークス インコーポレイティド
Publication of JP2018509600A publication Critical patent/JP2018509600A/ja
Application granted granted Critical
Publication of JP6810045B2 publication Critical patent/JP6810045B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20184Detector read-out circuitry, e.g. for clearing of traps, compensating for traps or compensating for direct hits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating thereof
    • A61B6/582Calibration
    • A61B6/585Calibration of detector units
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20182Modular detectors, e.g. tiled scintillators or tiled photodiodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating thereof
    • A61B6/582Calibration
    • A61B6/583Calibration using calibration phantoms

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Pulmonology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Immunology (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

本出願は、2015年1月26日に出願された米国仮特許出願第62/107692号の利益を主張する。この米国仮特許出願の全内容は、引用することによって本明細書の一部をなす。
本開示は、X線デジタルラジオグラフィー及びコンピュータートモグラフィーに関する。
X線デジタルラジオグラフィー(DR)は、フラットパネル検出器、電荷結合デバイス(CCD)カメラ、若しくは相補型金属酸化膜半導体(CMOS)カメラ、又は線形ダイオードアレイ(LDA)等のデジタルX線検出器を用いた、一般に用いられる非侵襲的かつ非破壊的な撮像技法である。X線コンピュータートモグラフィー(CT)は、異なる視野角で取得された、コンピューター処理されたX線ラジオグラフを用いて物体の3次元(3D)画像を作成する手順である。物体の断層画像は、概念上は物体の2次元「スライス」の画像である。コンピューティングデバイスは、物体の断層画像を用いて、物体の3次元画像を生成することができる。X線CTは、物体の非破壊評価を行うために産業目的に用いることができる。
1つの例では、本開示は、ラジオグラフを生成する方法について記載する。この方法は、撮像システムによって、放射線発生器によって放出される放射線ビームを検出するように配置された線形ダイオードアレイ(LDA)放射線検出器によって検出される放射線の第1のパターンに基づいて、第1のラジオグラフを生成することを含む。LDA放射線検出器は、複数のモジュールを備える。複数のモジュールの各それぞれのモジュールは、ピクセルに対応するそれぞれの複数のフォトダイオードを備える。本方法は、撮像システムによって、第1のラジオグラフに基づいて、LDA放射線検出器のモジュールのうちの2つの間のギャップのサイズを求めることを更に含む。本方法はまた、ギャップのサイズを求めた後も含む。さらに、本方法は、撮像システムによって、LDA放射線検出器によって検出される放射線の第2のパターンに基づいて第2のラジオグラフを生成することも含む。本方法はまた、撮像システムによって、ギャップのサイズに基づいて、ギャップを補償するように第2のラジオグラフを変更することによって、第3のラジオグラフを生成することも含む。
別の例では、本開示は、放射線発生器を備える撮像システムについて記載する。撮像システムはまた、放射線発生器によって放出される放射線ビームを検出するように配置されたLDA放射線検出器も備える。本例では、LDA放射線検出器は、複数のモジュールを備える。モジュールの各々は、ピクセルに対応するそれぞれの複数のフォトダイオードを備える。撮像システムはまた、LDA放射線検出器に作動的に結合された1つ以上のプロセッサも備える。本例では、1つ以上のプロセッサは、LDA放射線検出器によって検出される放射線の第1のパターンに基づいて第1のラジオグラフを生成するように構成されている。さらに、本例では、1つ以上のプロセッサは、第1のラジオグラフに基づいて、LDA放射線検出器のモジュールのうちの2つの間のギャップのサイズを求めるように構成されている。本例では、1つ以上のプロセッサは、ギャップのサイズを求めた後、LDA放射線検出器によって検出される放射線に第2のパターンに基づいて第2のラジオグラフを生成するようにも構成されている。さらに、本例では、1つ以上のプロセッサは、ギャップのサイズに基づいて、ギャップを補償するように第2のラジオグラフを変更することによって第3のラジオグラフを生成する。
別の例では、本開示は、命令が記憶されている非一時的コンピューター可読データ記憶媒体について記載し、命令は、実行されると、撮像システムに、放射線発生器によって放出される放射線ビームを検出するように配置されたLDA放射線検出器によって検出される放射線の第1のパターンに基づいて、第1のラジオグラフを生成させる。本例では、LDA放射線検出器は、複数のモジュールを備える。複数のモジュールの各それぞれのモジュールは、ピクセルに対応するそれぞれの複数のフォトダイオードを備える。本例では、命令は、撮像システムに、第1のラジオグラフに基づいて、LDA放射線検出器のモジュールのうちの2つの間のギャップのサイズを更に求めさせる。さらに、本例では、ギャップのサイズを求めた後、命令は、撮像システムに対し、LDA放射線検出器によって検出される放射線の第2のパターンに基づいて第2のラジオグラフを生成させる。さらに、本例では、命令は、撮像システムに、ギャップのサイズに基づいて、ギャップを補償するように第2のラジオグラフを変更することによって、第3のラジオグラフを生成させる。
別の例では、本開示は、ラジオグラフを生成する方法について記載する。この方法は、撮像システムによって、放射線発生器によって放出される放射線ビームを検出するように配置された2次元放射線検出器によって検出される放射線の第1のパターンに基づいて、第1のラジオグラフを生成することを含む。2次元放射線検出器は、複数のモジュールを備える。複数のモジュールの各それぞれのモジュールは、ピクセルに対応するそれぞれの複数のフォトダイオードを備える。本方法は、撮像システムによって、第1のラジオグラフに基づいて、2次元放射線検出器のモジュールのうちの2つの間のギャップのサイズを求めることを更に含む。本方法はまた、ギャップのサイズを求めた後も含む。さらに、本方法は、撮像システムによって、2次元放射線検出器によって検出される放射線の第2のパターンに基づいて第2のラジオグラフを生成することも含む。本方法はまた、撮像システムによって、ギャップのサイズに基づいて、ギャップを補償するように第2のラジオグラフを変更することによって、第3のラジオグラフを生成することも含む。
別の例では、本開示は、放射線発生器を備える撮像システムについて記載する。撮像システムはまた、放射線発生器によって放出される放射線ビームを検出するように配置された2次元放射線検出器も備える。本例では、2次元放射線検出器は、複数のモジュールを備える。モジュールの各々は、ピクセルに対応するそれぞれの複数のフォトダイオードを備える。撮像システムはまた、2次元放射線検出器に作動的に結合された1つ以上のプロセッサも備える。本例では、1つ以上のプロセッサは、2次元放射線検出器によって検出される放射線の第1のパターンに基づいて第1のラジオグラフを生成するように構成されている。さらに、本例では、1つ以上のプロセッサは、第1のラジオグラフに基づいて、2次元放射線検出器のモジュールのうちの2つの間のギャップのサイズを求めるように構成されている。本例では、1つ以上のプロセッサは、ギャップのサイズを求めた後、2次元放射線検出器によって検出される放射線に第2のパターンに基づいて第2のラジオグラフを生成するようにも構成されている。さらに、本例では、1つ以上のプロセッサは、ギャップのサイズに基づいて、ギャップを補償するように第2のラジオグラフを変更することによって第3のラジオグラフを生成する。
別の例では、本開示は、命令が記憶されている非一時的コンピューター可読データ記憶媒体について記載し、命令は、実行されると、撮像システムに、放射線発生器によって放出される放射線ビームを検出するように配置された2次元放射線検出器によって検出される放射線の第1のパターンに基づいて、第1のラジオグラフを生成させる。本例では、2次元放射線検出器は、複数のモジュールを備える。複数のモジュールの各それぞれのモジュールは、ピクセルに対応するそれぞれの複数のフォトダイオードを備える。本例では、命令は、撮像システムに対し、第1のラジオグラフに基づいて、2次元放射線検出器のモジュールのうちの2つの間のギャップのサイズを更に求めさせる。さらに、本例では、ギャップのサイズを求めた後、命令は、撮像システムに、2次元放射線検出器によって検出される放射線の第2のパターンに基づいて第2のラジオグラフを生成させる。さらに、本例では、命令は、撮像システムに対し、ギャップのサイズに基づいて、ギャップを補償するように第2のラジオグラフを変更することによって、第3のラジオグラフを生成させる。
1つ以上の例の詳細は、添付図面及び以下の説明に明らかにされている。他の特徴、目的、及び利点は、以下の説明、図面、及び特許請求の範囲から明らかである。
本開示の1つ以上の技法による、X線撮像システム例の概略図面である。 図1のX線撮像システム例の斜視図である。 線形ダイオードアレイ(LDA)X線検出器を有する、図1のX線撮像システム例の反対側の斜視図である。 2次元X線検出器を有する、図1のX線撮像システム例の反対側の斜視図である。 本開示の1つ以上の技法によるステージ操作機構の斜視図である。 線形ダイオードアレイ(LDA)X線検出器のモジュールの間のギャップ例を示す概念図である。 2次元X線検出器のモジュールの間のギャップ例を示す概念図である。 LDA X線検出器のモジュールの間のギャップによってもたらされるアーチファクトを示すラジオグラフ例の図である。 本開示の1つ以上の技法による、ピクセルを変更する技法例を示す概念図である。 LDA X線検出器のモジュールの間の1つ以上のギャップによってもたらされるアーチファクトを含むラジオグラフ例の図である。 LDA X線検出器のモジュールの間の1つ以上のギャップによってもたらされるアーチファクトを示す図8Aのラジオグラフ例の拡大部分、及び、本開示の1つ以上の技法による、ラジオグラフ例の拡大部分の修正版の詳細図である。 LDA X線検出器のモジュールの間の1つ以上のギャップによってもたらされるアーチファクトを示す図8Aのラジオグラフ例の拡大部分、及び、本開示の1つ以上の技法による、ラジオグラフ例の拡大部分の修正版の詳細図である。 LDA X線検出器のモジュールの間の1つ以上のギャップによってもたらされるアーチファクトを示す図8Aのラジオグラフ例の拡大部分、及び、本開示の1つ以上の技法による、ラジオグラフ例の拡大部分の修正版の詳細図である。 LDA X線検出器のモジュールの間の1つ以上のギャップによってもたらされるアーチファクトが補正されていないラジオグラフに基づくコンピュータートモグラフィー画像例の図である。 本開示の1つ以上の技法による、LDA X線検出器のモジュールの間の1つ以上のギャップによってもたらされるアーチファクトが補正されているラジオグラフに基づくコンピュータートモグラフィー画像例の図である。 本開示の1つ以上の技法による、X線撮像システムの動作例を示すフローチャートである。 本開示の1つ以上の技法による、X線撮像システムの動作例を示すフローチャートである。 本開示の1つ以上の技法による、X線撮像システムの別の動作例を示すフローチャートである。 本開示の1つ以上の技法による、X線撮像システムの別の動作例を示すフローチャートである。 本開示の1つ以上の技法による、LDA X線検出器のモジュールの間のギャップを補償するようにピクセルを変更する、X線撮像システムの動作例を示すフローチャートである。 本開示の1つ以上の技法による、LDA X線検出器のモジュールの間のギャップのサイズを推定するために有用な、既知の長さの物体の概念図である。 本開示の1つ以上の技法による、X線撮像システムの別の動作例を示すフローチャートである。 本開示の1つ以上の技法による、X線撮像システムの別の動作例を示すフローチャートである。 本開示の1つ以上の技法による、2次元X線検出器を較正するX線撮像システムの動作例を示すフローチャートである。 本開示の1つ以上の技法による、2次元X線検出器のモジュールの間のギャップを補償するX線撮像システムの動作例を示すフローチャートである。
概して、本開示は、線形ダイオードアレイ(LDA)X線検出器のモジュールの間のギャップを補償するX線撮像システムの較正に関する。LDA X線検出器は、X線撮像システムのX線源によって生成されるX線を検出し、検出されたX線のパターンに対応する電気信号を出力する。X線撮像システムの画像処理システムが、LDA X線検出器によって出力される電気信号に基づいてラジオグラフを生成する。さらに、画像処理システムは、ラジオグラフに基づいてコンピュータートモグラフィー(CT)画像を生成することができる。このように、X線ラジオグラフィ及びCTに対して、X線撮像システムを使用することができる。X線ラジオグラフィ及びCTは、医療用の撮像及び産業用の非破壊評価(NDE)において3次元構造を非侵襲的に又は非破壊的に取得する方法である。
上述したように、X線撮像システムは、LDA X線検出器を備えることができる。LDA X線検出器は、フォトダイオードの1次元アレイを含む。フォトダイオードの各々は、異なるピクセルに対応する。例えば、フォトダイオードとピクセルとの間に1対1の関係があり得る。フォトダイオードの1次元アレイは、複数のモジュールに分割することができる。この場合、モジュールの各々は、フォトダイオードの異なるサブセットを備える。製造限界のために、LDA X線検出器においてモジュールの間にギャップがある可能性がある。こうしたギャップは、モジュール内のフォトダイオードの間のギャップより広い可能性がある。ラジオグラフを生成するためにX線撮像システムが使用される場合、LDA X線検出器のモジュールの間のギャップにより、可視のアーチファクト(すなわち、不正確さ)がもたらされる可能性がある。さらに、X線撮像システムによって生成されるラジオグラフを用いて、コンピュータートモグラフィー(CT)画像を生成する場合、アーチファクトにより、CT画像がぼやける可能性がある。
本開示の1つ以上の技法は、X線撮像システムがLDA X線検出器のモジュールの間のギャップを補償することができるように、X線撮像システムを較正する。その結果、X線撮像システムによって生成されるラジオグラフが含む欠陥を少なくすることができ、こうしたラジオグラフから生成されるCT画像をより鮮明にすることができる。
本開示の1つ以上の例によれば、X線撮像システムは、X線発生器によって放出されるX線ビームを検出するように配置されたLDA X線検出器によって検出されるX線の第1のパターンに基づいて、第1のラジオグラフを生成することができる。X線の生成されるパターンは、ピクセルのアレイを含むことができる。幾つかの例では、ピクセルのアレイにおける明るい方のピクセルは、X線が物体によって遮断された位置に対応し、ピクセルのアレイにおける暗い方のピクセルは、X線が遮断されなかった場所に対応する。さらに、撮像システムは、第1のラジオグラフに基づいて、LDA X線検出器のモジュールのうちの2つの間のギャップのサイズを求めることができる。ギャップのサイズを求めた後、撮像システムは、LDA放射線検出器によって検出されるX線の第2のパターンに基づいて、第2のラジオグラフを生成することができる。撮像システムは、ギャップのサイズに基づいて、ギャップを補償するように第2のラジオグラフを変更することによって、第3のラジオグラフを生成することができる。
例えば、X線撮像システムは、X線発生器によって放出されるX線ビームを通して対象物体を移動させることができる。対象物体は、第2の次元及び第3の次元では移動することなく、第1の次元において或る経路に沿って一貫した速度で移動する。第1の次元、第2の次元及び第3の次元は、相互に直交している。第1の次元は、X線ビームを検出するように配置されたLDA X線検出器の向きに対して平行である。第3の次元は、X線発生器とLDA X線検出器との間の軸に対して平行である。LDA X線検出器は、複数のモジュールを備える。複数のモジュールの各それぞれのモジュールは、ピクセルに対応するそれぞれの複数のフォトダイオードを備える。さらに、X線撮像システムは、LDA X線検出器によって検出されるX線の第1のパターンに基づいて、対象物体が経路に沿って移動する際の対象物体に対応する線を含む第1のラジオグラフを生成することができる。X線撮像システムは、線の勾配の不連続点のサイズ及び位置に基づいて、LDA X線検出器のモジュールの間のギャップのサイズ及び位置を求めることができる。ギャップのサイズ及び位置を求めた後、X線撮像システムは、LDA X線検出器によって検出されるX線の第2のパターンに基づいて、第2のラジオグラフを生成することができる。X線撮像システムは、LDA X線検出器のモジュールの間のギャップのサイズ及び位置を補償するように第2のラジオグラフを変更することができる。
図1は、本開示の1つ以上の技法による、X線撮像システム例10の概略図面である。図1の例に示すように、X線撮像システム10は、X線発生器12と、線形ダイオードアレイ(LDA)X線検出器14とを含むことができる。X線発生器12は、X線ビームを放出することができる。そのため、幾つかの場合では、本開示は、X線発生器12又は同様の装置を「X線源」と呼ぶ場合がある。幾つかの例では、X線ビームは円錐形である。他の例では、X線ビームは扇形である。幾つかの例では、X線発生器12は、エネルギー範囲が20keVから600keVであるX線を発生させる。他の例では、X線発生器12は、他のエネルギー範囲のX線を発生させる。
図1の例では、LDA X線検出器14は、検出器キャリッジ16に取り付けられる。検出器カートリッジ16は、フレーム18に取り付けられる。検出器キャリッジ16は、フレーム18に対してz次元20において移動することができる。したがって、図1の例では、検出器キャリッジ16は、垂直方向においてLDA X線検出器14を移動させることができる。LDA X線検出器14は、使用されているとき、z次元20においてX線発生器12と位置合せすることができる。図1の例では、x次元22は、LDA X線検出器14が、X線発生器12が発生させるX線ビームを検出するための適所にあるとき、X線発生器12とLDA X線検出器14との間の軸24(すなわち、X線ビーム軸)に対して平行である。さらに、図1の例は、同じフレームに取り付けられたX線発生器12及びLDA X線検出器14を示すが、X線発生器12及びLDA X線検出器14は、他の例では、別個のフレームに取り付けることができる。したがって、X線発生器12及びLDA X線検出器14は、1つ以上のフレームに取り付けることができる。幾つかの例では、X線発生器12及びLDA X線検出器14は、それぞれ他の形態の放射線を発生させ、また、検出することができるため、放射線発生器及び放射線検出器と呼ぶことができる。このため、本開示におけるX線の考察は、可視光等、他の形態の放射線に適用可能とすることができることが理解されよう。
さらに、図1の例では、LDA X線検出器14は、フォトダイオードの1次元アレイを備える。言い換えれば、LDA X線検出器14は、一行のフォトダイオードを備える。本開示は、LDA X線検出器14のフォトダイオードの行の空間的な向きを、LDA X線検出器14の向きと呼ぶ場合がある。フォトダイオードの各々は、異なるピクセルに対応する。したがって、フォトダイオードにぶつかるX線光子のエネルギーは、フォトダイオードに対応するピクセルの明るさに対応することができる。フォトダイオードの1次元アレイは、複数のモジュールに分割される。したがって、モジュールの各々は、フォトダイオードの異なるサブセットを備える。例えば、LDA X線検出器14は、直線に配置された2000個のフォトダイオードを備えることができる。この例では、LDA X線検出器14は、10個のモジュールを備えることができ、それらは各々、200個のフォトダイオードを有する。
LDA X線検出器14の各それぞれのモジュールは、ガラス検出器アレイの上のアモルファスシリコンの上に製作されたヨウ化セシウム等のシンチレーション材料の層を含むことができる。モジュールのシンチレーター層は、X線を吸収しかつ可視光光子を放出し、そして、これらの可視光光子は、モジュールのフォトダイオードによって検出される。フォトダイオードは、実際には、シンチレーター層によって吸収されるX線光子によって発生する可視光を検出することができるが、本開示は、説明を容易にするために、フォトダイオードにぶつかるX線又はX線光子を検出するフォトダイオードについて言及するものとする。検出器のピクセルサイズは、数10マイクロメートルから数100マイクロメートルの範囲とすることができる。幾つかの例では、LDA X線検出器14のピクセルサイズは、25マイクロメートルから250マイクロメートルの範囲とすることができる。言い換えれば、各ピクセルは、単一の点として表すことができるが、実際には、そのピクセルのピクセルサイズ(例えば、25マイクロメートルから250マイクロメートル)によって指定される面積に対応することができる。
製造限界のために、LDA X線検出器14において、モジュールの間にギャップがある可能性がある。例えば、LDA X線検出器14は、複数の事前に組み立てられたモジュールを組み立てることによって製造することができる。各それぞれのモジュールは、最初は別個の構成要素であるため、各それぞれのモジュールは、製造及び組立中にそれぞれのモジュールの両端においてフォトダイオードに対する損傷を防止するために、それぞれのモジュールの両端に余分な材料を備えることができる。各それぞれのギャップに対して、それぞれのギャップの幅(すなわち、それぞれのギャップのサイズ)は、モジュール内の2つの隣接するフォトダイオードの間の幅より大きい可能性がある。
図1の例では、X線撮像システム10は、画像処理システム30を備える。画像処理システム30は、コンピューティングシステムを備えることができる。コンピューティングシステムのタイプ例としては、パーソナルコンピューター、サーバーコンピューター、メインフレームコンピューター、ラップトップコンピューター、専用コンピューター等を挙げることができる。図1の例に示すように、画像処理システム30は、1つ以上のプロセッサ31を含むことができる。プロセッサ31の各々は、1つ以上のデジタル信号プロセッサ(DSP)、汎用マイクロプロセッサ、特定用途向け集積回路(ASIC)、フィールドプログラマブルロジックアレイ(FPGA)、又は他の等価な集積論理回路若しくはディスクリート論理回路を含むことができる。説明を容易にするために、本開示は、プロセッサ31のうちの1つ以上によって実行される行為を、画像処理システム30によって実行されているものとして記載する場合がある。画像処理システム30、したがってプロセッサ31は、X線撮像システム10の様々な構成要素に作動的に結合され、それにより、プロセッサ31は、こうした構成要素に電気信号を出力し、かつこうした構成要素から電気信号を受け取ることができる。こうした電気信号は、コマンド、画像データ、ステータスデータ等を表すことができる。本開示は、電気信号について考察し、図1の例は、X線撮像システム10の構成要素に画像処理システム30を接続するケーブルを示すが、こうした信号は、光信号及び/又は無線送信信号とすることができる。
LDA X線検出器14は、X線発生器12によって放出されるX線のパターンを検出すると、X線のそのパターンに対応する電気信号を出力することができる。画像処理システム30は、その電気信号を解釈して、1つ以上のラジオグラフを生成することができる。
X線撮像システム10は、X線発生器12及びLDA X線検出器14に対して物体を移動させるように構成された1つ以上のマニピュレーター機構を備えることができる。幾つかの例では、画像処理システム30の1つ以上のプロセッサ31は、X線発生器12及びLDA X線検出器14に対して物体を移動させる信号を出力する。例えば、図1の例では、物体は、X線発生器12とLDA X線検出器14との間に配置されたステージ26に取り付ける(又は他の方法で配置する)ことができる。図1の例では、ステージ26は、ステージ操作機構28に取り付けられる。ステージ操作機構28は、ステージ26(したがって、ステージ26に取り付けられた物体)をz次元20に対して平行に移動させることができる。さらに、幾つかの例では、ステージ操作機構28は、x次元22及びz次元20に対して相互に直交するy次元に対して平行にステージ26(したがって、ステージ26に取り付けられた物体)を移動させることができる。したがって、図1の例では、y次元は、ページに入りページから出るように直接向けられる。幾つかの例では、ステージ操作機構28は、ステージ26(したがって、ステージ26に取り付けられた物体)をz次元20及びy次元で同時に移動させることができる。
さらに、幾つかの例では、ステージ操作機構28は、z次元20に対して平行な(すなわち、X線ビーム軸24に対して垂直な)回転軸でステージ26を回転させる。したがって、ステージ26は、物体を支持しかつ回転させるように構成することができる。その結果、X線撮像システム10は、物体が、X線発生器12によって発生するX線ビームにおいて回転する際、異なる投影角でラジオグラフを取得することができる。幾つかの例では、X線撮像システム10は、異なる回転角でラジオグラフを取得し、そのラジオグラフを処理して、ラジオグラフを物体の3次元ラジオグラフに組み立てる。さらに、幾つかの例では、ステージ操作機構28は、ステージ26を回転させ、同時に、ステージ26をz次元20において線形に移動させる。
簡単に上述したように、LDA X線検出器14は、複数のモジュールを備える。モジュールの各々は、フォトダイオードの1次元アレイを備える。LDA X線検出器14のモジュールの間に、ギャップが存在する場合がある。これらのギャップにより、補正されない場合、X線撮像システム10によって発生するラジオグラフに誤りがもたらされる可能性がある。これらの誤りは、ラジオグラフからCT画像を生成するときに組み合わされ、ぼけをもたらす。異なるX線撮像システムの異なるLDA X線検出器のモジュールの間のギャップは、サイズ及び位置が異なる可能性がある。したがって、LDA X線検出器のモジュールの間のギャップのサイズ及び位置は、全てのX線撮像システムにおいて同じであると想定することはできない。
本開示の技法により、X線撮像システム10は、LDA X線検出器14のモジュールの間のギャップを補償することができる。本開示の1つの技法例によれば、使用者は、ステージ26に対象物体を取り付ける。対象物体は、様々なタイプの物体とすることができる。例えば、対象物体は、ピン、ロッド、球体、円錐体又は他のタイプの物体とすることができる。
さらに、本例では、X線撮像システム10は、X線発生器12及びLDA X線検出器14に対して、対象物体を、z次元20で移動させることなくかつx次元22で移動させることなく、y次元において或る経路に沿って一貫した速度で移動させることができる。例えば、対象物体は、X線発生器12及びLDA X線検出器14に対して、LDA X線検出器14の向きに対して平行な平面において或る経路に沿って、一貫した速度で移動することができる。対象物体は、経路に沿って移動する際、X線発生器12によって放出されるX線ビームを通って移動する。幾つかの例では、平面は、X線発生器12とLDA X線検出器14との間の軸に対して直交する。
X線発生器12及びLDA X線検出器14に対する対象物体の移動は、幾つかの異なる方法で達成することができる。例えば、ステージ操作機構28は、ステージ26(したがって、ステージ26に取り付けられた対象物体)を、X線発生器12及びLDA X線発生器14をフレーム18に対して移動させることなく、y次元においてフレーム18に対して移動させることができる。本例では、プロセッサ31は、ステージ操作機構28等の1つ以上のマニピュレーター機構を作動させて、放射線発生器及びLDA放射線検出器を1つ以上のフレームに対して移動させることなく、対象物体を1つ以上のフレームに対して移動させるように構成することができる。別の例では、X線発生器12及びLDA X線検出器14は、同期して、フレーム18に対してy次元において移動する。したがって、X線発生器12及びLDA X線検出器14に対して対象物体を移動させることは、対象物体をフレーム18に対して移動させることなく、X線発生器12及びLDA X線検出器14の両方をフレーム18に対して移動させることを含むことができる。本例では、プロセッサ31は、1つ以上のマニピュレーター機構を作動させて、対象物体を1つ以上のフレームに対して移動させることなく、放射線発生器及びLDA放射線検出器の両方を1つ以上のフレームに対して移動させるように構成することができる。別の例では、キャリッジ又はロボットアーム等の別の機構が、対象物体をX線発生器12及びLDA X線検出器14に対して移動させることができる。この機構は、本開示の較正プロセスに対して特に設計することができる。幾つかの場合では、この機構は、較正後にX線撮像システム10から取り除くことができる。
さらに、画像処理システム30は、LDA X線検出器14によって検出されるX線の第1のパターンに基づいて、対象物体が経路に沿って移動する際の対象物体に対応する線を含む第1のラジオグラフを生成する(例えば、取得する)ことができる。第1のラジオグラフは、経路に沿って移動する対象物体のタイムラプス画像とすることができる。したがって、対象物体は、任意の所与の時点でその経路に沿った幾つかの点においてのみX線を遮断する可能性があるが、結果としてのタイムラプスラジオグラフでは、その経路に沿って対象物体を移動させる累積的効果は線である。本開示において別の場所で説明する図6は、こうした線の一例を示す。ピクセルの各それぞれの行は異なるそれぞれの時点に対応することができ、対象物体は、LDA X線検出器14の向きに位置合せされる経路においてLDA X線検出器14に対して移動するため、線は、結果としてのタイムラプスラジオグラフにおいて対角線である。LDA X線検出器14によって検出されるX線のパターンは、LDA X線検出器14のフォトダイオードによって検出されたX線があるとすれば、このX線のエネルギーレベルを指すことができる。
さらに、画像処理システム30は、線の勾配における不連続点のサイズ及び位置に基づいて、LDA X線検出器14のモジュールの間のギャップのサイズ及び位置を求めることができる。例えば、線の勾配における不連続点の位置は、LDA X線検出器14のモジュールの間のギャップの位置に対応する。さらに、線の勾配における不連続点のサイズは、LDA X線検出器14のモジュールの間の対応するギャップのサイズに対応する。例えば、不連続点のサイズが大きいほど、ギャップサイズが大きくなる。
ギャップのサイズ及び位置を求めた後、X線撮像システム10は、使用の準備ができている可能性がある。したがって、使用者は、検査するためにステージ26に様々な物体を取り付けることができる。使用者が、X線撮像システム10を用いて物体を検査する場合、画像処理システム30は、LDA X線検出器14によって検出されるX線の第2のパターンに基づいて、第2のラジオグラフを生成する(例えば、取得する)ことができる。画像処理システム30は、LDA X線検出器14のモジュールの間のギャップのサイズ及び位置を求めているため、LDA X線検出器14のモジュールの間のギャップのサイズ及び位置を補償するように、第2のラジオグラフを変更することができる。
幾つかの例では、画像処理システム30は、LDA X線検出器14のモジュールの間のギャップを補償するようにラジオグラフを変更するとき、ラジオグラフの各それぞれのピクセルを処理する。X線撮像システム10が現ピクセルを処理する場合、画像処理システム30は、現ピクセルに対する全体のギャップサイズ(すなわち、ギャップ幅)を求めることができる。現ピクセルに対する全体のギャップサイズは、現ピクセルを含むピクセルの行においてそのピクセルより前に発生するギャップのサイズの和に等しい。これに関して、ピクセルは、ラスタースキャン順等、スキャン順において現ピクセルより前に発生する場合、現ピクセル「より前である」ものとすることができる。現ピクセルに対して全体のギャップサイズを求めた後、画像処理システム30は、現ピクセルが、現ピクセルに対する全体のギャップサイズだけシフトした場合の現ピクセルの値を推定する。その後、画像処理システム30は、推定値を現ピクセルに割り当てることができる。例えば、現ピクセルの値が20であり、現ピクセルの推定値が15である場合、画像処理システム30は、値15を現ピクセルに割り当てることができる。
幾つかの例では、画像処理システム30は、補間法を用いて、現ピクセルの値を推定することができる。例えば、現ピクセルの直前のピクセルの値が0であり、現ピクセルの値が1であり、現ピクセルに対する全体のギャップサイズが0.5ピクセル幅である場合、現ピクセルの推定値は0.5である。本例では、現ピクセルに対する全体のギャップサイズが0.75ピクセル幅である場合、現ピクセルに対する推定値は0.25である。現ピクセルに対する推定値を求める一般的公式は、以下の通りである。
Figure 0006810045
上記公式において、y(x’)は推定値であり、yk−1は先行するピクセルの値であり、x’は、推定値の位置(例えば、xk−1+1であると定義される)であり、xk−1は先行するピクセルの位置であり、xは現ピクセルの位置であり、Gは現ピクセルに対する全体のギャップサイズであり、yは現ピクセルの値である。
上記例は、現ピクセル及び先行するピクセルの値のみを使用するが、現ピクセルの推定値を求める他の技法は、1つ以上の追加のピクセルの値及び位置を含むことができる。例えば、画像処理システム30は、現ピクセルより前の及び/又は現ピクセルに続く一連のピクセルを使用して回帰を実行することができる。
幾つかの例では、X線撮像システム10はコンベアシステム(例えば、コンベアベルトシステム)を備える。画像処理システム30が、LDA X線検出器14のモジュールの間のギャップのサイズ及び位置を求めた後、使用者は、コンベアシステムに物体を配置することができる。コンベアシステムは、X線発生器12とLDA X線検出器14との間で物体を移動させる。このように、画像処理システム30は、コンベアシステムに配置された物体のラジオグラフを生成することができる。画像処理システム30は、LDA X線検出器14のモジュールの間のギャップを補償するようにラジオグラフを変更することができる。幾つかの例では、コンベアシステムは、z次元20において物体を移動させることができる。こうした例では、z次元20及びy次元が水平方向であり、x次元22が垂直方向であるように、X線撮像システム10は設置される。したがって、こうした例では、X線撮像システム10は、コンテナ又は手荷物のセキュリティスクリーニングのために空港及び他のセキュリティ保護された施設に見られるX線撮像システムと同様の構成を有することができる。
図2は、X線撮像システム10の斜視図である。図2の例は、ステージ操作機構28が、ステージ操作機構28がy次元42においてステージ26を移動させるのを可能にするトラック40を備えることを示す。したがって、ステージ26に取り付けられた物体は、y次元42においてX線発生器12及びX線検出器14に対して線形に移動することができる。さらに、X線発生器12は、発生器キャリッジ44に取り付けられている。トラック46により、発生器キャリッジ44(したがって、X線発生器12)は、y次元42において線形に移動することができる。さらに、発生器操作機構48が、発生器キャリッジ44(したがって、X線発生器12)をz次元20において線形に移動させるように構成されている。
図3Aは、LDA X線検出器14を有するX線撮像システム10の反対側の斜視図である。図3Aの例に示すように、検出器操作機構50は、検出器キャリッジ16をz次元20において線形に移動させるように構成されている。X線撮像システム10により、発生器操作機構48及び検出器操作機構50は、X線発生器12及びLDA X線検出器14を同期させてz次元20において移動させることができる。したがって、X線発生器12及びLDA X線検出器14がz次元20において同期して移動する場合、ステージ26に取り付けられた物体は、z次元20においてX線発生器12及びLDA X線検出器14に対して移動する。
図3Bは、2次元(2D)X線検出器51を有するX線撮像システム10の反対側の斜視図である。幾つかの例では、2次元X線検出器51は、フラットパネル検出器(FPD)を備えている。他の例では、X線撮像システム10は、FPDの代わりに又はそれに加えて、レンズ結合シンチレーション検出器又は別のタイプのX線検出器を備えることができる。FPDは、ガラス検出器アレイの上のアモルファスシリコンの上に製作されたヨウ化セシウム等のシンチレーション材料の層を含むことができる。幾つかの例では、FPDのピクセルサイズは、およそ25マイクロメートルからおよそ250マイクロメートルの範囲とすることができる。図3Bの例では矩形であるものとして示すが、2D X線検出器51は正方形の形状とすることができる。
高解像度の用途では、光学レンズを用いて、放出された可視光を、電荷結合デバイス(CCD)又は相補型金属酸化膜半導体(CMOS)検出器等の検出器に中継する、レンズ結合検出器が必要である場合がある。幾つかの例では、このレンズは、1×から100×の範囲の倍率を提供することができ、したがって、有効なピクセルサイズは0.1マイクロメートル〜20マイクロメートルとなる。X線撮像システム10がレンズ結合検出器を備える幾つかの例では、LDA X線検出器14のピクセルサイズは、0.1マイクロメートルから10マイクロメートルの範囲にある。さらに、X線撮像システム10がレンズ結合検出器を備える幾つかの例では、視野は、0.2mmから25mmの範囲とすることができる。
LDA X線発生器に関して本開示において別の場所に記載したものと同様の技法を、2D X線検出器51に関して適用することができる。こうした例では、2D X線検出器51は、複数の2Dモジュールから組み立てることができる。2Dモジュールの各々は、フォトダイオードの2Dアレイを備える。2Dモジュールは互いに対してわずかに斜めとすることができるため、2Dモジュールの間のギャップサイズ及び位置は、こうした2D放射線検出器を用いて生成されるラジオグラフの行ごとに及び/又は列ごとに変化する可能性がある。図5Bに、これの一例を示す。このように、ギャップを補正するラジオグラフの補償は、ピクセルの各列及び各行に対して、本開示において別の場所で記載した技法を繰り返すことを含むことができる。
幾つかの例では、画像処理システム30は、モジュール位置の近似する知識(例えば、先験的知識又は分析を通して取得された知識)によって構成することができる。さらに、本例では、X線撮像システム10は、2D X線検出器51の表面にわたって水平及び垂直運動を行う能力を有している。本例では、X線撮像システム10は、数ピクセルサイズ幅/高さである対象物体を垂直又は水平の一連のモジュールにわたって移動させ、一続きのラジオグラフを取得することができる。物体が、数ピクセルで「厚い」ため、画像処理システム30は、対象物体のラジオグラフからピクセルの行/列を抽出することができ、それは、「サイノグラム(sinogram)」画像(例えば、経時的な抽出された行/列の連結)を生成するために、いかなるシフトによっても影響を受けるべきではない。そして、画像処理システム30は、この画像を用いて、LDAの場合のように、物体の線形トラックからギャップ情報(例えば、ギャップのサイズ及び位置)を抽出することができる。これは、2D X線検出器51において水平にかつ垂直に位置合せされるモジュールの各セットにわたって行われる。例えば、モジュールが、4×4グリッド(16モジュール)に配置されている場合、X線撮像システム10は、プロセスを8回繰り返すことができる。この例では、モジュールの縁は互いに平行であり、2つの隣接するモジュールの間のギャップ情報は一定であると想定する。
図4は、本開示の1つ以上の技法によるステージ操作機構28の斜視図である。図4の例に示すように、ステージ操作機構28は、ステージ26(したがって、ステージ26に取り付けられた物体)を、y次元42においてトラック40に沿って線形に移動させることができる。さらに、ステージ操作機構28は、矢印70によって示すように、z次元20に対して平行な回転軸によりステージ26を回転させることができる。他の例では、ステージ操作機構28は、ステージ26を回転させない。むしろ、X線撮像システム10は、ステージ26に取り付けられた物体の周囲でX線発生器12及びLDA X線検出器14を回転させることによって、3次元ラジオグラフを生成することができる。さらに、幾つかの例では、ステージ操作機構28は、ステージ26をz次元20において線形に移動させることができる。
図5Aは、LDA X線検出器14のモジュールの間のギャップ例を示す概念図である。図5Aの例では、LDA X線検出器14は、モジュール150A、150B及び150C(まとめて、「モジュール150」)を備える。モジュール150の各々は、フォトダイオードの線形アレイを備える。図5Aは、フォトダイオードの各々を矩形として表す。モジュール150の各々は、図5Aに示すものより多くのフォトダイオードを含むことができる。図5Aに示すように、モジュール150Aとモジュール150Bとの間にギャップ152Aが存在する。モジュール150Bとモジュール150Cとの間にギャップ152Bが存在する。ギャップ152A及び152Bにより、LDA X線検出器14によって生成される電気信号に基づいて生成されるラジオグラフに、望ましくないアーチファクトが発生する可能性がある。
図5Bは、2D X線検出器51のモジュールの間のギャップ例を示す概念図である。図5Bの例では、2D X線検出器51は、モジュール160A、160B、160C及び160D(まとめて、「モジュール160」)を備える。モジュール160の各々は、フォトダイオードの2次元アレイを備える。図5Aは、フォトダイオードの各々を小さい正方形として表している。モジュール160の各々は、図5Bに示すものよりも多くのフォトダイオードを含むことができる。図5Bに示すように、モジュール160Aとモジュール160Bとの間にギャップ162Aが存在し、モジュール160Aとモジュール160Cとの間にギャップ162Bが存在し、モジュール160Bとモジュール160Dとの間にギャップ162Cが存在し、モジュール160Cとモジュール160Dとの間にギャップ162Dが存在する。ギャップ162A、162B、162C及び162D(まとめて、「ギャップ162」)により、2D X線検出器51によって生成される電気信号に基づいて生成されるラジオグラフに、望ましくないアーチファクトが発生する可能性がある。図5Bの例に示すように、ギャップ162は、必然的に同じサイズである。さらに、図5Bの例に示すように、モジュール160のうちの1つ以上(例えば、モジュール162D)は、モジュール160のうちの他のものに対してわずかに回転する場合があり、それにより、特定のギャップのサイズが変化する可能性がある。例えば、ギャップ162C及び162Dのサイズは、それぞれ、左から右に、頂部から底部に変化する。
図6は、LDA X線検出器14のモジュールの間のギャップによってもたらされるアーチファクトを示すラジオグラフ180である。ラジオグラフ180は線182を含む。線182は、経路に沿った対象物体の移動に対応する。対象物体は、経路に沿って移動するとき、第2の次元で移動することなくかつ第3の次元で移動することなく、第1の次元において、第1の一貫した速度で移動することができる。第1の次元、第2の次元及び第3の次元は、相互に直交している。したがって、第1の次元、第2の次元及び第3の次元は、互いに直角を形成する。第1の次元は、LDA X線検出器14の向きに対して平行である。第3の次元は、X線発生器12とLDA X線検出器14との間の軸に対して平行である。図1〜図4の例では、第2の次元は垂直である。
対象物体が、LDA X線検出器14のモジュールの間のギャップの前方で移動する場合、線182の勾配における不連続点が発生する。例えば、図6の例では、線182は、垂直方向に幾分かの距離、飛び越す。こうした不連続点は、図6の楕円184に示す。図6の例では、最も暗いピクセルは、右側に移動する3つのピクセル毎に1ピクセル分上方に移動することに留意されたい。しかしながら、不連続点では、最も暗いピクセルは、2ピクセル分上方に移動する。
図7は、本開示の1つ以上の技法による、ピクセルを変更する技法例を示す概念図である。図7の例では、ピクセル200は、ギャップより前に発生し、ピクセル202はギャップの後に発生する。ピクセル200及び202を含むラジオグラフを、ギャップを補償するように変更した後、ピクセル200はそれらの値を保持することができる。しかしながら、ピクセル202はピクセル200に隣接していないため、X線撮像システム10は、ピクセル200、ピクセル202のうちの1つ以上の値及びギャップのサイズに基づいて、ピクセル200に隣接するピクセル204の値を推定することができる。X線撮像システム10は、補間法を用いてピクセル204の値を推定することができる。
図8Aは、LDA X線検出器14のモジュールの間の1つ以上のギャップによってもたらされるアーチファクトを含むラジオグラフ例250である。X線撮像システム10は、物体をz次元20で移動させる間に回転させることにより、ラジオグラフ250を生成することができる。図8Bは、LDA X線検出器14のモジュールの間の1つ以上のギャップによってもたらされるアーチファクトを示すラジオグラフ250の拡大部分、及び、本開示の1つ以上の技法による、ラジオグラフ250の拡大部分の修正版の詳細図である。図8Cは、LDA X線検出器14のモジュールの間の1つ以上のギャップによってもたらされるアーチファクトを示すラジオグラフ250の拡大部分、及び、本開示の1つ以上の技法による、ラジオグラフ250の拡大部分の修正版の詳細図である。図8Dは、LDA X線検出器14のモジュールの間の1つ以上のギャップによってもたらされるアーチファクトを示すラジオグラフ250の拡大部分、及び、本開示の1つ以上の技法による、ラジオグラフ250の拡大部分の修正版の詳細図である。
図9Aは、LDA X線検出器14のモジュールの間の1つ以上のギャップによってもたらされるアーチファクトが補正されていないラジオグラフに基づくコンピュータートモグラフィー画像例300である。言い換えれば、図9Aは、ギャップが補正されていない画像から生成されるCT再構成スライスである。図9Bは、本開示の1つ以上の技法による、LDA X線検出器14のモジュールの間の1つ以上のギャップによってもたらされるアーチファクトが補正されているラジオグラフに基づくコンピュータートモグラフィー画像例302である。言い換えれば、図9Bは、ギャップが補正された画像から生成されるCT再構成スライスである。図9A及び図9Bから明らかであるように、図9A及び図9Bに示す構造は、図9Aより図9Bの方が鮮明である。
図10Aは、本開示の1つ以上の技法による、X線撮像システム10の動作例を示すフローチャートである。図10Aの動作及び本開示の他のフローチャートの動作は、単に例である。他の動作例は、より多くの行為、より少ない行為、又は異なる行為を含むことができる。さらに、動作は、異なる順序で又は並列に行うことができる。図10A及び本開示の他のフローチャートは、本開示の他の図からの参照符号を用いて記載されているが、フローチャートに記載する動作例は、他の図に示す例に限定されない。さらに、フローチャートの動作例は、X線に関して記載されているが、フローチャートの動作例は、他のタイプの放射線に適用可能とすることができる。このため、X線撮像システム10の以下の考察は、他のタイプの撮像システムに適用可能とすることができる。
図10Aの例では、X線撮像システム10は、X線発生器12によって放出される放射線ビームを検出するように配置されたLDA X線検出器14によって検出される放射線の第1のパターンに基づいて、第1のラジオグラフを生成する。LDA X線検出器14は、複数のモジュールを備える。複数のモジュールの各それぞれのモジュールは、ピクセルに対応するそれぞれの複数のフォトダイオードを備える。さらに、X線撮像システム10は、第1のラジオグラフに基づいて、LDA X線検出器14のモジュールのうちの2つの間のギャップのサイズを求める(322)。
図10Aの動作と一貫する幾つかの例では、X線撮像システム10又は別の装置は、X線発生器12及びLDA X線検出器14に対して、LDA X線検出器14の向きに対して平行な平面において或る経路に沿って対象物体を、一貫した速度で移動させることができる。対象物体は、経路に沿って移動する際、放射線ビームを通って移動する。第1のラジオグラフは、対象が経路に沿って移動する際に対象物体に対応する線を含む。X線撮像システム10は、線の勾配における不連続点の位置に基づいてギャップの位置を求めることができる。さらに、X線撮像システム10は、線の勾配における不連続点のサイズに基づいて、ギャップのサイズを求めることができる。X線撮像システム10は、ギャップの位置及びギャップのサイズに基づいて、ギャップを補償するように第2のラジオグラフを変更することができる。
図10Aの動作と一貫する他の例では、第1のラジオグラフは、LDA X線検出器14の向きに対して平行な軸を有する物体の画像を含む。X線撮像システム10は、軸における物体の既知の長さに基づいて、かつ第1のラジオグラフに示すような軸における物体の見かけ上の長さに基づいて、ギャップのサイズを求めることができる。例えば、X線撮像システム10は、軸における物体の既知の長さと物体の見かけ上の長さとの差を求めることができる。X線撮像システム10は、ギャップのサイズが、その差をLDA X線検出器14のモジュールの間のギャップの既知の数によって割った値に等しい、と判断することができる。
図10Bは、本開示の1つ以上の技法による、X線撮像システム10の動作例を示すフローチャートである。X線撮像システム10は、(例えば、図10Aの動作を用いて)ギャップのサイズを求めた後、図10Bの動作を実行することができる。図10Bの例では、X線撮像システム10は、LDA X線検出器14によって検出される放射線の第2のパターンに基づいて第2のラジオグラフを生成する(324)。さらに、X線撮像システム10は、ギャップのサイズに基づいて、ギャップを補償するように第2のラジオグラフを変更することによって、第3のラジオグラフ(すなわち、第2のラジオグラフの変更版)を生成する(326)。幾つかの例では、X線撮像システム10は、各ピクセルに対して図12の動作例を実行して、第3のラジオグラフを生成することができる。X線撮像システム10は、毎回図10Aの動作を実行する必要なしに、図10Bの動作を複数回実行することができる。
図11Aは、本開示の1つ以上の技法による、X線撮像システム10の動作例を示すフローチャートである。図11Aの動作例は、図10Aの動作例のより詳細な実施態様である。図11Aの例では、X線撮像システム10は、X線発生器12によって放出されるX線ビームを通して、X線発生器12及びLDA X線検出器14に対して対象物体を移動させる(350)。図10Aの動作例の全ての実施態様が、X線発生器12及びLDA X線検出器14に対する対象物体の移動を含むとは限らないことに留意されたい。図11Aの例では、対象物体は、第1の次元において或る経路に沿って一貫した速度で移動することができる。幾つかの例では、対象物体は、第2の次元又は第3の次元では移動しない。図11Aの例では、第1の次元、第2の次元及び第3の次元は、相互に直交しており、第1の次元は、X線ビームを検出するように配置されたLDA X線検出器14の向きに対して平行であり、第3の次元は、X線発生器12とLDA X線検出器14との間の軸に対して平行である。
さらに、図11Aの例では、X線撮像システム10の画像処理システム30は、LDA X線検出器14によって検出されるX線の第1のパターンに基づいて、対象物体が経路に沿って移動する際の対象物体に対応する線を含む第1のラジオグラフを生成する(352)。画像処理システム30は、線の勾配における不連続点のサイズ及び位置に基づいて、LDA X線検出器14のモジュールのうちの2つの間のギャップのサイズ及び位置を求める(354)。例えば、ギャップの位置を求める一環として、画像処理システム30は、ギャップが線の勾配における不連続点に対応する位置に存在すると判断する場合がある。1つの例では、ギャップのサイズを求める一環として、画像処理システム30は、第1のセグメント端点と第2のセグメント端点との間の距離に基づいてギャップのサイズを求めることができる。この例では、第1のセグメント端点は、線の第1のセグメントの端点であり、第2のセグメント端点は、線の第2のセグメントの端点であり、第1の端点及び第2の端点は、線の勾配において不連続点に隣接している。
図11Bは、本開示の1つ以上の技法による、X線撮像システム10の動作例を示すフローチャートである。図11Bは、図11Aの動作が実行された後に実行することができる。(例えば、図11Aの動作を実行することにより)ギャップのサイズ及び位置を求めた後、X線撮像システム10は、LDA X線検出器14によって検出されたX線の第2のパターンに基づいて、第2のラジオグラフを生成する(356)。そして、X線撮像システム10の画像処理システム30は、ギャップのサイズ及び位置に基づいて、ギャップを補償するように第2のラジオグラフを変更することによって、第3のラジオグラフを生成する(358)ことができる。X線撮像システム10は、毎回図11Aの動作を実行する必要なしに、図11Bの動作を複数回実行することができる。
図12は、本開示の1つ以上の技法による、LDA X線検出器14のモジュールの間のギャップを補償するようにピクセルを変更する、X線撮像システム10の動作例を示すフローチャートである。図12の動作は、単に1つの例である。LDA X線検出器14のモジュールの間のギャップを補償する他の動作例は、より多くの行為、より少ない行為又は異なる行為を含むことができる。例えば、図12の動作例は、X線撮像システム10の画像処理システム30によって実行されるものとして説明されている。しかしながら、他の例では、X線撮像システム10の1つ以上の他の構成要素が、図12の動作を実行することができる。
X線撮像システム10の画像処理システム30は、ラジオグラフの各ピクセルに対して図12の動作を実行することができる。図12の例では、画像処理システム30は、現ピクセルに対して全体のギャップサイズを求める(400)。現ピクセルに対する全体のギャップサイズは、ピクセルの現行における、現ピクセルより前のギャップ(あるとすれば)の全体のサイズである。言い換えれば、現ピクセルに対する全体のギャップサイズは、現ピクセルを含むピクセルの行において現ピクセルより前に発生する任意のギャップに対するギャップサイズの和とすることができる。例えば、画像処理システム30は、現ピクセルに対する全体のギャップサイズが1.5ピクセルサイズであると判断することができる。
さらに、画像処理システム30は、現ピクセルに対する全体のギャップサイズ及び現ピクセルのラジオグラフ内の位置に基づいて、現ピクセルの実際の位置を求める(402)ことができる。幾つかの例では、現ピクセルの実際の位置は、現ピクセルの位置に現ピクセルに対する全体のギャップサイズを加えた値に等しい。さらに、画像処理システム30は、あるとすれば少なくとも1つの先行するピクセルの値と、現ピクセルの値と、現ピクセルの実際の位置とに基づいて、現ピクセルに対する補正値を求める(404)ことができる。例えば、画像処理システム30は、先行するピクチャの値と現ピクセルの実際の位置とに基づいて、先行するピクセルに隣接して発生するピクセルの値を推定する(例えば、補間する)ことができる。この例では、補間の目的で、現ピクセルは現ピクセルの実際の位置にあると想定する。幾つかの例では、先行するピクセルは、変更されたラジオグラフを生成するために使用されるスキャン順において現ピクセルの直前に発生する可能性がある。例えば、先行するピクセルの位置を10とすることができ、現ピクセルの位置は11であり、ギャップサイズは1ピクセルに等しい。この例では、現ピクセルの実際の位置は12である。このため、先行するピクセルの値は0であり、現ピクセルの値は1であり、補間された値は0.5に等しい。そして、X線撮像システム10は、現ピクセルに対する補正値を現ピクセルに割り当てる(406)ことができる。
図13は、本開示の1つ以上の技法による、LDA X線検出器14のモジュールの間のギャップのサイズを推定するために有用な、既知の長さの物体450の概念図である。図13の例では、物体450はダンベル状の物体である。物体450の内側部分は円筒状である。しかしながら、他の例では、同様の目的に対して使用される物体は他の形状を有することができる。
使用者は、物体450の軸(例えば、長軸452)がLDA X線検出器14の向きに位置合せされるように、ステージ26に物体450を取り付けるか又は他の方法で配置することができる。そして、LDA X線検出器14は、X線発生器12によって生成されるX線のパターンを検出することができる。画像処理システム30は、X線のパターンに基づいてラジオグラフを生成することができる。そして、画像処理システム30は、ラジオグラフに示すような物体450の長さを物体450の既知の長さと比較することができる。これらの2つの長さの間の差は、LDA X線検出器14のモジュールの間のギャップの全体のサイズである。この例では、画像処理システム30は、ギャップの数及び位置の先験的な知識を有することができる。例えば、画像処理システム30は、ギャップが250個のピクセルの間隔で発生するということを示すデータと、各ピクセル及びピクセルの間のギャップのサイズとを記憶することができる。さらに、本例では、画像処理システム30は、ギャップの各々が同じサイズを有すると想定することができる。言い換えれば、ギャップの各々の想定されたサイズは、ギャップの全体のサイズをギャップの数で割った値に等しい。画像処理システム30は、ギャップの位置及びサイズに関するこの情報を用いて、本開示の別の場所に記載するように、ギャップを補償するように後続するラジオグラフを変更することができる。
図14Aは、本開示の1つ以上の技法による、X線撮像システム10の動作例を示すフローチャートである。図14Aの動作例は、図10Aの動作例のより詳細な実施態様である。言い換えれば、図14Aの動作例は、LDA X線検出器14のモジュールのうちの2つの間のギャップのサイズを求める技法例とすることができる。図14Aの例では、X線撮像システム10は、LDA X線検出器14によって検出されるX線の第1のパターンに基づいて第1のラジオグラフを生成する(500)。第1のラジオグラフは、既知の長さを有する物体(例えば、物体450)の画像を含む。物体の長手方向軸は、LDA X線検出器14の向きと位置合せされる。
第1のラジオグラフを生成した後、X線撮像システム10の画像処理システム30は、全体のギャップサイズを求める(502)。全体のギャップサイズは、LDA X線検出器14のモジュールの間のギャップの全体のサイズ(すなわち、幅)を示すことができる。画像処理システム30は、物体の既知の長さと第1のラジオグラフにおける物体の見かけ上の長さとを比較することにより、全体のギャップサイズを求めることができる。例えば、画像処理システム30は、既知の長さから見かけ上の長さを減じることにより、全体のギャップサイズを求めることができる。次に、画像処理システム30は、平均ギャップサイズを求めることができる(504)。画像処理システム30は、全体のギャップサイズをLDA X線検出器のモジュールの間のギャップの既知の数で割ることにより、平均ギャップサイズを求めることができる。
図14Bは、本開示の1つ以上の技法による、X線撮像システム10の別の動作例を示すフローチャートである。X線撮像システム10は、(例えば、図14Aの動作を用いて)平均ギャップサイズを求めた後、図14Bの動作を実行することができる。図14Bの例では、X線撮像システム10の画像処理システム30は、第2のラジオグラフを生成する(506)。第2のラジオグラフは、異なる物体の画像を含むことができる。画像処理システム30は、LDA X線検出器14のモジュールの間の1つ以上のギャップのサイズ及び位置を補償するように第2のラジオグラフを変更することによって、第3のラジオグラフ(すなわち、第2のラジオグラフの変更版)を生成する(508)ことができる。X線撮像システム10は、毎回図14Aの動作を実行する必要なしに、図14Bの動作を複数回実行することができる。
図15は、本開示の1つ以上の技法による、2D X線検出器51を較正するX線撮像システム10の動作例を示すフローチャートである。図15の例に示す動作は、2D X線検出器51のフォトダイオードの各行及び列に対して繰り返されることを除き、図11Aの例に示すものと同様である。
図15の例では、X線撮像システム10の画像処理システム30は、処理するべき2D X線検出器51のフォトダイオードのいずれかの行が残っているか否かを判断する(550)。処理するべきフォトダイオードの行が残っていると判断すること(550の「はい」分岐)に応じて、X線撮像システム10は、X線発生器12によって放出されるX線ビームを通してX線発生器12及び2D X線検出器51に対して対象物体を移動させる(552)ことができる。対象物体は、第1の次元(例えば、水平次元)において或る経路に沿って一貫した速度で移動することができる。幾つかの例では、対象物体は、第2の次元又は第3の次元では移動しない。図15の例では、第1の次元、第2の次元及び第3の次元は相互に直交しており、第1の次元は、2D X線検出器51の平面に対して平行であり、第3の次元は、X線発生器12と2D X線検出器51との間の軸に対して平行である。
さらに、図15の例では、X線撮像システム10の画像処理システム30は、2D X線検出器51によって検出されるX線のパターンに基づいて、対象物体が経路に沿って移動する際の対象物体に対応する線を含むラジオグラフを生成する(554)。画像処理システム30は、線の勾配における不連続点のサイズ及び位置に基づいて、現行の位置における2D X線検出器14のモジュールの間のギャップのサイズ及び位置を求める(556)。例えば、ギャップの位置を求める一環として、画像処理システム30は、ギャップが、線の勾配における不連続点に対応する位置に存在すると判断することができる。
そして、画像処理システム30は、2D X線検出器51のいずれかの未処理の行が残っているか否かを判断する(550)ことができる。残っている場合、行為552〜556を繰り返すことができる。このように、2D X線検出器51のフォトダイオードの各行に対して、行為552〜556を繰り返すことができる。一方、行が残っていないと判断すること(550の「いいえ」分岐)に応じて、画像処理システム30は、処理すべき2D X線検出器51のフォトダイオードのいずれかの列が残っているか否かを判断する(558)。処理するべきフォトダイオードの列が残っているという判断(558の「はい」分岐)に応じて、X線撮像システム10は、X線発生器12によって放出されるX線ビームを通してx線発生器12及び2D X線検出器51に対して、対象物体を移動させる(560)ことができる。対象物体は、第2の次元(例えば、垂直次元)において或る経路に沿って一貫した速度で移動することができる。幾つかの例では、対象物体は、第1の次元又は第3の次元では移動しない。
さらに、図15の例では、画像処理システム30は、2D X線検出器51によって検出されるX線のパターンに基づいて、対象物体が経路に沿って移動する際に対象物体に対応する線を含むラジオグラフを生成する(562)。画像処理システム30は、線の勾配における不連続点のサイズ及び位置に基づいて、現列の位置における2D X線検出器51のモジュールの間のギャップのサイズ及び位置を求める(564)。例えば、ギャップの位置を求める一環として、画像処理システム30は、ギャップが、線の勾配における不連続点に対応する位置に存在すると判断することができる。そして、画像処理システム30は、2D X線検出器51のいずれかの未処理の列が残っているか否かを判断する(558)ことができる。残っている場合、行為560〜564を繰り返すことができる。このように、2D X線検出器51のフォトダイオードの各列に対して、行為560〜564を繰り返すことができる。
図15の動作を実行した後、X線撮像システム10は、図15の動作を繰り返すことなく、追加のラジオグラフを生成することができる。画像処理システム30は、各行及び列に対するギャップの位置及びサイズに関する図15の動作によって生成される情報を用いて、2D X線検出器51のモジュールの間のギャップを補償するように追加のラジオグラフを変更することができる。例えば、画像処理システム30は、追加のラジオグラフにおける2D X線検出器51のモジュールの間のギャップを補償するように図16の動作例を実行することができる。
このように、X線撮像システム10は、X線発生器12によって放出される放射線ビームを検出するように配置された、LDA X線検出器14又は2D X線検出器51等のX線検出器によって検出される放射線の第1のパターンに基づいて、第1のラジオグラフを生成することができる。いずれの場合も、X線検出器は、複数のモジュールを備える。複数のモジュールの各それぞれのモジュールは、ピクセルに対応するそれぞれの複数のフォトダイオードを備える。さらに、X線撮像システム10は、第1のラジオグラフに基づいて、X線検出器のモジュールのうちの2つの間のギャップのサイズを求めることができる。ギャップのサイズを求めた後、X線撮像システム10は、放射線検出器によって検出される放射線の第2のパターンに基づいて、第2のラジオグラフを生成することができる。X線撮像システム10は、ギャップのサイズに基づいて、ギャップを補償するように第2のラジオグラフを変更することによって、第3のラジオグラフを生成することができる。
幾つかの例では、X線撮像システム10は、2D X線検出器51のフォトダイオードの各行及び列に対して、X線発生器12及び2D X線検出器51に対して対象物体を移動させない。むしろ、こうした例では、画像処理システム30は、第1の次元において1回のみ、及び第2の次元において1回のみ、X線発生器12及び2D X線検出器51に対して対象物体を移動させることができる。こうした例では、行に対して使用される対象物体は、2D X線検出器51の高さ全体に対してX線を遮断するか又は減衰させるようなサイズとすることができ、列に対して使用される対象物体は、2D X線検出器51の全幅に対してX線を遮断するか又は減衰させるようなサイズとすることができる。さらに、この例では、2D X線検出器51のフォトダイオードの各それぞれの行に対して、画像処理システム30は、フォトダイオードのそれぞれの行のフォトダイオードからの信号のみに基づいてそれぞれのラジオグラフを生成することができ、それにより、それぞれのラジオグラフのピクセルの各行は異なる時間インスタンスに対応する。同様に、2D X線検出器51のフォトダイオードの各それぞれの列に対する本例では、画像処理システム30は、フォトダイオードのそれぞれの列のフォトダイオードからの信号のみに基づいてそれぞれのラジオグラフを生成することができ、それにより、それぞれのラジオグラフのピクセルの各列は異なる時間インスタンスに対応する。
図16は、本開示の1つ以上の技法による、2次元X線検出器51のモジュールの間のギャップを補償するX線撮像システム10の動作例を示すフローチャートである。X線撮像システム10の画像処理システム30は、ラジオグラフの各ピクセルに対して図16の動作を実行することができる。図16の例では、画像処理システム30は、現ピクセルに対する全体の水平ギャップサイズと、現ピクセルに対する全体の垂直ギャップサイズとを求める(600)。現ピクセルに対する全体の水平ギャップサイズは、ピクセルの現行における、現ピクセルより前のギャップ(あるとすれば)の全体のサイズである。言い換えれば、現ピクセルに対する全体の水平ギャップサイズは、現ピクセルを含むピクセルの行において現ピクセルより前に発生する任意のギャップに対するギャップサイズの和とすることができる。現ピクセルに対する全体の垂直ギャップサイズは、ピクセルの現列における、現ピクセルより前のギャップ(あるとすれば)の全体のサイズである。言い換えれば、現ピクセルに対する全体の垂直ギャップサイズは、現ピクセルを含むピクセルの列における現ピクセルより前に発生する任意のギャップに対するギャップサイズの和とすることができる。
さらに、画像処理システム30は、現ピクセルに対する全体の水平ギャップサイズ及び全体の垂直ギャップサイズと現ピクセルのラジオグラフ内の位置とに基づいて、現ピクセルの実際の水平位置及び実際の垂直位置を求める(602)ことができる。幾つかの例では、現ピクセルの実際の水平位置は、現ピクセルの水平位置に現ピクセルに対する全体の水平ギャップサイズを加えた値に等しい。現ピクセルの実際の垂直位置は、現ピクセルの垂直位置に現ピクセルに対する全体の垂直ギャップサイズを加えた値に等しい。
さらに、画像処理システム30は、あるとすれば少なくとも1つの先行する水平ピクセルの値と、あるとすれば先行する垂直ピクセルの値と、現ピクセルの値と、現ピクセルの実際の位置とに基づいて、現ピクセルに対する補正値を求める(604)ことができる。例えば、画像処理システム30は、先行する水平ピクセル及び垂直ピクセルに隣接して発生するピクセルの値を推定(例えば、補間)することができ、そこでは、現ピクセルは、現ピクセルの実際の位置にあると想定される。そして、X線撮像システム10は、現ピクセルに対する補正値を現ピクセルに割り当てる(606)ことができる。
本開示の技法について、X線に関して記載したが、本開示の技法は、可視光、マイクロ波、紫外線放射、赤外線放射等の他の波長にも適用可能とすることができる。
本開示の技法は、多種多様のデバイス又は装置において実施することができる。開示された技法を実行するように構成されたデバイスの機能的態様を強調する様々な構成要素、モジュール、又はユニットが本開示に説明されているが、必ずしも異なるハードウェアユニットによる実現を必要とするものではない。逆に、上記で説明したように、様々なユニットは、適したソフトウェア及び/又はファームウェアとともに1つのハードウェアユニット内に組み合わせることもできるし、適したソフトウェア及び/又はファームウェアとともに、上記で説明したような1つ以上のプロセッサを含む、相互動作するハードウェアユニットの集合体によって提供することもできる。
1つ以上の例では、説明した特定の機能を、ハードウェア、ソフトウェア、ファームウェア、又はそれらの任意の組み合わせで実施することができる。これらの機能は、ソフトウェアで実施される場合、1つ以上の命令又はコードとして、コンピューター可読媒体上に記憶することもできるし、コンピューター可読媒体を介して送信することもでき、ハードウェアベースの処理ユニットによって実行することができる。コンピューター可読媒体は、データ記憶媒体等の有形の媒体に対応するコンピューター可読記憶媒体、又は、例えば、通信プロトコルに従った或る場所から別の場所へのコンピュータープログラムの転送を容易にする任意の媒体を含む通信媒体を含むことができる。このように、コンピューター可読媒体は、一般に、(1)非一時的である有形のコンピューター可読記憶媒体又は(2)信号若しくは搬送波等の通信媒体に対応することができる。データ記憶媒体は、1つ以上のコンピューター又は1つ以上のプロセッサが、本開示において説明した技法を実施するためにアクセスして、命令、コード、及び/又はデータ構造体を取り出すことができる任意の利用可能な媒体とすることができる。コンピュータープログラム製品は、コンピューター可読媒体を含むことができる。
限定ではなく例として、そのようなコンピューター可読記憶媒体は、RAM、ROM、EEPROM、CD−ROM若しくは他の光ディスク(disk)記憶装置、磁気ディスク(disk)記憶装置若しくは他の磁気記憶デバイス、フラッシュメモリ、又は所望のプログラムコードを命令若しくはデータ構造体の形態で記憶するのに用いることができるとともにコンピューターがアクセスすることができる他の任意の媒体を含むことができる。また、任意の接続が、適宜、コンピューター可読媒体と呼ばれる。例えば、命令が、同軸ケーブル、光ファイバーケーブル、ツイストペア、デジタル加入者線(DSL)、又は赤外線、無線、及びマイクロ波等の無線技術を用いて、ウェブサイト、サーバー、又は他のリモートソースから送信される場合、この同軸ケーブル、光ファイバーケーブル、ツイストペア、DSL、又は赤外線、無線、及びマイクロ波等の無線技術は、媒体の定義に含まれる。ただし、コンピューター可読記憶媒体及びデータ記憶媒体は、接続も、搬送波も、信号も、他の一時的な媒体も含まず、代わりに、非一時的な有形の記憶媒体を対象としていると理解されるべきである。ディスク(disk and disc)は、本明細書において用いられるとき、コンパクトディスク(disc)(CD)、レーザーディスク(disc)、光ディスク(disc)、デジタル多用途ディスク(disc)(DVD)、フロッピーディスク(disk)、及びブルーレイディスク(disc)を含む。ここで、ディスク(disks)は、通常、磁気的にデータを再現する一方、ディスク(discs)は、レーザーを用いて光学的にデータを再現する。上記を組み合わせたものも、コンピューター可読媒体の範囲内に含まれるべきである。
命令は、1つ以上のデジタル信号プロセッサ(DSP)、汎用マイクロプロセッサ、特定用途向け集積回路(ASIC)、フィールドプログラマブルロジックアレイ(FPGA)、又は他の同等の集積論理回路部若しくはディスクリート論理回路部等の1つ以上のプロセッサが実行することができる。したがって、「プロセッサ」という用語は、本明細書において用いられるとき、上述の構造体のうちの任意のもの又は本明細書において説明した技法の実施に適した他の任意の構造体を指すことができる。加えて、幾つかの態様では、本明細書において説明した機能は、専用のハードウェアモジュール及び/又はソフトウェアモジュール内に設けることができる。また、上記技法の特定の部分は、1つ以上の回路又は論理素子において実施することができる。
様々な例が説明されてきた。これらの例及び他の例は、添付の特許請求の範囲の範囲内にある。

Claims (14)

  1. ラジオグラフを生成する方法であって、
    撮像システムによって、放射線発生器によって放出される放射線ビームを検出するように配置された放射線検出器によって検出される放射線の第1のパターンに基づいて、第1のラジオグラフを生成することであって、
    前記放射線検出器は線形ダイオードアレイ(LDA)放射線検出器であり、
    対象物体が、前記撮像システムによって前記LDA放射線検出器の向きに対して平行な平面内のある経路に沿って、前記放射線発生器及び前記LDA放射線検出器に対して、一貫した速度で移動させられ、
    前記LDA放射線検出器は、複数のモジュールを備え、
    前記複数のモジュールの各それぞれのモジュールは、ピクセルに対応するそれぞれの複数のフォトダイオードを備え、
    前記対象物体は、前記経路に沿って移動する際、前記放射線ビームを通して移動し、
    前記第1のラジオグラフは、前記対象物体が前記経路に沿って移動する際の前記対象物体に対応する線を含む、
    第1のラジオグラフを生成することと、
    前記撮像システムによって、前記線の勾配における不連続点のサイズに基づいて、前記LDA放射線検出器の前記モジュールのうちの2つの間のギャップのサイズを求めることと、
    前記撮像システムによって、前記線の勾配における不連続点の位置に基づいて前記ギャップの位置を求めることと、
    前記ギャップの前記サイズを求めた後、
    前記撮像システムによって、前記LDA放射線検出器によって検出される放射線の第2のパターンに基づいて第2のラジオグラフを生成することと、
    前記撮像システムによって、前記ギャップの位置及び前記ギャップの前記サイズに基づいて、前記ギャップを補償するように前記第2のラジオグラフを変更することによって、第3のラジオグラフを生成することと、
    を含む、方法。
  2. 前記第3のラジオグラフを生成することは、
    前記撮像システムによって、前記第2のラジオグラフの現ピクセルに対する全体のギャップサイズを求めることであって、前記現ピクセルに対する前記全体のギャップサイズは、前記現ピクセルを含むピクセルの行において前記現ピクセルより前に発生する任意のギャップに対するギャップサイズの和である、全体のギャップサイズを求めることと、
    前記撮像システムによって、前記現ピクセルに対する前記全体のギャップサイズと前記現ピクセルの前記第2のラジオグラフ内の位置とに基づいて、前記現ピクセルの実際の位置を求めることと、
    前記撮像システムによって、あるとすれば先行するピクセルの値と、前記現ピクセルの値と、前記現ピクセルの実際の位置とに基づいて、前記現ピクセルに対する補正値を求めることと、
    前記撮像システムによって、前記現ピクセルに対する前記補正値を前記現ピクセルに割り当てることと、
    を含み、
    前記先行するピクセルは、前記第3のラジオグラフを生成するために使用されたスキャン順において前記現ピクセルの直前で発生する、請求項1に記載の方法。
  3. 前記補正値を求めることは、前記現ピクセルが該現ピクセルの前記実際の位置にあると想定する、請求項2に記載の方法。
  4. 前記現ピクセルの前記実際の位置は、前記現ピクセルの前記位置に前記現ピクセルの前記全体のギャップサイズを加えた値に等しい、請求項2に記載の方法。
  5. 前記ギャップの前記位置を求めることは、
    前記撮像システムによって、前記ギャップが、前記線の前記勾配における前記不連続点に対応する位置に存在すると判断すること、
    を含み、
    前記ギャップのサイズを求めることは、
    前記撮像システムによって、第1のセグメント端点と第2のセグメント端点との間の距離に基づいて前記ギャップの前記サイズを求めることであって、前記第1のセグメント端点は前記線の第1のセグメントの端点であり、前記第2のセグメント端点は前記線の第2のセグメントの端点であり、前記第1の端点及び前記第2の端点は前記不連続点に隣接すること、
    を含む、請求項1に記載の方法。
  6. 前記放射線発生器及び前記LDA放射線検出器は、1つ以上のフレームに取り付けられ、
    前記対象物体を移動させることは、
    前記撮像システムによって、前記放射線発生器及び前記LDA放射線検出器を前記1つ以上のフレームに対して移動させることなく、前記対象物体を前記1つ以上のフレームに対して移動させること、又は
    前記撮像システムによって、前記対象物体を前記1つ以上のフレームに対して移動させることなく、前記放射線発生器及び前記LDA放射線検出器の両方を前記1つ以上のフレームに対して移動させること、
    を含む、請求項1に記載の方法。
  7. 前記平面は、前記放射線発生器と前記LDA放射線検出器との間の軸に対して直交している、請求項1に記載の方法。
  8. 放射線発生器と、
    前記放射線発生器によって放出される放射線ビームを検出するように配置された放射線検出器であって、該放射線検出器は、複数のモジュールを備え、
    前記放射線検出器は線形ダイオードアレイ(LDA)放射線検出器であり、
    前記複数のモジュールの各々は、ピクセルに対応するそれぞれの複数のフォトダイオードを備える、放射線検出器と、
    1つ以上のマニピュレーター機構と、
    前記LDA放射線検出器及び1つ以上のマニピュレーター機構に作動的に結合された1つ以上のプロセッサであって、
    前記放射線発生器及び前記LDA放射線検出器に対して、前記LDA放射線検出器の向きに対して平行な平面内の或る経路に沿って対象物体を移動させるように、前記1つ以上のマニピュレーター機構を作動させ、
    前記LDA放射線検出器によって検出される放射線の第1のパターンに基づいて第1のラジオグラフを生成し、
    前記対象物体は、前記経路に沿って移動する際に前記放射線ビームを通って移動し、
    前記第1のラジオグラフは、前記対象物体が前記経路に沿って移動する際の前記対象物体に対応する線を含んでおり、
    前記線の勾配における不連続点のサイズに基づいて、前記LDA放射線検出器の前記モジュールのうちの2つの間のギャップのサイズを求め、
    前記線の勾配における不連続点の位置に基づいて前記ギャップの位置を求め、
    前記ギャップの前記サイズを求めた後、
    前記LDA放射線検出器によって検出される放射線の第2のパターンに基づいて第2のラジオグラフを生成し、
    前記ギャップの前記位置及び前記ギャップの前記サイズに基づいて、前記ギャップを補償するように前記第2のラジオグラフを変更することによって、第3のラジオグラフを生成する、ように構成されている1つ以上のプロセッサと、
    を備える、撮像システム。
  9. 前記第3のラジオグラフを生成するために、前記1つ以上のプロセッサは、
    前記第2のラジオグラフの現ピクセルに対する全体のギャップサイズを求め、前記現ピクセルに対する前記全体のギャップサイズは、前記現ピクセルを含むピクセルの行における前記現ピクセルより前に発生する任意のギャップに対するギャップサイズの和であり、
    前記現ピクセルに対する前記全体のギャップサイズと前記現ピクセルの前記第2のラジオグラフ内の位置とに基づいて、前記現ピクセルの実際の位置を求め、
    あるとすれば先行するピクセルの値と、前記現ピクセルの値と、前記現ピクセルの前記実際の位置とに基づいて、前記現ピクセルに対する補正値を求め、
    前記現ピクセルに対する前記補正値を前記現ピクセルに割り当てる、
    請求項8に記載の撮像システム。
  10. 前記先行するピクセルは、前記第3のラジオグラフを生成するために使用されるスキャン順で前記現ピクセルの直前に発生する、請求項9に記載の撮像システム。
  11. 前記現ピクセルの前記実際の位置は、前記現ピクセルの前記位置に前記現ピクセルに対する前記全体のギャップサイズを加えた値に等しい、請求項9に記載の撮像システム。
  12. 前記ギャップの前記サイズ及び前記位置を求めるために、前記1つ以上のプロセッサは、
    前記ギャップが、前記線の前記勾配における前記不連続点に対応する位置に存在すると判断し、
    第1のセグメント端点と第2のセグメント端点との間の距離に基づいて前記ギャップの前記サイズを求め、前記第1のセグメント端点は前記線の第1のセグメントの端点であり、前記第2のセグメント端点は前記線の第2のセグメントの端点であり、前記第1の端点及び前記第2の端点は前記不連続点に隣接する、請求項9に記載の撮像システム。
  13. 前記放射線発生器及び前記LDA放射線検出器が取り付けられる1つ以上のフレームを更に備える、請求項9に記載の撮像システムであって、
    前記1つ以上のプロセッサは、前記放射線発生器及び前記LDA放射線検出器を該1つ以上のフレームに対して移動させることなく、前記対象物体を前記1つ以上のフレームに対して移動させるように前記1つ以上のマニピュレーター機構を作動させるように構成されているか、又は、前記対象物体を前記1つ以上のフレームに対して移動させることなく、前記放射線発生器及び前記LDA放射線検出器の両方を該1つ以上のフレームに対して移動させるように前記1つ以上のマニピュレーター機構を作動させるように構成されている、請求項9に記載の撮像システム。
  14. 前記平面は、前記放射線発生器と前記LDA放射線検出器との間の軸に対して直交している、請求項9に記載の撮像システム。
JP2017539420A 2015-01-26 2016-01-10 線形検出器アレイ用のギャップ分解能 Active JP6810045B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562107692P 2015-01-26 2015-01-26
US62/107,692 2015-01-26
PCT/US2016/012777 WO2016122857A1 (en) 2015-01-26 2016-01-10 Gap resolution for linear detector array

Publications (2)

Publication Number Publication Date
JP2018509600A JP2018509600A (ja) 2018-04-05
JP6810045B2 true JP6810045B2 (ja) 2021-01-06

Family

ID=55410183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017539420A Active JP6810045B2 (ja) 2015-01-26 2016-01-10 線形検出器アレイ用のギャップ分解能

Country Status (7)

Country Link
US (1) US10413259B2 (ja)
EP (1) EP3250909B1 (ja)
JP (1) JP6810045B2 (ja)
KR (1) KR102541717B1 (ja)
CN (1) CN107771058B (ja)
PL (1) PL3250909T3 (ja)
WO (1) WO2016122857A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11009471B2 (en) * 2018-09-12 2021-05-18 Illinois Tool Works Inc. Dynamic radiation collimation for non destructive analysis of test objects
JP7143567B2 (ja) * 2018-09-14 2022-09-29 株式会社島津テクノリサーチ 材料試験機および放射線ct装置
EP3797697B1 (de) * 2019-09-27 2024-03-27 Siemens Healthineers AG Tomosyntheseverfahren mit kombinierten schichtbilddatensätzen
CN111419255A (zh) * 2020-03-24 2020-07-17 深圳锐探科技有限公司 一种ct成像方法及装置
CN113017665B (zh) * 2021-02-03 2022-05-27 明峰医疗系统股份有限公司 一种CT探测器Gap_Size校准板及其校准方法、校准总成
EP4301230A1 (en) * 2021-03-05 2024-01-10 Shenzhen Xpectvision Technology Co., Ltd. Imaging methods using radiation detectors

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000098536A (ja) * 1998-09-22 2000-04-07 Konica Corp X線画像形成システム
TW398135B (en) 1998-11-06 2000-07-11 Acer Peripherals Inc A system for measuring contact image sensor chip shift and its method
WO2004095060A2 (en) * 2003-04-23 2004-11-04 L-3 Communications Security and Detection Systems Corporation X-ray imaging technique
US7196332B2 (en) * 2004-05-04 2007-03-27 General Electric Company Monolithic x-ray detector with staggered detection areas
US7539284B2 (en) * 2005-02-11 2009-05-26 Besson Guy M Method and system for dynamic low dose X-ray imaging
JP4006451B2 (ja) * 2005-05-12 2007-11-14 株式会社東芝 X線ct装置及びそのミスアライメント補正方法
DE102005036811A1 (de) * 2005-08-04 2007-02-08 Siemens Ag Korrekturverfahren für Festkörperdetektoren und Festkörperdetektor
WO2008024611A2 (en) * 2006-08-21 2008-02-28 Ev Products, Inc. Staggered array imaging system using pixilated radiation detectors
JP4818157B2 (ja) 2007-02-19 2011-11-16 一般財団法人石油エネルギー技術センター 炭化水素油の接触分解触媒及び該触媒を用いる炭化水素油の接触分解方法
JP2009118943A (ja) * 2007-11-13 2009-06-04 Hitachi Medical Corp 放射線検出器及びこれを用いたx線ct装置
US8497484B2 (en) * 2008-09-23 2013-07-30 Institut de Fisica d'Altes Energies and X-Ray Imatek, S.L. Device for detecting highly energetic photons
EP2359161B1 (en) * 2008-11-21 2017-05-31 Trixell Assembly method for a tiled radiation detector
WO2010150717A1 (ja) * 2009-06-23 2010-12-29 株式会社 日立メディコ X線ct装置
EA020939B1 (ru) 2012-05-31 2015-02-27 Закрытое акционерное общество научно-исследовательская производственная компания "Электрон" (ЗАО НИПК "Электрон") Способ определения геометрических смещений сенсоров в плоскопанельном детекторе рентгеновского изображения
CN103969269B (zh) 2013-01-31 2018-09-18 Ge医疗系统环球技术有限公司 用于几何校准ct扫描仪的方法和装置
CN103961120B (zh) * 2013-01-31 2018-06-08 Ge医疗系统环球技术有限公司 Ct设备及其使用的图像处理方法
KR20140057504A (ko) * 2014-03-24 2014-05-13 삼성전자주식회사 엑스레이 촬영시스템 및 엑스레이 촬영시스템의 위치보정 방법

Also Published As

Publication number Publication date
PL3250909T3 (pl) 2021-06-14
JP2018509600A (ja) 2018-04-05
EP3250909A1 (en) 2017-12-06
KR20170106992A (ko) 2017-09-22
CN107771058B (zh) 2020-11-24
KR102541717B1 (ko) 2023-06-08
EP3250909B1 (en) 2020-11-25
US10413259B2 (en) 2019-09-17
CN107771058A (zh) 2018-03-06
WO2016122857A1 (en) 2016-08-04
US20170367665A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
JP6810045B2 (ja) 線形検出器アレイ用のギャップ分解能
JP6105806B2 (ja) 高解像度コンピュータートモグラフィー
CN110376223B (zh) X射线成像系统及方法及数据存储媒介
US20050078861A1 (en) Tomographic system and method for iteratively processing two-dimensional image data for reconstructing three-dimensional image data
US10695145B2 (en) Tomographic scan
US9042510B2 (en) Image processing device of a computer tomography system
CA3109826C (en) Dynamic radiation collimation for non-destructive analysis of test objects
JP2013192951A (ja) 画像再構成装置、画像再構成方法およびx線コンピュータ断層撮影装置
KR20170005781A (ko) 마이크로칩 x선 단층촬영 시스템 및 이를 이용한 검사방법
JP5526062B2 (ja) 放射線画像撮影装置および欠陥画素位置情報取得方法
US8306179B2 (en) Reconstruction of linearly moving objects with intermitten X-ray sources
Rogers et al. Reduction of wobble artefacts in images from mobile transmission x-ray vehicle scanners
JP2006133204A (ja) Spect装置
JP2014190701A (ja) X線検査システム及びx線検査方法
RU2776469C1 (ru) Динамическое коллимирование излучения для неразрушающего анализа тестовых объектов
US10485498B2 (en) Cone beam computed tomography projection values providing system and method
JP2012220422A (ja) 断層像再構成方法およびx線ct装置
JP2017181352A (ja) 断層画像撮像装置及び断層画像撮像方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201210

R150 Certificate of patent or registration of utility model

Ref document number: 6810045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250