JP6808943B2 - 多層プリント配線板用の接着フィルム - Google Patents

多層プリント配線板用の接着フィルム Download PDF

Info

Publication number
JP6808943B2
JP6808943B2 JP2016030460A JP2016030460A JP6808943B2 JP 6808943 B2 JP6808943 B2 JP 6808943B2 JP 2016030460 A JP2016030460 A JP 2016030460A JP 2016030460 A JP2016030460 A JP 2016030460A JP 6808943 B2 JP6808943 B2 JP 6808943B2
Authority
JP
Japan
Prior art keywords
resin
insulating layer
resin composition
interlayer insulating
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016030460A
Other languages
English (en)
Other versions
JP2017145375A (ja
JP2017145375A5 (ja
Inventor
雅晴 松浦
雅晴 松浦
水野 康之
康之 水野
郁夫 菅原
郁夫 菅原
廣幸 横島
廣幸 横島
健一 富岡
健一 富岡
喬之 鈴川
喬之 鈴川
彩 笠原
彩 笠原
加藤 亮
亮 加藤
祐貴 手塚
祐貴 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2016030460A priority Critical patent/JP6808943B2/ja
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to PCT/JP2017/006044 priority patent/WO2017142094A1/ja
Priority to CN201780011793.9A priority patent/CN108699408B/zh
Priority to KR1020247002868A priority patent/KR20240017101A/ko
Priority to KR1020187023539A priority patent/KR102704851B1/ko
Priority to TW106105565A priority patent/TWI769148B/zh
Publication of JP2017145375A publication Critical patent/JP2017145375A/ja
Publication of JP2017145375A5 publication Critical patent/JP2017145375A5/ja
Application granted granted Critical
Publication of JP6808943B2 publication Critical patent/JP6808943B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesive Tapes (AREA)
  • Epoxy Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

本発明は、多層プリント配線板用の接着フィルムに関する。
近年、電子機器、通信機器等に用いられる多層プリント配線板には、小型化、軽量化及び配線の高密度化だけでなく、演算処理速度の高速化の要求が強まっている。それに伴い、多層プリント配線板の製造方法として、回路基板の配線層上に層間絶縁層を交互に積み上げていくビルドアップ方式の製造技術が注目されている。
ビルドアップ方式の製造技術において、層間絶縁層と配線層の製造方法としては、層間絶縁層を形成するための樹脂(以下、「有機絶縁樹脂」ともいう)と、配線層を形成するための銅箔とを、プレス装置を用いて高温で長時間加圧することによって、有機絶縁樹脂を熱硬化し、銅箔を有する層間絶縁層を得た後、必要に応じてドリル法、レーザー法等を用いて層間接続用のビアホールを形成し、次いで、銅箔を必要な部分を残してエッチングによって除去する、所謂「サブトラクティブ法」を用いて配線を形成する方法が、従来一般的であった。
しかし、上記のような多層プリント配線板の小型化、軽量化、配線の高密度化等の要求に伴って、有機絶縁樹脂と銅箔とを真空ラミネーターを用いて高温で短時間加圧した後、乾燥機等を用いて高温下で有機絶縁樹脂を熱硬化し、必要に応じてドリル法、レーザー法等を用いて層間接続用のビアホールを形成し、めっき法によって必要な部分に配線層を形成する所謂「アディティブ法」が注目されるようになっている。
ビルドアップ方式で使用されている有機絶縁樹脂としては、芳香族系エポキシ樹脂と、エポキシ樹脂に対する活性水素を有する硬化剤(例えば、フェノール系硬化剤、アミン系硬化剤、カルボン酸系硬化剤等)とを組み合わせたものが主に用いられてきた。これらの硬化剤を用いて硬化させて得られる硬化物は、物性面のバランスに優れるものの、エポキシ基と活性水素との反応によって、極性の高いヒドロキシ基が発生することにより、吸水率の上昇、比誘電率、誘電正接等の電気特性の低下を招くという問題があった。また、これらの硬化剤を使用した場合、樹脂組成物の保存安定性が損なわれるという問題が生じていた。
一方、熱硬化性のシアナト基を有するシアネート化合物が電気特性に優れた硬化物を与えることが知られている。しかしながら、シアナト基が熱硬化によってS−トリアジン環を形成する反応は、例えば、230℃で120分以上という高温で比較的長時間の硬化を必要とするため、前述のビルドアップ方式で作製する多層プリント配線板用の有機絶縁樹脂としては不適であった。
シアネート化合物の硬化温度を下げる方法としては、シアネート化合物とエポキシ樹脂とを併用し、硬化触媒を使用して硬化させる方法が知られている(例えば、特許文献1及び2参照)。
また、ビルドアップ層には、加工寸法安定性、半導体実装後の反り量低減の需要から、低熱膨張係数化(低CTE化)が求められており、低CTE化に向けた取り組みが行われている(例えば、特許文献3〜5参照)。最も主流な方法として、シリカフィラーを高充填化(例えば、ビルドアップ層中の40質量%以上をシリカフィラーとする)することによって、ビルドアップ層の低CTE化を図っているものが多い。
特開2013−40298号公報 特開2010−90237号公報 特表2006−527920号公報 特開2007−87982号公報 特開2009−280758号公報
[1]ビルドアップ層の低CTE化を図るためにシリカフィラーを高充填化させると、ビルドアップ材料によって、内層回路の配線パターンの凹凸を埋め込むことが難しくなる傾向にある。また、スルーホールのような内層回路を、ビルドアップ材料によって凹凸が小さくなるように埋め込むことが要求されている。ビルドアップ材料の低CTE化を図るためにシリカフィラーを高充填化すると、これらの要求を満たすことが難しくなる傾向にある。
第1の発明は、このような課題を解決するためになされたものであり、シリカフィラーを高充填化しても凹凸の埋め込み性に優れる多層プリント配線板用の接着フィルムを提供することを目的とする。
[2]また、多層プリント配線板を歩止まり良く製造するためには、熱硬化によって形成した層間絶縁層と、前述のめっき法によって形成した導体層との接着強度の確保が必要である。さらに、前述のように配線を高密度化させるためには、熱硬化によって形成した層間絶縁層の表面粗さが小さい必要がある。
ところが、層間絶縁層の表面粗さが小さくなるにつれて、所謂「アンカー効果」による導体層との接着強度の確保が難しくなるため、層間絶縁層と導体層との接着強度は低下する傾向にある。また、特許文献1及び2に開示されるシアネート化合物とエポキシ樹脂とを含有する樹脂組成物を用いて形成した層間絶縁層は、前述のヒドロキシ基等の高い極性を有する官能基の量が少なくなるため、めっき法によって形成した導体層との接着強度の確保が難しくなる傾向にある。
第2の発明は、このような課題を解決するためになされたものであり、電気特性に優れ、表面粗さが小さく、めっき法によって形成した導体層との接着強度に優れる層間絶縁層が得られ、保存安定性に優れる樹脂組成物、該樹脂組成物を用いた層間絶縁層用樹脂フィルム及び多層プリント配線板を提供することを目的とする。
[1]本発明者らは、前記第1の課題を解決するために鋭意研究を重ねた結果、特定のノボラック型フェノール樹脂と、特定のエポキシ樹脂と、特定の無機充填材とを含む樹脂組成物を用いることにより、前記第1の課題を解決できることを見出し、本発明を完成させるに至った。すなわち、第1の発明は次の接着フィルムを提供する。
(1)(A)重量平均分子量(Mw)と数平均分子量(Mn)との分散比(Mw/Mn)が、1.05〜1.8であるノボラック型フェノール樹脂と、(B)下記一般式(1)で表されるエポキシ樹脂と、(C)無機充填材と、を含む樹脂組成物を、支持体フィルム上に層形成してなる樹脂組成物層を有し、該樹脂組成物層中の(C)無機充填材の平均粒径が0.1μm以上であり、(C)無機充填材の含有量が、樹脂固形分のうち20〜95質量%である、多層プリント配線板用の接着フィルム。
(式中、pは、1〜5の整数を示す。)
[2]本発明者らは、前記第2の課題を解決するために鋭意研究を重ねた結果、シアネート樹脂、エポキシ樹脂及び無機充填材を含有する樹脂組成物において、ポリアミド樹脂を用いることにより、前記第2の課題を解決できることを見出し、本発明を完成させるに至った。すなわち、第2の発明は、次の(2)〜(12)を提供する。
(2)(a)シアネート樹脂、(b)エポキシ樹脂、(c)無機充填材及び(d)ポリアミド樹脂を含有する、樹脂組成物。
(3)(a)シアネート樹脂と(b)エポキシ樹脂との質量比[(a)/(b)]が、0.2〜2.5である、上記(2)に記載の樹脂組成物。
(4)(c)無機充填材の含有量が、樹脂組成物の固形分換算100質量部に対して、3〜50質量部である、上記(2)又は(3)に記載の樹脂組成物。
(5)(d)ポリアミド樹脂が、数平均分子量が20000〜30000、かつ重量平均分子量が100000〜140000であり、末端にアミノ基を有するゴム変性ポリアミド樹脂である、上記(2)〜(4)のいずれかに記載の樹脂組成物。
(6)(d)ポリアミド樹脂の含有量が、(c)無機充填材の質量を除く樹脂組成物の固形分換算100質量部に対して、1〜20質量部である、上記(2)〜(5)のいずれかに記載の樹脂組成物。
(7)(a)シアネート樹脂が、1分子中に2個のシアナト基を有するジシアネート化合物のプレポリマーである、上記(2)〜(6)のいずれかに記載の樹脂組成物。
(8)支持体、接着補助層及び層間絶縁層用樹脂組成物層をこの順に有する層間絶縁層用樹脂フィルムであって、
接着補助層が、上記(2)〜(7)のいずれかに記載の樹脂組成物を含有する層である、層間絶縁層用樹脂フィルム。
(9)前記層間絶縁層用樹脂組成物層が、(e)シアネート樹脂、(f)エポキシ樹脂及び(g)無機充填材を含有する層間絶縁層用樹脂組成物を含有する、上記(8)に記載の層間絶縁層用樹脂フィルム。
(10)(e)シアネート樹脂と(f)エポキシ樹脂との質量比[(e)/(f)]が、0.1〜2である、上記(9)に記載の層間絶縁層用樹脂フィルム。
(11)(g)無機充填材の含有量が、層間絶縁層用樹脂組成物の固形分換算100質量部に対して、40〜90質量部である、上記(9)又は(10)に記載の層間絶縁層用樹脂フィルム。
(12)上記(2)〜(7)のいずれかに記載の樹脂組成物の硬化物又は上記(8)〜(11)のいずれかに記載の層間絶縁層用樹脂フィルムの硬化物を含む多層プリント配線板。
[1]第1の発明によれば、シリカフィラーを高充填化しても凹凸の埋め込み性に優れた多層プリント配線板用の接着フィルムを提供することができる。
[2]第2の発明によれば、電気特性に優れ、表面粗さが小さく、めっき法によって形成した導体層との接着強度に優れ、保存安定性に優れる樹脂組成物、該樹脂組成物を用いた層間絶縁層用樹脂フィルム及び多層プリント配線板を提供することができる。
[1]第1の発明
本発明の多層プリント配線板用の接着フィルムは、(A)重量平均分子量(Mw)と数平均分子量(Mn)との分散比(Mw/Mn)が、1.05〜1.8であるノボラック型フェノール樹脂(以下、単に「(A)ノボラック型フェノール樹脂」ともいう)と、(B)前記一般式(1)で表されるエポキシ樹脂(以下、単に「(B)エポキシ樹脂」ともいう)と、(C)無機充填材と、を含む樹脂組成物(以下、「接着フィルム用樹脂組成物」ともいう)を、支持体フィルム上に層形成してなる樹脂組成物層を有し、該樹脂組成物層中の(C)無機充填材の平均粒径が0.1μm以上であり、(C)無機充填材の含有量が、樹脂固形分のうち20〜95質量%である、多層プリント配線板用の接着フィルムである。
[接着フィルム用樹脂組成物]
接着フィルム用樹脂組成物は、(A)ノボラック型フェノール樹脂と、(B)エポキシ樹脂と、(C)無機充填材とを含むものである。以下、これらの各成分について説明する。
<(A)ノボラック型フェノール樹脂>
(A)ノボラック型フェノール樹脂は、エポキシ樹脂の硬化剤として用いられるものであり、重量平均分子量(Mw)と数平均分子量(Mn)との分散比(Mw/Mn)が、1.05〜1.8の範囲のものである。
このような(A)ノボラック型フェノール樹脂は、例えば、特許第4283773号公報に記載の製造方法により製造することができる。
すなわち、原料としてフェノール化合物及びアルデヒド化合物、酸触媒としてリン酸化合物、反応補助溶媒として非反応性の含酸素有機溶媒を用い、これらから形成される二層分離状態を、例えば、機械的攪拌、超音波等によりかき混ぜ混合して、二層(有機相と水相)が交じり合った白濁状の不均一反応系(相分離反応)として、フェノール化合物とアルデヒド化合物との反応を進め、縮合物(樹脂)を合成することができる。
次に、例えば、非水溶性有機溶剤(例えば、メチルエチルケトン、メチルイソブチルケトン等)を添加混合して前記の縮合物を溶解し、かき混ぜ混合を止めて静置し、有機相(有機溶剤相)と水相(リン酸水溶液相)とに分離させ、水相を除去して回収を図る一方、有機相については湯水洗及び/又は中和した後、有機溶剤を蒸留回収することによって(A)ノボラック型フェノール樹脂を製造することができる。
上記のノボラック型フェノール樹脂の製造方法は、相分離反応を利用しているため、攪拌効率は極めて重要であり、反応系中の両相を微細化して界面の表面積をできる限り増加させることが反応効率の面から望ましく、これによりフェノール化合物の樹脂への転化が促進される。
原料として用いられるフェノール化合物としては、例えば、フェノール、オルソクレゾール、メタクレゾール、パラクレゾール、キシレノール、ビスフェノール化合物、オルソ位に炭素数3以上、好ましくは炭素数3〜10の炭化水素基を有するオルソ置換フェノール化合物、パラ位に炭素数3以上、好ましくは炭素数3〜18の炭化水素基を有するパラ置換フェノール化合物等が挙げられる。これらは単独で又は2種以上を混合して使用してもよい。
ここで、ビスフェノール化合物としては、例えば、ビスフェノールA、ビスフェノールF、ビス(2−メチルフェノール)A、ビス(2−メチルフェノール)F、ビスフェノールS、ビスフェノールE、ビスフェノールZ等が挙げられる。
オルソ置換フェノール化合物としては、例えば、2−プロピルフェノール、2−イソプロピルフェノール、2−sec−ブチルフェノール、2−tert−ブチルフェノール、2−フェニルフェノール、2−シクロヘキシルフェノール、2−ノニルフェノール、2−ナフチルフェノール等が挙げられる。
パラ置換フェノール化合物としては、例えば、4−プロピルフェノール、4−イソプロピルフェノール、4−sec−ブチルフェノール、4−tert−ブチルフェノール、4−フェニルフェノール、4−シクロヘキシルフェノール、4−ノニルフェノール、4−ナフチルフェノール、4−ドデシルフェノール、4−オクタデシルフェノール等が挙げられる。
原料として用いられるアルデヒド化合物としては、例えば、ホルムアルデヒド、ホルマリン、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、パラアルデヒド、プロピオンアルデヒド等が挙げられる。これらの中でも、反応速度の観点から、パラホルムアルデヒドが好ましい。これらは単独で又は2種以上を混合して使用してもよい。
アルデヒド化合物(F)とフェノール化合物(P)との配合モル比(F/P)は、好ましくは0.33以上、より好ましくは0.40〜1.0、さらに好ましくは0.50〜0.90である。配合モル比(F/P)を前記範囲内とすることにより、優れた収率を得ることができる。
酸触媒として用いるリン酸化合物は、水の存在下、フェノール化合物との間で相分離反応の場を形成する重要な役割を果たすものである。リン酸化合物としては、例えば、89質量%リン酸、75質量%リン酸等の水溶液タイプを用いることができる。また、必要に応じて、例えば、ポリリン酸、無水リン酸等を用いてもよい。
リン酸化合物の含有量は、相分離効果を制御する観点から、例えば、フェノール化合物100質量部に対して、5質量部以上、好ましくは25質量部以上、より好ましくは50〜100質量部である。なお、70質量部以上のリン酸化合物を使用する場合には、反応系への分割投入により、反応初期の発熱を抑えて安全性を確保することが好ましい。
反応補助溶媒としての非反応性含酸素有機溶媒は、相分離反応の促進に極めて重要な役割を果たすものである。反応補助溶媒としては、アルコール化合物、多価アルコール系エーテル、環状エーテル化合物、多価アルコール系エステル、ケトン化合物、スルホキシド化合物からなる群から選ばれる少なくとも一種の化合物を用いることが好ましい。
アルコール化合物としては、例えば、メタノール、エタノール、プロパノール等の一価アルコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、エチレングリコール、プロピレングリコール、トリメチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、ポリエチレングリコール等の二価アルコール、グリセリン等の三価アルコールなどが挙げられる。
多価アルコール系エーテルとしては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノペンチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールエチルメチルエーテル、エチレングリコールグリコールエーテル等が挙げられる。
環状エーテル化合物としては、例えば、1,3−ジオキサン、1,4−ジオキサン等が挙げられ、多価アルコール系エステルとしては、例えば、エチレングリコールアセテート等のグリコールエステル化合物などが挙げられる。ケトン化合物としては、例えば、アセトン、メチルエチルケトン(以下、「MEK」ともいう)、メチルイソブチルケトン等が挙げられ、スルホキシド化合物としては、例えば、ジメチルスルホキシド、ジエチルスルホキド等が挙げられる。
これらの中でも、エチレングリコールモノメチルエーテル、ポリエチレングリコール、1,4−ジオキサンが好ましい。
反応補助溶媒は、上記の例示に限定されず、上記の特質を有し、かつ反応時に液状を呈するものであれば、固体であってもよく、それぞれ単独で又は2種以上を混合して使用してもよい。
反応補助溶媒の配合量としては、特に限定されないが、例えば、フェノール化合物100質量部に対して、5質量部以上、好ましくは10〜200質量部である。
前記不均一反応工程中に、さらに、界面活性剤を用いることによって、相分離反応を促進し、反応時間を短縮することが可能となり、収率向上にも寄与できる。
界面活性剤としては、例えば、石鹸、アルファオレフィンスルホン酸塩、アルキルベンゼンスルホン酸及びその塩、アルキル硫酸エステル塩、アルキルエーテル硫酸エステル塩、フェニルエーテルエステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、エーテルスルホン酸塩、エーテルカルボン酸塩等のアニオン系界面活性剤;ポリオキシエチレンアルキルフェニルエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレンスチレン化フェノールエーテル、ポリオキシエチレンアルキルアミノエーテル、ポリエチレングリコール脂肪族エステル、脂肪族モノグリセライド、ソルビタン脂肪族エステル、ペンタエリストール脂肪族エステル、ポリオキシエチレンポリプロピレングリコール、脂肪族アルキロールアマイド等のノニオン系界面活性剤;モノアルキルアンモニウムクロライド、ジアルキルアンモニウムクロライド、アミン酸塩化合物等のカチオン系界面活性剤などが挙げられる。
界面活性剤の配合量は、特に限定されないが、例えば、フェノール化合物100質量部に対して、0.5質量部以上、好ましくは1〜10質量部である。
反応系中の水の量は相分離効果、生産効率に影響を与えるが、一般的には質量基準で、40質量%以下である。水の量を40質量%以下とすることにより、生産効率を良好に保つことができる。
フェノール化合物とアルデヒド化合物との反応温度は、フェノール化合物の種類、反応条件等によって異なり、特に限定されないが、一般的には40℃以上、好ましくは80℃〜還流温度、より好ましくは還流温度である。反応温度が40℃以上であると、十分な反応速度が得られる。反応時間は、反応温度、リン酸の配合量、反応系中の含水量等によって異なるが、一般的には1〜10時間程度である。
また、反応環境としては、通常は常圧であるが、本発明の特長である不均一反応を維持する観点からは、加圧下又は減圧下で反応を行ってもよい。例えば、0.03〜1.50MPaの加圧下においては、反応速度を上げることができ、さらに、反応補助溶媒としてメタノール等の低沸点溶媒の使用が可能となる。
前記(A)ノボラック型フェノール樹脂の製造方法により、重量平均分子量(Mw)と数平均分子量(Mn)との分散比(Mw/Mn)が、1.05〜1.8であるノボラック型フェノール樹脂を製造することができる。
フェノール化合物の種類によって異なるものの、アルデヒド化合物(F)とフェノール化合物(P)の配合モル比(F/P)の範囲によって、例えば、以下のような(A)ノボラック型フェノール樹脂が得られる。
配合モル比(F/P)が0.33以上0.80未満の範囲では、ゲルパーミエーションクロマトグラフィー(GPC)の面積法による測定法で、フェノール化合物のモノマー成分の含有量が、例えば、3質量%以下、好ましくは1質量%以下であり、フェノール化合物のダイマー成分の含有量が、例えば、5〜95質量%、好ましくは10〜95質量%であり、さらにGPC測定による重量平均分子量(Mw)と数平均分子量(Mn)との分散比(Mw/Mn)が、1.05〜1.8、好ましくは1.1〜1.7であるノボラック型フェノール樹脂を高収率で製造することができる。
(A)ノボラック型フェノール樹脂としては、市販品を使用することができ、例えば、「PAPS−PN2」(旭有機材工業株式会社製、商品名)、「PAPS−PN3」(旭有機材工業株式会社製、商品名)等が挙げられる。
接着フィルム用樹脂組成物は、本発明の効果を阻害しない範囲において、(A)ノボラック型フェノール樹脂以外のエポキシ樹脂硬化剤(以下、単に「エポキシ樹脂硬化剤」ともいう)を併用してもよい。
エポキシ樹脂硬化剤としては、例えば、(A)ノボラック型フェノール樹脂以外の各種フェノール樹脂化合物、酸無水物化合物、アミン化合物、ヒドラジット化合物等が挙げられる。フェノール樹脂化合物としては、例えば、(A)ノボラック型フェノール樹脂以外のノボラック型フェノール樹脂、レゾール型フェノール樹脂等が挙げられ、酸無水物化合物としては、例えば、無水フタル酸、ベンゾフェノンテトラカルボン酸二無水物、メチルハイミック酸等が挙げられる。また、アミン化合物としては、例えば、ジシアンジアミド、ジアミノジフェニルメタン、グアニル尿素等が挙げられる。
これらのエポキシ樹脂硬化剤の中でも、信頼性を向上させる観点から、(A)ノボラック型フェノール樹脂以外のノボラック型フェノール樹脂が好ましい。
また、金属箔の引き剥がし強さ及び化学粗化後の無電解めっきの引き剥がし強さが向上する観点からは、トリアジン環含有ノボラック型フェノール樹脂及びジシアンジアミドが好ましい。
(A)ノボラック型フェノール樹脂以外のノボラック型フェノール樹脂は、市販品を用いてよく、例えば、「TD2090」(DIC株式会社製、商品名)等のフェノールノボラック樹脂、「KA−1165」(DIC株式会社製、商品名)等のクレゾールノボラック樹脂などが挙げられる。また、トリアジン環含有ノボラック型フェノール樹脂の市販品としては、例えば、「フェノライトLA−1356」(DIC株式会社製、商品名)、「フェノライトLA7050シリーズ」(DIC株式会社製、商品名)等が挙げられ、トリアジン含有クレゾールノボラック樹脂の市販品としては、例えば、「フェノライトLA−3018」(商品名、DIC株式会社製)等が挙げられる。
<(B)エポキシ樹脂>
(B)エポキシ樹脂は、下記一般式(1)で表されるエポキシ樹脂である。
(式中、pは、1〜5の整数を示す。)
(B)エポキシ樹脂としては、市販品を用いてもよい。市販品の(B)エポキシ樹脂としては、例えば、「NC−3000」(式(1)におけるpが1.7であるエポキシ樹脂)、「NC−3000−H」(式(1)におけるpが2.8であるエポキシ樹脂)(いずれも日本化薬株式会社製、商品名)等が挙げられる。
接着フィルム用樹脂組成物は、本発明の効果を阻害しない範囲において、(B)エポキシ樹脂以外のエポキシ樹脂、フェノキシ樹脂等の高分子タイプのエポキシ樹脂などを含んでいてもよい。
<硬化促進剤>
接着フィルム用樹脂組成物は、(A)ノボラック型フェノール樹脂と(B)エポキシ樹脂との反応を速める観点から、硬化促進剤を含んでいてもよい。硬化促進剤としては、例えば、2−フェニルイミダゾール、2−エチル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾリウムトリメリテート等のイミダゾール化合物;トリフェニルホスフィン等の有機リン化合物;ホスホニウムボレート等のオニウム塩;1,8−ジアザビシクロウンデセン等のアミン類;3−(3,4−ジクロロフェニル)−1,1−ジメチルウレアなどが挙げられる。これらは単独で又は2種以上を混合して使用してもよい。
<(C)無機充填材>
接着フィルム用樹脂組成物は、平均粒径が0.1μm以上の(C)無機充填材を含む。
(C)無機充填材としては、例えば、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウム等が挙げられる。これらは単独で又は2種以上を混合して使用してもよい。これらの中でも、接着フィルムを硬化して形成される層間絶縁層の熱膨張係数を下げる観点から、シリカであることが好ましい。
(C)無機充填材の形状は、特に限定されないが、内層回路に形成されたスルーホール及び回路パターンの凹凸を埋め込み易くする観点から、球形であることが好ましい。
(C)無機充填材の平均粒径は0.1μm以上であり、優れた埋め込み性を得る観点から、0.2μm以上であることが好ましく、0.3μm以上であることがより好ましい。
平均粒径が0.1μm未満の無機充填材の含有量は、埋め込み性の観点から、固形分で、3vol%以下であることが好ましく、1vol%以下であることがより好ましく、平均粒径が0.1μm未満の無機充填材を含有しないことがさらに好ましい。なお、(C)無機充填材は、1種を単独で用いてもよく、異なる平均粒径のものを混合して使用してもよい。
(C)無機充填材としては、市販品を用いてもよい。市販品の(C)無機充填材としては、例えば、球形のシリカである「SO−C1」(平均粒径:0.25μm)、「SO−C2」(平均粒径:0.5μm)、「SO−C3」(平均粒径:0.9μm)、「SO−C5」(平均粒径:1.6μm)、「SO−C6」(平均粒径:2.2μm)(すべて株式会社アドマテックス製)等が挙げられる。
(C)無機充填材は表面処理を施したものであってもよい。例えば、(C)無機充填材としてシリカを使用する場合、表面処理として、シランカップリング剤処理を施していてもよい。シランカップリング剤としては、例えば、アミノシランカップリング剤、ビニルシランカップリング剤、エポキシシランカップリング剤等が挙げられる。これらの中でも、アミノシランカップリング剤で表面処理を施したシリカが好ましい。
接着フィルム用樹脂組成物中における(C)無機充填材の量は次のように定義する。まず、支持体フィルム上に層形成する樹脂組成物を、200℃で30分間乾燥し、樹脂組成物に含まれる溶剤を除去して、溶剤を除去した後の重さ(固形分)を測定する。この固形分中に含まれる(C)無機充填材の量を、樹脂固形分のうちの(C)無機充填材の量と定義する。
また、(C)無機充填材の測定方法として、予め配合する(C)無機充填材の固形分の量を計算しておくと、固形分中の割合を容易に求めることができる。溶剤に分散した(C)無機充填材(以下、「(C)無機充填材分散液」ともいう)を使用する場合における計算例を以下に示す。
(C)無機充填材分散液中における(C)無機充填材の固形分は、200℃で30分間乾燥して計算した結果、70質量%であった。この(C)無機充填材分散液40gを用いて樹脂組成物を配合した結果、得られた樹脂組成物の総量は100gであった。100gの樹脂組成物を200℃で30分乾燥し、乾燥後の固形分の重量を測定した結果60gであった。固形分中に含まれる(C)無機充填材の量は、40g×70質量%=28gであるため、樹脂固形分のうちの(C)無機充填材の量は、28/60=47質量%(46.6質量%)と求められる。
接着フィルム用樹脂組成物中における(C)無機充填材の量は、熱硬化後の層間絶縁層の熱膨張係数を低くする観点からは、多いほど好ましいが、形成する内層回路基板の配線パターンの凹凸及びスルーホールを埋め込む観点から、適切な無機充填材の量がある。このような観点から、(C)無機充填材の含有量は、樹脂固形分のうち20〜95質量%であり、30〜90質量%であることが好ましく、50〜90質量%であることがより好ましい。(C)無機充填材の含有量が20質量%以上であると、熱膨張係数を低くすることができ、95質量%以下であると、埋め込み性を良好に保つことができる。
<難燃剤>
接着フィルム用樹脂組成物は、さらに、難燃剤を含んでいてもよい。
難燃剤としては、特に限定されないが、例えば、無機難燃剤、樹脂難燃剤等が挙げられる。
無機難燃剤としては、例えば、(C)無機充填材として例示される水酸化アルミニウム、水酸化マグネシウム等が挙げられる。
樹脂難燃剤としては、ハロゲン系樹脂であっても、非ハロゲン系樹脂であってもよいが、環境負荷への配慮から、非ハロゲン系樹脂を用いることが好ましい。樹脂難燃剤は、充填材として配合するものであってもよく、熱硬化性樹脂と反応する官能基を有するものであってもよい。
樹脂難燃剤は、市販品を使用することができる。充填材として配合する樹脂難燃剤の市販品としては、例えば、芳香族リン酸エステル系難燃剤である「PX−200」(大八化学工業株式会社製、商品名)、ポリリン酸塩化合物である「Exolit OP 930」(クラリアントジャパン株式会社製、商品名)等が挙げられる。
熱硬化性樹脂と反応する官能基を有する樹脂難燃剤の市販品としては、エポキシ系リン含有難燃剤、フェノール系リン含有難燃剤等が挙げられる。エポキシ系リン含有難燃剤としては、例えば、「FX−305」(新日鐵住金化学株式会社製、商品名)等が挙げられ、フェノール系リン含有難燃剤としては、例えば、「HCA−HQ」(三光株式会社製、商品名)、「XZ92741」(ダウ・ケミカル社製、商品名)等が挙げられる。これらは単独で又は2種以上を混合して使用してもよい。
<溶剤>
接着フィルム用樹脂組成物は、層形成を効率的に行う観点から、溶剤を含むことが好ましい。溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン化合物;酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル化合物;セロソルブ、メチルカルビトール、ブチルカルビトール等のカルビトール化合物;トルエン、キシレン等の芳香族炭化水素化合物;ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルなどを挙げることができる。これらは単独で又は2種以上を混合して使用してもよい。
<残留溶剤量>
本発明の接着フィルム中における残留溶剤量は、取り扱う材料によって異なるが、1〜20質量%であることが好ましく、2〜15質量%であることがより好ましく、2〜10質量%であることがさらに好ましい。残留溶剤量が1質量%以上であると、接着フィルムの取り扱い性が向上し、例えば、カッターで切断をする際の粉落ちの発生、割れの発生等を抑制することができる。一方、20質量%以下であると、ベトつきを抑制し、フィルムの巻き取り及び巻きだしが容易になる。また、巻きだしを可能にするため、乾燥後に接着フィルムのワニス塗布面に保護フィルムを設けることが多いが、残留溶剤量が20質量%以下であると、保護フィルムと本発明の接着フィルムとの間の剥離が容易になる。
また、残留溶剤は、多層プリント配線板を作製する工程で、乾燥及び熱硬化によって除去されるものであるため、環境負荷の観点から少ないほうが好ましく、乾燥及び熱硬化の前後の膜厚変化を小さくするためにも少ないほうが好ましい。
なお、本発明の接着フィルムの製造にあたっては、目標とする残留溶剤量になるように、乾燥条件を決定することが好ましい。乾燥条件は、前述の樹脂組成物中に含まれる溶剤の種類、溶剤の量等によって異なるため、それぞれの塗工装置によって、予め条件出しを行った後、決定することが好ましい。
ここで、本発明における残留溶剤量とは、支持体フィルムの樹脂組成物層中に含まれる、溶剤の割合(質量%)であり、次のように定義できる。
まず、支持体フィルムの重量(W)を測定し、その上に樹脂組成物層を形成した後の重量(W)を測定する。その後、支持体フィルムとその上に形成した樹脂組成物層を200℃の乾燥機の中に10分間放置し、乾燥後の重量(W)を測定する。得られた重量(W)〜(W)を用いて下記式により計算することができる。
溶剤の割合(質量%)=(1−((W)−(W))/((W)−(W)))×100
<その他の成分>
本発明の接着フィルムは、本発明の効果を阻害しない範囲で、その他の成分を含んでいてもよい。その他の成分としては、例えば、オルベン、ベントン等の増粘剤;チアゾール系、トリアゾール系等の紫外線吸収剤;シランカップリング剤等の密着付与剤;フタロシアニンブルー、フタロシアニングリーン、アイオジングリーン、ジスアゾイエロー、カーボンブラック等の着色剤;上記以外の任意の樹脂成分などが挙げられる。
[支持体フィルム]
本発明における支持体フィルムとは、本発明の接着フィルムを製造する際の支持体となるものであり、多層プリント配線板を製造する際に、通常、最終的に剥離又は除去されるものである。
支持体フィルムとしては、特に限定されないが、例えば、有機樹脂フィルム、金属箔、離型紙等が挙げられる。
有機樹脂フィルムの材質としては、ポリエチレン、ポリ塩化ビニル等のポリオレフィン;ポリエチレンテレフタレート(以下、「PET」ともいう)、ポリエチレンナフタレート等のポリエステル;ポリカーボネート、ポリイミドなどが挙げられる。これらの中でも、価格及び取り扱い性の観点から、PETが好ましい。
金属箔としては、銅箔、アルミニウム箔等が挙げられる。支持体に銅箔を用いる場合には、銅箔をそのまま導体層とし、回路を形成することもできる。この場合、銅箔としては、圧延銅、電解銅箔等を用いることができる。また、銅箔の厚さは、特に限定されないが、例えば、2〜36μmの厚さを有するものを使用することができる。厚さの薄い銅箔を用いる場合には、作業性を向上させる観点から、キャリア付き銅箔を使用してもよい。
これらの支持体フィルム及び後述する保護フィルムには、離型処理、プラズマ処理、コロナ処理等の表面処理が施されていてもよい。離型処理としては、シリコーン樹脂系離型剤、アルキッド樹脂系離型剤、フッ素樹脂系離型剤等による離型処理などが挙げられる。
支持体フィルムの厚さは、特に限定されないが、取扱い性の観点から、10〜120μmであることが好ましく、15〜80μmであることがより好ましく、15〜70μmであることがさらに好ましい。
支持体フィルムは、上述のように単一の成分である必要はなく、複数層(2層以上)の別材料で形成されていてもよい。
支持体フィルムが2層構造である例を示すと、例えば、1層目の支持体フィルムとして、上記で挙げられた支持体フィルムを用い、2層目として、エポキシ樹脂、エポキシ樹脂の硬化剤、充填材等から形成される層を有するものが挙げられる。2層目に用いられる材料は、本発明の接着フィルムに使用する材料において挙げられた材料も使用できる。
1層目の支持体フィルムの上に形成される層(2層目以降、2層以上の複数層あってもよい)は、機能を付与することを意図して作製される層であり、例えば、メッキ銅との接着性の向上等を目的として用いることができる。
2層目の形成方法としては、特に制限されないが、例えば、各材料を溶媒中に溶解及び分散したワニスを、1層目の支持体フィルム上に塗布及び乾燥させる方法が挙げられる。
支持体フィルムが複数層から形成される場合、1層目の支持体フィルムの厚さは、10〜100μmであることが好ましく、10〜60μmであることがより好ましく、13〜50μmであることがさらに好ましい。
1層目の支持体フィルムの上に形成される層(2層目以降、2層以上の複数層あってもよい)の厚さは、1〜20μmであることが好ましい。1μm以上であると、意図する機能を果たすことができ、また、20μm以下であると、支持体フィルムとしての経済性に優れる。
支持体フィルムが複数層で形成されている場合、支持体フィルムを剥離する際には、本発明の接着フィルムと共に多層プリント配線板側に形成して残す層(2層以上でもよい)と、剥離又は除去される層(2層以上でもよい)とに分離されてもよい。
[保護フィルム]
本発明の接着フィルムは、保護フィルムを有していてもよい。保護フィルムは、接着フィルムの支持体が設けられている面とは反対側の面に設けられるものであり、接着フィルムへの異物等の付着及びキズ付きを防止する目的で使用される。保護フィルムは、本発明の接着フィルムをラミネート、熱プレス等で回路基板等に積層する前に剥離される。
保護フィルムとしては、特に限定されないが、支持体フィルムと同様の材料を用いることができる。保護フィルムの厚さは、特に限定されないが、例えば、1〜40μmの厚さを有するものを使用することができる。
[接着フィルムの製造方法]
本発明の接着フィルムは、支持体フィルム上に接着フィルム用樹脂組成物を塗布及び乾燥することにより製造することができる。得られた接着フィルムは、ロール状に巻き取って、保存及び貯蔵することができる。より具体的には、例えば、前記有機溶剤に前記各樹脂成分を溶解した後、(C)無機充填材等を混合して接着フィルム用樹脂組成物を調製し、該ワニスを支持体フィルム上に塗布し、加熱、熱風吹きつけ等によって、有機溶剤を乾燥させて、支持体フィルム上に樹脂組成物層を形成することにより製造することができる。
なお、本発明の接着フィルムにおいて、支持体フィルム上に形成した樹脂組成物層は、乾燥させて得られる未硬化の状態であってもよく、半硬化(Bステージ化)した状態であってもよい。
支持体フィルムにワニスを塗工する方法としては、特に限定されないが、例えば、コンマコーター、バーコーター、キスコーター、ロールコーター、グラビアコーター、ダイコーター等の公知の塗工装置を用いて塗工する方法を適用することができる。塗工装置は、目標とする膜厚に応じて、適宜選択すればよい。
[2]第2の発明
次に、第2の発明に係る樹脂組成物、層間絶縁層用樹脂フィルム及び多層プリント配線板について説明する。
以下、第2の発明の説明において、単に「樹脂組成物」と称する場合、第2の発明に係る樹脂組成物を指すものとする。
[樹脂組成物]
本発明の樹脂組成物は、(a)シアネート樹脂(以下、「(a)成分」ともいう)、(b)エポキシ樹脂(以下、「(b)成分」ともいう)、(c)無機充填材(以下、「(c)成分」ともいう)及び(d)ポリアミド樹脂(以下、「(d)成分」ともいう)を含有するものである。
<(a)シアネート樹脂>
(a)シアネート樹脂としては、特に限定されないが、例えば、1分子中に2個以上のシアナト基を有するシアネート樹脂が好ましく挙げられる。
(a)シアネート樹脂としては、2,2−ビス(4−シアナトフェニル)プロパン、ビス(4−シアナトフェニル)エタン、ビス(3,5−ジメチル−4−シアナトフェニル)メタン、2,2−ビス(4−シアナトフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン等のビスフェノール型シアネート樹脂;フェノール付加ジシクロペンタジエン重合体のシアネートエステル化合物等のジシクロペンタジエン型シアネート樹脂;フェノールノボラック型シアネートエステル化合物、クレゾールノボラック型シアネートエステル化合物等のノボラック型シアネート樹脂;α,α’−ビス(4−シアナトフェニル)−m−ジイソプロピルベンゼン;これらのシアネート樹脂のプレポリマー(以下、「シアネートプレポリマー」ともいう)などが挙げられる。これらは単独で又は2種以上を混合して使用してもよい。
これらの中でも、表面粗さが小さく、めっき法によって形成した導体層との接着強度に優れる層間絶縁層を得る観点から、下記一般式(I)で表されるシアネート樹脂、下記一般式(IV)で表されるシアネート樹脂及びこれらのプレポリマーが好ましく、下記一般式(I)で表されるシアネート樹脂及びこれのプレポリマーがより好ましい。
一般式(I)中、Rは、ハロゲン原子で置換されていてもよい炭素数1〜3のアルキレン基、硫黄原子、下記一般式(II)又は下記一般式(III)で表される2価の基を示す。R及びRは水素原子又は炭素数1〜4のアルキル基を示す。複数のR同士又はR同士は、それぞれ同一であっても異なっていてもよい。
一般式(II)中、Rは炭素数1〜3のアルキレン基を示す。複数のR同士は、同一であっても異なっていてもよい。
一般式(IV)中、Rは、水素原子又はハロゲン原子で置換されていてもよい炭素数1〜3のアルキル基を示す。nは1以上の整数を示す。複数のR同士は、同一であっても異なっていてもよい。
前記一般式(I)中、Rで表される炭素数1〜3のアルキレン基としては、メチレン基、エチレン基、1,2−プロピレン基、1,3−プロピレン基、2,2−プロピレン基(−C(CH−)等が挙げられる。これらの中でも、表面粗さが小さく、めっき法によって形成した導体層との接着強度に優れる層間絶縁層を得る観点から、メチレン基又は2,2−プロピレン基(−C(CH−)が好ましく、2,2−プロピレン基(−C(CH−)がより好ましい。
前記炭素数1〜3のアルキレン基を置換するハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
前記一般式(II)中、Rで表される炭素数1〜3のアルキレン基としては、メチレン基、エチレン基、1,2−プロピレン基、1,3−プロピレン基、2,2−プロピレン基(−C(CH−)等が挙げられる。
これらのRで表される基の中でも、表面粗さが小さく、めっき法によって形成した導体層との接着強度に優れる層間絶縁層を得る観点から、メチレン基又は2,2−プロピレン基(−C(CH−)が好ましく、2,2−プロピレン基(−C(CH−)がより好ましい。
前記一般式(I)中、R又はRで表される炭素数1〜4のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基等が挙げられる。
前記一般式(IV)中、Rで表される炭素数1〜3のアルキル基としては、メチル基、エチル基、プロピル基等が挙げられる。
前記炭素数1〜3のアルキル基を置換するハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
一般式(IV)中、nは1以上の整数を示し、表面粗さが小さく、めっき法によって形成した導体層との接着強度に優れる層間絶縁層を得る観点から、1〜7であることが好ましく、1〜4であることがより好ましい。
前記シアネートプレポリマーとは、(a)シアネート樹脂同士が環化反応によりトリアジン環を形成したポリマーをいい、主にシアネートエステル化合物の3、5、7、9、11量体等が挙げられる。このシアネートプレポリマーにおいて、シアナト基の転化率は、特に限定されないが、有機溶媒に対する良好な溶解性を得る観点から、20〜70質量%であることが好ましく、30〜65質量%であることがより好ましい。
シアネートプレポリマーとしては、前記一般式(I)で表されるシアネート樹脂のプレポリマー、前記一般式(IV)で表されるシアネート樹脂のプレポリマー等が挙げられる。これらの中でも、表面粗さが小さく、めっき法によって形成した導体層との接着強度に優れる層間絶縁層を得る観点から、1分子中に2個のシアナト基を有するジシアネート化合物のプレポリマーであることが好ましく、前記一般式(I)で表されるシアネート樹脂のプレポリマーであることがより好ましく、2,2−ビス(4−シアナトフェニル)プロパンの少なくとも一部がトリアジン化されて3量体となったプレポリマー(下記式(V)参照)であることがさらに好ましい。
シアネートプレポリマーの重量平均分子量(Mw)は、特に限定されないが、有機溶媒に対する溶解性及び作業性の観点から、500〜4500であることが好ましく、600〜4000であることがより好ましく、1000〜4000であることがさらに好ましく、1500〜4000であることが特に好ましい。シアネートプレポリマーの重量平均分子量(Mw)が500以上であれば、シアネートプレポリマーの結晶化が抑制され、有機溶媒に対する溶解性が良好になる傾向にあり、また、4500以下であれば、粘度の増大が抑制され、作業性に優れる傾向にある。
なお、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)(東ソー株式会社製)により、標準ポリスチレンの検量線を用いて測定したものであり、詳細には、実施例に記載の方法に従って測定したものである。
シアネートプレポリマーは、単官能フェノール化合物の存在下で前記シアネート樹脂をプレポリマー化したものであってもよい。シアネートプレポリマーを製造する際に、単官能フェノール化合物を配合することにより、得られる硬化物中の未反応のシアナト基を減少させることができるため、耐湿性及び電気特性が優れる傾向にある。
単官能フェノール化合物としては、p−ノニルフェノール、p−tert−ブチルフェノール、p−tert−アミルフェノール、p−tert−オクチルフェノール等のアルキル基置換フェノール系化合物;p−(α−クミル)フェノール、モノ−、ジ−又はトリ−(α−メチルベンジル)フェノール等の下記一般式(VI)で表されるフェノール系化合物などが挙げられる。これらは単独で又は2種以上を混合して使用してもよい。
一般式(VI)中、R及びRは、それぞれ独立に、水素原子又はメチル基を示し、mは1〜3の整数を示す。mが2又は3の整数の場合、複数のR同士又はR同士は、それぞれ同一であっても異なっていてもよい。
単官能フェノール化合物の配合量は、得られる層間絶縁層の誘電特性及び耐湿性の観点から、単官能フェノール化合物が有するフェノール性水酸基と、(a)シアネート樹脂に含まれるシアナト基との当量比(水酸基/シアナト基)が、0.01〜0.30になる量とすることが好ましく、0.01〜0.20になる量とすることがより好ましく、0.01〜0.15になる量とすることがさらに好ましい。単官能フェノール化合物の配合量が上記範囲内であると、特に高周波数帯域での誘電正接が十分低いものが得られる傾向にあることに加えて、良好な耐湿性が得られる傾向にある。
シアネートプレポリマーの製造方法としては、特に制限はなく、公知の製造方法を適用することができる。
シアネートプレポリマーは、例えば、前記ジシアネート化合物と前記単官能フェノール化合物とを反応することにより、好適に製造することができる。ジシアネート化合物と単官能フェノール化合物との反応により、−O−C(=NH)−O−で表される基を有する化合物(つまりイミノカーボネート)が形成され、さらに該イミノカーボネート同士が反応するか、又は該イミノカーボネートとジシアネート化合物とが反応することにより、単官能フェノール化合物が脱離する一方で、トリアジン環を有するシアネートプレポリマーが得られる。前記反応は、例えば、前記ジシアネート化合物と前記単官能フェノール化合物とを、トルエン等の溶媒の存在下で混合して溶解し、80〜120℃に保持しながら、必要に応じてナフテン酸亜鉛等の反応促進剤を添加して行うことができる。
(a)シアネート樹脂としては、市販品を用いてもよい。市販品の(a)シアネート樹脂としては、ビスフェノール型のシアネート樹脂、ノボラック型のシアネート樹脂、これらのシアネート樹脂の一部又は全部がトリアジン化され3量体となったプレポリマー等が挙げられる。
ビスフェノールA型(2,2−ビス(4−ヒドロキシフェニル)プロパン型)のシアネート樹脂の市販品としては、「プリマセット(Primaset)BADCy」(ロンザ社製、商品名)、「アロシー(Arocy)B−10」(ハンツマン社製、商品名)等を用いてもよい。また、ビスフェノールE型(1,1−ビス(4−ヒドロキシフェニル)エタン型)のシアネート樹脂の市販品としては、「アロシー(Arocy)L10」(ハンツマン社製、商品名)、「プリマセット(Primaset)LECy」(ロンザ社製、商品名)等を用いてもよく、2,2’−ビス(4−シアネート−3,5−メチルフェニル)エタン型のシアネート樹脂の市販品としては、「プリマセット(Primaset)METHYLCy」(ロンザ社製)等を用いてもよい。
ノボラック型のシアネート樹脂の市販品としては、フェノールノボラック型のシアネート樹脂である「プリマセット(Primaset)PT30」(ロンザ社製、商品名)等を用いてもよい。
シアネート樹脂のプレポリマーの市販品としては、ビスフェノールA型のシアネート樹脂をプレポリマー化した「プリマセット(Primaset)BA200」(ロンザ社製、商品名)、「プリマセット(Primaset)BA230S」(ロンザ社製、商品名)等を用いてもよく、「プリマセット(Primaset)BA3000」等を用いてもよい。
他に、「アロシー(Arocy)XU−371」(ハンツマン社製、商品名)、ジシクロペンタジエン構造を含有したシアネート樹脂である「アロシー(Arocy)XP71787.02L」(ハンツマン社製、商品名)、「プリマセット(Primaset)DT−4000」(ロンザ社製、商品名)、「プリマセット(Primaset)DT―7000」(ロンザ社製、商品名)等を用いてもよい。
本発明の樹脂組成物中における(a)シアネート樹脂の含有量は、表面粗さが小さく、めっき法によって形成した導体層との接着強度に優れる層間絶縁層を得る観点から、樹脂組成物の固形分換算100質量部に対して、10〜60質量部であることが好ましく、15〜50質量部であることがより好ましく、20〜40質量部であることがさらに好ましい。
ここで、本発明における「固形分換算」とは、有機溶剤等の揮発性成分を除いた不揮発分のみを基準とすることを意味する。つまり、固形分換算100質量部とは、不揮発分100質量部相当を意味する。
<(b)エポキシ樹脂>
(b)エポキシ樹脂としては、特に限定されないが、例えば、1分子中に2個以上のエポキシ基を有するエポキシ樹脂が好ましく挙げられる。
(b)エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェノール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールSノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、アントラセンノボラック型エポキシ樹脂、アラルキル型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、tert−ブチル−カテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂(ナフトールノボラック型エポキシ樹脂を含む)、フルオレン型エポキシ樹脂、キサンテン型エポキシ樹脂、アントラセン型エポキシ樹脂等が挙げられる。これらは単独で又は2種以上を混合して使用してもよい。これらの中でも、表面粗さが小さく、めっき法によって形成した導体層との接着強度に優れる層間絶縁層を得る観点から、アラルキルノボラック型エポキシ樹脂であることが好ましく、ビフェニル骨格を有するアラルキルノボラック型エポキシ樹脂であることがより好ましい。ビフェニル骨格を有するアラルキルノボラック型エポキシ樹脂とは、分子中にビフェニル誘導体の芳香族環を含有するアラルキルノボラック型のエポキシ樹脂をいい、下記一般式(VII)で表される構造単位を含むエポキシ樹脂等が挙げられる。
一般式(VII)中、Rは水素原子又はメチル基を示す。
一般式(VII)で表される構造単位を含むエポキシ樹脂中における、一般式(VII)で表される構造単位の含有量は、表面粗さが小さく、めっき法によって形成した導体層との接着強度に優れる層間絶縁層を得る観点から、50〜100質量%であることが好ましく、70〜100質量%であることがより好ましく、80〜100質量%であることがさらに好ましい。
一般式(VII)で表される構造単位を含むエポキシ樹脂としては、例えば、下記一般式(VIII)で表されるエポキシ樹脂が挙げられる。
一般式(VIII)中、Rは前記と同様であり、mは1〜20の整数を示す。複数のR同士は、同一であっても異なっていてもよい。
(b)エポキシ樹脂としては、市販品を用いてもよい。市販品の(b)エポキシ樹脂としては、「NC−3000−H」、「NC−3000−L」、「NC−3100」、「NC−3000」(以上、日本化薬株式会社製、商品名、ビフェニル骨格を有するアラルキルノボラック型エポキシ樹脂)、「NC−7000−L」(日本化薬株式会社製、商品名、ナフトールノボラック型エポキシ樹脂)等が挙げられる。
(b)エポキシ樹脂のエポキシ当量は、表面粗さが小さく、めっき法によって形成した導体層との接着強度に優れる層間絶縁層を得る観点から、150〜500g/eqであることが好ましく、150〜400g/eqであることがより好ましく、200〜300g/eqであることがさらに好ましい。
ここで、エポキシ当量は、エポキシ基あたりの樹脂の質量(g/eq)であり、JIS
K 7236に規定された方法に従って測定することができる。具体的には、株式会社三菱化学アナリテック製の自動滴定装置「GT−200型」を用いて、200mlビーカーにエポキシ樹脂2gを秤量し、メチルエチルケトン90mlを滴下し、超音波洗浄器溶解後、氷酢酸10ml及び臭化セチルトリメチルアンモニウム1.5gを添加し、0.1mol/Lの過塩素酸/酢酸溶液で滴定することにより求められる。
本発明の樹脂組成物中における(b)エポキシ樹脂の含有量は、表面粗さが小さく、めっき法によって形成した導体層との接着強度に優れる層間絶縁層を得る観点から、樹脂組成物の固形分換算100質量部に対して、20〜80質量部であることが好ましく、30〜70質量部であることがより好ましく、35〜60質量部であることがさらに好ましい。
本発明の樹脂組成物中における、(a)シアネート樹脂と(b)エポキシ樹脂との質量比[(a)/(b)]は、表面粗さが小さく、めっき法によって形成した導体層との接着強度に優れる層間絶縁層を得る観点から、0.2〜2.5であることが好ましく、0.3〜2であることがより好ましく、0.5〜1.25であることがさらに好ましい。また、質量比[(a)/(b)]が0.2以上であると、得られる層間絶縁層中における未反応のエポキシ基の量を低減できる傾向にあり、1.25以下であると、(a)シアネート樹脂の配合量が多くなりすぎず、硬化温度の上昇を抑制できる傾向にある。
<(c)無機充填材>
本発明の樹脂組成物は、さらに(c)無機充填材を含有する。(c)無機充填材は、本発明の樹脂組成物を熱硬化して形成される層間絶縁層をレーザー加工する際に、樹脂の飛散を防止し、レーザー加工の形状を整えることを可能にする観点から重要である。また、層間絶縁層の表面を酸化剤で粗化する際に、適度な粗化面を形成し、めっきによって接着強度に優れる導体層の形成を可能にする観点から重要であり、そのような観点から選択することが好ましい。
(c)無機充填材としては、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウム等が挙げられる。これらの中でも、熱膨張係数、ワニスの取扱い性及び絶縁信頼性の観点から、シリカが好ましい。これらは単独で又は2種以上を混合して使用してもよい。
(c)無機充填材は、微細配線を形成する観点から、粒子径が小さいものが好ましい。また、同様の観点から、(c)無機充填材は、比表面積が20m/g以上であるものが好ましく、60〜200m/gであるものがより好ましく、90〜130m/gであるものがさらに好ましい。
比表面積は、不活性気体の低温低湿物理吸着によるBET法で求めることができる。具体的には、粉体粒子表面に、窒素等の吸着占有面積が既知の分子を液体窒素温度で吸着させ、その吸着量から粉体粒子の比表面積を求めることができる。
比表面積が20m/g以上の(c)無機充填材としては、市販品を用いてもよく、ヒュームドシリカである「AEROSIL(アエロジル)(登録商標)R972」(日本アエロジル株式会社製、商品名、比表面積110±20m/g)及び「AEROSIL(アエロジル)(登録商標)R202」(日本アエロジル株式会社製、商品名、比表面積100±20m/g)、コロイダルシリカである「PL−1」(扶桑化学工業株式会社製、商品名、比表面積181m/g)及び「PL−7」(扶桑化学工業株式会社製、商品名、比表面積36m/g)等が挙げられる。
(c)無機充填材としては、得られる層間絶縁層の耐湿性を向上させる観点から、シランカップリング剤等の表面処理剤で表面処理されたものを用いてもよい。
表面処理剤で表面処理された(c)無機充填材は、市販品を用いてもよく、フェニルシランカップリング剤処理を施したシリカフィラーである「YC100C」(株式会社アドマテックス製、商品名)、エポキシシランカップリング剤処理を施したシリカフィラーである「Sciqasシリーズ」(堺化学工業株式会社製、商品名、0.1μmグレード)等が挙げられる。
本発明の樹脂組成物中における、(c)無機充填材の含有量は、得られる層間絶縁層のレーザー加工性及び導体層との接着強度の観点から、樹脂組成物の固形分換算100質量部に対して、3〜50質量部であることが好ましく、3〜30質量部であることがより好ましく、3〜25質量部であることがさらに好ましく、5〜20質量部であることが特に好ましい。(c)無機充填材の含有量が3質量部以上であると、良好なレーザー加工性が得られる傾向にあり、50質量部以下であると、めっき法によって形成した導体層との接着強度が優れる傾向にある。
<(d)ポリアミド樹脂>
本発明の樹脂組成物は、さらに(d)ポリアミド樹脂を含有する。なお、本発明において「ポリアミド樹脂」とは、主鎖中にアミド結合(−NHCO−)を有する重合体を意味するものであるが、アミド結合とイミド結合とを有するポリアミドイミド樹脂は、本発明における「ポリアミド樹脂」には含めないものとする。
(d)ポリアミド樹脂としては、公知のポリアミド樹脂を用いることができ、特に限定されないが、表面粗さが小さく、めっき法によって形成した導体層との接着強度に優れる層間絶縁層を得る観点から、ポリブタジエン骨格を含んでいるものが好ましく、熱硬化性樹脂(例えば、エポキシ樹脂のエポキシ基)と反応するフェノール性水酸基、アミノ基等を含有しているものがより好ましい。
このような(d)ポリアミド樹脂としては、下記一般式(IX)で表される構造単位、下記一般式(X)で表される構造単位及び下記一般式(XI)で表される構造単位を含むポリアミド樹脂(以下、「変性ポリアミド樹脂」ともいう)が好ましい。
一般式(IX)〜(XI)中、a、b、c、x、y及びzは、それぞれ平均重合度であって、aは2〜10、bは0〜3、cは3〜30の整数を示し、x=1に対しy+z=2〜300((y+z)/x)であり、さらにy=1に対しz≧20(z/y)である。
R、R’及びR’’は、それぞれ独立に、芳香族ジアミン又は脂肪族ジアミンに由来する2価の基であり、R’’’は、芳香族ジカルボン酸、脂肪族ジカルボン酸又は両末端にカルボキシ基を有するオリゴマーに由来する2価の基である。
前記変性ポリアミド樹脂の製造に用いられる芳香族ジアミンとしては、ジアミノベンゼン、ジアミノトルエン、ジアミノフェノール、ジアミノジメチルベンゼン、ジアミノメシチレン、ジアミノニトロベンゼン、ジアミノジアゾベンゼン、ジアミノナフタレン、ジアミノビフェニル、ジアミノジメトキシビフェニル、ジアミノジフェニルエーテル、ジアミノジメチルジフェニルエーテル、メチレンジアミン、メチレンビス(ジメチルアニリン)、メチレンビス(メトキシアニリン)、メチレンビス(ジメトキシアニリン)、メチレンビス(エチルアニリン)、メチレンビス(ジエチルアニリン)、メチレンビス(エトキシアニリン)、メチレンビス(ジエトキシアニリン)、イソプロピリデンジアニリン、ジアミノベンゾフェノン、ジアミノジメチルベンゾフェノン、ジアミノアントラキノン、ジアミノジフェニルチオエーテル、ジアミノジメチルジフェニルチオエーテル、ジアミノジフェニルスルホン、ジアミノジフェニルスルホキシド、ジアミノフルオレン等が挙げられる。
前記変性ポリアミド樹脂の製造に用いられる脂肪族ジアミンとしては、エチレンジアミン、プロパンジアミン、ヒドロキシプロパンジアミン、ブタンジアミン、ヘプタンジアミン、ヘキサンジアミン、ジアミノジエチルアミン、ジアミノプロピルアミン、シクロペンタンジアミン、シクロヘキサンジアミン、アザペンタンジアミン、トリアザウンデカジアミン等が挙げられる。これらは単独で又は2種以上を混合して使用してもよい。
前記変性ポリアミド樹脂の製造に用いられるフェノール性水酸基含有ジカルボン酸としては、ヒドロキシイソフタル酸、ヒドロキシフタル酸、ヒドロキシテレフタル酸、ジヒドロキシイソフタル酸、ジヒドロキシテレフタル酸等が挙げられる。
前記変性ポリアミド樹脂に用いられるフェノール性水酸基を含有しないジカルボン酸としては、芳香族ジカルボン酸、脂肪族ジカルボン酸、両末端にカルボキシ基を有するオリゴマー等が挙げられる。
芳香族ジカルボン酸としては、フタル酸、イソフタル酸、テレフタル酸、ビフェニルジカルボン酸、メチレン二安息香酸、チオ二安息香酸、カルボニル二安息香酸、スルホニル安息香酸、ナフタレンジカルボン酸等が挙げられる。
脂肪族ジカルボン酸としては、シュウ酸、マロン酸、メチルマロン酸、コハク酸、グルタル酸、アジピン酸、マレイン酸、フマル酸、りんご酸、酒石酸、(メタ)アクリロイルオキシコハク酸、ジ(メタ)アクリロイルオキシコハク酸、(メタ)アクリロイルオキシりんご酸、(メタ)アクリルアミドコハク酸、(メタ)アクリルアミドりんご酸等が挙げられる。これらは単独で又は2種以上を混合して使用してもよい。
(d)ポリアミド樹脂としては、市販品を用いてもよい。市販品の(d)ポリアミド樹脂としては、例えば、日本化薬株式会社製のポリアミド樹脂「BPAM−01」、「BPAM−155」(共に商品名)等が挙げられる。
これらの中でも、表面粗さが小さく、めっき法によって形成した導体層との接着強度に優れる層間絶縁層を得る観点から、「BPAM−01」及び「BPAM−155」が好ましい。「BPAM−155」は、末端にアミノ基を有するゴム変性ポリアミドであり、エポキシ基との反応性を有するため、(d)ポリアミド樹脂として「BPAM−155」を使用した樹脂組成物から得られる層間絶縁層は、めっき法によって形成した導体層との接着強度により優れ、表面粗さが小さくなる傾向にある。
(d)ポリアミド樹脂の数平均分子量は、めっき法によって形成した導体層との接着強度に優れる層間絶縁層を得る観点から、20000〜30000であることが好ましく、22000〜29000であることがより好ましく、24000〜28000であることがさらに好ましい。
(d)ポリアミド樹脂の重量平均分子量は、めっき法によって形成した導体層との接着強度に優れる層間絶縁層を得る観点から、100000〜140000であることが好ましく、103000〜130000であることがより好ましく、105000〜120000であることがさらに好ましい。
なお、数平均分子量及び重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)(東ソー株式会社製)により、標準ポリスチレンの検量線を用いて測定したものであり、詳細には、実施例に記載の方法に従って測定したものである。
本発明の樹脂組成物中における、(d)ポリアミド樹脂の含有量は、(c)無機充填材の質量を除く樹脂組成物の固形分換算100質量部に対して、得られる層間絶縁層の表面粗さ及び導体層との接着強度の観点から、1〜20質量部であることが好ましく、2〜15質量部であることがより好ましく、4〜12質量部であることがさらに好ましい。(d)ポリアミド樹脂の含有量が1質量部以上であると、めっき法によって形成した導体層との接着強度が優れる傾向にあり、また、20質量部以下であると、酸化剤により層間絶縁層を粗化処理した際に、層間絶縁層の表面粗さが大きくなることが抑制される傾向にある。
<エポキシ樹脂硬化剤>
本発明の樹脂組成物は、必要に応じ、エポキシ樹脂硬化剤を含有していてもよい。
エポキシ樹脂硬化剤としては、特に限定されないが、各種フェノール樹脂類、酸無水物類、ヒドラジット類、活性エステル類、アミン類等が挙げられる。これらは単独で又は2種以上を混合して使用してもよい。
フェノール樹脂類としては、2官能フェノール樹脂等が挙げられ、酸無水物類としては、例えば、無水フタル酸、ベンゾフェノンテトラカルボン酸二無水物、メチルハイミック酸等が挙げられる。
活性エステル類としては、フェノールエステル類、チオフェノールエステル類、N−ヒドロキシアミンエステル類、複素環ヒドロキシ類のエステル化合物等の反応性の高いエステル基を有し、エポキシ樹脂の硬化作用を有する化合物等を用いることができる。これらの活性エステル類は、耐熱性等の観点から、2官能以上であることが好ましい。
<硬化促進剤>
本発明の樹脂組成物は、低温で短時間の硬化を可能にする観点から、硬化促進剤を含有していてもよい。
硬化促進剤としては、金属系硬化促進剤、有機系硬化促進剤等が挙げられる。
(金属系硬化促進剤)
金属系硬化促進剤としては、例えば、有機金属系硬化促進剤を使用することができる。有機金属系硬化促進剤は、(a)シアネート樹脂の自己重合反応の促進作用及び(a)シアネート樹脂と(b)エポキシ樹脂との反応の促進作用を有するものである。
有機金属系硬化促進剤としては、遷移金属、12族金属の有機金属塩及び有機金属錯体等が挙げられる。金属としては、銅、コバルト、マンガン、鉄、ニッケル、亜鉛、スズ等が挙げられる。
有機金属塩としては、カルボン酸塩が挙げられ、その具体例としては、例えば、ナフテン酸コバルト、ナフテン酸亜鉛等のナフテン酸塩、2−エチルヘキサン酸コバルト、2−エチルヘキサン酸亜鉛等の2−エチルヘキサン酸塩、オクチル酸亜鉛、オクチル酸スズ、ステアリン酸スズ、ステアリン酸亜鉛などが挙げられる。
有機金属錯体としては、アセチルアセトン錯体等のキレート錯体が挙げられ、その具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体;銅(II)アセチルアセトナート等の有機銅錯体;亜鉛(II)アセチルアセトナート等の有機亜鉛錯体;鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体;マンガン(II)アセチルアセトナート等の有機マンガン錯体などが挙げられる。これらの中でも、硬化性及び溶剤溶解性の観点から、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート、亜鉛(II)アセチルアセトナート、鉄(III)アセチルアセトナート、ナフテン酸亜鉛、ナフテン酸コバルトが好ましい。これらは単独で又は2種以上を混合して使用してもよい。
本発明の樹脂組成物が金属系硬化促進剤を含有する場合、金属系硬化促進剤の含有量は、十分な反応性及び硬化性を得る観点並びに硬化速度が大きくなりすぎることを抑制する観点から、(a)シアネート樹脂の固形分質量に対して、質量で1〜200ppmであることが好ましく、1〜75ppmであることがより好ましく、1〜50ppmであることがさらに好ましい。金属系硬化促進剤は、一度に又は複数回に分けて配合してもよい。
(有機系硬化促進剤)
有機系硬化促進剤としては、有機リン化合物、イミダゾール化合物、第二級アミン、第三級アミン等のアミン系化合物;第四級アンモニウム塩などが挙げられる。これらは単独で又は2種以上を混合して使用してもよい。これらの中でも、ビアホール内のスミア除去性の観点から、有機リン化合物、イミダゾール化合物、アミン系化合物が好ましい。有機系硬化促進剤は、一度に又は複数回に分けて配合してもよい。
有機リン化合物としては、エチルホスフィン、プロピルホスフィン、ブチルホスフィン、フェニルホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィン/トリフェニルボラン錯体、テトラフェニルホスホニウムテトラフェニルボレート等が挙げられる。
イミダゾール化合物としては、2−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテイト、1−シアノエチル−2−フェニルイミダゾリウムトリメリテイト、2,4−ジアミノ−6−[2’−メチルイミダゾリル]等が挙げられる。
本発明の樹脂組成物が有機系硬化促進剤を含有する場合、有機系硬化促進剤の含有量は、十分な反応性及び硬化性を得る観点並びに硬化速度が大きくなりすぎることを抑制する観点から、(b)エポキシ樹脂の固形分換算100質量部に対して、0.01〜5.0質量部であることが好ましく、0.01〜3.0質量部であることがより好ましく、0.01〜2.0質量部であることがさらに好ましい。
<その他の成分>
本発明の樹脂組成物は、本発明の効果を阻害しない範囲で、上記各成分以外の成分を含有していてもよい。
その他の成分としては、例えば、上記各成分以外の樹脂成分(以下、「他の樹脂成分」ともいう)、添加剤、難燃剤、有機溶剤等が挙げられる。
(他の樹脂成分)
他の樹脂成分としては、フェノキシ樹脂、ビスマレイミド化合物とジアミン化合物との重合物、ビスマレイミド化合物、ビスアリルナジド樹脂、ベンゾオキサジン化合物、前記単官能フェノール化合物、フェノキシ樹脂等が挙げられる。
(添加剤)
添加剤としては、オルベン、ベントン等の増粘剤;イミダゾール系、チアゾール系、トリアゾール系、シランカップリング剤等の密着付与剤;フタロシアニンブルー、フタロシアニングリーン、アイオジングリーン、ジスアゾイエロー、カーボンブラック等の着色剤;ゴム粒子等の有機充填材など挙げられる。
(難燃剤)
難燃剤としては、特に限定されないが、無機難燃剤、樹脂難燃剤等が挙げられる。
無機難燃剤としては、(c)無機充填材として例示される水酸化アルミニウム、水酸化マグネシウム等が挙げられる。
樹脂難燃剤としては、ハロゲン系樹脂であっても、非ハロゲン系樹脂であってもよいが、環境負荷への配慮から、非ハロゲン系樹脂を用いることが好ましい。樹脂難燃剤は、充填材として配合するものであってもよく、熱硬化性樹脂と反応する官能基を有するものであってもよい。
(有機溶剤)
本発明の樹脂組成物は、取り扱いを容易にする観点及び後述する層間絶縁層用樹脂フィルムを形成し易くする観点から、有機溶剤を含有させてワニスの状態にしてもよい。
有機溶剤としては、特に限定されないが、アセトン、メチルエチルケトン(以下、「MEK」ともいう)、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤;酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル系溶剤;セロソルブ、ブチルカルビトール等のカルビトール系溶剤;トルエン、キシレン等の芳香族炭化水素系溶剤;ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等のアミド系溶剤などが挙げられる。これらは単独で又は2種以上を混合して使用してもよい。これらの中でも、溶解性の観点から、ケトン系溶剤が好ましく、MEK、メチルイソブチルケトンがより好ましい。
<樹脂組成物の製造方法>
本発明の樹脂組成物は、(a)〜(d)成分、必要に応じその他の成分を混合することにより製造することができる。混合方法としては、公知の方法を適用することができ、例えば、ビーズミル等を用いて混合することができる。
樹脂組成物は、層間絶縁層を形成する際の作業性の観点から、前記有機溶媒に溶解又は分散されたワニスの状態としてもよい。
ワニスの固形分濃度は、使用する塗工装置に合わせて設定すればよく、例えば、ダイコーターを用い、塗工後の膜厚が5μmの層間絶縁層を作製する場合、ワニスの固形分濃度を15〜25質量%程度にすればよい。
本発明の樹脂組成物は、ワニスの状態で回路基板に塗布して層間絶縁層を形成することもできるが、樹脂フィルム、プリプレグ等のシート状積層材料の形態で回路基板に積層して層間絶縁層を形成してもよい。
以下、本発明の樹脂組成物の実施態様として、本発明の層間絶縁層用樹脂フィルム及び本発明の樹脂組成物を適用したプリプレグについて、順に説明する。
[層間絶縁層用樹脂フィルム]
本発明の層間絶縁層用樹脂フィルム(以下、単に「樹脂フィルム」ともいう)は、支持体、接着補助層及び層間絶縁層用樹脂組成物層をこの順に有する層間絶縁層用樹脂フィルムであって、接着補助層が、本発明の樹脂組成物を含有するものである。
本発明の層間絶縁層用樹脂フィルムは、ビルドアップ方式の多層プリント配線板に好適であり、本発明の層間絶縁層用樹脂フィルムを用いることにより、平滑な層間絶縁層上に高い接着強度を有する導体層を形成することができる。なお、本発明において、「平滑」とは、表面粗さRaが0.3μm未満であることを意味する。また、本発明における表面粗さRaは、例えば、比接触式表面粗さ計「wykoNT9100」(ブルカー・エイエックスエス株式会社製、商品名)を用いて測定することができる。
<接着補助層>
接着補助層は、本発明の樹脂組成物を含有する層であり、ビルドアップ方式によって多層化された多層プリント配線板において、多層化された回路パターン同士を絶縁し、かつ表面粗さが小さく、めっき法によって形成した導体層との接着強度に優れる層間絶縁層の形成を可能とする役割を果たす層である。
接着補助層の厚さは、表面粗さが小さく、めっき法によって形成した導体層との接着強度に優れる層間絶縁層を得る観点から、1〜15μmであることが好ましく、1〜10μmであることがより好ましく、1〜7μmであることがさらに好ましい。
接着補助層は、本発明の樹脂組成物を層形成することにより得ることができる。
<層間絶縁層用樹脂組成物層>
層間絶縁層用樹脂組成物層は、(e)シアネート樹脂(以下、「(e)成分」ともいう)、(f)エポキシ樹脂(以下、「(f)成分」ともいう)、(g)無機充填材(以下、「(g)成分」ともいう)を含有する層であることが好ましい。
層間絶縁層用樹脂組成物層は、本発明の樹脂フィルムを用いて多層プリント配線板を製造する場合において、回路基板と接着補助層との間に設けられる層である。また、層間絶縁層用樹脂組成物層は、回路基板にスルーホール、ビアホール等が存在する場合、それらの中に流動し、該ホール内を充填する役割も果たす。
なお、接着補助層と層間絶縁層用樹脂組成物層との間には、明確な界面が存在せず、例えば、接着補助層の構成成分の一部が層間絶縁層用樹脂組成物層の中に流動した状態であってもよい。
層間絶縁層用樹脂組成物層は、層間絶縁層用樹脂組成物を層形成することにより得られる。
(層間絶縁層用樹脂組成物)
層間絶縁層用樹脂組成物は、(e)シアネート樹脂、(f)エポキシ樹脂及び(g)無機充填材を含有することが好ましく、配線パターン上に層形成する観点から、40℃以下で固体であることが好ましい。また、本発明の樹脂フィルムを回路基板上に層形成する方法として、140℃以下で真空ラミネートする方法を採用されることが多い観点から、40〜140℃で溶融するものであることが好ましく、真空ラミネーターの省電力の観点及び生産性の観点から、120℃以下で溶融するものであることがより好ましく、100℃以下で溶融するものであることがさらに好ましい。
層間絶縁層用樹脂組成物層の厚さは、得られる樹脂フィルムをラミネートする回路基板の導体層の厚さ以上であることが好ましい。回路基板が有する導体層の厚さは、通常、5〜70μmであるため、10〜100μmであることが好ましく、多層プリント配線板の薄型化を可能とする観点からは、導体層以上の厚さを有しつつ、15〜80μmであることがより好ましく、20〜50μmであることがさらに好ましい。
〔(e)シアネート樹脂〕
(e)シアネート樹脂としては、特に限定されないが、本発明の樹脂組成物が含有することができる(a)シアネート樹脂と同様のものが挙げられる。
層間絶縁層用樹脂組成物中における(e)シアネート樹脂の含有量は、優れためっきピール強度を得る観点から、層間絶縁層用樹脂組成物の固形分換算100質量部に対して、1〜30質量部であることが好ましく、3〜30質量部であることがより好ましく、5〜20質量部であることがさらに好ましい。
〔(f)エポキシ樹脂〕
(f)エポキシ樹脂としては、特に限定されないが、本発明の樹脂組成物が含有することができる(b)エポキシ樹脂と同様のものが挙げられる。これらの中でも、耐熱性、低熱膨張性、剛直性及び高周波特性の観点から、ナフタレン骨格を含有するエポキシ樹脂が好ましい。
ナフタレン骨格を含有するエポキシ樹脂としては、同様の観点から、ナフタレン骨格を含有するノボラック型エポキシ樹脂がより好ましく、下記一般式(XII)で表される構造単位を含む、ナフトールノボラック型エポキシ樹脂がさらに好ましい。
一般式(XII)中、Rは、ハロゲン原子で置換されていてもよい炭素数1〜3のアルキル基を示す。
一般式(XII)で表される構造単位を含むエポキシ樹脂中における、一般式(XII)で表される構造単位の含有量は、耐熱性、低熱膨張性、剛直性及び高周波特性の観点から、50〜100質量%であることが好ましく、70〜100質量%であることがより好ましく、80〜100質量%であることがさらに好ましい。
層間絶縁層用樹脂組成物中における(f)エポキシ樹脂の含有量は、優れためっきピール強度を得る観点から、層間絶縁層用樹脂組成物の固形分換算100質量部に対して、5〜50質量部であることが好ましく、10〜40質量部であることがより好ましく、15〜35質量部であることがさらに好ましい。
層間絶縁層用樹脂組成物中における、(e)シアネート樹脂と(f)エポキシ樹脂との質量比[(e)/(f)]は、反応性及び高周波特性の観点から、0.1〜2であることが好ましく、0.2〜1.25であることがより好ましく、0.25〜1.25であることがさらに好ましい。質量比[(e)/(f)]が0.1以上であると、(e)シアネート樹脂の配合量が少なくなりすぎることがなく、良好な高周波特性が得られる傾向にあり、2以下であると、(e)シアネート樹脂の配合量が多くなりすぎず、硬化温度の上昇を抑制できる傾向にある。
〔(g)無機充填材〕
(g)無機充填材としては、特に限定されないが、本発明の樹脂組成物が含有することができる(c)無機充填材を用いることができる。これらの中でも、層間絶縁層用樹脂組成物の熱膨張係数を下げる観点から、シリカを用いることが好ましい。
(g)無機充填材の形状は、特に限定されないが、内層回路に形成されたスルーホール、回路パターンの凹凸を埋め込み易くする観点から、球形であることが好ましい。
(g)無機充填材の体積平均粒径は、特に限定されないが、良好な回路基板の埋め込み性を得る観点から、0.1〜5μmであることが好ましく、0.2〜3μmであることがより好ましく、0.3〜2.5μmであることがさらに好ましい。なお、使用する(g)無機充填材の体積平均粒径は1種類でもよく、異なる体積平均粒径のものを混合して使用してもよい。
(g)無機充填材として使用するシリカとしては、市販品を用いてもよい。市販品のシリカとしては、株式会社アドマテックス製の「SO−C1」(平均粒径:0.25μm、商品名)、「SO−C2」(平均粒径:0.5μm、商品名)、「SO−C3」(平均粒径:0.9μm、商品名)、「SO−C5」(平均粒径:1.6μm、商品名)、「SO−C6」(平均粒径:2.2μm、商品名)等が挙げられる。
体積平均粒径とは、粒子の全体積を100%として粒径による累積度数分布曲線を求めたとき、体積50%に相当する点の粒径のことであり、レーザ回折散乱法を用いた粒度分布測定装置等で測定することができる。
(g)無機充填材としては、吸水を防ぐ観点から、シランカップリング剤等の表面処理剤で表面処理された無機充填材を用いてもよい。
シランカップリング剤としては、アミノシランカップリング剤、ビニルシランカップリング剤、エポキシシランカップリング剤等が挙げられる、これらの中でも、スミア除去性の観点から、アミノシランカップリング剤が好ましい。
これらの表面処理を施したシリカは単独品を用いてもよく、異なるシランカップリング剤処理を施したシリカを併用してもよい。
また、これらのシリカは予め溶剤中に分散させたシリカスラリーの状態で使用してもよい。
層間絶縁層用樹脂組成物中における(g)無機充填材の含有量は、低熱膨張性、高周波特性及び配線パターンへの埋め込み性の観点から、層間絶縁層用樹脂組成物の固形分換算100質量部に対して、40〜90質量部であることが好ましく、50〜85質量部であることがより好ましく、55〜80質量部であることがさらに好ましい。(g)無機充填材の含有量が、40質量部以上であると、良好な低熱膨張性及び高周波特性が得られる傾向にあり、90質量部以下であると、良好な配線パターンへの埋め込み性が得られる傾向にある。
層間絶縁層用樹脂組成物は、必要に応じ、エポキシ樹脂硬化剤を含有していてもよい。エポキシ樹脂硬化剤としては、特に限定されないが、本発明の樹脂組成物が含有することができるエポキシ樹脂硬化剤を用いることができる。
〔硬化促進剤〕
層間絶縁層用樹脂組成物は、必要に応じ、硬化促進剤を含んでいてもよい。硬化促進剤としては、特に限定されないが、本発明の樹脂組成物が含有することができる硬化促進剤を用いることができる。
硬化促進剤として金属系硬化促進剤を使用する場合、金属系硬化促進剤の含有量は、十分な反応性及び硬化性を得る観点、並びに硬化速度が大きくなりすぎることを抑制する観点から、(e)シアネート樹脂の固形分質量に対して、質量で1〜200ppmであることが好ましく、1〜75ppmであることがより好ましく、1〜50ppmであることがさらに好ましい。金属系硬化促進剤は、一度に又は複数回に分けて配合を行ってもよい。
硬化促進剤として有機系硬化促進剤を使用する場合、有機系硬化促進剤の含有量は、十分な反応性及び硬化性を得る観点、並びに硬化速度が大きくなりすぎることを抑制する観点から、(f)エポキシ樹脂の固形分換算100質量部に対して、0.01〜5.0質量部であることが好ましく、0.01〜3.0質量部であることがより好ましく、0.01〜2.0質量部であることがさらに好ましい。
〔その他の成分〕
層間絶縁層用樹脂組成物は、本発明の効果を阻害しない範囲で、上記各成分以外の成分を含有していてもよい。その他の成分としては、本発明の樹脂組成物が含有していてもよいその他の成分と同様のものが挙げられる。
(層間絶縁層用樹脂組成物の製造方法)
層間絶縁層用樹脂組成物は、(e)〜(g)成分、必要に応じその他の成分を配合し、混合することにより得られる。
層間絶縁層用樹脂組成物は、層間絶縁層用樹脂組成物層を形成する際の作業性の観点から、前記有機溶媒に溶解又は分散されたワニスの状態としてもよい。ワニスを作製した後、無機充填材等の分散性を高める観点から、前述の分散処理を施してもよい。
ワニスの固形分濃度は、使用する塗工装置に合わせて設定すればよく、例えば、ダイコーターを用い、塗工後の膜厚が35μmの層間絶縁層用樹脂組成物層を作製する場合、ワニスの固形分濃度を50〜85質量%程度にすればよい。
<支持体>
支持体としては、特に限定されないが、例えば、有機樹脂フィルム、金属箔、離型紙等が挙げられる。
有機樹脂フィルムの材質としては、ポリエチレン、ポリ塩化ビニル等のポリオレフィン;ポリエチレンテレフタレート(以下、「PET」ともいう)、ポリエチレンナフタレート等のポリエステル;ポリカーボネート、ポリイミドなどが挙げられる。これらの中でも、価格及び取り扱い性の観点から、PETが好ましい。
金属箔としては、銅箔、アルミニウム箔等が挙げられる。支持体に銅箔を用いる場合には、銅箔をそのまま導体層とし、回路を形成することもできる。
この場合、銅箔としては、圧延銅、電解銅箔等を用いることができる。また、銅箔の厚さは、特に限定されないが、例えば、2〜36μmの厚さを有するものを使用することができる。厚さの薄い銅箔を用いる場合には、作業性を向上させる観点から、キャリア付き銅箔を使用してもよい。
これらの支持体及び後述する保護フィルムには、離型処理、プラズマ処理、コロナ処理等の表面処理が施されていてもよい。離型処理としては、シリコーン樹脂系離型剤、アルキッド樹脂系離型剤又はフッ素樹脂系離型剤等による離型処理などが挙げられる。
支持体の厚さは、特に限定されないが、取扱い性及び経済性の観点から、10〜120μmであることが好ましく、15〜80μmであることがより好ましく、25〜50μmであることがさらに好ましい。
支持体は、多層プリント配線板を製造する際に、通常、最終的に剥離又は除去される。
<保護フィルム>
本発明の樹脂フィルムは、保護フィルムを有していてもよい。保護フィルムは、本発明の樹脂フィルムの支持体が設けられている面とは反対側の面に設けられるものであり、樹脂フィルムへの異物等の付着及びキズ付きを防止する目的で使用される。保護フィルムは、本発明の樹脂フィルムをラミネート、熱プレス等で回路基板等に積層する前に剥離することができる。
保護フィルムとしては、特に限定されないが、支持体と同様の材料を用いることができる。保護フィルムの厚さは、特に限定されないが、例えば、1〜40μmの厚さを有するものを使用することができる。
保護フィルムは、本発明の樹脂フィルムをラミネート、熱プレス等で回路基板等に積層する前に剥離される。
<樹脂フィルムの製造方法>
本発明の樹脂フィルムの製造方法としては、例えば、支持体上にワニスの状態とした本発明の樹脂組成物を塗工した後、乾燥して、支持体上に接着補助層を形成した後、該接着補助層の上に、ワニスの状態とした層間絶縁層用樹脂組成物のワニスを塗工した後、乾燥して、層間絶縁層用樹脂組成物層を形成する方法等が挙げられる。
別の方法としては、例えば、上述の方法で支持体上に接着補助層を形成し、別途、層間絶縁層用樹脂組成物層を剥離可能なフィルムの上に形成し、支持体上に形成された接着補助層と、フィルム上に形成された層間絶縁層用樹脂組成物層とを、接着補助層が形成された面と層間絶縁層用樹脂組成物層が形成された面とが接するようにラミネートする方法等も挙げられる。この場合、層間絶縁層用樹脂組成物層を剥離可能なフィルムは、樹脂フィルムの保護フィルムとしての役割も果たすことができる。
本発明の樹脂組成物及び層間絶縁層用樹脂組成物を塗工する方法としては、特に限定されないが、コンマコーター、バーコーター、キスコーター、ロールコーター、グラビアコーター、ダイコーター等の公知の塗工装置を用いて塗工する方法を適用することができる。塗工装置は、目標とする膜厚に応じて、適宜選択すればよい。
本発明の樹脂組成物及び層間絶縁層用樹脂組成物を塗工した後の乾燥条件としては、特に限定されないが、得られる樹脂フィルム中の有機溶剤の含有量が、10質量%以下となるように乾燥させることが好ましく、5質量%以下となるように乾燥させることがより好ましい。
乾燥条件は、ワニス中の有機溶剤の量及び種類によっても異なるが、例えば、20〜80質量%の有機溶剤を含むワニスであれば、50〜150℃で1〜10分程度乾燥させることにより、樹脂フィルムを形成することができる。乾燥条件は、簡単な実験により適宜、好適な乾燥条件を設定することが好ましい。
接着補助層及び層間絶縁層用樹脂組成物層の面積は、取り扱い性の観点から、支持体の面積よりも小さい面積であることが好ましい。
また、樹脂フィルムは、ロール状に巻き取って、保存することができる。この場合、接着補助層及び層間絶縁層用樹脂組成物層の幅は、取り扱い性の観点から、支持体の幅よりも小さくすることができる。
[多層プリント配線板]
本発明の多層プリント配線板は、本発明の樹脂組成物又は層間絶縁層用樹脂フィルムの硬化物を含むものである。
本発明の多層プリント配線板は、例えば、本発明の樹脂フィルムを回路基板にラミネートすることにより、製造することができる。具体的には、下記工程(1)〜(6)[但し、工程(3)は任意である。]を含む製造方法により製造することができ、工程(1)、(2)又は(3)の後で支持体を剥離又は除去してもよい。
(1)本発明の樹脂フィルムを回路基板の片面又は両面にラミネートする工程[以下、ラミネート工程(1)と称する]。
(2)ラミネートされた樹脂フィルムを熱硬化し、絶縁層を形成する工程[以下、絶縁層形成工程(2)と称する]。
(3)絶縁層を形成した回路基板に穴あけする工程[以下、穴あけ工程(3)と称する]。
(4)絶縁層の表面を酸化剤によって粗化処理する工程[以下、粗化処理工程(4)と称する]。
(5)粗化された絶縁層の表面にめっきにより導体層を形成する工程[以下、導体層形成工程(5)と称する]。
(6)導体層に回路形成する工程[以下、回路形成工程(6)と称する]。
ラミネート工程(1)は、真空ラミネーターを用いて、本発明の樹脂フィルムを回路基板の片面又は両面にラミネートする工程である。真空ラミネーターとしては、市販品の真空ラミネーターを使用することができる。市販品の真空ラミネーターとしては、例えば、ニチゴー・モートン株式会社製のバキュームアップリケーター、株式会社名機製作所製の真空加圧式ラミネーター、株式会社日立製作所製のロール式ドライコーター、日立化成エレクトロニクス株式会社製の真空ラミネーター等が挙げられる。
樹脂フィルムに保護フィルムが設けられている場合には、該保護フィルムを剥離又は除去した後、樹脂フィルムの層間絶縁層用樹脂組成物層が回路基板と接するように、加圧及び加熱しながら回路基板に圧着することによりラミネートすることができる。
該ラミネートは、例えば、樹脂フィルム及び回路基板を必要に応じて予備加熱(プレヒート)してから、圧着温度(ラミネート温度)を60〜140℃、圧着圧力を0.1〜1.1MPa(9.8×10〜107.9×10N/m)、空気圧20mmHg(26.7hPa)以下の減圧下で実施することができる。また、ラミネートの方法は、バッチ式であっても、ロールでの連続式であってもよい。
絶縁層形成工程(2)では、まず、ラミネート工程(1)で回路基板にラミネートされた樹脂フィルムを室温付近に冷却する。
支持体を剥離する場合は、剥離した後、回路基板にラミネートされた樹脂フィルムを加熱硬化させて絶縁層、つまり後に「層間絶縁層」となる絶縁層を形成する。
加熱硬化の条件は、1段階目は100〜200℃で5〜30分間の範囲で選択され、2段階目は140〜220℃で20〜80分間の範囲で選択することができる。離型処理の施された支持体を使用した場合には、熱硬化させた後に、支持体を剥離してもよい。
上記の方法により絶縁層を形成した後、必要に応じて穴あけ工程(3)を経てもよい。穴あけ工程(3)は、回路基板及び形成された絶縁層に、ドリル、レーザー、プラズマ、これらの組み合わせ等の方法により穴あけを行い、ビアホール、スルーホール等を形成する工程である。レーザーとしては、炭酸ガスレーザー、YAGレーザー、UVレーザー、エキシマレーザー等が用いられる。
粗化処理工程(4)では、絶縁層の表面を酸化剤により粗化処理を行う。また、絶縁層及び回路基板にビアホール、スルーホール等が形成されている場合には、これらを形成する際に発生する、所謂「スミア」を、酸化剤によって除去してもよい。粗化処理と、スミアの除去は同時に行うことができる。
酸化剤としては、過マンガン酸塩(過マンガン酸カリウム、過マンガン酸ナトリウム等)、重クロム酸塩、オゾン、過酸化水素、硫酸、硝酸等が挙げられる。これらの中でも、ビルドアップ工法による多層プリント配線板の製造における絶縁層の粗化に汎用されている酸化剤である、アルカリ性過マンガン酸溶液(例えば、過マンガン酸カリウム、過マンガン酸ナトリウムの水酸化ナトリウム水溶液)を用いることができる。
粗化処理により、絶縁層の表面に凹凸のアンカーが形成する。
導体層形成工程(5)では、粗化されて凹凸のアンカーが形成された絶縁層の表面に、めっきにより導体層を形成する。
めっき方法としては、無電解めっき法、電解めっき法等が挙げられる。めっき用の金属は、めっきに使用し得る金属であれば特に制限されない。めっき用の金属は、銅、金、銀、ニッケル、白金、モリブデン、ルテニウム、アルミニウム、タングステン、鉄、チタン、クロム、又はこれらの金属元素のうちの少なくとも1種を含む合金の中から選択することができ、銅、ニッケルであることが好ましく、銅であることがより好ましい。
なお、先に導体層(配線パターン)とは逆パターンのめっきレジストを形成しておき、その後、無電解めっきのみで導体層(配線パターン)を形成する方法を採用することもできる。
導体層の形成後、150〜200℃で20〜120分間アニール処理を施してもよい。アニール処理を施すことにより、層間絶縁層と導体層との間の接着強度がさらに向上及び安定化する傾向にある。また、このアニール処理によって、層間絶縁層の硬化を進めてもよい。
回路形成工程(6)において、導体層をパターン加工し、回路形成する方法としては、例えば、サブトラクティブ法、フルアディティブ法、セミアディティブ法(SAP:SemiAdditive Process)、モディファイドセミアディティブ法(m−SAP:modified Semi Additive Process)等の公知の方法を利用することができる。
このようにして作製された導体層の表面を粗化してもよい。導体層の表面を粗化することにより、導体層に接する樹脂との密着性が向上する傾向にある。導体層を粗化するには、有機酸系マイクロエッチング剤である「CZ−8100」、「CZ−8101」、「CZ−5480」(全てメック株式会社製、商品名)等を用いることができる。
本発明の多層プリント配線板に用いられる回路基板は、特に限定されないが、例えば、ガラスエポキシ、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化性ポリフェニレンエーテル基板等の基板の片面又は両面に、パターン加工された導体層(回路)が形成されたものが挙げられる。
層間絶縁層の回路基板への接着性の観点からは、回路基板の導体層の表面は、黒化処理等により、予め粗化処理が施されていてもよい。
[プリプレグ]
本発明の樹脂組成物は、プリプレグに対しても適用可能である。
本発明の樹脂組成物をプリプレグに適用する好適な態様として、繊維基材を含む層間絶縁層用樹脂組成物層と、本発明の樹脂組成物を含む接着補助層とを有するプリプレグ(以下、「接着補助層付きプリプレグ」ともいう)が挙げられる。以下、当該態様について説明する。
<繊維基材を含む層間絶縁層用樹脂組成物層>
繊維基材を含む層間絶縁層用樹脂組成物層は、例えば、上述の層間絶縁層用樹脂組成物を繊維基材に含浸し、乾燥させることにより得られる。
層間絶縁層用樹脂組成物を繊維基材に含浸する方法としては、特に限定されないが、ホットメルト法、ソルベント法等が挙げられる。
ホットメルト法は、樹脂組成物を、有機溶剤に溶解することなく、樹脂組成物との剥離性の良い塗工紙に樹脂組成物をコーティングし、それを繊維機材にラミネートする方法、又は樹脂組成物を有機溶剤に溶解することなく、ダイコーター等によってシート状補強基材に直接塗工する方法である。
ソルベント法は、樹脂組成物を有機溶剤に溶解してワニスを調製し、このワニスを繊維基材に含浸させる方法である。
含浸後の乾燥条件としては、特に限定されないが、例えば、80〜180℃の温度で1〜10分加熱乾燥し、半硬化(Bステージ化)することで、繊維基材を含む層間絶縁層用樹脂組成物層を得ることができる。
繊維基材としては、例えば、各種の電気絶縁材料用積層板に用いられている周知のものを使用することができる。
繊維基材の材質としては、Eガラス、Dガラス、Sガラス、Qガラス等の無機物繊維;ポリイミド、ポリエステル、テトラフルオロエチレン等の有機繊維;並びにそれらの混合物などが挙げられる。電気絶縁材料用以外の用途では、例えば、繊維強化基材に用いられる、炭素繊維等を用いることも可能である。
繊維基材の形状としては、織布、不織布、ロービンク、チョップドストランドマット、サーフェシングマット等の形状が挙げられる。
繊維基材の材質及び形状は、プリプレグの用途、性能等に応じて選択すればよく、必要により、単独又は2種類以上の材質及び形状を組み合わせることができる。
繊維基材の厚さとしては、例えば、0.03〜0.5mmとすることができる。
繊維基材は、耐熱性、耐湿性及び加工性の観点から、シランカップリング剤等で表面処理したもの又は機械的に開繊処理を施したものを用いることができる。
<接着補助層>
接着補助層付きプリプレグにおける接着補助層は、本発明の樹脂組成物を含むものである。
接着補助層の厚さは、表面粗さが小さく、めっき法によって形成した導体層との接着強度に優れる層間絶縁層を得る観点から、例えば、1〜15μmであることが好ましく、1〜10μmであることがより好ましく、1〜7μmであることがさらに好ましい。
<接着補助層付きプリプレグの製造方法>
接着補助層付きプリプレグは、繊維基材を含む層間絶縁層用樹脂組成物層上に、接着補助層を設けることにより製造することができる。
繊維基材を含む層間絶縁層用樹脂組成物層に接着補助層を設ける方法は、特に限定されないが、上述の本発明の樹脂フィルムにおいて、層間絶縁層用樹脂組成物層に接着補助層を設ける方法を適用できる。
次に、接着補助層付きプリプレグを用いて多層プリント配線板を製造する方法の一例を説明する。
回路基板に接着補助層付きプリプレグを1枚又は必要に応じて複数枚重ね、離型フィルムを介して金属プレートで挟み、加圧及び加熱条件下で真空プレスして積層する。プリプレグを複数枚重ねる場合は、外側に接着補助層が形成されるように積層することが好ましい。加圧及び加熱条件は、特に限定されないが、例えば、圧力5〜40kgf/cm、温度120〜200℃で20〜100分間プレス積層する条件とすることができる。
また、本発明の樹脂フィルムと同様に、接着補助層付きプリプレグを真空ラミネート法によって回路基板にラミネートした後、加熱硬化してもよい。その後、本発明の多層プリント配線板の項に記載した方法と同様の方法で、硬化したプリプレグの表面を粗化した後、導体層を形成して、多層プリント配線板を製造することができる。
[1]次に、第1の発明を実施例により、さらに詳細に説明するが、第1の発明は、これらの例によってなんら限定されるものではない。
実施例1
エポキシ樹脂として、ビフェニルノボラック型エポキシ樹脂である「NC−3000−H」(日本化薬株式会社製、商品名、固形分濃度100質量%)を25.8質量部、
ノボラック型フェノール樹脂として、「PAPS−PN2」(旭有機材工業株式会社製、商品名、固形分濃度100質量%、Mw/Mn=1.17)を6.3質量部、
エポキシ樹脂硬化剤として、トリアジン変性フェノールノボラック樹脂である「LA−1356−60M」(DIC株式会社製、商品名、溶剤:MEK、固形分濃度60質量%)を4.9質量部、
無機充填材として、「SO−C2」(株式会社アドマテックス製、商品名、平均粒径;0.5μm)の表面をアミノシランカップリング剤で処理し、さらに、MEK中に分散させたシリカ(固形分濃度70質量%)を92.9質量部、
硬化促進剤として、2−エチル−4−メチルイミダゾールである「2E4MZ」(四国化成工業株式会社製、商品名、固形分濃度100質量%)を0.026質量部、
追加溶剤としてMEKを13.1質量部配合し、混合及びビーズミル分散処理を施して接着フィルム用樹脂組成物ワニス1を作製した。
上記で得られた接着フィルム用樹脂組成物ワニス1を、支持体フィルムであるPET(帝人デュポンフィルム株式会社製、商品名:G2、フィルム厚:50μm)上に塗布した後、乾燥して、樹脂組成物層を形成した。なお、塗工厚さは40μmとして、乾燥は、樹脂組成物層中の残留溶剤が8.0質量%になるように行った。乾燥後、樹脂組成物層面側に保護フィルムとして、ポリエチレンフィルム(タマポリ株式会社製、商品名:NF−13、厚さ:25μm)を積層した。その後、得られたフィルムをロール状に巻き取り、接着フィルム1を得た。
実施例2〜6、8、比較例1〜4
実施例1において、原料組成、製造条件を表1に記載のとおりに変更した以外は、実施例1と同様にして、接着フィルム2〜6、8〜12を得た。
実施例7
支持体フィルムであるPET(帝人デュポンフィルム株式会社製、商品名:G2、フィルム厚:50μm)の上に、10μmの膜厚になるように、以下の手順で作製した樹脂ワニスAを塗布及び乾燥して得られた60μm厚さの支持体フィルム2を準備した。
上記で使用した樹脂ワニスAは、以下の手順で作製した。
エポキシ樹脂として、ビフェニルノボラック型エポキシ樹脂である「NC−3000−H」(日本化薬株式会社製、商品名、固形分濃度100質量%)を63.9質量部、
エポキシ樹脂硬化剤として、トリアジン変性フェノールノボラック樹脂である「LA−1356−60M」(DIC株式会社製、商品名、溶剤;MEK、固形分濃度60質量%)を18.0質量部、
コアシェルゴム粒子である「EXL−2655」(ローム・アンド・ハース電子材料株式会社製、商品名)を15.2質量部、
無機充填材として、ヒュームドシリカである「アエロジルR972」(日本アエロジル株式会社製、商品名、平均粒径;0.02μm、固形分濃度100質量%)を8.8質量部、
硬化促進剤として、2−エチル−4−メチルイミダゾールである「2E4MZ」(四国化成工業株式会社製、商品名、固形分濃度100質量%)を1.28質量部、
追加溶剤として、シクロヘキサノンを226.1質量部配合し、混合及びビーズミル分散処理を施して樹脂ワニスAを作製した。
上記で得られた樹脂ワニスAを、支持体フィルムであるPET(帝人デュポンフィルム株式会社製、商品名:G2、フィルム厚:50μm)上に、10μmの膜厚になるように塗布した後、乾燥して、フィルム厚が60μmの支持体フィルム2を得た。
次に、上記で得た支持体フィルム2上に塗布する接着フィルム用樹脂組成物ワニスを、表1に記載の原料組成、製造条件で、実施例1と同様にして作製した。
支持体フィルム2と、接着フィルム用樹脂組成物ワニスを用いて、実施例1と同様にして接着フィルム7を得た。
[評価方法]
得られた接着フィルム1〜12は以下の方法により評価した。
(接着フィルムの取扱い性試験用試料の作製及び試験方法)
得られた接着フィルム1〜12を500mm×500mmのサイズに切断し、接着フィルムの取扱い性試験用試料1〜12を作製した。
作製した接着フィルムの取扱い性試験用試料1〜12を用いて、次の(1)〜(3)の方法により取扱い性を評価し、いずれかの試験において不良とされたものを「取扱い性不良」、いずれの試験でも不良でなかったものを「取扱い性良好」とした。
(1)接着フィルムの取扱い性試験用試料1〜12について、まず、保護フィルムを剥離した。保護フィルムを剥離する際に、塗布及び乾燥した樹脂が一部、保護フィルム側に付着したもの、又は粉落ちが発生したものを、取扱い性不良とした。
(2)フィルムの中央端2点(500mm×250mmになるように、端部の2点)を持ち、塗布及び乾燥した樹脂に割れが発生したものを、取扱い性不良とした。
(3)表面の銅箔に黒化及び還元処理を施した銅張積層板である「MCL−E−679FG(R)」(日立化成株式会社製、銅箔厚12μm、板厚0.41mm)に、バッチ式の真空加圧式ラミネーター「MVL−500」(株式会社名機製作所製、商品名)を用いてラミネートによって積層した。この際の真空度は30mmHg以下であり、温度は90℃、圧力は0.5MPaの設定とした。室温に冷却後、支持体フィルムを剥がした(接着フィルム7については、支持体フィルム2のうち、PETとその上に形成した樹脂層の間で剥がれた)。この際に、粉落ちが発生したり、PETが途中で破れた材料を取り扱い性不良とした。
(熱膨張係数測定用試料の作製及び試験方法)
得られた接着フィルム1〜12をそれぞれ200mm×200mmのサイズに切断し、保護フィルムを剥がし、18μm厚さの銅箔に、バッチ式の真空加圧式ラミネーター「MVL−500」(株式会社名機製作所製、商品名)を用いてラミネートによって積層した。この際の真空度は30mmHg以下であり、温度は90℃、圧力は0.5MPaの設定とした。
室温に冷却後、支持体フィルムを剥がし(接着フィルム7については、支持体フィルム2のうち、PETとその上に形成した樹脂層の間で剥がれた)、180℃の乾燥機中で120分間硬化した。その後、塩化第二鉄液で銅箔を除去し、幅3mm、長さ8mmに切り出したものを、熱膨張係数測定用試料1〜12とした。
作製した熱膨張係数測定用試料1〜12を用いて、次の方法により熱膨張係数を測定した。
得られた熱膨張係数測定用試料1〜12をセイコーインスツル株式会社製の熱機械分析装置を用い、昇温速度10℃/分で240℃まで昇温させ、−10℃まで冷却後、昇温速度10℃/分で300℃まで昇温させた際の膨張量の変化曲線を得て、該膨張量の変化曲線の0〜150℃の平均熱膨張係数を求めた。
(埋め込み性評価基板の作製及び試験方法)
埋め込み性評価基板に使用した内層回路は次のとおりである。銅箔厚が12μm、板厚が0.15mm(銅箔厚を含む)の銅張積層板である「MCL−E−679FG(R)」(日立化成株式会社製、商品名)に直径が0.15mmのスルーホールを5mm間隔で25個×25個の群になるようにドリル穴あけ法によって作製した。次いで、デスミア及び無電解めっきを施し、電解めっきを用いてスルーホール中に電解めっきを施した。
その結果、銅厚を含む板厚が0.2mm、直径が0.1mm、5mm間隔で25個×25個のスルーホールを有する回路基板を得た。
次に、保護フィルムを剥がした接着フィルム1〜12を、樹脂組成物層が回路基板の回路面側と対向するように配置した後、バッチ式の真空ラミネーター「MVL−500」(株式会社名機製作所製、商品名)を用いてラミネートによって積層した。この際の真空度は30mmHgであり、温度は90℃、圧力は0.5MPaの設定とした。
室温に冷却後、両面に接着フィルムが付いたスルーホールを有する回路基板を1mmの厚さのアルミ板2枚で挟み、前記真空ラミネーターを用いてラミネートを行った。この際の真空度は30mmHgであり、温度は90℃、圧力は0.7MPaの設定とした。
室温に冷却後、支持体フィルムを剥がし(接着フィルム7については、支持体フィルム2のうち、PETとその上に形成した樹脂層の間で剥がれた)、180℃の乾燥機中で120分間硬化した。こうして、埋め込み性評価基板1〜12を得た。
作製した埋め込み性評価基板1〜12を用いて、次の方法により埋め込み性を評価した。
株式会社ミツトヨ製の接触式の表面粗さ計「SV2100」(商品名)を用い、埋め込み性評価基板1〜12のスルーホール部分表面の段差を測定した。段差は、スルーホールの表面の中心部分が10個入るように測定し、10個の凹みの平均値を計算した。
表1の成分について以下に示す。
[エポキシ樹脂]
・NC−3000−H:ビフェニルノボラック型エポキシ樹脂(日本化薬株式会社製、商品名、固形分濃度100質量%)
・N673−80M:クレゾールノボラック型エポキシ樹脂(DIC株式会社製、商品名、溶剤;MEK、固形分濃度80質量%)
[ノボラック型フェノール樹脂]
・PAPS−PN2:ノボラック型フェノール樹脂(旭有機材工業株式会社製、商品名、固形分濃度100質量%、Mw/Mn=1.17)
・PAPS−PN3:ノボラック型フェノール樹脂(旭有機材工業株式会社製、商品名、固形分濃度100質量%、Mw/Mn=1.50)
・HP−850:リン酸ではなく塩酸を使用して製造したノボラック型フェノール樹脂(日立化成株式会社製、商品名、固形分濃度100質量%)
[トリアジン変性フェノールノボラック樹脂]
・LA−1356−60M:トリアジン変性フェノールノボラック樹脂(DIC株式会社製、商品名、溶剤;MEK、固形分濃度60質量%)
[無機充填材]
・SO−C2:株式会社アドマテックス製のシリカ「SO−C2」(商品名、平均粒径;0.5μm)の表面をアミノシランカップリング剤で処理し、さらに、MEK溶剤中に分散させたシリカ(固形分濃度70質量%)
・SO−C6:株式会社アドマテックス製のシリカ「SO−C6」(商品名、平均粒径;2.2μm)の表面をアミノシランカップリング剤で処理し、さらに、MEK溶剤中に分散させたシリカ(固形分濃度70質量%)
・アエロジルR972:ヒュームドシリカ(日本アエロジル株式会社製、商品名、固形分濃度100質量%、比表面積:100m/g)
[硬化促進剤]
・2E4MZ:2−エチル−4−メチルイミダゾール(四国化成工業株式会社製、商品名、固形分濃度100質量%)
表1から、本発明の接着フィルムは、取扱い性が良好であり、本発明の接着フィルムから、熱膨張係数が低く、埋め込み性に優れた層間絶縁層が得られることが分かる。
一方、本発明の接着フィルムを用いなかった場合、取扱い性、熱膨張係数、埋め込み性のいずれかが劣っていた。
すなわち、第1の発明によれば、熱膨張係数が低く、埋め込み性に優れ、取扱い性に優れる接着フィルムを提供でき、硬化後の熱膨張係数が低い層間絶縁層を提供できることが分かる。
[2]次に、第2の発明を参考例により、さらに詳細に説明するが、第2の発明は、これらの例によってなんら限定されるものではない。
シアネートプレポリマーの重量平均分子量及びポリアミド樹脂の重量平均分子量及び数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準ポリスチレンを用いた検量線から換算して求めた。検量線は、標準ポリスチレン:TSKgel(SuperHZ2000、SuperHZ3000[東ソー株式会社製])を用いて3次式で近似した。GPCの条件を、以下に示す。
・装置:ポンプ:880−PU[日本分光株式会社製]
RI検出器:830−RI[日本分光株式会社製]
恒温槽:860−CO[日本分光株式会社製]
オートサンプラー:AS−8020[東ソー株式会社製]
・溶離液:テトラヒドロフラン
・試料濃度:30mg/5mL
・注入量:20μL
・流量:1.00mL/分
・測定温度:40℃
[シアネートプレポリマーの合成]
製造例1
(シアネートプレポリマーAの合成)
ディーンスターク還流冷却器、温度計及び撹拌器を備えた5Lのセパラブルフラスコに、ビスフェノールA型の2官能のシアネート樹脂である「アロシー(AroCy)B−10」(ハンツマン社製、商品名、分子量278)を3000g、p−(α−クミル)フェノール(パラクミルフェノール)(三井化学ファイン株式会社製、商品名、分子量212)を45.8g、トルエンを1303g投入して反応溶液とした。反応溶液の昇温を開始し、反応溶液の温度が90℃になるまで撹拌した。90℃に到達した時点で、ナフテン酸亜鉛(和光純薬工業株式会社製、商品名、固形分濃度8質量%、ミネラルスピリット溶液カット品)を反応溶液に2.799g添加した。その後、さらに110℃に昇温し、110℃で180分間撹拌させた。続いて、反応溶液の固形分濃度が70質量%になるようにトルエンを追加配合することによって、トルエンに溶解したシアネートプレポリマーA(重量平均分子量:約3200)(以下、単に「プレポリマーA」ともいう)を作製した。
[層間絶縁層用樹脂フィルムの作製]
参考例1
(層間絶縁層用樹脂フィルム1の作製)
表2に示す各成分を配合し、樹脂成分が溶解するまで撹拌した。その後、ビーズミル処理によって分散し、接着補助層用樹脂組成物ワニス1を得た。
次に、表3に示す各成分を配合し、樹脂成分が溶解するまで撹拌した。その後、ビーズミル処理によって分散し、層間絶縁層用樹脂組成物ワニス1を得た。
上記で得られた接着補助層用樹脂組成物ワニス1を、厚さ38μmのPETフィルム上に、ダイコーターを用いて塗工し、130℃で2分間乾燥させることで、接着補助層の膜厚が4μmの支持体付き接着補助層を得た。次いで、形成した接着補助層の上に、層間絶縁層用樹脂組成物ワニス1をダイコーターを用いて塗工し、100℃で1.5分間乾燥させることで、膜厚が36μmの層間絶縁層用樹脂組成物層を形成し、層間絶縁層用樹脂フィルム1を得た。
参考例2〜14、比較参考例1〜4
(層間絶縁層用樹脂フィルム2〜18の作製)
表2及び表3に記載の配合組成で、参考例1と同様の手順にて、層間絶縁層用樹脂フィルム2〜18を得た。
[プリプレグの作製]
参考例15
(プリプレグ1の作製)
表2及び表3に記載の配合組成で、参考例1と同様の手順にて、接着補助層用樹脂組成物ワニス15及び層間絶縁層用樹脂組成物ワニス15を得た。
接着補助層用樹脂組成物ワニス15を、厚さ38μmのPETフィルムの上にダイコーターを用いて塗工し、140℃で2分間乾燥させることで接着補助層の膜厚が4μmの支持体付き接着補助層を得た。
次に、層間絶縁層用樹脂組成物ワニス15をガラスクロス(旭シュエーベル株式会社製、商品名:2117(Eガラス))に含浸し、100℃で8分間乾燥することで膜厚0.096mmのガラスクロスを含む層間絶縁層用樹脂組成物層を得た(ガラスクロスを含む層間絶縁層用樹脂組成物層中に占めるガラスクロスの質量の割合は40質量%)。次いで、得られた支持体付き接着補助層の支持体が設けられてない面とガラスクロスを含む層間絶縁層用樹脂組成物層とを対向させ配置し、真空加圧式ラミネーター「MVLP−500/600IIA」(株式会社名機製作所製、商品名)を用い、100℃で30秒間真空引きをした後、30秒間、0.5MPaで加圧することによって、プリプレグ1を得た。
このとき、ガラスクロスを含む層間絶縁層用樹脂組成物層がラミネートによって必要のない部分に貼り付いてしまうことを防ぐために、支持体付き接着補助層とガラスクロスを含む層間絶縁層用樹脂組成物層と離型PETフィルムとをこの順番に積層して、ラミネートした。離型PETフィルムとしては厚さ38μmの「ピューレックスNR−1」(帝人デュポンフィルム株式会社製、商品名)を用いた。
表2及び表3の成分について以下に示す。
[(a)成分]
・シアネートプレポリマーA:製造例1で合成したシアネートプレポリマーA
[(b)成分]
・NC−3000−H:ビフェニル骨格を有するアラルキルノボラック型エポキシ樹脂(日本化薬株式会社製、商品名、固形分濃度100質量%、エポキシ当量:289g/eq)
[(c)成分]
・アエロジルR972:ヒュームドシリカ(日本アエロジル株式会社製、商品名、固形分濃度100質量%)
・YC100C:フェニルシランカップリング剤処理を施したシリカフィラー(株式会社アドマテックス製、商品名)をメチルエチルケトンで固形分濃度を50質量%にしたもの。
・Sciqas(グレード0.1μm):エポキシシランカップリング剤処理を施したシリカフィラー(堺化学株式会社製、商品名)の0.1μmグレードをジメチルアセトアミドで固形分濃度を40質量%にしたもの。
[(d)成分]
・BPAM−155:末端にアミノ基を有するゴム変性ポリアミド樹脂(日本化薬株式会社製、商品名、固形分濃度100質量%、数平均分子量:26000、重量平均分子量:110000)
[比較用成分]
・KS−9300:シロキサン含有ポリアミドイミド樹脂のN−メチルピロリドンワニス(日立化成株式会社製、商品名、固形分濃度33質量%)
[エポキシ硬化剤]
・KA1165:クレゾールノボラック樹脂(DIC株式会社製、商品名、水酸基当量:119g/eq)
[硬化促進剤]
・2PZ−CN:1−シアノエチル−2−フェニルイミダゾール(四国化成工業株式会社製、商品名、固形分濃度100質量%)
[(e)成分]
・シアネートプレポリマーA:製造例1で合成したシアネートプレポリマーA
・BA230S75:ビスフェノールAジシアネートのプレポリマー「プリマセット(Primaset)BA230S75」(ロンザ社製、商品名、シアネート当量:232g/eq、固形分濃度75質量%のメチルエチルケトン溶液)
[(f)成分]
・NC−7000−L:ナフタレン骨格を含有するノボラック型エポキシ樹脂(日本化薬株式会社製、商品名、固形分濃度100質量%、エポキシ当量:231g/eq)
[(g)成分]
・SO−C2:アミノシランカップリング剤処理を施した球状シリカ(株式会社アドマテックス製、商品名、体積平均粒径0.5μm、固形分濃度100質量%)
[有機系硬化促進剤]
・2PZ−CN:1−シアノエチル−2−フェニルイミダゾール(四国化成工業株式会社製、商品名、固形分濃度100質量%)
・TPP:トリフェニルホスフィン(関東化学株式会社製)
・TPP−S:トリフェニルホスフィントリフェニルボラン(北興化学工業株式会社製)
・2PZ−CNS−PW:1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテイト(四国化成工業株式会社製)
[金属系硬化促進剤]
・ナフテン酸亜鉛:(和光純薬工業株式会社製、固形分濃度8質量%、ミネラルスピリット溶液)
[ハジキ防止剤]
・BYK−310:(ビックケミー・ジャパン株式会社製、商品名、固形分濃度25質量%、キシレン溶剤希釈)
[測定及び評価方法]
(切断評価方法)
層間絶縁層用樹脂フィルム1〜18及びプリプレグ1を5℃保管庫内に1週間保管し、冷蔵庫から取り出した後、室温(23℃)に2時間放置後、カッターを用いて400mm×300mmのサイズに切断した。
層間絶縁層用樹脂フィルム及びプリプレグを切断した際にPETフィルムの端部から粉落ちが見られた場合、又は取扱いの際に割れが発生した場合を不良とし、粉落ちが見られず、かつ割れが発生しなかった場合を良好とした。結果を表4に示す。該切断評価は樹脂フィルム又はプリプレグの保存安定性の指標とすることができる。
(埋め込み性評価基板の作製方法と評価方法)
400mm×300mmのサイズに切断した層間絶縁層用樹脂フィルム1〜18及びプリプレグ1を、配線パターンが形成されたプリント配線板にラミネートした。なお、層間絶縁層用樹脂フィルム1〜18は、層間絶縁層用樹脂組成物層がプリント配線板の回路面と対向するように配置した後、ラミネートを行い、プリプレグ1は、離型PETフィルムを剥離した後、ガラスクロスを含む層間絶縁層用樹脂組成物層がプリント配線板の回路面と対向するように配置した後、ラミネートを行った。
ラミネート装置は真空加圧式ラミネーター「MVLP−500/600IIA」(株式会社名機製作所製、商品名)を用いて行い、100℃で30秒間真空引きをした後、30秒間0.5MPaで加圧した。その後、100℃で60秒間、0.5MPaでホットプレスを行った。
また、配線パターンが形成されたプリント配線板は、35μm厚の銅層を有する銅張積層板「MCL−E−679FG」(日立化成株式会社製、商品名)に、サブトラクティブ法にて、ライン/スペースが165μm/165μmの配線を15本設けたものを使用した。
次に、樹脂フィルムをラミネートしたプリント配線板を室温に冷却後、支持体であるPETフィルムを剥離し、170℃で40分間、防爆乾燥機中で硬化を行い、配線パターンの埋め込み性評価基板1〜19を作製した。
配線パターンの埋め込み性の評価は、作製した配線パターンの埋め込み性評価基板の層間絶縁層表面の凹凸の大きさで評価を行った。凹凸の大きさは、触針式の評価形表面粗さ測定機「サーフテストSV−2100」(株式会社ミツトヨ製、商品名)を用いて測定し、n=10個の平均値を計算した。評価結果を表4に示す。ここでは、凹凸の平均値が3μm未満であることが実用上好ましい。
(レーザー加工性評価基板の作製方法と評価方法)
配線パターンの埋め込み性評価基板1〜19を用い、層間絶縁層の必要な箇所に層間接続用のビアホールを形成した。ビアホールは炭酸ガスレーザー加工機(LCO−1B21型)を用い、ビーム径60μm、周波数500Hz、パルス幅5μs、ショット数2ショットの条件で加工することによって、レーザー加工性評価基板1〜19を作製した。
得られたレーザー加工性評価基板1〜19におけるレーザー加工部のビア部の表面観察を行うと共に、一部のビアについて、断面の形状を観察することにより、レーザー加工性の評価を行った。
観察は走査型電子顕微鏡(SEM)「S−4700」(株式会社日立製作所製、商品名)を用いて行い、表面観察時に樹脂の飛散が見られたもの、又はいびつなビア形状になったものを不良とし、表面観察時に樹脂の飛散が見られず、かついびつなビア形状が見られなかったものを良好とした。結果を表4に示す。
(表面粗さ測定用基板の作製方法と評価方法)
レーザー加工性評価基板1〜19の一部を試験片として用いて、以下の手順により、粗化処理を行った。
試験片を80℃に加温した膨潤液「CIRCUPOSIT MLB CONDITIONER211」(ローム・アンド・ハース電子材料社製)に3分間浸漬処理した。次に、80℃に加温した粗化液「CIRCUPOSIT MLB PROMOTER213」(ローム・アンド・ハース電子材料社製)に8分間浸漬処理した。引き続き、45℃に加温した中和液「CIRCUPOSIT MLB NEUTRALIZER MLB216」(ローム・アンド・ハース電子材料社製)に5分間浸漬処理して中和した。このようにして、層間絶縁層の表面を粗化処理した表面粗さ測定用基板1〜19を得た。
得られた表面粗さ測定用基板1〜19について、比接触式表面粗さ計「wykoNT9100」(ブルカー・エイエックスエス株式会社製、商品名)を用い、内部レンズ1倍、外部レンズ50倍を用いて、層間絶縁層の表面粗さの測定を行い、算術平均粗さ(Ra)を得た。算術平均粗さ(Ra)は、表面粗さ測定用基板中の任意の部分(ただし、レーザーによるビアホールが形成されていない領域)について5箇所の平均粗さを測定し、これらの平均値とした。結果を表4に示す。算術平均粗さ(Ra)は本発明の主旨から、小さいほうが好ましく、200nm未満であることが実用上好ましい。
(ピール強度測定用基板の作製方法と評価方法)
表面粗さ測定用基板1〜19の一部を試験片として用いて、層間絶縁層と導体層(銅層)との接着強度(ピール強度)測定用基板を以下の手順で作製した。
まず、前記試験片を60℃のアルカリクリーナーである「クリーナーセキュリガント902」(アトテックジャパン株式会社製、商品名)で5分間処理し、脱脂洗浄した。洗浄後、23℃のプリディップ液である「プリディップネオガントB」(アトテックジャパン株式会社製、商品名)で2分間処理した。その後、40℃のアクチベーター液である「アクチベーターネオガント834」(アトテックジャパン株式会社製、商品名)で5分間処理を施し、パラジウム触媒を付けた。次に、30℃の還元液である「リデューサーネオガントWA」(アトテックジャパン株式会社製、商品名)に5分間処理した。次に、化学銅液[「ベーシックプリントガントMSK−DK」、「カッパーソリューションプリントガントMSK」、「スタビライザープリントガントMSK」](全てアトテックジャパン株式会社製、商品名)に入れ、無電解めっきをめっき厚さが0.5μm程度になるまで実施した。無電解めっき後に、めっき皮膜中に残存している応力を緩和させるため及び残留している水素ガスを除去するために、120℃で15分間ベーク処理を施した。
次に、無電解めっき処理された基板に電解めっきを用いて、めっき厚さが約30μmになるように電解めっきを行った。電解めっき後、190℃で90分間加熱して硬化させた。
上記で得られた基板の銅層上に、10mm幅のレジストを形成し、塩化第二鉄でレジスト形成部以外の銅層をエッチングすることにより除去し、ピール測定部として10mm幅の銅層を有する、ピール強度測定用基板1〜19を得た。
得られたピール強度測定用基板1〜19のピール測定部の一端を銅層と層間絶縁層との界面で剥がしてつかみ具でつかみ、垂直方向に引張り速度50mm/分、室温中で引き剥がしたときの荷重を測定した。結果を表4に示す。
(熱膨張係数測定用試料の作製方法と評価方法)
層間絶縁層用樹脂フィルム1〜18及びプリプレグ1を、配線パターンの埋め込み性評価基板の作製方法と同様の条件で、銅箔「YGP−12」(日本電解株式会社製、商品名)の粗化面にラミネートした。なお、層間絶縁層用樹脂フィルム1〜18は、層間絶縁層用樹脂組成物層が銅箔の粗化面と対向するように配置し、プリプレグ1は、離型PETフィルムを剥離した後、ガラスクロスを含む層間絶縁層用樹脂組成物層が銅箔の粗化面と対向するように配置した後、ラミネートを行った。
室温に冷却後、支持体であるPETフィルムを剥がした後、170℃で40分間、防爆乾燥機中で硬化した後、さらに190℃で90分間加熱硬化した。得られた銅箔付きフィルムから、銅箔を過硫酸アンモニウム溶液でエッチングすることにより除去した後、水洗した。その後、80℃で10分間乾燥させ、幅3mm、長さ8mmに切り出したものを、熱膨張係数測定用試料1〜19とした。
得られた熱膨張係数測定用試料1〜19をセイコーインスツル株式会社製の熱機械分析装置「SI5000」を用い、昇温速度10℃/分で240℃まで昇温させ、−10℃まで冷却後、昇温速度10℃/分で300℃まで昇温させた際の膨張量の変化曲線を得て、該膨張量の変化曲線の0〜150℃の平均熱膨張係数を求めた。結果を表4に示す。
(誘電正接の測定試料の作製方法と評価方法)
各例で得られた層間絶縁層用樹脂フィルム1〜18及びプリプレグ1を用いて誘電正接測定用試料を作製した。まず、銅箔(電解銅箔、厚さ12μm)の光沢面上に上記フィルム又はプリプレグをラミネートした。ラミネートは配線パターンの埋め込み性評価基板の作製方法と同様の装置、条件で行った。ラミネート後、室温に冷却させ、支持体であるPETフィルムを剥離した。
次に、銅箔上にラミネートした層間絶縁層用樹脂フィルム又はプリプレグの上に、更に同じ層間絶縁層用樹脂フィルム又はプリプレグを同じ条件でラミネートし、冷却した後、同様に支持体であるPETフィルムを剥離した。層間絶縁層用樹脂フィルム1〜18については、この作業を5回繰り返して、合計厚さ200μmの層間絶縁層用フィルム又はプリプレグのラミネート品を各々作製した。次に、各ラミネート品から、支持体であるPETフィルムを剥がした後、190℃で90分間加熱硬化した。続いて、塩化第2鉄の銅エッチング液を用いて、銅箔を除去し、厚さ200μmのシート状の樹脂板1〜19を得た。
得られた樹脂板を幅2mm、長さ70mmの試験片に切り出し、ネットワークアナライザ(アジレント・テクノロジー株式会社製、商品名:E8364B)と5GHz対応空洞共振器を用いて、誘電正接を測定した。測定温度は25℃とした。結果を表4に示す。
表4の結果より、参考例1〜15で得られた層間絶縁層用樹脂フィルム及びプリプレグにより形成された層間絶縁層は、割れ及び粉落ちがなく、ラミネートによる配線パターンの埋め込み性が良好であった。また、レーザー加工性、ピール強度に優れており、デスミア処理後の表面粗さも小さかった。さらに、これらの層間絶縁層用フィルム及びプリプレグの硬化物は熱膨張係数が小さく、誘電正接が低いものであった。
すなわち、本発明により、電気特性に優れ、表面粗さが小さく、めっき法によって形成した導体層との接着強度に優れ、保存安定性に優れる樹脂組成物が得られることが分かる。
一方、比較参考例1〜4で得られた層間絶縁層用樹脂フィルムにより形成された層間絶縁層は、いずれかの特性に劣っていた。
本発明の樹脂組成物により、表面粗さが小さく、めっき法によって形成した導体層との接着強度に優れる層間絶縁層を形成することができ、さらには、レーザー加工性、回路埋め込み性及び電気特性に優れ、熱膨張係数が小さく、保存安定性にも優れる層間絶縁層及び該層間絶縁層を含む多層プリント配線板が得られる。
そのため、本発明の樹脂組成物は、コンピューター、携帯電話、デジタルカメラ、テレビ等の電気製品、並びに自動二輪車、自動車、電車、船舶、航空機等の乗り物などに、幅広く利用可能である。

Claims (11)

  1. (a)シアネート樹脂、(b)エポキシ樹脂、(c)BET法による比表面積が60m/g以上である無機充填材及び(d)ポリアミド樹脂を含有し、
    (a)シアネート樹脂が、シアネート樹脂を単官能フェノール化合物の存在下でプレポリマー化してなるシアネートプレポリマーである、樹脂組成物。
  2. (a)シアネート樹脂と(b)エポキシ樹脂との質量比[(a)/(b)]が、0.2〜2.5である、請求項1に記載の樹脂組成物。
  3. (c)無機充填材の含有量が、樹脂組成物の固形分換算100質量部に対して、3〜50質量部である、請求項1又は2に記載の樹脂組成物。
  4. (d)ポリアミド樹脂が、数平均分子量が20000〜30000、かつ重量平均分子量が100000〜140000であり、末端にアミノ基を有するゴム変性ポリアミド樹脂である、請求項1〜3のいずれか1項に記載の樹脂組成物。
  5. (d)ポリアミド樹脂の含有量が、(c)無機充填材の質量を除く樹脂組成物の固形分換算100質量部に対して、1〜20質量部である、請求項1〜4のいずれか1項に記載の樹脂組成物。
  6. (a)シアネート樹脂が、1分子中に2個のシアナト基を有するジシアネート化合物を単官能フェノール化合物の存在下でプレポリマー化してなるシアネートプレポリマーである、請求項1〜5のいずれか1項に記載の樹脂組成物。
  7. 支持体、接着補助層及び層間絶縁層用樹脂組成物層をこの順に有する層間絶縁層用樹脂フィルムであって、
    前記接着補助層が、請求項1〜6のいずれか1項に記載の樹脂組成物を含有する層である、層間絶縁層用樹脂フィルム。
  8. 前記層間絶縁層用樹脂組成物層が、(e)シアネート樹脂、(f)エポキシ樹脂及び(g)無機充填材を含有する層間絶縁層用樹脂組成物を含有する、請求項7に記載の層間絶縁層用樹脂フィルム。
  9. (e)シアネート樹脂と(f)エポキシ樹脂との質量比[(e)/(f)]が、0.1〜2である、請求項8に記載の層間絶縁層用樹脂フィルム。
  10. (g)無機充填材の含有量が、前記層間絶縁層用樹脂組成物の固形分換算100質量部に対して、40〜90質量部である、請求項8又は9に記載の層間絶縁層用樹脂フィルム。
  11. 請求項1〜6のいずれか1項に記載の樹脂組成物の硬化物又は請求項7〜10のいずれか1項に記載の層間絶縁層用樹脂フィルムが有する接着補助層及び層間絶縁層用樹脂組成物層の硬化物を含む多層プリント配線板。
JP2016030460A 2016-02-19 2016-02-19 多層プリント配線板用の接着フィルム Active JP6808943B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016030460A JP6808943B2 (ja) 2016-02-19 2016-02-19 多層プリント配線板用の接着フィルム
CN201780011793.9A CN108699408B (zh) 2016-02-19 2017-02-20 多层印刷线路板用的粘接膜
KR1020247002868A KR20240017101A (ko) 2016-02-19 2017-02-20 다층 프린트 배선판용의 접착 필름
KR1020187023539A KR102704851B1 (ko) 2016-02-19 2017-02-20 다층 프린트 배선판용의 접착 필름
PCT/JP2017/006044 WO2017142094A1 (ja) 2016-02-19 2017-02-20 多層プリント配線板用の接着フィルム
TW106105565A TWI769148B (zh) 2016-02-19 2017-02-20 樹脂組成物、層間絕緣層用樹脂膜、多層印刷配線板及半導體封裝體

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016030460A JP6808943B2 (ja) 2016-02-19 2016-02-19 多層プリント配線板用の接着フィルム

Publications (3)

Publication Number Publication Date
JP2017145375A JP2017145375A (ja) 2017-08-24
JP2017145375A5 JP2017145375A5 (ja) 2019-03-28
JP6808943B2 true JP6808943B2 (ja) 2021-01-06

Family

ID=59680669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016030460A Active JP6808943B2 (ja) 2016-02-19 2016-02-19 多層プリント配線板用の接着フィルム

Country Status (1)

Country Link
JP (1) JP6808943B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050472A1 (ja) * 2008-10-29 2010-05-06 住友ベークライト株式会社 樹脂組成物、樹脂シート、プリプレグ、積層板、多層プリント配線板、及び半導体装置
JP6019883B2 (ja) * 2012-07-25 2016-11-02 日立化成株式会社 熱硬化性樹脂組成物、これを用いたプリプレグ、積層板及び多層プリント配線板
JP2014205755A (ja) * 2013-04-11 2014-10-30 住友ベークライト株式会社 プライマー層形成用樹脂組成物
JP6307236B2 (ja) * 2013-09-30 2018-04-04 新日鉄住金化学株式会社 硬化性樹脂組成物、硬化物、電気・電子部品及び回路基板材料

Also Published As

Publication number Publication date
JP2017145375A (ja) 2017-08-24

Similar Documents

Publication Publication Date Title
KR101816503B1 (ko) 수지 조성물
JP5999091B2 (ja) プリント配線板用樹脂組成物
JP5396805B2 (ja) エポキシ樹脂組成物
TWI756552B (zh) 熱硬化性環氧樹脂組成物、絕緣層形成用接著薄膜、絕緣層形成用預浸體、印刷配線板用絕緣體、多層印刷配線板及半導體裝置
KR20170104470A (ko) 열경화성 수지 조성물, 층간 절연용 수지 필름, 복합 필름, 프린트 배선판 및 그의 제조 방법
JP6897008B2 (ja) 層間絶縁層用熱硬化性樹脂組成物、層間絶縁層用樹脂フィルム、多層樹脂フィルム、多層プリント配線板及びその製造方法
TW201518390A (zh) 樹脂組成物
JP6420526B2 (ja) 多層プリント配線板用の接着フィルム
JP6808945B2 (ja) 多層プリント配線板用の接着フィルム
KR101314382B1 (ko) 프린트 배선판용 수지 조성물
JP2005272722A (ja) 熱硬化性樹脂組成物、樹脂フィルムおよび製品
JP2013234328A (ja) エポキシ樹脂組成物
CN108699408B (zh) 多层印刷线路板用的粘接膜
CN109072018B (zh) 多层印刷线路板用的粘接膜
JP6808944B2 (ja) 多層プリント配線板用の接着フィルム
JP6808943B2 (ja) 多層プリント配線板用の接着フィルム
JP6724408B2 (ja) 多層プリント配線板用の接着フィルム
KR102704851B1 (ko) 다층 프린트 배선판용의 접착 필름
JP7138398B2 (ja) 層間絶縁用樹脂フィルム、接着補助層付き層間絶縁用樹脂フィルム及びプリント配線板
WO2017183721A1 (ja) 多層プリント配線板用の接着フィルム
JP2017193690A (ja) 多層プリント配線板用の接着フィルム
WO2019216247A1 (ja) 支持体付き層間絶縁層用樹脂フィルム、多層プリント配線板及び多層プリント配線板の製造方法
JP2017160384A (ja) 多層プリント配線板用の接着フィルム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201123

R151 Written notification of patent or utility model registration

Ref document number: 6808943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350