WO2017183721A1 - 多層プリント配線板用の接着フィルム - Google Patents

多層プリント配線板用の接着フィルム Download PDF

Info

Publication number
WO2017183721A1
WO2017183721A1 PCT/JP2017/016095 JP2017016095W WO2017183721A1 WO 2017183721 A1 WO2017183721 A1 WO 2017183721A1 JP 2017016095 W JP2017016095 W JP 2017016095W WO 2017183721 A1 WO2017183721 A1 WO 2017183721A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
group
mass
film
resin composition
Prior art date
Application number
PCT/JP2017/016095
Other languages
English (en)
French (fr)
Inventor
雅晴 松浦
郁夫 菅原
喬之 鈴川
祐貴 手塚
廣幸 横島
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2018513231A priority Critical patent/JPWO2017183721A1/ja
Publication of WO2017183721A1 publication Critical patent/WO2017183721A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J161/00Adhesives based on condensation polymers of aldehydes or ketones; Adhesives based on derivatives of such polymers
    • C09J161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09J161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to an adhesive film for a multilayer printed wiring board.
  • multilayer printed wiring boards used for electronic devices, communication devices, and the like have been increasingly demanded not only for miniaturization, weight reduction, and high wiring density, but also for high processing speed. Accordingly, as a method for manufacturing a multilayer printed wiring board, a build-up method manufacturing technique in which interlayer insulating layers are alternately stacked on a wiring layer of a circuit board has attracted attention.
  • the interlayer insulating layer and the wiring layer are manufactured by a resin composition for forming the interlayer insulating layer (hereinafter also referred to as “resin composition for interlayer insulating layer”), a wiring layer, and the like.
  • the copper foil for forming the film is pressed for a long time at a high temperature using a pressing device to thermally cure the resin composition for the interlayer insulating layer, and after obtaining an interlayer insulating layer having a copper foil, it is necessary
  • a so-called “subtractive method” in which via holes for interlayer connection are formed using a drill method, a laser method, etc.
  • the interlayer insulating layer resin composition and the copper foil are quickly used at a high temperature using a vacuum laminator.
  • the interlayer insulating layer resin composition is thermally cured at a high temperature using a dryer, etc., and via holes for interlayer connection are formed using a drill method, a laser method, etc. as necessary, and a plating method Therefore, a so-called “additive method” in which a wiring layer is formed in a necessary portion has attracted attention.
  • the resin composition for an interlayer insulating layer used in the build-up method includes an aromatic epoxy resin and a curing agent having active hydrogen for the epoxy resin (for example, a phenolic curing agent, an amine curing agent, a carboxylic acid type).
  • a curing agent having active hydrogen for the epoxy resin for example, a phenolic curing agent, an amine curing agent, a carboxylic acid type.
  • a combination of a curing agent and the like has been mainly used. Cured products obtained by curing with these curing agents are excellent in balance of physical properties, but water absorption is achieved by the generation of highly polar hydroxy groups due to the reaction between epoxy groups and active hydrogen of the curing agents.
  • the electrical characteristics such as increase in the dielectric constant, dielectric constant, and dielectric loss tangent are reduced.
  • curing agents were used, the problem that the storage stability of the resin composition was impaired had arisen.
  • a cyanate resin having a thermosetting cyanato group gives a cured product having excellent electric characteristics.
  • the reaction in which the cyanato group forms an S-triazine ring by thermal curing requires curing for a relatively long time at a high temperature of, for example, 120 ° C. for 120 minutes or more. It was unsuitable as a resin composition for interlayer insulation layers for printed wiring boards.
  • a method for lowering the curing temperature of the cyanate resin a method in which a cyanate resin and an epoxy resin are used in combination and cured using a curing catalyst is known (see, for example, Patent Documents 1 and 2).
  • the build-up layer is required to have a low thermal expansion coefficient (low CTE) due to demands for processing dimensional stability and reduction of warpage after semiconductor mounting, and efforts are being made to reduce the CTE.
  • low CTE thermal expansion coefficient
  • many build-up layers have a low CTE by increasing the amount of silica filler (for example, 40 mass% or more in the build-up layer is a silica filler).
  • the silica filler When the silica filler is increased in order to reduce the CTE of the build-up layer, it tends to be difficult to bury the unevenness of the wiring pattern of the inner layer circuit by the build-up material. In addition, it is required to embed an inner layer circuit such as a through hole so that unevenness is reduced by a build-up material. If the silica filler is highly filled in order to reduce the CTE of the build-up material, it tends to be difficult to satisfy these requirements.
  • the first invention was made to solve such a problem, and an object of the invention is to provide an adhesive film for a multilayer printed wiring board that is excellent in unevenness embedding even when the silica filler is highly filled. To do.
  • the curing temperature can be reduced, while the storage stability as a resin composition tends to decrease.
  • the storage stability as a resin composition tends to decrease.
  • the resin composition is stored or used as a resin film for an interlayer insulating layer, there may be a problem in handling properties such as cracking of the film.
  • the inorganic filler is highly filled for the purpose of lowering the CTE and improving the electrical properties, the film is more likely to be cracked. Therefore, the storage stability and handling properties as a resin film for an interlayer insulating layer are improved. Improvement is desired.
  • the second invention has been made to solve such a problem, and an interlayer insulating layer having excellent electrical characteristics and heat resistance is obtained, and the resin for interlayer insulating layers is excellent in storage stability and handleability. It is an object to provide a film, a multilayer resin film using the resin film for an interlayer insulating layer, and a multilayer printed wiring board.
  • the inventors of the present invention have a resin composition containing a specific novolac-type phenolic resin, a specific epoxy resin, and a specific inorganic filler.
  • the inventors have found that the first problem can be solved by using an object, and have completed the present invention. That is, the first invention provides the following adhesive film.
  • the second invention provides the following (1) to (18).
  • thermosetting resin composition (2) The above (1), wherein the content of the (D) monofunctional phenol compound in the thermosetting resin composition is 0.5 to 35 parts by mass with respect to 100 parts by mass of (B) cyanate resin.
  • the resin film for interlayer insulation layers as described in 2.
  • thermosetting resin composition further contains (E) a phenoxy resin.
  • thermosetting resin composition The content of (E) phenoxy resin in the thermosetting resin composition is 0.2 to 10 parts by mass with respect to 100 parts by mass of the solid content of the thermosetting resin composition.
  • the resin film for interlayer insulation layers as described in (4) or (5).
  • the equivalent ratio (active ester group / epoxy group) of the active ester group derived from (F) active ester curing agent and the epoxy group derived from (A) epoxy resin in the thermosetting resin composition is 0.
  • the resin film for an interlayer insulating layer according to the above (7) which is 1 to 0.7.
  • a multilayer resin film comprising a resin composition layer for an interlayer insulating layer comprising the resin film for an interlayer insulating layer as described in any one of (1) to (8) above, and an adhesion auxiliary layer.
  • the multilayer resin film according to (10), wherein the resin composition for an adhesion auxiliary layer contains (H) a cyanate resin.
  • the multilayer resin film according to the above (10) or (11), wherein the resin composition for an adhesion auxiliary layer further contains (J) an epoxy resin.
  • the resin composition for an adhesion auxiliary layer further contains at least one selected from the group consisting of (K) a polyamide resin, a polyimide resin, and a polybenzoxazole resin.
  • the resin composition for an adhesion auxiliary layer further includes (L) an inorganic filler having a specific surface area of 20 to 500 m 2 / g, according to any one of the above (10) to (14). Multilayer resin film.
  • the content of the inorganic filler having a specific surface area of 20 to 500 m 2 / g is 3 to 40 parts by mass with respect to 100 parts by mass of the solid content of the resin composition for an adhesion auxiliary layer.
  • the first invention it is possible to provide an adhesive film for a multilayer printed wiring board that is excellent in unevenness embedding even when the silica filler is highly filled.
  • an interlayer insulating layer having excellent electrical characteristics and heat resistance is obtained, and the interlayer insulating layer resin film and the interlayer insulating layer resin film are excellent in storage stability and handleability.
  • the used multilayer resin film and multilayer printed wiring board can be provided.
  • the adhesive film for a multilayer printed wiring board of the present invention has a dispersion ratio (Mw / Mn) of (a) weight average molecular weight (Mw) and number average molecular weight (Mn) of 1.05.
  • Mw / Mn weight average molecular weight
  • Mn number average molecular weight
  • the inorganic filler in the resin composition layer has an average particle size of 0.1 ⁇ m or more, and (c) the content of the inorganic filler is 20 to 95 of the resin solid content. It is an adhesive film for multilayer printed wiring boards which is mass%.
  • the resin composition for an adhesive film contains (a) a novolac type phenol resin, (A) an epoxy resin, and (c) an inorganic filler.
  • a novolac type phenol resin (A) an epoxy resin, and (c) an inorganic filler.
  • the novolak-type phenol resin is used as a curing agent for an epoxy resin, and the dispersion ratio (Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) is 1.05 to 1 .8 range.
  • Such a (a) novolac type phenol resin can be produced by, for example, the production method described in Japanese Patent No. 4283773. That is, a phenol compound and an aldehyde compound as raw materials, a phosphoric acid compound as an acid catalyst, a non-reactive oxygen-containing organic solvent as a reaction auxiliary solvent, and the two-layer separation state formed from these are, for example, mechanically stirred, Stir and mix by sonic waves, etc. to advance the reaction between the phenolic compound and the aldehyde compound as a cloudy heterogeneous reaction system (phase separation reaction) in which two layers (organic phase and aqueous phase) intermingle, and condensate (resin ) Can be synthesized.
  • phase separation reaction in which two layers (organic phase and aqueous phase) intermingle, and condensate (resin ) Can be synthesized.
  • a water-insoluble organic solvent for example, methyl ethyl ketone, methyl isobutyl ketone, etc.
  • a water-insoluble organic solvent for example, methyl ethyl ketone, methyl isobutyl ketone, etc.
  • the organic phase organic solvent phase
  • A) Novolac by separating the aqueous phase (phosphoric acid aqueous solution phase) and removing the aqueous phase to recover, while the organic phase is washed with hot water and / or neutralized and then the organic solvent is recovered by distillation.
  • Type phenolic resin can be produced.
  • Examples of the phenol compound used as a raw material include phenol, orthocresol, metacresol, paracresol, xylenol, bisphenol compound, ortho substitution having a hydrocarbon group having 3 or more carbon atoms, preferably 3 to 10 carbon atoms in the ortho position.
  • Examples thereof include phenol compounds and para-substituted phenol compounds having a hydrocarbon group having 3 or more carbon atoms, preferably 3 to 18 carbon atoms, in the para position. You may use these individually or in mixture of 2 or more types.
  • examples of the bisphenol compound include bisphenol A, bisphenol F, bis (2-methylphenol) A, bis (2-methylphenol) F, bisphenol S, bisphenol E, and bisphenol Z.
  • Examples of the ortho-substituted phenol compound include 2-propylphenol, 2-isopropylphenol, 2-sec-butylphenol, 2-tert-butylphenol, 2-phenylphenol, 2-cyclohexylphenol, 2-nonylphenol, 2-naphthylphenol and the like. Is mentioned.
  • Examples of the para-substituted phenol compound include 4-propylphenol, 4-isopropylphenol, 4-sec-butylphenol, 4-tert-butylphenol, 4-phenylphenol, 4-cyclohexylphenol, 4-nonylphenol, 4-naphthylphenol, Examples include 4-dodecylphenol and 4-octadecylphenol.
  • aldehyde compound used as a raw material examples include formaldehyde, formalin, paraformaldehyde, trioxane, acetaldehyde, paraaldehyde, propionaldehyde, and the like.
  • paraformaldehyde is preferable from the viewpoint of reaction rate. You may use these individually or in mixture of 2 or more types.
  • the blending molar ratio (F / P) of the aldehyde compound (F) and the phenol compound (P) is preferably 0.33 or more, more preferably 0.40 to 1.0, and still more preferably 0.50 to 0.00. 90. By setting the blending molar ratio (F / P) within the above range, an excellent yield can be obtained.
  • the phosphoric acid compound used as the acid catalyst plays an important role in forming a phase separation reaction field with the phenol compound in the presence of water.
  • a phosphoric acid compound aqueous solution types, such as 89 mass% phosphoric acid and 75 mass% phosphoric acid, can be used, for example.
  • the content of the phosphoric acid compound is, for example, 5 parts by mass or more, preferably 25 parts by mass or more, more preferably 50 to 100 parts by mass with respect to 100 parts by mass of the phenol compound. .
  • 70 mass parts or more of phosphoric acid compounds it is preferable to ensure safety by suppressing heat generation at the initial stage of the reaction by splitting into the reaction system.
  • the non-reactive oxygen-containing organic solvent as a reaction auxiliary solvent plays a very important role in promoting the phase separation reaction.
  • the reaction auxiliary solvent it is preferable to use at least one compound selected from the group consisting of alcohol compounds, polyhydric alcohol ethers, cyclic ether compounds, polyhydric alcohol esters, ketone compounds, and sulfoxide compounds.
  • alcohol compounds include monohydric alcohols such as methanol, ethanol, and propanol, butanediol, pentanediol, hexanediol, ethylene glycol, propylene glycol, trimethylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, and tripropylene glycol.
  • dihydric alcohols such as polyethylene glycol and trihydric alcohols such as glycerin.
  • polyhydric alcohol ethers include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol dimethyl ether, ethylene glycol ethyl methyl ether, and ethylene glycol.
  • a glycol ether etc. are mentioned.
  • the cyclic ether compound include 1,3-dioxane and 1,4-dioxane
  • examples of the polyhydric alcohol ester include a glycol ester compound such as ethylene glycol acetate.
  • Examples of the ketone compound include acetone, methyl ethyl ketone (hereinafter also referred to as “MEK”), and methyl isobutyl ketone.
  • Examples of the sulfoxide compound include dimethyl sulfoxide, diethyl sulfoxide, and the like. Among these, ethylene glycol monomethyl ether, polyethylene glycol, and 1,4-dioxane are preferable.
  • the reaction auxiliary solvent is not limited to the above examples, and may be a solid as long as it has the above-mentioned characteristics and exhibits a liquid state at the time of reaction, each being used alone or in combination of two or more. May be.
  • the blending amount of the reaction auxiliary solvent is not particularly limited, but is, for example, 5 parts by mass or more, preferably 10 to 200 parts by mass with respect to 100 parts by mass of the phenol compound.
  • the phase separation reaction can be promoted, the reaction time can be shortened, and the yield can be improved.
  • the surfactant include soap, alpha olefin sulfonate, alkylbenzene sulfonic acid and its salt, alkyl sulfate ester salt, alkyl ether sulfate ester salt, phenyl ether ester salt, polyoxyethylene alkyl ether sulfate ester salt, ether sulfone.
  • Anionic surfactants such as acid salts and ether carboxylates; polyoxyethylene alkylphenyl ethers, polyoxyalkylene alkyl ethers, polyoxyethylene styrenated phenol ethers, polyoxyethylene alkylamino ethers, polyethylene glycol aliphatic esters, fats Monoglyceride, sorbitan aliphatic ester, pentaerythritol aliphatic ester, polyoxyethylene polypropylene glycol, aliphatic alkylol ama
  • Nonionic surfactants such as de; monoalkyl ammonium chloride, dialkyl ammonium chloride, and cationic surfactants such as amine salt compounds.
  • the blending amount of the surfactant is not particularly limited, but is, for example, 0.5 parts by mass or more, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the phenol compound.
  • the amount of water in the reaction system affects the phase separation effect and production efficiency, but is generally 40% by mass or less on a mass basis. By making the amount of water 40% by mass or less, the production efficiency can be kept good.
  • the reaction temperature between the phenol compound and the aldehyde compound varies depending on the type of phenol compound, reaction conditions, etc., and is not particularly limited, but is generally 40 ° C. or higher, preferably 80 ° C. to reflux temperature, more preferably reflux temperature. . When the reaction temperature is 40 ° C. or higher, a sufficient reaction rate can be obtained.
  • the reaction time varies depending on the reaction temperature, the amount of phosphoric acid, the water content in the reaction system, etc., but is generally about 1 to 10 hours.
  • the reaction environment is usually normal pressure, but from the viewpoint of maintaining the heterogeneous reaction that is a feature of the present invention, the reaction may be performed under pressure or under reduced pressure.
  • the reaction rate can be increased, and a low boiling point solvent such as methanol can be used as a reaction auxiliary solvent.
  • the following (a) novolac type phenol resin can be obtained depending on the range of the blending molar ratio (F / P) of the aldehyde compound (F) and the phenol compound (P).
  • the content of the monomer component of the phenol compound is, for example, 3 by gel permeation chromatography (GPC) area method.
  • the content of the dimer component of the phenolic compound is, for example, 5 to 95% by mass, preferably 10 to 95% by mass, and the weight average molecular weight (Mw by GPC measurement) is 5% by mass or less, preferably 1% by mass or less.
  • Mn number average molecular weight
  • (A) As the novolac-type phenolic resin commercially available products can be used.
  • PAPS-PN2 trade name, manufactured by Asahi Organic Materials Co., Ltd.
  • PAPS-PN3 Asahi Organic Materials Co., Ltd. Company name, product name
  • the resin composition for an adhesive film may be used in combination with (a) an epoxy resin curing agent other than the novolak type phenol resin (hereinafter also simply referred to as “epoxy resin curing agent”) as long as the effects of the present invention are not impaired.
  • epoxy resin curing agent As an epoxy resin hardening
  • phenol resin compound examples include (a) novolak type phenol resins other than novolak type phenol resins, resol type phenol resins, and the like, and examples of acid anhydride compounds include phthalic anhydride, benzophenone tetracarboxylic dianhydride, and the like. Products, methyl hymic anhydride, and the like.
  • acid anhydride compounds include phthalic anhydride, benzophenone tetracarboxylic dianhydride, and the like. Products, methyl hymic anhydride, and the like.
  • the amine compound examples include dicyandiamide, diaminodiphenylmethane, and guanylurea.
  • novolac type phenol resins other than novolac type phenol resins are preferable. Further, from the viewpoint of improving the peel strength of the metal foil and the peel strength of the electroless plating after chemical roughening, a triazine ring-containing novolak type phenol resin and dicyandiamide are preferable.
  • a novolak type phenolic resin other than the novolak type phenolic resin may be a commercially available product. Cresol novolak resins such as those manufactured by the company and trade names).
  • triazine ring-containing novolac type phenol resin for example, “Phenolite LA-1356” (trade name, manufactured by DIC Corporation), “Phenolite LA7050 series” (trade name, manufactured by DIC Corporation), etc.
  • Examples of commercially available products of triazine-containing cresol novolak resin include “Phenolite LA-3018” (trade name, manufactured by DIC Corporation).
  • the epoxy resin is an epoxy resin represented by the following general formula (I).
  • (A) As an epoxy resin you may use a commercial item.
  • examples of commercially available (A) epoxy resins include “NC-3000” (epoxy resin having p of 1.7 in formula (1)) and “NC-3000-H” (p in formula (1) 2.8 epoxy resin) (all manufactured by Nippon Kayaku Co., Ltd., trade name) and the like.
  • the resin composition for an adhesive film may contain (A) an epoxy resin other than the epoxy resin, a polymer type epoxy resin such as a phenoxy resin, and the like as long as the effects of the present invention are not impaired.
  • the resin composition for adhesive films may contain a curing accelerator from the viewpoint of accelerating the reaction between (a) the novolac type phenol resin and (A) the epoxy resin.
  • the curing accelerator include imidazole compounds such as 2-phenylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate; organophosphorus compounds such as triphenylphosphine; phosphonium borate Onium salts; amines such as 1,8-diazabicycloundecene; 3- (3,4-dichlorophenyl) -1,1-dimethylurea and the like. You may use these individually or in mixture of 2 or more types.
  • the resin composition for adhesive films includes (c) an inorganic filler having an average particle size of 0.1 ⁇ m or more.
  • the inorganic filler include silica, alumina, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, aluminum borate, and titanium. Examples thereof include barium acid, strontium titanate, calcium titanate, bismuth titanate, titanium oxide, barium zirconate, and calcium zirconate. You may use these individually or in mixture of 2 or more types.
  • the shape of the inorganic filler is not particularly limited, but is preferably a spherical shape from the viewpoint of facilitating embedding of the through holes and circuit patterns formed in the inner layer circuit.
  • the average particle diameter of the inorganic filler is 0.1 ⁇ m or more, preferably 0.2 ⁇ m or more, and more preferably 0.3 ⁇ m or more from the viewpoint of obtaining excellent embedding properties.
  • the content of the inorganic filler having an average particle size of less than 0.1 ⁇ m is preferably 3 vol% or less, more preferably 1 vol% or less in terms of solid content from the viewpoint of embedding properties, and an inorganic having an average particle size of less than 0.1 ⁇ m. More preferably, no filler is contained.
  • an inorganic filler may be used individually by 1 type, and the thing of a different average particle diameter may be mixed and used for it.
  • (C) Commercially available products may be used as the inorganic filler.
  • examples of the commercially available (c) inorganic filler include, for example, “SO-C1” (average particle size: 0.25 ⁇ m), “SO-C2” (average particle size: 0.5 ⁇ m), which is spherical silica, “SO-C3” (average particle size: 0.9 ⁇ m), “SO-C5” (average particle size: 1.6 ⁇ m), “SO-C6” (average particle size: 2.2 ⁇ m) (all manufactured by Admatechs Co., Ltd.) ) And the like.
  • the inorganic filler may be subjected to a surface treatment.
  • a silane coupling agent treatment may be applied as the surface treatment.
  • the silane coupling agent include amino silane coupling agents, vinyl silane coupling agents, and epoxy silane coupling agents. Among these, silica subjected to surface treatment with an aminosilane coupling agent is preferable.
  • the amount of the inorganic filler (c) in the adhesive film resin composition is defined as follows. First, the resin composition that forms a layer on the support film is dried at 200 ° C. for 30 minutes, the solvent contained in the resin composition is removed, and the weight (solid content) after the solvent is removed is measured. . The amount of (c) inorganic filler contained in the solid content is defined as the amount of (c) inorganic filler in the resin solid content. In addition, as a method for measuring (c) the inorganic filler, when the amount of the solid content of the (c) inorganic filler to be blended is calculated in advance, the ratio in the solid content can be easily obtained.
  • (c) inorganic filler dispersion A calculation example in the case of using (c) an inorganic filler dispersed in a solvent (hereinafter also referred to as “(c) inorganic filler dispersion”) is shown below.
  • (C) The solid content of the inorganic filler (c) in the inorganic filler dispersion was 70% by mass as a result of calculation after drying at 200 ° C. for 30 minutes.
  • the total amount of the obtained resin composition was 100 g.
  • a result of drying 100 g of the resin composition at 200 ° C. for 30 minutes and measuring the weight of the solid content after drying was 60 g.
  • the amount of the inorganic filler (c) in the adhesive film resin composition is preferably as large as possible from the viewpoint of lowering the thermal expansion coefficient of the interlayer insulating layer after thermosetting, but the wiring pattern of the inner circuit board to be formed In view of embedding irregularities and through holes, there is an appropriate amount of inorganic filler.
  • the content of the (c) inorganic filler is 20 to 95% by mass, preferably 30 to 90% by mass, and more preferably 50 to 90% by mass in the resin solid content.
  • the content of the inorganic filler is 20% by mass or more, the thermal expansion coefficient can be lowered, and when it is 95% by mass or less, the embedding property can be kept good.
  • the resin composition for adhesive films may further contain a flame retardant.
  • a flame retardant for example, an inorganic flame retardant, a resin flame retardant, etc. are mentioned.
  • the inorganic flame retardant include aluminum hydroxide and magnesium hydroxide exemplified as (c) inorganic filler.
  • the resin flame retardant may be a halogen-based resin or a non-halogen-based resin, but it is preferable to use a non-halogen-based resin in consideration of environmental burden.
  • the resin flame retardant may be blended as a filler or may have a functional group that reacts with the thermosetting resin. A commercially available product can be used as the resin flame retardant.
  • Examples of commercially available resin flame retardants to be blended as fillers include aromatic phosphate ester flame retardant “PX-200” (trade name, manufactured by Daihachi Chemical Industry Co., Ltd.) and polyphosphate compounds. “Exolit OP 930” (trade name, manufactured by Clariant Japan Co., Ltd.) and the like.
  • Examples of commercially available resin flame retardants having functional groups that react with thermosetting resins include epoxy phosphorus-containing flame retardants and phenol phosphorus-containing flame retardants.
  • Examples of the epoxy phosphorus-containing flame retardant include “FX-305” (trade name, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
  • Examples of the phenol phosphorus-containing flame retardant include “HCA-HQ”. (Trade name) manufactured by Sanko Co., Ltd., “XZ92741” (trade name, manufactured by Dow Chemical Co., Ltd.), and the like. You may use these individually or in mixture of 2 or more types.
  • the resin composition for adhesive films contains a solvent from a viewpoint of performing layer formation efficiently.
  • the solvent include ketone compounds such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; acetate compounds such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate; cellosolve, methyl carbitol, Examples thereof include carbitol compounds such as butyl carbitol; aromatic hydrocarbon compounds such as toluene and xylene; dimethylformamide, dimethylacetamide, N-methylpyrrolidone, diethylene glycol dimethyl ether, and propylene glycol monomethyl ether. You may use these individually or in mixture of 2 or more types.
  • the amount of residual solvent in the adhesive film of the present invention varies depending on the material to be handled, but is preferably 1 to 20% by mass, more preferably 2 to 15% by mass, and further preferably 2 to 10% by mass.
  • the amount of the residual solvent is 1% by mass or more, the handleability of the adhesive film is improved, and for example, occurrence of powder falling or cracking when cutting with a cutter can be suppressed.
  • it is 20% by mass or less, stickiness is suppressed and the film can be easily wound and unwound.
  • a protective film is often provided on the varnish-coated surface of the adhesive film after drying, but if the residual solvent amount is 20% by mass or less, the protective film and the adhesive film of the present invention Separation between them becomes easy. Further, since the residual solvent is removed by drying and thermosetting in the process of producing the multilayer printed wiring board, it is preferable that the residual solvent is small from the viewpoint of environmental load, and the change in film thickness before and after drying and thermosetting is reduced. In order to achieve this, it is preferable that the amount is small. In the production of the adhesive film of the present invention, it is preferable to determine the drying conditions so as to achieve a target residual solvent amount. Since the drying conditions vary depending on the type of solvent, the amount of the solvent, and the like contained in the resin composition, it is preferable to determine the drying conditions after performing the conditions in advance by each coating apparatus.
  • the adhesive film of this invention may contain the other component in the range which does not inhibit the effect of this invention.
  • other components include thickeners such as olben and benton; UV absorbers such as thiazole and triazole; adhesion imparting agents such as silane coupling agents; phthalocyanine blue, phthalocyanine green, iodin green, and disazo yellow. And colorants such as carbon black; and optional resin components other than those described above.
  • the support film in the present invention is a support for producing the adhesive film of the present invention, and is usually finally peeled or removed when producing a multilayer printed wiring board. .
  • an organic resin film for example, an organic resin film, metal foil, a release paper etc. are mentioned.
  • the material for the organic resin film include polyolefins such as polyethylene and polyvinyl chloride; polyesters such as polyethylene terephthalate (hereinafter also referred to as “PET”) and polyethylene naphthalate; polycarbonates and polyimides.
  • PET is preferable from the viewpoints of price and handleability.
  • the metal foil include copper foil and aluminum foil. When copper foil is used for the support, the copper foil can be used as it is as a conductor layer to form a circuit. In this case, rolled copper, electrolytic copper foil, or the like can be used as the copper foil.
  • the thickness of the copper foil is not particularly limited, but for example, a copper foil having a thickness of 2 to 36 ⁇ m can be used. When using thin copper foil, you may use copper foil with a carrier from a viewpoint of improving workability
  • These support films and a protective film described later may be subjected to surface treatment such as mold release treatment, plasma treatment, corona treatment and the like. Examples of the release treatment include a release treatment with a silicone resin release agent, an alkyd resin release agent, a fluororesin release agent, and the like.
  • the thickness of the support film is not particularly limited, but is preferably 10 to 120 ⁇ m, more preferably 15 to 80 ⁇ m, and still more preferably 15 to 70 ⁇ m from the viewpoint of handleability.
  • the support film need not be a single component as described above, and may be formed of a plurality of layers (two or more layers) of different materials.
  • the support film has a two-layer structure
  • the support film mentioned above is used, and as the second layer, an epoxy resin, an epoxy resin curing agent, The thing which has the layer formed from a filler etc. is mentioned.
  • the materials listed in the materials used for the adhesive film of the present invention can also be used.
  • a layer formed on the first support film (may be a second layer or a plurality of layers of two or more layers) is a layer prepared with the intention of imparting a function, for example, It can be used for the purpose of improving adhesiveness with plated copper.
  • limit especially as a formation method of a 2nd layer For example, the method of apply
  • the thickness of the first support film is preferably 10 to 100 ⁇ m, more preferably 10 to 60 ⁇ m, and even more preferably 13 to 50 ⁇ m.
  • the thickness of the layer formed on the first support film is preferably 1 to 20 ⁇ m. When it is 1 ⁇ m or more, the intended function can be achieved, and when it is 20 ⁇ m or less, the economical efficiency as a support film is excellent.
  • the layer (which may be two or more layers) to be left on the multilayer printed wiring board side together with the adhesive film of the present invention is peeled off. Or you may isolate
  • the adhesive film of the present invention may have a protective film.
  • a protective film is provided in the surface on the opposite side to the surface in which the support body of an adhesive film is provided, and is used in order to prevent adhesion of a foreign material etc. to an adhesive film, and a crack.
  • the protective film is peeled off before the adhesive film of the present invention is laminated on a circuit board or the like by laminating or hot pressing.
  • the material similar to a support body film can be used.
  • the thickness of the protective film is not particularly limited, but for example, a film having a thickness of 1 to 40 ⁇ m can be used.
  • the adhesive film of this invention can be manufactured by apply
  • the obtained adhesive film can be rolled up and stored and stored. More specifically, for example, after each resin component is dissolved in the organic solvent, (c) an inorganic filler or the like is mixed to prepare a resin composition for an adhesive film, and the varnish is placed on the support film. It can be produced by coating, drying the organic solvent by heating, blowing hot air, or the like to form a resin composition layer on the support film.
  • the resin composition layer formed on the support film may be in an uncured state obtained by drying or in a semi-cured (B-stage) state. Good.
  • the method for coating the varnish on the support film is not particularly limited.
  • the coating method may be performed using a known coating apparatus such as a comma coater, a bar coater, a kiss coater, a roll coater, a gravure coater, or a die coater. Can be applied. What is necessary is just to select a coating apparatus suitably according to the target film thickness.
  • a resin film for an interlayer insulating layer according to the second invention is a thermosetting resin composition (A) containing an epoxy resin, (B) a cyanate resin, (C) an inorganic filler, and (D) a monofunctional phenol compound ( Hereinafter, it is also referred to as “resin composition for interlayer insulation layer”), and is a resin film for interlayer insulation layer, wherein (C) the content of the inorganic filler is the solid content of the thermosetting resin composition
  • the resin film for an interlayer insulating layer is 50 to 85 parts by mass with respect to 100 parts by mass.
  • the “solid content” means a non-volatile content excluding a volatile substance such as a solvent, and indicates a component that does not evaporate when the resin composition is dried, and is liquid at room temperature.
  • a volatile substance such as a solvent
  • room temperature indicates 25 ° C.
  • the resin film for interlayer insulation layers may generally be called an interlayer insulation film.
  • the resin composition for an interlayer insulation layer used for forming the resin film for an interlayer insulation layer according to the second invention comprises (A) an epoxy resin, (B) a cyanate resin, (C) an inorganic filler, and (D) a monofunctional Contains phenolic compounds.
  • A an epoxy resin
  • B a cyanate resin
  • C an inorganic filler
  • D a monofunctional Contains phenolic compounds.
  • Epoxy resin (A) Although it does not specifically limit as an epoxy resin, for example, the epoxy resin which has a 2 or more epoxy group in 1 molecule is mentioned preferably.
  • the epoxy resin (A) include a glycidyl ether type epoxy resin, a glycidyl amine type epoxy resin, a glycidyl ester type epoxy resin, and the like. Among these, a glycidyl ether type epoxy resin is preferable.
  • Epoxy resins are also classified according to the difference in main skeleton, and in each of the above-mentioned types of epoxy resins, bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, etc.
  • Phenol novolac type epoxy resins alkylphenol novolak type epoxy resins, cresol novolak type epoxy resins, naphthol alkylphenol copolymer novolak type epoxy resins, bisphenol A novolak type epoxy resins, bisphenol F novolak type epoxy resins, aralkyl novolak type epoxy resins and the like Type epoxy resin; stilbene type epoxy resin; triazine skeleton-containing epoxy resin; fluorene skeleton-containing epoxy resin; naphthalene type epoxy Is classified into dicyclopentadiene type alicyclic epoxy resin epoxy resin; resin; triphenylmethane type epoxy resins; biphenyl type epoxy resin; xylylene type epoxy resin.
  • aralkyl novolak type epoxy resin examples include an aralkyl cresol copolymer novolak type epoxy resin having a naphthol skeleton and an aralkyl novolak type epoxy resin having a biphenyl skeleton.
  • An epoxy resin may be used individually by 1 type, and may use 2 or more types together. Among these, from the viewpoints of storage stability and handleability of the interlayer insulating layer resin film, and electrical properties and heat resistance of the resulting interlayer insulating layer, a novolak type epoxy resin is preferable, and a cresol novolak type epoxy resin and a bisphenol A novolak are preferable. A type epoxy resin is more preferable.
  • cresol novolac type epoxy resin and a bisphenol A novolac type epoxy resin are used in combination.
  • the mass ratio indicates the storage stability and handleability of the resin film for the interlayer insulating layer.
  • 40/60 to 90/10 is preferable, 50/50 to 80/20 is more preferable, and 60/40 to 70/30 is further preferable.
  • the epoxy resin may contain an epoxy resin that is liquid at room temperature from the viewpoint of improving the handleability of the resin film for an interlayer insulating layer. Although it does not restrict
  • the (A) epoxy resin contains a liquid epoxy resin, the content thereof is preferably 2 to 30% by mass with respect to the (A) epoxy resin, from the viewpoint of improving the handleability of the resin film for an interlayer insulating layer, More preferably, it is 4 to 20% by mass, and further preferably 6 to 15% by mass.
  • the epoxy equivalent of the epoxy resin is preferably 120 to 500 g / eq, from the viewpoints of storage stability and handleability of the resin film for an interlayer insulating layer, and electrical characteristics and heat resistance of the interlayer insulating layer to be obtained. 350 g / eq is more preferable, and 180 to 250 g / eq is more preferable.
  • the epoxy equivalent is the mass (g / eq) of the resin per epoxy group, and can be measured according to the method defined in JISK 7236 (2001).
  • the content of the epoxy resin (A) in the resin composition for an interlayer insulating layer is determined from the viewpoints of storage stability and handleability of the resin film for the interlayer insulating layer, and electrical characteristics and heat resistance of the resulting interlayer insulating layer.
  • the amount is preferably 5 to 50 parts by mass, more preferably 10 to 35 parts by mass, and still more preferably 15 to 25 parts by mass with respect to 100 parts by mass of the solid content of the resin composition for an insulating layer.
  • the cyanate resin includes 2,2-bis (4-cyanatophenyl) propane [bisphenol A type cyanate resin], bis (4-cyanatophenyl) ethane [bisphenol E type cyanate resin], bis (3 5-dimethyl-4-cyanatophenyl) methane [tetramethylbisphenol F type cyanate resin], 2,2-bis (4-cyanatophenyl) -1,1,1,3,3,3-hexafluoropropane [ Bisphenol type cyanate resin such as hexafluorobisphenol A type cyanate resin]; dicyclopentadiene type cyanate resin such as cyanate ester compound of phenol-added dicyclopentadiene polymer; phenol novolac type cyanate ester compound, cresol novolak type cyanate
  • Cyanate resin may be used individually by 1 type, and may use 2 or more types together.
  • bisphenol type cyanate resin, novolak type cyanate resin, and these prepolymers are used from the viewpoints of storage stability and handleability of the resin film for the interlayer insulating layer, and electrical characteristics and heat resistance of the resulting interlayer insulating layer.
  • a dicyanate resin represented by the following general formula (1) is preferable.
  • R B1 is an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, a sulfur atom, the following general formula (1-1) or the following formula ( 1-2) represents a divalent group represented by 1-2), and R B2 and R B3 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R B4 each independently represents an alkylene group having 1 to 5 carbon atoms or an alkylidene group having 2 to 5 carbon atoms
  • the alkylene group having 1 to 5 carbon atoms represented by R B1 includes a methylene group, an ethylene group, a 1,2-dimethylene group, a 1,3-trimethylene group, a 1,4-tetramethylene group, Examples include 1,5-pentamethylene group.
  • examples of the alkylidene group having 2 to 5 carbon atoms represented by R B1 include an ethylidene group, a propylidene group, an isopropylidene group, a butylidene group, an isobutylidene group, a pentylidene group, and an isopentylidene group.
  • Examples of the halogen atom for substituting the alkylene group having 1 to 5 carbon atoms include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the alkylene group having 1 to 5 carbon atoms and the alkylidene group having 2 to 5 carbon atoms represented by R B4 are described in the same manner as in R B1 in General Formula (1).
  • R B1 a methylene group and a propylidene group are preferable, and a propylidene group is more preferable.
  • the alkyl group having 1 to 4 carbon atoms represented by R B2 and R B3 is methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl. Groups and the like.
  • R B2 and R B3 are preferably hydrogen atoms.
  • the cyanate prepolymer refers to a polymer in which a cyanate resin forms a triazine ring by a cyclization reaction, and examples thereof include 3, 5, 7, 9, and 11 mer of cyanate ester compounds.
  • the conversion rate of the cyanate group is preferably 20 to 70% by mass, more preferably 30 to 65% by mass from the viewpoint of obtaining good solubility in an organic solvent.
  • a dicyanate compound having two cyanate groups in one molecule is considered from the viewpoints of storage stability and handleability of the resin film for the interlayer insulating layer, and electrical characteristics and heat resistance of the obtained interlayer insulating layer.
  • a prepolymer is preferable, a prepolymer of a dicyanate resin represented by the general formula (1) is more preferable, and at least a part of a bisphenol A-type cyanate resin is triazine to form a trimer. Further preferred are prepolymers represented.
  • the weight average molecular weight (Mw) of the cyanate prepolymer is preferably from 500 to 4,500, more preferably from 600 to 4,000, and even more preferably from 1,000 to 4,000, from the viewpoints of solubility in organic solvents and workability. 1,500 to 4,000 are preferred, and particularly preferred. If the weight average molecular weight of the cyanate prepolymer is 500 or more, crystallization of the cyanate prepolymer tends to be suppressed, and the solubility in an organic solvent tends to be good. If it is 4,500 or less, the viscosity increases. Is suppressed and the workability tends to be excellent.
  • the weight average molecular weight and the number average molecular weight described below in the present invention are values measured by a gel permeation chromatography (GPC) method (polystyrene conversion), and can be measured by the methods described in Examples.
  • the cyanate prepolymer may be obtained by prepolymerizing a cyanate resin in the presence of a monofunctional phenol compound (D) described later. Thereby, the unreacted cyanato group in the obtained hardened
  • a compound having a group represented by —O—C ( ⁇ NH) —O— is formed by the reaction between the cyanate resin and the (D) monofunctional phenol compound, and the iminocarbonates react with each other.
  • a monofunctional phenol compound is eliminated while a cyanate prepolymer having a triazine ring is obtained.
  • a cyanate resin and (D) a monofunctional phenol compound are mixed and dissolved in the presence of a solvent such as toluene, and maintained at 80 to 120 ° C., and if necessary, zinc naphthenate or the like.
  • the reaction accelerator can be added.
  • the monofunctional phenol compound is used as a raw material for (D) the phenolic hydroxyl group of the monofunctional phenol compound and the cyanate prepolymer.
  • the amount of the cyanate resin equivalent to the cyanate group (hydroxyl group / cyanato group) is preferably 0.01 to 0.30, more preferably 0.01 to 0.20, and more preferably 0.01 to 0. More preferred is an amount of .15.
  • the use amount of the monofunctional phenol compound is within the above range, in addition to a tendency that a dielectric loss tangent is sufficiently low particularly in a high frequency band, good moisture resistance tends to be obtained. is there.
  • (B) As cyanate resin you may use a commercial item.
  • “Primaset BADCy” (manufactured by Lonza) and “Arocy B-10” (manufactured by Huntsman) which are bisphenol A type cyanate resins, bisphenol E type Cyanate resins “Arocy L10” (manufactured by Huntsman) and “Primaset LECy” (manufactured by Lonza), and tetramethylbisphenol F type cyanate resin “Primaset METHYLCy” (Lonza) And “Primaset PT30” (manufactured by Lonza), which is a phenol novolac-type cyanate resin.
  • cyanate resins other than the above include “Arocy XU-371” (manufactured by Huntsman), “Arocy XP71787.02L” (manufactured by Huntsman), which is a cyanate resin containing a dicyclopentadiene structure. Primaset DT-4000 "(manufactured by Lonza),” Primaset DT-7000 "(manufactured by Lonza) and the like.
  • the content of the (B) cyanate resin in the resin composition for an interlayer insulating layer is determined from the viewpoints of storage stability and handleability of the resin film for the interlayer insulating layer, and electrical characteristics and heat resistance of the resulting interlayer insulating layer.
  • the amount is preferably 1 to 30 parts by mass, more preferably 2 to 22 parts by mass, and still more preferably 3 to 10 parts by mass with respect to 100 parts by mass of the solid content of the resin composition for the insulating layer.
  • the mass ratio [(A) / (B)] of (A) epoxy resin and (B) cyanate resin is the storage stability and handleability of the resin film for interlayer insulation layers,
  • 1 to 10 is preferable, 2 to 7 is more preferable, and 2.5 to 4 is more preferable.
  • the mass ratio [(A) / (B)] is 1 or more, the content of the (B) cyanate resin does not increase too much, and the increase in the curing temperature tends to be suppressed, and when it is 10 or less. The amount of unreacted epoxy groups in the obtained interlayer insulating layer tends to be reduced.
  • (C) inorganic filler As inorganic filler, silica, alumina, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, aluminum borate, barium titanate Strontium titanate, calcium titanate, bismuth titanate, titanium oxide, barium zirconate, calcium zirconate and the like.
  • silica is preferable from the viewpoints of storage stability and handleability of the resin film for an interlayer insulating layer, and electrical characteristics and heat resistance of the resulting interlayer insulating layer.
  • An inorganic filler may be used individually by 1 type, and may use 2 or more types together.
  • the volume average particle size of the inorganic filler is preferably 0.01 to 5 ⁇ m, more preferably 0.1 to 2 ⁇ m, from the viewpoint of obtaining good circuit board embedding and insulating reliability. 2 to 1 ⁇ m is more preferable.
  • the volume average particle diameter is a particle diameter at a point corresponding to a volume of 50% when a cumulative frequency distribution curve based on the particle diameter is obtained with the total volume of the particles being 100%, and the laser diffraction scattering method is used. It can be measured with a particle size distribution measuring device.
  • the shape of the inorganic filler is preferably spherical from the viewpoint of pattern embedding.
  • C A commercially available product may be used as the inorganic filler.
  • Commercially available (C) inorganic fillers include “SO—C1” (volume average particle size: 0.25 ⁇ m), “SO—C2” (volume average particle size: 0.5 ⁇ m), “SO”, which are spherical silica.
  • —C3 (volume average particle size: 0.9 ⁇ m),“ SO-C5 ”(volume average particle size: 1.6 ⁇ m),“ SO-C6 ”(volume average particle size: 2.2 ⁇ m) Admatechs).
  • the inorganic filler may be surface-treated with a silane coupling agent from the viewpoint of improving moisture resistance.
  • Silane coupling agents include aminosilane coupling agents, epoxysilane coupling agents, phenylsilane coupling agents, alkylsilane coupling agents, alkenylsilane coupling agents, mercaptosilane coupling agents, and isocyanate silanes. System coupling agents and the like. Among these, an aminosilane coupling agent is preferable from the viewpoint of storage stability of the resin composition for an interlayer insulating layer.
  • the surface treatment method using a silane coupling agent may be a dry or wet surface treatment method with respect to the inorganic filler before blending, and the surface untreated inorganic filler is blended with other components.
  • a so-called integral blend treatment method in which a silane coupling agent is added to the composition may be used.
  • the content of the inorganic filler (C) in the resin composition for an interlayer insulating layer is 100 parts by mass of the solid content of the resin composition for the interlayer insulating layer from the viewpoint of low thermal expansion, high frequency characteristics, and embedding in a wiring pattern.
  • the amount is 50 to 85 parts by mass, preferably 55 to 80 parts by mass, and more preferably 60 to 75 parts by mass.
  • (C) When the content of the inorganic filler is 50 parts by mass or more, good low thermal expansibility and high frequency characteristics tend to be obtained, and when it is 85 parts by mass or less, good embedding in a wiring pattern is possible. Tends to be obtained.
  • the resin composition for interlayer insulation layers contains (D) a monofunctional phenol compound.
  • the resin film for an interlayer insulation layer of the present invention is excellent in electrical characteristics, heat resistance, storage stability and handleability by being formed using a resin composition for an interlayer insulation layer containing (D) a monofunctional phenol compound. It will be.
  • R D1 each independently represents an alkyl group having 1 to 10 carbon atoms, and m1 represents an integer of 0 to 5)
  • R D2 and R D3 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • Ar D1 each independently represents an aryl group having 6 to 20 carbon atoms
  • m2 represents 1 represents an integer of 1 to 5.
  • R D4 each independently represents an alkylene group having 1 to 5 carbon atoms
  • Ar D2 each independently represents an aryl group having 6 to 20 carbon atoms
  • m3 represents an integer of 1 to 5 Is shown.
  • the alkyl group having 1 to 10 carbon atoms represented by R D1 includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a t-butyl group. N-pentyl group, octyl group, nonyl group and the like. Among these, an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group is more preferable.
  • m1 represents an integer of 0 to 5, preferably an integer of 1 to 4, more preferably an integer of 2 to 4.
  • the alkyl group having 1 to 5 carbon atoms represented by R D2 and R D3 includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, t -Butyl group, n-pentyl group and the like. Among these, a methyl group is preferable.
  • examples of the aryl group having 6 to 20 carbon atoms represented by Ar D1 include a phenyl group, a naphthyl group, an anthryl group, and a biphenylyl group. Among these, a phenyl group is preferable.
  • m2 represents an integer of 1 to 5, preferably an integer of 1 to 3, more preferably an integer of 1 or 2, and still more preferably 1.
  • the alkylene group having 1 to 5 carbon atoms represented by R D4 includes a methylene group, an ethylene group, a 1,2-dimethylene group, a 1,3-trimethylene group, and a 1,4-tetramethylene group. Group, 1,5-pentamethylene group and the like. Among these, a methylene group is preferable.
  • examples of the aryl group having 6 to 20 carbon atoms represented by Ar D1 include a phenyl group, a naphthyl group, an anthryl group, and a biphenylyl group. Among these, a phenyl group is preferable.
  • m3 represents an integer of 1 to 5, preferably an integer of 1 to 3, more preferably an integer of 1 or 2, and still more preferably 1.
  • Examples of the compound represented by the general formula (3-1) include cresol, 3-ethylphenol, p-tert-butylphenol, p-tert-amylphenol, p-tert-octylphenol, p-nonylphenol, 2,3-dimethyl. Examples thereof include alkyl group-substituted phenol compounds such as phenol, 3,4-dimethylphenol, 3,5-dimethylphenol, and 2,3,6-trimethylphenol. Examples of the compound represented by the general formula (3-2) include p- ( ⁇ -cumyl) phenol and 4-benzylphenol.
  • Examples of the compound represented by the general formula (3-3) include 4- (benzyloxy) phenol, 3- (benzyloxy) phenol, 2- (benzyloxy) phenol, and the like. Among these, 2,3,6-trimethylphenol, p- ( ⁇ -cumyl) from the viewpoints of storage stability and handleability of the resin film for the interlayer insulating layer, and electrical characteristics and heat resistance of the resulting interlayer insulating layer Phenol and 4- (benzyloxy) phenol are preferred.
  • a monofunctional phenol compound may be used individually by 1 type, and may use 2 or more types together.
  • the content of the monofunctional phenolic compound (D) in the resin composition for interlayer insulation layers is from the viewpoint of storage stability and handleability of the resin film for interlayer insulation layers, and electrical characteristics and heat resistance of the resulting interlayer insulation layer.
  • (B) 0.5 to 35 parts by weight, preferably 1 to 30 parts by weight, more preferably 1.5 to 25 parts by weight, particularly 2 to 20 parts by weight, based on 100 parts by weight of the cyanate resin.
  • 2 to 15 parts by mass is very preferable, and 2 to 12 parts by mass is most preferable.
  • (B) cyanate resin contains the cyanate prepolymer prepared using the (D) monofunctional phenol compound as described above, the (D) monofunctional phenol compound used as a raw material of the cyanate prepolymer is The content of the monofunctional phenol compound (D) is not included.
  • the resin composition for interlayer insulation layers contains (E) phenoxy resin.
  • the “phenoxy resin” is a general term for polymers whose main chain is a polyaddition structure of an aromatic diol and an aromatic diglycidyl ether.
  • the weight average molecular weight is 10,000 or more. Refers to things.
  • the polymer whose main chain is a polyaddition structure of aromatic diol and aromatic diglycidyl ether has an epoxy group, those having a weight average molecular weight of 10,000 or more are classified as (E) phenoxy resin, Those having an average molecular weight of less than 10,000 are classified as (A) epoxy resin.
  • a phenoxy resin contains an alicyclic structure from a viewpoint of improving the handleability of the resin film for interlayer insulation layers.
  • the “alicyclic structure” means “an organic compound having a structure in which carbon atoms are bonded cyclically, excluding an aromatic compound”. Among these, at least one selected from cyclic saturated hydrocarbons (cycloalkanes) and cyclic unsaturated hydrocarbons having one double bond in the ring (cycloalkene) is preferable.
  • Examples of the (E) phenoxy resin include a phenoxy resin containing a cyclohexane structure, a phenoxy resin containing a trimethylcyclohexane structure, and a phenoxy resin containing a terpene structure.
  • a phenoxy resin containing one or more selected from a terpene structure and a trimethylcyclohexane structure is preferable, and a phenoxy resin containing a trimethylcyclohexane structure is more preferable.
  • a phenoxy resin using bisphenol TMC bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane) as a raw material disclosed in JP-A-2006-176658 is disclosed.
  • the phenoxy resin containing a terpene structure for example, in the phenoxy resin disclosed in JP-A-2006-176658, bis (4-hydroxyphenyl) -3,3,5- Examples thereof include phenoxy resins synthesized using terpene diphenol instead of trimethylcyclohexane.
  • a phenoxy resin may be used individually by 1 type, and may use 2 or more types together.
  • the weight average molecular weight of the phenoxy resin is preferably 10,000 to 60,000, more preferably 12,000 to 50,000, still more preferably 15,000 to 45,000, and 17,000 to 40,000. Is particularly preferable, and 20,000 to 37,000 is very preferable.
  • the weight average molecular weight of the phenoxy resin is equal to or higher than the lower limit, an excellent peel strength with the conductor layer tends to be obtained, and when the weight average molecular weight is equal to or lower than the upper limit, an increase in roughness and a coefficient of thermal expansion are obtained. An increase can be prevented.
  • a method for producing a phenoxy resin for example, a bisphenol compound containing a trimethylcyclohexane structure or a bisphenol compound containing a terpene structure and a bifunctional epoxy resin are used as raw materials in accordance with a known phenoxy resin production method. And the phenolic hydroxyl group (equivalent ratio of phenolic hydroxyl group / epoxy group) can be produced, for example, by reacting in the range of 1 / 0.9 to 1 / 1.1.
  • the commercially available (E) phenoxy resin is derived from a biphenyl type epoxy resin and a bisphenol compound containing a trimethylcyclohexane structure (1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane).
  • JER registered trademark
  • YX7200B35 trade name, manufactured by Mitsubishi Chemical Corporation
  • the interlayer insulating layer resin composition contains (E) phenoxy resin
  • its content is preferably 0.2 to 10 parts by mass with respect to 100 parts by mass of the solid content of the interlayer insulating layer resin composition, The amount is more preferably 1 to 7 parts by mass, and further preferably 2 to 4 parts by mass.
  • the content of the phenoxy resin is 0.2 parts by mass or more, the flexibility and the handleability tend to be excellent, and the peel strength of the conductor layer tends to be excellent. In addition to excellent stability and fluidity, an appropriate roughness tends to be obtained.
  • the resin composition for interlayer insulation layers contains (F) active ester hardening
  • the active ester curing agent By containing the active ester curing agent, the dielectric loss tangent tends to be reduced.
  • the compound which has 2 or more of ester groups in 1 molecule is mentioned preferably. Specific examples include phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds.
  • the active ester curing agent is preferably obtained by a condensation reaction of at least one selected from a carboxylic acid compound and a thiocarboxylic acid compound and at least one selected from a hydroxy compound and a thiol compound.
  • an active ester curing agent obtained from a carboxylic acid compound and a hydroxy compound is preferable, and an active ester curing agent obtained from one or more selected from a carboxylic acid compound, a phenol compound, and a naphthol compound. More preferred.
  • carboxylic acid compound examples include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid.
  • phenolic compounds include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthalin, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-cresol, and p-cresol.
  • Catechol dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzenetriol, dicyclopentadienyldiphenol, phenol novolac and the like.
  • the naphthol compound include ⁇ -naphthol, ⁇ -naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene and the like. You may use these individually or in mixture of 2 or more types.
  • an active ester curing agent disclosed in JP-A-2004-277460 may be used, or a commercially available product may be used.
  • commercially available (F) active ester curing agents include those containing a dicyclopentadienyl diphenol structure, acetylated phenol novolacs, benzoylated phenol novolacs, and the like.
  • examples of those containing a dicyclopentadienyl diphenol structure include “EXB9451”, “EXB9460”, “EXB9460S-65T”, “HPC-8000-65T” (above, DIC Corporation, active group equivalent 223 g / eq).
  • Examples of the acetylated product of phenol novolac include “DC808” (manufactured by Mitsubishi Chemical Corporation, active group equivalent: 149 g / eq).
  • As the benzoylated phenol novolac “YLH1026” (active group equivalent 200 g / eq), “YLH1030” (active group equivalent 201 g / eq), “YLH1048” (active group equivalent 245 g / eq) (above, Mitsubishi Chemical Corporation) Manufactured) and the like.
  • a dicyclopentadienyl diphenol structure is used. Including “HPC-8000-65T” is preferable.
  • an equivalent ratio of (F) an active ester group derived from the active ester curing agent and (A) an epoxy group derived from the epoxy resin (active ester) Group / epoxy group) is preferably from 0.1 to 0.7, more preferably from 0.2 to 0.6, and even more preferably from 0.3 to 0.5, from the viewpoint of obtaining excellent electrical characteristics.
  • the resin composition for interlayer insulation layers may contain the (G) hardening accelerator from a viewpoint which enables hardening for a short time at low temperature.
  • (G) As a hardening accelerator a metal type hardening accelerator, an organic type hardening accelerator, etc. are mentioned.
  • Metal curing accelerator As the metal curing accelerator, for example, an organometallic curing accelerator can be used.
  • the organometallic curing accelerator has an action of promoting the self-polymerization reaction of the (B) cyanate resin and an action of promoting the reaction between the (A) epoxy resin and the (B) cyanate resin.
  • Examples of the organometallic curing accelerator include transition metals, organometallic salts of group 12 metals, organometallic complexes, and the like.
  • the metal include copper, cobalt, manganese, iron, nickel, zinc, tin and the like.
  • organic metal salt examples include carboxylates, and specific examples thereof include naphthenates such as cobalt naphthenate and zinc naphthenate, 2-ethylhexanoate cobalt and 2-ethylhexanoate zinc and the like. Examples include hexanoate, zinc octylate, tin octylate, tin stearate, and zinc stearate.
  • organometallic complex examples include chelate complexes such as acetylacetone complex, and specific examples thereof include organocobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate; copper (II) acetylacetonate Organic copper complexes such as zinc (II) acetylacetonate; organic iron complexes such as iron (III) acetylacetonate; organonickel complexes such as nickel (II) acetylacetonate; manganese (II) acetyl And organic manganese complexes such as acetonate.
  • organocobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate
  • copper (II) acetylacetonate Organic copper complexes such as zinc (II) acetylacetonate
  • cobalt (II) acetylacetonate cobalt (III) acetylacetonate, zinc (II) acetylacetonate, iron (III) acetylacetonate, zinc naphthenate, naphthene Cobalt acid is preferred. You may use these individually or in mixture of 2 or more types.
  • the interlayer insulating layer resin composition contains a metal-based curing accelerator
  • the content thereof is 10 to 10 mass by mass with respect to the solid content mass of (B) cyanate resin from the viewpoint of reactivity and storage stability.
  • 500 ppm is preferred, 50 to 400 ppm is more preferred, and 150 to 300 ppm is even more preferred. You may mix
  • organic curing accelerators examples include amine compounds such as organic phosphorus compounds, imidazole compounds, secondary amines and tertiary amines; quaternary ammonium salts Etc. You may use these individually or in mixture of 2 or more types. Among these, from the viewpoint of removing smear in the via hole, an organic phosphorus compound, an imidazole compound, and an amine compound are preferable, and an organic phosphorus compound is more preferable.
  • the organic curing accelerator may be blended at one time or divided into a plurality of times.
  • organophosphorus compounds include ethylphosphine, propylphosphine, butylphosphine, phenylphosphine, trimethylphosphine, triethylphosphine, tributylphosphine, trioctylphosphine, triphenylphosphine, tricyclohexylphosphine, triphenylphosphine / triphenylborane complex, tetraphenyl Examples thereof include phosphonium tetraphenylborate, an addition reaction product of a phosphine compound in which at least one alkyl group is bonded to a phosphorus atom and a quinone compound.
  • triphenylphosphine and an addition reaction product of a phosphine compound in which at least one alkyl group is bonded to a phosphorus atom and a quinone compound are preferable.
  • a phosphine compound in which at least one alkyl group is bonded to a phosphorus atom and a quinone compound a phosphine compound in which one or more alkyl groups are bonded to a phosphorus atom represented by the following general formula (G-1)
  • R G1 represents an alkyl group having 1 to 12 carbon atoms
  • R G2 and R G3 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms.
  • R G4 to R G6 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms
  • R G4 and R G5 are bonded to each other to form a cyclic structure. May be.
  • Examples of the alkyl group having 1 to 12 carbon atoms represented by R G1 in the general formula (G-1) include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert group.
  • alkyl groups such as butyl, pentyl, hexyl, octyl, decyl, and dodecyl; cyclic alkyl groups such as cyclopentyl, cyclohexyl, cycloheptyl, cyclopentenyl, and cyclohexenyl; benzyl Aryl group-substituted alkyl groups such as; methoxy group-substituted alkyl groups, ethoxy group-substituted alkyl groups, butoxy group-substituted alkyl groups and other alkoxy group-substituted alkyl groups; dimethylamino groups, diethylamino groups and other amino group-substituted alkyl groups; Group and the like.
  • the hydrocarbon group having 1 to 12 carbon atoms represented by R G2 and R G3 includes a substituted or unsubstituted aliphatic hydrocarbon group having 1 to 12 carbon atoms, and a substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms. And a substituted or unsubstituted aromatic hydrocarbon group having 1 to 12 carbon atoms.
  • the substituted or unsubstituted aliphatic hydrocarbon group having 1 to 12 carbon atoms include the same groups as the alkyl group having 1 to 12 carbon atoms represented by R G1 .
  • Examples of the substituted or unsubstituted alicyclic hydrocarbon group having 1 to 12 carbon atoms include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, an alkyl group, an alkoxy group, an aryl group, and a hydroxyl group. , Amino groups, halogen-substituted and the like.
  • Examples of the substituted or unsubstituted aromatic hydrocarbon group having 1 to 12 carbon atoms include aryl groups such as phenyl group and naphthyl group; tolyl group, dimethylphenyl group, ethylphenyl group, butylphenyl group, t-butylphenyl group, Alkyl group-substituted aryl groups such as dimethylnaphthyl group; alkoxy group-substituted aryl groups such as methoxyphenyl group, ethoxyphenyl group, butoxyphenyl group, t-butoxyphenyl group, methoxynaphthyl group; amino groups such as dimethylamino group and diethylamino group Substituted aryl groups; halogen-substituted aryl groups such as hydroxyphenyl groups and dihydroxyphenyl groups; aryloxy groups such as phenoxy groups and crezoxy groups; phenylthio
  • Examples of the phosphine compound represented by the general formula (G-1) include trialkylphosphine such as tricyclohexylphosphine, tributylphosphine, and trioctylphosphine; cyclohexyldiphenylphosphine, dicyclohexylphenylphosphine, butyldiphenylphosphine, dibutylphenylphosphine, octyl Alkyldiphenylphosphine such as diphenylphosphine and dioctylphenylphosphine; dialkylphenylphosphine and the like.
  • trialkylphosphine such as tricyclohexylphosphine, tributylphosphine, and trioctylphosphine
  • cyclohexyldiphenylphosphine dicyclohexylphenylphosphine, butyldiphenyl
  • tributylphosphine tri (p-methylphenyl) phosphine, tri (m-methylphenyl) phosphine, Tri (o-methylphenyl) phosphine is particularly preferred.
  • the hydrocarbon group having 1 to 18 carbon atoms represented by R G4 to R G6 in the general formula (G-2) is a substituted or unsubstituted aliphatic hydrocarbon group having 1 to 18 carbon atoms, Examples thereof include a substituted or unsubstituted alicyclic hydrocarbon group having 1 to 18 carbon atoms and a substituted or unsubstituted aromatic hydrocarbon group having 1 to 18 carbon atoms.
  • Examples of the substituted or unsubstituted aliphatic hydrocarbon group having 1 to 18 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, pentyl group, and hexyl.
  • Examples of the substituted or unsubstituted alicyclic hydrocarbon group having 1 to 18 carbon atoms include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, and an alkyl group, an alkoxy group, an aryl group, and a hydroxyl group. , Amino groups, halogen-substituted and the like.
  • Examples of the substituted or unsubstituted aromatic hydrocarbon group having 1 to 18 carbon atoms include aryl groups such as phenyl group and tolyl group; alkyl groups such as dimethylphenyl group, ethylphenyl group, butylphenyl group and t-butylphenyl group Substituted aryl group; alkoxy group substituted aryl group such as methoxyphenyl group, ethoxyphenyl group, butoxyphenyl group and t-butoxyphenyl group; aryloxy group such as phenoxy group and crezoxy group; phenylthio group, tolylthio group, diphenylamino group, etc.
  • aryl groups such as phenyl group and tolyl group
  • alkyl groups such as dimethylphenyl group, ethylphenyl group, butylphenyl group and t-butylphenyl group
  • alkoxy group substituted aryl group
  • a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkylthio group, and substituted or unsubstituted Of the arylthio group is preferred.
  • the quinone compound represented by the general formula (G-2) may have a cyclic structure in which R G4 and R G5 are bonded.
  • the quinone compound in which R G4 and R G5 are bonded to form a cyclic structure is represented by any one of the following general formulas (G-3) to (G-5) in which a substituted tetramethylene group, tetramethine group, or the like is bonded.
  • polycyclic quinone compounds may be any one of the following general formulas (G-3) to (G-5) in which a substituted tetramethylene group, tetramethine group, or the like is bonded.
  • R G6 is the same as that in General Formula (G-2).
  • 1,4-benzoquinone and methyl-1,4-benzoquinone are preferable from the viewpoint of reactivity with the phosphine compound, and the curable property upon moisture absorption is preferable.
  • alkoxy group-substituted 1,4-benzoquinone such as 2,3-dimethoxy-1,4benzoquinone, 2,5-dimethoxy-1,4-benzoquinone and methoxy-1,4-benzoquinone; 2,3-dimethyl Preferred are alkyl group-substituted 1,4-benzoquinones such as 1,4-benzoquinone, 2,5-dimethyl-1,4-benzoquinone and methyl-1,4-benzoquinone. From the viewpoint of storage stability, 2,5 -Di-t-butyl-1,4-benzoquinone, t-butyl-1,4-benzoquinone and phenyl-1,4-benzoquinone are preferred.
  • R G1 to R G6 are the same as those in the general formulas (G-1) and (G-2).
  • a method for producing an addition reaction product of a phosphine compound in which at least one alkyl group is bonded to a phosphorus atom and a quinone compound for example, a phosphine compound and a quinone compound used as raw materials are added in an organic solvent in which both are dissolved. The method of isolating after making it react is mentioned.
  • the addition reaction product of the phosphine compound and the quinone compound in which at least one alkyl group is bonded to the phosphorus atom may be used alone or in combination of two or more.
  • the resin composition for an interlayer insulating layer contains an organic curing accelerator, its content is 0.01 to 5 with respect to 100 parts by mass of (A) epoxy resin from the viewpoint of reactivity and storage stability. Part by mass is preferable, 0.01 to 3 parts by mass is more preferable, and 0.01 to 2 parts by mass is even more preferable.
  • the resin composition for interlayer insulation layers may contain components other than the above components as long as the effects of the present invention are not impaired.
  • examples of other components include resin components other than the above components (hereinafter also referred to as “other resin components”), additives, flame retardants, and the like.
  • Examples of other resin components include a polymer of a bismaleimide compound and a diamine compound, a bismaleimide compound, a bisallylnadiimide resin, and a benzoxazine compound.
  • additives examples include thickeners such as olben and benton; adhesion imparting agents such as imidazole, thiazole, triazole and silane coupling agents; rubber particles; colorants and the like.
  • Examples of the flame retardant include an inorganic flame retardant and a resin flame retardant.
  • Examples of the inorganic flame retardant include aluminum hydroxide and magnesium hydroxide.
  • the resin flame retardant may be a halogen-based resin or a non-halogen-based resin, but a non-halogen-based resin is preferable in consideration of environmental burden.
  • the resin composition for an interlayer insulating layer can be produced by mixing the components (A) to (D), the components (E) to (G) and other components contained as necessary.
  • a mixing method a known method can be applied.
  • the mixing may be performed using a bead mill or the like.
  • the thickness of the resin film for interlayer insulation layers can be determined by the thickness of the conductor layer formed in a printed wiring board, for example. Since the thickness of the conductor layer is usually 5 to 70 ⁇ m, the thickness of the resin film for the interlayer insulating layer is preferably 10 to 100 ⁇ m. From the viewpoint of enabling the multilayer printed wiring board to be thinned, 15 to 80 ⁇ m is more preferable, and 20 to 50 ⁇ m is even more preferable.
  • the resin film for an interlayer insulating layer of the present invention may be formed on a support.
  • the support include organic resin films, metal foils, release papers, and the like.
  • the material for the organic resin film include polyolefin such as polyethylene and polyvinyl chloride; polyester such as polyethylene terephthalate (hereinafter also referred to as “PET”) and polyethylene naphthalate; polycarbonate and polyimide.
  • PET is preferable from the viewpoints of price and handleability.
  • the metal foil include copper foil and aluminum foil. When copper foil is used for the support, the copper foil can be used as it is as a conductor layer to form a circuit.
  • rolled copper, electrolytic copper foil, or the like can be used as the copper foil.
  • the thickness of the copper foil can be set to 2 to 36 ⁇ m, for example.
  • These supports and a protective film described later may be subjected to surface treatment such as mold release treatment, plasma treatment, corona treatment and the like.
  • the release treatment include a release treatment using a silicone resin release agent, an alkyd resin release agent, a fluororesin release agent, or the like.
  • the thickness of the support is preferably from 10 to 120 ⁇ m, more preferably from 15 to 80 ⁇ m, and even more preferably from 25 to 50 ⁇ m from the viewpoints of handleability and economy.
  • the support is usually finally peeled off or removed.
  • a protective film may be arranged on the surface opposite to the support of the resin film for an interlayer insulating layer of the present invention.
  • the protective film is provided on the surface opposite to the surface on which the support for the resin film for the interlayer insulating layer is provided, and prevents the adhesion and scratches of foreign matters to the resin film for the interlayer insulating layer. Used for purposes.
  • the protective film is peeled off before the interlayer insulating layer resin film is laminated on a circuit board or the like by laminating or hot pressing.
  • the same material as the support can be used.
  • the protective film having a thickness of 1 to 40 ⁇ m can be used.
  • the resin film for interlayer insulation layers of the present invention can be produced, for example, by applying a resin composition for interlayer insulation layers on a support and then drying. At that time, the resin composition for an interlayer insulating layer is preferably dissolved and / or dispersed in an organic solvent to form a varnish.
  • organic solvents examples include ketone solvents such as acetone, methyl ethyl ketone (hereinafter also referred to as “MEK”), methyl isobutyl ketone, and cyclohexanone; acetic acid such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate.
  • ester solvents carbitol solvents such as cellosolve and butyl carbitol
  • aromatic hydrocarbon solvents such as toluene and xylene
  • amide solvents such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. You may use these individually or in mixture of 2 or more types.
  • a ketone solvent is preferable, and MEK and methyl isobutyl ketone are more preferable.
  • a method of coating the resin composition for an interlayer insulating layer a method of coating using a known coating apparatus such as a comma coater, a bar coater, a kiss coater, a roll coater, a gravure coater, or a die coater can be applied. It can. What is necessary is just to select a coating apparatus suitably according to the target film thickness.
  • drying conditions after coating the resin composition for interlayer insulation layers it is preferable to dry so that the content of the organic solvent in the obtained resin film for interlayer insulation layers is 10% by mass or less. It is more preferable to dry so that it may become mass% or less.
  • the drying conditions vary depending on the amount and type of the organic solvent in the varnish. For example, in the case of a varnish containing 20 to 80% by mass of the organic solvent, it may be dried at 50 to 150 ° C. for 1 to 10 minutes.
  • the multilayer resin film of this invention contains the resin composition layer for interlayer insulation layers which consists of the resin film for interlayer insulation layers of this invention, and an adhesion auxiliary layer.
  • the resin composition layer for interlayer insulation layers is a layer which consists of the resin film for interlayer insulation layers of this invention,
  • the suitable aspect is as the description of the resin film for interlayer insulation layers of this invention.
  • the resin composition layer for an interlayer insulating layer is a layer provided between a circuit board and an adhesion auxiliary layer when a multilayer printed wiring board is manufactured using the multilayer resin film of the present invention.
  • the insulating layer obtained by curing the resin composition layer serves to insulate the circuit patterns that have been multilayered, for example, in a multilayer printed wiring board.
  • the resin composition layer for an interlayer insulating layer also flows in the circuit board and fills the inside of the hole.
  • the thickness of the resin composition layer for the interlayer insulating layer can be determined by the thickness of the conductor layer formed on the printed wiring board. Since the thickness of the conductor layer is usually 5 to 70 ⁇ m, the thickness of the resin composition layer for the interlayer insulating layer is preferably 10 to 100 ⁇ m. From the viewpoint of enabling the multilayer printed wiring board to be thinned, 15 to 80 ⁇ m is more preferable, and 20 to 50 ⁇ m is more preferable.
  • the adhesion auxiliary layer is a layer that insulates the multilayered circuit patterns from each other in the multilayer printed wiring board that is multilayered by the build-up method, and that plays a role of smooth and high plating peel strength.
  • the thickness of the adhesion auxiliary layer is preferably 1 to 10 ⁇ m and more preferably 2 to 8 ⁇ m from the viewpoint of obtaining an interlayer insulating layer having high adhesion to the conductor layer.
  • An adhesion auxiliary layer can be formed using the resin composition for adhesion auxiliary layers.
  • the resin composition for an auxiliary adhesion layer preferably contains (H) a cyanate resin from the viewpoint of obtaining an interlayer insulating layer having a smooth surface and high adhesion to the conductor layer.
  • (H) cyanate resin As cyanate resin, the thing similar to (B) cyanate resin which the said resin composition for interlayer insulation layers contains is mentioned, A suitable aspect is also the same.
  • the resin composition for an adhesion auxiliary layer contains the (H) cyanate resin
  • the content is for the adhesion auxiliary layer from the viewpoint of obtaining an interlayer insulating layer having a smooth surface and high adhesion to the conductor layer.
  • the amount is preferably 5 to 50 parts by mass, more preferably 10 to 40 parts by mass, and still more preferably 20 to 35 parts by mass with respect to 100 parts by mass of the solid content of the resin composition.
  • the resin composition for an adhesion auxiliary layer further contains (J) an epoxy resin.
  • an epoxy resin the thing similar to the (A) epoxy resin which the said resin composition for interlayer insulation layers can contain is mentioned.
  • an aralkyl novolak type epoxy resin is preferable, and an aralkyl novolak type epoxy resin having a biphenyl skeleton is more preferable.
  • the aralkyl novolac type epoxy resin having a biphenyl skeleton refers to an aralkyl novolak type epoxy resin containing an aromatic ring of a biphenyl derivative in the molecule, and an epoxy resin containing a structural unit represented by the following general formula (4) Etc.
  • R J1 represents a hydrogen atom or a methyl group.
  • the content of the structural unit represented by the general formula (4) in the epoxy resin containing the structural unit represented by the general formula (4) has a small surface roughness after desmearing, and is a conductor formed by plating. From the viewpoint of obtaining an interlayer insulating layer excellent in adhesive strength with the layer, it is preferably 50 to 100% by mass, more preferably 70 to 100% by mass, and further preferably 80 to 100% by mass. From the same viewpoint, the epoxy resin containing the structural unit represented by the general formula (4) is preferably an epoxy resin represented by the following general formula (4 ′).
  • R J1 is the same as R J1 in the general formula (4), s represents an integer of 1-20.
  • s is preferably an integer of 1 to 10, more preferably an integer of 1 to 8, from the viewpoint of reducing the surface roughness after desmearing.
  • the content is for the adhesion auxiliary layer from the viewpoint of obtaining an interlayer insulating layer having a smooth surface and high adhesion to the conductor layer.
  • the amount is preferably 20 to 80 parts by mass, more preferably 30 to 70 parts by mass, and still more preferably 40 to 60 parts by mass with respect to 100 parts by mass of the solid content of the resin composition.
  • the mass ratio [(J) / (H)] of the (J) epoxy resin and (H) cyanate resin in the resin composition for the adhesion auxiliary layer is an interlayer insulating layer having high adhesiveness to the conductor layer. From the viewpoint of obtaining, 0.5 to 5 is preferable, 1 to 3 is more preferable, and 1.2 to 2.5 is more preferable.
  • the resin composition for an adhesion auxiliary layer further contains at least one selected from the group consisting of (K) a polyamide resin, a polyimide resin, and a polybenzoxazole resin.
  • a polyamide resin from the viewpoint of obtaining an interlayer insulating layer having a small surface roughness and excellent adhesion strength with a conductor layer formed by a plating method.
  • the polyamide resin used as the component (K) is a thermosetting resin (for example, an epoxy group of an epoxy resin) from the viewpoint of obtaining an interlayer insulating layer having a small surface roughness and excellent adhesion strength with a conductor layer formed by plating. Those containing a functional group (phenolic hydroxyl group, amino group, etc.) that reacts with the hydroxyl group are preferred, and those containing a phenolic hydroxyl group are more preferred. From the same viewpoint, the polyamide resin used as the component (K) preferably further contains a polybutadiene skeleton. Such a polyamide resin is represented by the structural unit represented by the following general formula (5-1), the structural unit represented by the following general formula (5-2), and the following general formula (5-3). A phenolic hydroxyl group-containing polybutadiene-modified polyamide resin containing a structural unit is preferred.
  • a polyamide resin is represented by the structural unit represented by the following general formula (5-1), the structural unit represented by the following general formula (5-2), and
  • R K1 , R K2 and R K3 are each independently a divalent group derived from an aromatic diamine or an aliphatic diamine, and R K4 is an aromatic dicarboxylic acid, an aliphatic dicarboxylic acid or a carboxy group at both ends. It is a divalent group derived from an oligomer having
  • Aromatic diamines used in the production of phenolic hydroxyl group-containing polybutadiene-modified polyamide resins include diaminobenzene, diaminotoluene, diaminophenol, diaminodimethylbenzene, diaminomesitylene, diaminonitrobenzene, diaminodiazobenzene, diaminonaphthalene, diaminobiphenyl, diaminodimethoxy.
  • Aliphatic diamines used in the production of phenolic hydroxyl group-containing polybutadiene-modified polyamide resins include ethylenediamine, propanediamine, hydroxypropanediamine, butanediamine, heptanediamine, hexanediamine, diaminodiethylamine, diaminopropylamine, cyclopentanediamine, and cyclohexanediamine. , Azapentanediamine, triazaundecanediamine and the like. You may use these individually or in mixture of 2 or more types.
  • Examples of the phenolic hydroxyl group-containing dicarboxylic acid used in the production of the phenolic hydroxyl group-containing polybutadiene-modified polyamide resin include hydroxyisophthalic acid, hydroxyphthalic acid, hydroxyterephthalic acid, dihydroxyisophthalic acid, and dihydroxyterephthalic acid.
  • Examples of the dicarboxylic acid not containing a phenolic hydroxyl group used in the production of a phenolic hydroxyl group-containing polybutadiene-modified polyamide resin include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and oligomers having carboxy groups at both ends.
  • aromatic dicarboxylic acid examples include phthalic acid, isophthalic acid, terephthalic acid, biphenyl dicarboxylic acid, methylene dibenzoic acid, thiodibenzoic acid, carbonyl dibenzoic acid, sulfonylbenzoic acid, and naphthalenedicarboxylic acid.
  • Aliphatic dicarboxylic acids include oxalic acid, malonic acid, methylmalonic acid, succinic acid, glutaric acid, adipic acid, maleic acid, fumaric acid, malic acid, tartaric acid, (meth) acryloyloxysuccinic acid, di (meth) acryloyl Examples include oxysuccinic acid, (meth) acryloyloxymalic acid, (meth) acrylamide succinic acid, (meth) acrylamide malic acid, and the like. You may use these individually or in mixture of 2 or more types.
  • phenolic hydroxyl group-containing polybutadiene-modified polyamide resin examples include polyamide resins “BPAM-01” and “BPAM-155” manufactured by Nippon Kayaku Co., Ltd.
  • polyamide resin examples include polyamide resins “BPAM-01” and “BPAM-155” manufactured by Nippon Kayaku Co., Ltd.
  • BPAM-01” and BPAM-155 are preferable from the viewpoint of obtaining an interlayer insulating layer having a small surface roughness and excellent adhesion strength with a conductor layer formed by plating, and “BPAM-155” is preferable. Is more preferable.
  • BPAM-155 is a rubber-modified polyamide resin having an amino group at its terminal and has reactivity with an epoxy group, and therefore an interlayer insulating layer obtained from a thermosetting resin composition containing “BPAM-155” Is more excellent in the adhesive strength with a conductor layer formed by plating, and the surface roughness tends to be small.
  • the number average molecular weight of the polyamide resin is preferably from 20,000 to 30,000, more preferably from 22,000 to 29,000, from the viewpoints of solubility in a solvent and film retention of the adhesion auxiliary layer after lamination. 24,000 to 28,000 are more preferable. From the same viewpoint, the weight average molecular weight of the polyamide resin is preferably 100,000 to 140,000, more preferably 103,000 to 130,000, and further preferably 105,000 to 120,000.
  • the content is a resin composition for the adhesion auxiliary layer from the viewpoint of obtaining an interlayer insulating layer having a smooth surface and high adhesion to the conductor layer. 2 to 15 parts by mass, preferably 4 to 13 parts by mass, and more preferably 6 to 12 parts by mass with respect to 100 parts by mass of the solid content.
  • the content of the polyamide resin is 2 parts by mass or more, the adhesive strength with the conductor layer formed by the plating method tends to be excellent, and when it is 15 parts by mass or less, the interlayer insulating layer is roughened with an oxidizing agent. Furthermore, the surface roughness of the interlayer insulating layer tends to be suppressed, and the reflow heat resistance tends to be excellent.
  • the resin composition for the auxiliary adhesion layer preferably further contains (L) an inorganic filler having a specific surface area of 20 to 500 m 2 / g (hereinafter also simply referred to as “(L) inorganic filler”).
  • (L) The inorganic filler can prevent the resin from scattering and adjust the shape of the laser processing when laser processing the interlayer insulating layer formed by thermosetting the resin composition of the present invention. Important from the point of view. Further, when the surface of the interlayer insulating layer is roughened with an oxidizing agent, it is important from the viewpoint of forming an appropriate roughened surface and enabling formation of a conductor layer having excellent adhesive strength by plating. It is preferable to select from.
  • Inorganic fillers include silica, alumina, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, aluminum borate, barium titanate Strontium titanate, calcium titanate, bismuth titanate, titanium oxide, barium zirconate, calcium zirconate and the like.
  • silica is preferable from the viewpoint of obtaining excellent varnish handling properties and a low thermal expansion coefficient.
  • An inorganic filler may be used individually by 1 type, and may use 2 or more types together.
  • the inorganic filler preferably has a small particle diameter from the viewpoint of forming fine wiring. From the same viewpoint, the specific surface area of (L) inorganic filler is 20 ⁇ 500m 2 / g, preferably 60 ⁇ 200m 2 / g, more preferably 90 ⁇ 130m 2 / g.
  • the shape of the inorganic filler is an arbitrary shape. In particular, fumed silica, colloidal silica, etc., which will be described later, are not spherical, so that an appropriate roughened surface is formed, a conductor layer having excellent adhesive strength is formed In order to exhibit the effect, it is preferable to adjust the specific surface area to the above range.
  • the specific surface area can be determined by a BET method by low-temperature low-humidity physical adsorption of an inert gas such as nitrogen. Specifically, molecules having a known adsorption occupation area such as nitrogen are adsorbed on the surface of the powder particles at the liquid nitrogen temperature, and the specific surface area of the powder particles can be determined from the amount of adsorption.
  • (L) A commercially available product may be used as the inorganic filler.
  • the commercially available (L) inorganic filler fumed silica “AEROSIL (Aerosil) (registered trademark) R972” (specific surface area 110 ⁇ 20 m 2 / g) and “AEROSIL (Aerosil) (registered trademark) R202” are used.
  • the inorganic filler may be an inorganic filler surface-treated with a surface treatment agent such as a silane coupling agent in order to improve moisture resistance. Moreover, it is preferable that the (L) inorganic filler is dissolved or uniformly dispersed in the organic solvent.
  • the content is from the viewpoint of obtaining an interlayer insulating layer having a smooth surface and high adhesion to the conductor layer. 3 to 40 parts by mass, preferably 5 to 30 parts by mass, and more preferably 7 to 20 parts by mass with respect to 100 parts by mass of the solid content of the resin composition.
  • the content of the inorganic filler is 3 parts by mass or more, it is possible to prevent resin scattering during laser processing and to arrange the laser processing shape of the interlayer insulating layer, and when it is 40 parts by mass or less. High plating peel strength can be obtained.
  • the resin composition for an adhesion auxiliary layer further contains (M) a curing accelerator.
  • M As a hardening accelerator, the same thing as said (G) hardening accelerator is mentioned. Among these, an organic phosphorus compound is preferable, and triphenylphosphine is more preferable.
  • the adhesive auxiliary layer resin composition contains (M) a curing accelerator, the content varies depending on the type of (M) curing accelerator. For example, (M) an organophosphorus compound is used as the curing accelerator.
  • (J) 0.001 to 1 part by mass is preferable, more preferably 0.002 to 0.1 part by mass, and 0.003 to 0.05 part by mass based on 100 parts by mass of the epoxy resin solid content. Part is more preferred.
  • the resin composition for an adhesion auxiliary layer may contain components other than the above components as long as the effects of the present invention are not impaired.
  • Examples of the other components include the same components as the other components that may be contained in the interlayer insulating layer resin composition.
  • ⁇ Method for producing multilayer resin film> As the method for producing the multilayer resin film of the present invention, for example, after coating a resin composition for an adhesion auxiliary layer in a varnish state on a support, it was dried to form an adhesion auxiliary layer on the support. Thereafter, a method of forming a resin composition layer for an interlayer insulating layer by applying a resin composition for an interlayer insulating layer in a varnish state on the adhesion auxiliary layer and then drying it is exemplified. As another method, for example, an adhesion auxiliary layer is formed on a support by the above-described method, and a resin composition layer for an interlayer insulating layer is separately formed on a peelable film and formed on the support.
  • the adhesion auxiliary layer and the resin composition layer for an interlayer insulating layer formed on the film are arranged such that the surface on which the adhesion auxiliary layer is formed and the surface on which the resin composition layer for the interlayer insulation layer is formed are in contact with each other.
  • the method of laminating is also mentioned.
  • the film which can peel the resin composition layer for interlayer insulation layers can also play a role as a protective film.
  • the method for applying the resin composition for the adhesion auxiliary layer and the resin composition for the interlayer insulating layer and the drying conditions are the same as the method and conditions that can be used for producing the resin composition film for the interlayer insulating layer of the present invention. is there.
  • the multilayer printed wiring board of the present invention is obtained using at least one selected from the group consisting of the resin film for interlayer insulation layers and the multilayer resin film of the present invention. That is, the resin film for interlayer insulation layers of the present invention is useful for multilayer printed wiring boards. Furthermore, the resin film for interlayer insulation layers of the present invention is useful for forming a buildup layer of a multilayer printed wiring board, particularly a buildup wiring board.
  • the multilayer printed wiring board of the present invention includes the following steps (1) to (6) [wherein step (3) is optional. ], And the support may be peeled off or removed after step (1), (2) or (3).
  • step film when simply referred to as “resin film”, it means “resin film for interlayer insulation layer” or “multilayer resin film”.
  • a step of laminating the resin film of the present invention on one or both sides of a circuit board [hereinafter referred to as laminating step (1)].
  • (2) Step of thermosetting the resin film laminated in step (1) to form an insulating layer [hereinafter referred to as insulating layer forming step (2)].
  • (3) A step of drilling the circuit board on which the insulating layer has been formed in the step (2) [hereinafter referred to as a drilling step (3)].
  • a step of roughening the surface of the insulating layer with an oxidizing agent hereinafter referred to as a roughening step (4)].
  • a step of forming a conductor layer by plating on the surface of the roughened insulating layer [hereinafter referred to as a conductor layer forming step (5)].
  • (6) A step of forming a circuit on the conductor layer [hereinafter referred to as a circuit forming step (6)].
  • the laminating step (1) is a step of laminating the resin film of the present invention on one side or both sides of a circuit board using a vacuum laminator.
  • Vacuum laminators include vacuum applicators manufactured by Nichigo-Morton Co., Ltd., vacuum press laminators manufactured by Meiki Seisakusho, roll-type dry coaters manufactured by Hitachi, Ltd., and vacuum laminators manufactured by Hitachi Chemical Electronics Co., Ltd. Can be mentioned.
  • the resin film for an interlayer insulating layer of the present invention or the resin composition layer for the interlayer insulating layer of the multilayer resin film of the present invention is a circuit.
  • the circuit board can be pressed and laminated while being pressed and heated so as to be in contact with the substrate.
  • the laminate is prepared by preheating a resin film and a circuit board as necessary, and then a pressure bonding temperature of 60 to 140 ° C. and a pressure bonding pressure of 0.1 to 1.1 MPa (9.8 ⁇ 10 4 to 107.9 ⁇ ). 10 4 N / m 2 ) and an air pressure of 20 mmHg (26.7 hPa) or less.
  • the laminating method may be a batch method or a continuous method using a roll.
  • the resin film laminated on the circuit board in the laminating step (1) is cooled to around room temperature.
  • the resin film laminated on the circuit board is heated and cured to form an insulating layer, that is, an insulating layer that later becomes an “interlayer insulating layer”.
  • the insulating layer formed here is a layer composed of a cured product of the resin composition layer for an interlayer insulating layer and a cured product of the adhesion auxiliary layer.
  • the heat curing may be performed in two stages. For example, the first stage is 100 to 200 ° C. for 5 to 30 minutes, and the second stage is 140 to 220 ° C. for 20 to 80 minutes. .
  • the support may be peeled off after thermosetting.
  • a drilling step (3) is a step of drilling the circuit board and the formed insulating layer by a method such as drill, laser, plasma, or a combination thereof to form a via hole, a through hole, or the like.
  • a method such as drill, laser, plasma, or a combination thereof to form a via hole, a through hole, or the like.
  • the laser a carbon dioxide laser, YAG laser, UV laser, excimer laser, or the like is used.
  • the surface of the insulating layer is roughened with an oxidizing agent. Further, when via holes, through holes, and the like are formed in the insulating layer and the circuit board, so-called “smear” generated when these are formed may be removed by an oxidizing agent. Roughening and smear removal can be performed simultaneously.
  • the oxidizing agent include permanganate (potassium permanganate, sodium permanganate, etc.), dichromate, ozone, hydrogen peroxide, sulfuric acid, nitric acid and the like.
  • an alkaline permanganate solution for example, potassium permanganate, sodium permanganate hydroxide
  • Sodium aqueous solution can be used.
  • irregular anchors are formed on the surface of the insulating layer.
  • a conductor layer is formed by plating on the surface of the insulating layer which has been roughened and formed with uneven anchors.
  • the plating method include an electroless plating method and an electrolytic plating method.
  • the metal for plating is not particularly limited as long as it can be used for plating.
  • the metal for plating should be selected from copper, gold, silver, nickel, platinum, molybdenum, ruthenium, aluminum, tungsten, iron, titanium, chromium, or an alloy containing at least one of these metal elements. Copper and nickel are preferable, and copper is more preferable.
  • a plating resist having a pattern opposite to that of the conductor layer (wiring pattern) is formed first, and then the conductor layer (wiring pattern) is formed only by electroless plating.
  • an annealing treatment may be performed at 150 to 200 ° C. for 20 to 120 minutes.
  • the adhesive strength between the interlayer insulating layer and the conductor layer tends to be further improved and stabilized.
  • the interlayer insulating layer may be cured by this annealing treatment.
  • the conductor layer is patterned to form a circuit.
  • Subtractive method, full additive method, semi-additive method (SAP: Semi-additive process), modified semi-additive method (m-SAP: modified) A known method such as Semi Additive Process can be used.
  • the surface of the conductor layer thus produced may be roughened.
  • the adhesion with the resin in contact with the conductor layer tends to be improved.
  • organic acid microetching agents such as “CZ-8100”, “CZ-8101”, “CZ-5480” (all trade names, manufactured by MEC Co., Ltd.) and the like can be used. .
  • the circuit board used for the multilayer printed wiring board of the present invention was patterned on one or both sides of a substrate such as a glass epoxy, metal substrate, polyester substrate, polyimide substrate, BT resin substrate, thermosetting polyphenylene ether substrate, etc.
  • a substrate such as a glass epoxy, metal substrate, polyester substrate, polyimide substrate, BT resin substrate, thermosetting polyphenylene ether substrate, etc. The thing in which the conductor layer (circuit) was formed is mentioned.
  • the multilayer printed wiring board which has the conductor layer (circuit) by which the conductor layer and the insulating layer were alternately formed, and was patterned on the single side
  • the surface of the conductor layer of the circuit board may be subjected to a roughening process in advance by a blackening process
  • the semiconductor package of the present invention is obtained by mounting a semiconductor on the multilayer printed wiring board of the present invention.
  • the semiconductor package of the present invention can be manufactured by mounting a semiconductor chip, a memory or the like at a predetermined position of the multilayer printed wiring board of the present invention.
  • the semiconductor element may be sealed with a sealing resin or the like.
  • novolac type phenol resin As an epoxy resin curing agent, 4.9 parts by mass of “LA-1356-60M” (trade name, solvent: MEK, solid content concentration 60% by mass, manufactured by DIC Corporation), which is a triazine-modified phenol novolac resin, As an inorganic filler, the surface of “SO-C2” (manufactured by Admatechs Co., Ltd., trade name, average particle size: 0.5 ⁇ m) was treated with an aminosilane coupling agent, and further silica (solid) dispersed in MEK.
  • the coating thickness was 40 ⁇ m and drying was performed so that the residual solvent in the resin composition layer was 8.0% by mass. After drying, a polyethylene film (manufactured by Tamapoly Co., Ltd., trade name: NF-13, thickness: 25 ⁇ m) was laminated as a protective film on the resin composition layer surface side. Then, the obtained film was wound up in roll shape and the adhesive film 1 was obtained.
  • a polyethylene film manufactured by Tamapoly Co., Ltd., trade name: NF-13, thickness: 25 ⁇ m
  • Example 2 to 6, 8 and Comparative Examples 1 to 4 adhesive films 2 to 6 and 8 to 12 were obtained in the same manner as in Example 1 except that the raw material composition and production conditions were changed as shown in Table 1.
  • Example 7 The resin varnish A produced by the following procedure was applied and dried on a support film PET (manufactured by Teijin DuPont Films, trade name: G2, film thickness: 50 ⁇ m) so as to have a film thickness of 10 ⁇ m.
  • the resin varnish A used above was produced by the following procedure.
  • As the epoxy resin 63.9 parts by mass of “NC-3000-H” (trade name, solid content concentration: 100% by mass, manufactured by Nippon Kayaku Co., Ltd.), which is a biphenyl novolac type epoxy resin
  • As an epoxy resin curing agent 18.0 parts by mass of “LA-1356-60M” (trade name, solvent; MEK, solid content concentration: 60% by mass, manufactured by DIC Corporation), which is a triazine-modified phenol novolac resin, 15.2 parts by mass of “EXL-2655” (trade name, manufactured by Rohm and Haas Electronic Materials Co., Ltd.), which is a core-shell rubber particle
  • As an inorganic filler 8.8 parts by mass of fumed silica “Aerosil R972” (manufactured by Nippon Aerosil Co., Ltd., trade name, average particle size: 0.02 ⁇ m, solid content concentration: 100% by mass),
  • As a curing accelerator
  • the resin varnish A obtained above was applied to PET (Teijin DuPont Films, trade name: G2, film thickness: 50 ⁇ m) as a support film so as to have a film thickness of 10 ⁇ m, and then dried. Thus, a support film 2 having a film thickness of 60 ⁇ m was obtained.
  • the resin composition varnish for an adhesive film applied on the support film 2 obtained above was produced in the same manner as in Example 1 with the raw material composition and production conditions shown in Table 1.
  • the adhesive film 7 was obtained in the same manner as in Example 1 using the support film 2 and the resin composition varnish for adhesive film.
  • the obtained adhesive films 1 to 12 were cut into a size of 500 mm ⁇ 500 mm to produce samples 1 to 12 for handling test of the adhesive film.
  • the following methods (1) to (3) were used to evaluate the handling properties. “Anything that was not defective in any of the tests was regarded as“ good handling ”.
  • the support film was peeled off (the adhesive film 7 was peeled between PET and the resin layer formed thereon on the support film 2).
  • the adhesive film 7 was peeled between PET and the resin layer formed thereon on the support film 2.
  • a material in which powder falling off or PET was torn in the middle was regarded as poor handleability.
  • the thermal expansion coefficient was measured by the following method. Using the thermomechanical analyzer manufactured by Seiko Instruments Inc., the obtained samples 1 to 12 for measuring the thermal expansion coefficient were heated to 240 ° C. at a temperature rising rate of 10 ° C./min, cooled to ⁇ 10 ° C. A change curve of the expansion amount when the temperature was increased to 300 ° C. at a temperature rate of 10 ° C./min was obtained, and an average thermal expansion coefficient of 0 to 150 ° C. of the change curve of the expansion amount was obtained.
  • the inner layer circuit used for the embedding evaluation board is as follows.
  • MCL-E-679FG (R) (trade name, manufactured by Hitachi Chemical Co., Ltd.)
  • a copper clad laminate with a copper foil thickness of 12 ⁇ m and a plate thickness of 0.15mm (including copper foil thickness) has a diameter of 0
  • a 15 mm through hole was produced by a drilling method so as to be a group of 25 ⁇ 25 at 5 mm intervals.
  • desmearing and electroless plating were performed, and electrolytic plating was performed in the through holes using electrolytic plating.
  • a circuit board having a plate thickness including copper thickness of 0.2 mm, a diameter of 0.1 mm, and 25 ⁇ 25 through holes at intervals of 5 mm was obtained.
  • the batch type vacuum laminator “MVL-500” (name machine Co., Ltd.) (Product name, manufactured by Seisakusho Co., Ltd.). The degree of vacuum at this time was 30 mmHg, the temperature was set to 90 ° C., and the pressure was set to 0.5 MPa.
  • the embeddability was evaluated by the following method. Using a contact-type surface roughness meter “SV2100” (trade name) manufactured by Mitutoyo Corporation, the level difference on the surface of the through-hole portions of the embedding evaluation substrates 1 to 12 was measured. The level difference was measured so that 10 central portions of the surface of the through hole could enter, and the average value of the 10 dents was calculated.
  • SV2100 contact-type surface roughness meter
  • the adhesive film of the present invention has good handleability, and an interlayer insulating layer having a low thermal expansion coefficient and excellent embedding property can be obtained from the adhesive film of the present invention.
  • any one of handling property, thermal expansion coefficient, and embedding property was inferior. That is, according to the first invention, it can be seen that an adhesive film having a low thermal expansion coefficient, excellent embedding property, and excellent handleability can be provided, and an interlayer insulating layer having a low thermal expansion coefficient after curing can be provided.
  • the weight average molecular weight of the cyanate prepolymer, the weight average molecular weight and the number average molecular weight of the polyamide resin were determined by conversion from a calibration curve using standard polystyrene by gel permeation chromatography (GPC).
  • the calibration curve was approximated by a cubic equation using standard polystyrene: TSKgel (SuperHZ2000, SuperHZ3000 [manufactured by Tosoh Corporation]).
  • the GPC conditions are shown below.
  • ⁇ Device Pump: 880-PU [manufactured by JASCO Corporation] RI detector: 830-RI [manufactured by JASCO Corporation] Thermostatic bath: 860-CO [manufactured by JASCO Corporation] Autosampler: AS-8020 [manufactured by Tosoh Corporation] ⁇ Eluent: Tetrahydrofuran ⁇ Sample concentration: 30 mg / 5 mL ⁇ Injection volume: 20 ⁇ L ⁇ Flow rate: 1.00 mL / min ⁇ Measurement temperature: 40 ° C.
  • the temperature of the reaction solution was raised and stirred until the temperature of the reaction solution reached 90 ° C.
  • 2.799 g of zinc naphthenate manufactured by Wako Pure Chemical Industries, Ltd., solid content concentration 8 mass%, mineral spirit solution cut product
  • cyanate prepolymer A weight average molecular weight: about 3,200
  • NC-3000-H novolak type epoxy resin containing biphenyl aralkyl structure (“NC-3000-H” manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent: 289 g / eq, solid content concentration: 100% by mass)
  • BPAM-155 Rubber-modified polyamide resin having an amino group at the terminal (“BPAM-155” manufactured by Nippon Kayaku Co., Ltd., number average molecular weight: 26,000, weight average molecular weight: 110,000, solid content concentration: 100% by mass ) Previously dissolved in dimethylacetamide so that the solid content concentration is 10% by mass.
  • Aerosil R972 fumed silica (“Aerosil (registered trademark) R972” manufactured by Nippon Aerosil Co., Ltd., specific surface area: 100 m 2 / g, solid content concentration: 100 mass%)
  • TPP Triphenylphosphine (Tokyo Chemical Industry Co., Ltd., solid content concentration: 100% by mass)
  • Example 1 The composition is blended according to the blending composition shown in Table 3 (the numerical values in the table are parts by mass of the solid content, and in the case of a solution (excluding organic solvents) or a dispersion, it is the solid content conversion amount)), and bead mill treatment To obtain a varnish-like resin composition 1 for an interlayer insulating layer (solid content concentration: 72% by mass).
  • the resin composition 1 for an interlayer insulating layer is separated from a PET film (NR-1, product name, manufactured by Teijin-DuPont Films Co., Ltd.) having a release treatment on one side of a support having a thickness of 38 ⁇ m.
  • the resin film for interlayer insulation layers with a film thickness of 40 micrometers was obtained on PET film by apply
  • Example 2-9, 11-12, Comparative Example 1 the resin film for interlayer insulation layers was obtained like Example 1 except having changed the composition of the resin composition for interlayer insulation layers into the composition shown in Table 3.
  • Example 10 A resin composition 1 for an interlayer insulating layer was obtained in the same procedure as in Example 1. Next, on the adhesion auxiliary layer (thickness 3 ⁇ m) of the adhesion auxiliary layer with support obtained in Production Example 2, the interlayer insulating layer resin composition 1 was applied using a die coater at 100 ° C. By drying for 1.5 minutes, a resin composition layer for an interlayer insulating layer having a film thickness of 37 ⁇ m was formed to obtain a multilayer resin film.
  • resin film for an interlayer insulating layer and the multilayer resin film (hereinafter simply referred to as “resin film”) obtained above were evaluated according to the following evaluation methods. The results are shown in Table 3.
  • Glass transition temperature (Tg) evaluation of heat resistance
  • TMA thermomechanical analysis
  • a sheet-like cured product was produced by laminating resin films one by one by lamination to produce a laminate in which a total of five laminates were laminated, and the laminate was thermally cured at 190 ° C. for 180 minutes.
  • the cured product cut into a length of 40 mm (X direction), a width of 4 mm (Y direction), and a thickness of 80 mm (Z direction) is used as an evaluation substrate.
  • the evaluation substrate is subjected to a thermomechanical analyzer (TA Instruments Inc.). Thermomechanical analysis was performed by the compression method using Q400). Specifically, after mounting the evaluation substrate on the apparatus in the pulling direction (xy direction), the measurement substrate was measured twice continuously under the measurement conditions of a load of 5 g and a temperature increase rate of 10 ° C./min. Tg indicated by the intersection of tangents with different thermal expansion curves in the measurement was obtained and used as an index of heat resistance.
  • a sheet-like cured product was produced by the same method as the production method of the cured resin film used for evaluating the glass transition temperature, and the cured product was cut into a length of 70 mm and a width of 2 mm as an evaluation sample. .
  • the dielectric loss tangent of this evaluation sample was measured at a measurement frequency of 5 GHz and a measurement temperature of 23 ° C. by a cavity resonance perturbation method using “HP8362B” manufactured by Agilent Technologies.
  • N-673 Cresol novolac type epoxy resin (“Epiclon (registered trademark) N-673” manufactured by DIC Corporation, epoxy equivalent: 210 g / eq, solid content concentration: 100 mass%)
  • JER157S70 Bisphenol A novolak type epoxy resin (“jER (registered trademark) 157S70” manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 210 g / eq, solid content concentration: 100 mass%)
  • -JER828 Liquid epoxy resin of bisphenol A type (“JER (registered trademark) 828” manufactured by Mitsubishi Chemical Corporation, solid concentration 100 mass%, epoxy equivalent: 185 g / eq)
  • Cyanate prepolymer A cyanate prepolymer A synthesized in Production Example 1
  • BA230S Prepolymer of bisphenol A type cyanate resin ("Primaset BA230S” manufactured by Lonza)
  • BA3000S Prepolymer of bisphenol A type cyanate resin ("Primaset BA3000S” manufactured by Lonza)
  • Aminosilane coupling agent-treated SO-C2 Spherical silica “SO-C2” (manufactured by Admatechs Co., Ltd., average particle size: 0) treated with an aminosilane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM573) .5 ⁇ m) in a MEK solvent so that the solid concentration is 70 mass%.
  • Phenoxy resin (“JER (registered trademark) YX7200B35” manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 3,000 to 16,000 g / eq, solid content concentration 35 mass%, MEK cut)
  • TPP Triphenylphosphine (manufactured by Kanto Chemical Co., Inc.)
  • Curing accelerator 1 addition reaction product of tributylphosphine represented by the following formula (G-7) and 1,4-benzoquinone synthesized with reference to JP 2011-179008 A (solid content concentration: 100% by mass)
  • Zinc naphthenate (Wako Pure Chemical Industries, Ltd., solid concentration 8% by mass, mineral spirit solution)
  • the interlayer insulating layer formed of the resin films for interlayer insulating layers obtained in Examples 1 to 12 has a high glass transition temperature, a low dielectric loss tangent, and a gel time storage rate. In addition, it was excellent in handleability. That is, it can be seen that the interlayer insulating layer resin film of the present invention is excellent in storage stability and handleability, and the interlayer insulating layer formed of the interlayer insulating layer resin film of the present invention is excellent in electrical characteristics and heat resistance. .
  • (D) the resin film for an interlayer insulation layer of Comparative Example 1 containing no monofunctional phenolic compound was poor in handleability and inferior in storage stability (gel time storage rate) and electrical characteristics (dielectric loss tangent).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Adhesive Tapes (AREA)

Abstract

(a)重量平均分子量(Mw)と数平均分子量(Mn)との分散比(Mw/Mn)が、1.05~1.8であるノボラック型フェノール樹脂と、(b)一般式(1)で表されるエポキシ樹脂と、(c)無機充填材と、を含む樹脂組成物を、支持体フィルム上に層形成してなる樹脂組成物層を有し、該樹脂組成物層中の(c)無機充填材の平均粒径が0.1μm以上であり、(c)無機充填材の含有量が、樹脂固形分のうち20~95質量%である、多層プリント配線板用の接着フィルムに関する。

Description

多層プリント配線板用の接着フィルム
 本発明は、多層プリント配線板用の接着フィルムに関する。
 近年、電子機器、通信機器等に用いられる多層プリント配線板には、小型化、軽量化及び配線の高密度化だけでなく、演算処理速度の高速化の要求が強まっている。それに伴い、多層プリント配線板の製造方法として、回路基板の配線層上に層間絶縁層を交互に積み上げていくビルドアップ方式の製造技術が注目されている。
 ビルドアップ方式の製造技術において、層間絶縁層と配線層の製造方法としては、層間絶縁層を形成するための樹脂組成物(以下、「層間絶縁層用樹脂組成物」ともいう)と、配線層を形成するための銅箔とを、プレス装置を用いて高温で長時間加圧することによって、層間絶縁層用樹脂組成物を熱硬化し、銅箔を有する層間絶縁層を得た後、必要に応じてドリル法、レーザー法等を用いて層間接続用のビアホールを形成し、次いで、銅箔を必要な部分を残してエッチングによって除去する、所謂「サブトラクティブ法」を用いて配線を形成する方法が、従来一般的であった。
 また、上記のような多層プリント配線板の小型化、軽量化、配線の高密度化等の要求に伴って、層間絶縁層用樹脂組成物と銅箔とを真空ラミネーターを用いて高温で短時間加圧した後、乾燥機等を用いて高温下で層間絶縁層用樹脂組成物を熱硬化し、必要に応じてドリル法、レーザー法等を用いて層間接続用のビアホールを形成し、めっき法によって必要な部分に配線層を形成する所謂「アディティブ法」が注目されるようになっている。
 ビルドアップ方式で使用されている層間絶縁層用樹脂組成物としては、芳香族系エポキシ樹脂と、エポキシ樹脂に対する活性水素を有する硬化剤(例えば、フェノール系硬化剤、アミン系硬化剤、カルボン酸系硬化剤等)とを組み合わせたものが主に用いられてきた。これらの硬化剤を用いて硬化させて得られる硬化物は、物性面のバランスに優れるものの、エポキシ基と硬化剤の活性水素との反応によって、極性の高いヒドロキシ基が発生することにより、吸水率の上昇、比誘電率、誘電正接等の電気特性の低下を招くという問題があった。また、これらの硬化剤を使用した場合、樹脂組成物の保存安定性が損なわれるという問題が生じていた。
 一方、熱硬化性のシアナト基を有するシアネート樹脂が電気特性に優れた硬化物を与えることが知られている。しかしながら、シアナト基が熱硬化によってS-トリアジン環を形成する反応は、例えば、230℃で120分以上という高温で比較的長時間の硬化を必要とするため、前述のビルドアップ方式で作製する多層プリント配線板用の層間絶縁層用樹脂組成物としては不適であった。
 シアネート樹脂の硬化温度を下げる方法としては、シアネート樹脂とエポキシ樹脂とを併用し、硬化触媒を使用して硬化させる方法が知られている(例えば、特許文献1及び2参照)。
 また、ビルドアップ層には、加工寸法安定性、半導体実装後の反り量低減の需要から、低熱膨張係数化(低CTE化)が求められており、低CTE化に向けた取り組みが行われている(例えば、特許文献3~5参照)。最も主流な方法として、シリカフィラーを高充填化(例えば、ビルドアップ層中の40質量%以上をシリカフィラーとする)することによって、ビルドアップ層の低CTE化を図っているものが多い。
特開2013-40298号公報 特開2010-90237号公報 特表2006-527920号公報 特開2007-87982号公報 特開2009-280758号公報
[1]ビルドアップ層の低CTE化を図るためにシリカフィラーを高充填化させると、ビルドアップ材料によって、内層回路の配線パターンの凹凸を埋め込むことが難しくなる傾向にある。また、スルーホールのような内層回路を、ビルドアップ材料によって凹凸が小さくなるように埋め込むことが要求されている。ビルドアップ材料の低CTE化を図るためにシリカフィラーを高充填化すると、これらの要求を満たすことが難しくなる傾向にある。
 第1の発明は、このような課題を解決するためになされたものであり、シリカフィラーを高充填化しても凹凸の埋め込み性に優れる多層プリント配線板用の接着フィルムを提供することを目的とする。
[2]上記のとおり、シアネート樹脂とエポキシ樹脂とを併用することで、硬化温度の低減を図ることができる一方、樹脂組成物としての保存安定性は低下する傾向にある。保存安定性の低下に伴い、該樹脂組成物を層間絶縁層用樹脂フィルムとして保管又は使用する際に、フィルムの割れが発生する等の取り扱い性の問題が生じる場合がある。特に、低CTE化及び電気特性の向上を目的として無機充填材を高充填する場合、フィルムの割れはより一層発生し易くなることから、層間絶縁層用樹脂フィルムとしての保存安定性及び取り扱い性の向上が望まれている。
 第2の発明は、このような課題を解決するためになされたものであり、優れた電気特性及び耐熱性を有する層間絶縁層が得られ、保存安定性及び取り扱い性に優れる層間絶縁層用樹脂フィルム、該層間絶縁層用樹脂フィルムを用いた多層樹脂フィルム及び多層プリント配線板を提供することを課題とする。
[1]本発明者らは、前記第1の課題を解決するために鋭意研究を重ねた結果、特定のノボラック型フェノール樹脂と、特定のエポキシ樹脂と、特定の無機充填材とを含む樹脂組成物を用いることにより、前記第1の課題を解決できることを見出し、本発明を完成させるに至った。すなわち、第1の発明は次の接着フィルムを提供する。
 (a)重量平均分子量(Mw)と数平均分子量(Mn)との分散比(Mw/Mn)が、1.05~1.8であるノボラック型フェノール樹脂と、(b)下記一般式(I)で表されるエポキシ樹脂と、(c)無機充填材と、を含む樹脂組成物を、支持体フィルム上に層形成してなる樹脂組成物層を有し、該樹脂組成物層中の(c)無機充填材の平均粒径が0.1μm以上であり、(c)無機充填材の含有量が、樹脂固形分のうち20~95質量%である、多層プリント配線板用の接着フィルム。
Figure JPOXMLDOC01-appb-C000002

(式中、pは、1~5の整数を示す。)
[2]本発明者らは、前記第2の課題を解決するために鋭意研究を重ねた結果、下記の発明により上記課題を解決できることを見出した。
 すなわち、第2の発明は、次の(1)~(18)を提供する。
(1)(A)エポキシ樹脂、(B)シアネート樹脂、(C)無機充填材及び(D)単官能フェノール化合物を含有する熱硬化性樹脂組成物を用いて形成される層間絶縁層用樹脂フィルムであり、(C)無機充填材の含有量が、前記熱硬化性樹脂組成物の固形分100質量部に対して、50~85質量部である、層間絶縁層用樹脂フィルム。
(2)前記熱硬化性樹脂組成物中における(D)単官能フェノール化合物の含有量が、(B)シアネート樹脂100質量部に対して、0.5~35質量部である、上記(1)に記載の層間絶縁層用樹脂フィルム。
(3)(C)無機充填材の体積平均粒径が、0.01~5μmである、上記(1)又は(2)に記載の層間絶縁層用樹脂フィルム。
(4)前記熱硬化性樹脂組成物が、さらに、(E)フェノキシ樹脂を含有する、上記(1)~(3)のいずれかに記載の層間絶縁層用樹脂フィルム。
(5)(E)フェノキシ樹脂が、脂環式構造を含有する、上記(4)に記載の層間絶縁層用樹脂フィルム。
(6)前記熱硬化性樹脂組成物中における(E)フェノキシ樹脂の含有量が、前記熱硬化性樹脂組成物の固形分100質量部に対して、0.2~10質量部である、上記(4)又は(5)に記載の層間絶縁層用樹脂フィルム。
(7)前記熱硬化性樹脂組成物が、さらに、(F)活性エステル硬化剤を含有する、上記(1)~(6)のいずれかに記載の層間絶縁層用樹脂フィルム。
(8)前記熱硬化性樹脂組成物中における(F)活性エステル硬化剤由来の活性エステル基と、(A)エポキシ樹脂由来のエポキシ基との当量比(活性エステル基/エポキシ基)が、0.1~0.7である、上記(7)に記載の層間絶縁層用樹脂フィルム。
(9)上記(1)~(8)のいずれかに記載の層間絶縁層用樹脂フィルムからなる層間絶縁層用樹脂組成物層と、接着補助層と、を含有する、多層樹脂フィルム。
(10)前記接着補助層が、接着補助層用樹脂組成物を用いて形成されたものである、上記(9)に記載の多層樹脂フィルム。
(11)前記接着補助層用樹脂組成物が、(H)シアネート樹脂を含有する、上記(10)に記載の多層樹脂フィルム。
(12)前記接着補助層用樹脂組成物が、さらに、(J)エポキシ樹脂を含有する、上記(10)又は(11)に記載の多層樹脂フィルム。
(13)前記接着補助層用樹脂組成物が、さらに、(K)ポリアミド樹脂、ポリイミド樹脂及びポリベンゾオキサゾール樹脂からなる群から選ばれる少なくとも1種を含有する、上記(10)~(12)のいずれかに記載の多層樹脂フィルム。
(14)前記接着補助層用樹脂組成物が、前記(K)成分として、ポリアミド樹脂を含有し、該ポリアミド樹脂がフェノール性水酸基を含有する、上記(13)に記載の多層樹脂フィルム。
(15)前記接着補助層用樹脂組成物が、さらに、(L)比表面積が20~500m/gである無機充填材を含有する、上記(10)~(14)のいずれかに記載の多層樹脂フィルム。
(16)(L)比表面積が20~500m/gである無機充填材の含有量が、接着補助層用樹脂組成物の固形分100質量部に対して、3~40質量部である、上記(15)に記載の多層樹脂フィルム。
(17)上記(1)~(8)のいずれかに記載の層間絶縁層用樹脂フィルム及び上記(9)~(16)のいずれかに記載の多層樹脂フィルムからなる群から選ばれる1種以上を用いて得られる、多層プリント配線板。
(18)上記(17)に記載の多層プリント配線板に半導体素子が搭載されてなる半導体パッケージ。
[1]第1の発明によれば、シリカフィラーを高充填化しても凹凸の埋め込み性に優れた多層プリント配線板用の接着フィルムを提供することができる。
[2]第2の発明によれば、優れた電気特性及び耐熱性を有する層間絶縁層が得られ、保存安定性及び取り扱い性に優れる層間絶縁層用樹脂フィルム、該層間絶縁層用樹脂フィルムを用いた多層樹脂フィルム及び多層プリント配線板を提供することができる。
[1]第1の発明
 本発明の多層プリント配線板用の接着フィルムは、(a)重量平均分子量(Mw)と数平均分子量(Mn)との分散比(Mw/Mn)が、1.05~1.8であるノボラック型フェノール樹脂(以下、単に「(a)ノボラック型フェノール樹脂」ともいう)と、(b)前記一般式(I)で表されるエポキシ樹脂(以下、単に「(A)エポキシ樹脂」ともいう)と、(c)無機充填材と、を含む樹脂組成物(以下、「接着フィルム用樹脂組成物」ともいう)を、支持体フィルム上に層形成してなる樹脂組成物層を有し、該樹脂組成物層中の(c)無機充填材の平均粒径が0.1μm以上であり、(c)無機充填材の含有量が、樹脂固形分のうち20~95質量%である、多層プリント配線板用の接着フィルムである。
[接着フィルム用樹脂組成物]
 接着フィルム用樹脂組成物は、(a)ノボラック型フェノール樹脂と、(A)エポキシ樹脂と、(c)無機充填材とを含むものである。以下、これらの各成分について説明する。
<(a)ノボラック型フェノール樹脂>
 (a)ノボラック型フェノール樹脂は、エポキシ樹脂の硬化剤として用いられるものであり、重量平均分子量(Mw)と数平均分子量(Mn)との分散比(Mw/Mn)が、1.05~1.8の範囲のものである。
 このような(a)ノボラック型フェノール樹脂は、例えば、特許第4283773号公報に記載の製造方法により製造することができる。
 すなわち、原料としてフェノール化合物及びアルデヒド化合物、酸触媒としてリン酸化合物、反応補助溶媒として非反応性の含酸素有機溶剤を用い、これらから形成される二層分離状態を、例えば、機械的攪拌、超音波等によりかき混ぜ混合して、二層(有機相と水相)が交じり合った白濁状の不均一反応系(相分離反応)として、フェノール化合物とアルデヒド化合物との反応を進め、縮合物(樹脂)を合成することができる。
 次に、例えば、非水溶性有機溶剤(例えば、メチルエチルケトン、メチルイソブチルケトン等)を添加混合して前記の縮合物を溶解し、かき混ぜ混合を止めて静置し、有機相(有機溶剤相)と水相(リン酸水溶液相)とに分離させ、水相を除去して回収を図る一方、有機相については湯水洗及び/又は中和した後、有機溶剤を蒸留回収することによって(a)ノボラック型フェノール樹脂を製造することができる。
 上記のノボラック型フェノール樹脂の製造方法は、相分離反応を利用しているため、攪拌効率は極めて重要であり、反応系中の両相を微細化して界面の表面積をできる限り増加させることが反応効率の面から望ましく、これによりフェノール化合物の樹脂への転化が促進される。
 原料として用いられるフェノール化合物としては、例えば、フェノール、オルソクレゾール、メタクレゾール、パラクレゾール、キシレノール、ビスフェノール化合物、オルソ位に炭素数3以上、好ましくは炭素数3~10の炭化水素基を有するオルソ置換フェノール化合物、パラ位に炭素数3以上、好ましくは炭素数3~18の炭化水素基を有するパラ置換フェノール化合物等が挙げられる。これらは単独で又は2種以上を混合して使用してもよい。
 ここで、ビスフェノール化合物としては、例えば、ビスフェノールA、ビスフェノールF、ビス(2-メチルフェノール)A、ビス(2-メチルフェノール)F、ビスフェノールS、ビスフェノールE、ビスフェノールZ等が挙げられる。
 オルソ置換フェノール化合物としては、例えば、2-プロピルフェノール、2-イソプロピルフェノール、2-sec-ブチルフェノール、2-tert-ブチルフェノール、2-フェニルフェノール、2-シクロヘキシルフェノール、2-ノニルフェノール、2-ナフチルフェノール等が挙げられる。
 パラ置換フェノール化合物としては、例えば、4-プロピルフェノール、4-イソプロピルフェノール、4-sec-ブチルフェノール、4-tert-ブチルフェノール、4-フェニルフェノール、4-シクロヘキシルフェノール、4-ノニルフェノール、4-ナフチルフェノール、4-ドデシルフェノール、4-オクタデシルフェノール等が挙げられる。
 原料として用いられるアルデヒド化合物としては、例えば、ホルムアルデヒド、ホルマリン、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、パラアルデヒド、プロピオンアルデヒド等が挙げられる。これらの中でも、反応速度の観点から、パラホルムアルデヒドが好ましい。これらは単独で又は2種以上を混合して使用してもよい。
 アルデヒド化合物(F)とフェノール化合物(P)との配合モル比(F/P)は、好ましくは0.33以上、より好ましくは0.40~1.0、さらに好ましくは0.50~0.90である。配合モル比(F/P)を前記範囲内とすることにより、優れた収率を得ることができる。
 酸触媒として用いるリン酸化合物は、水の存在下、フェノール化合物との間で相分離反応の場を形成する重要な役割を果たすものである。リン酸化合物としては、例えば、89質量%リン酸、75質量%リン酸等の水溶液タイプを用いることができる。また、必要に応じて、例えば、ポリリン酸、無水リン酸等を用いてもよい。
 リン酸化合物の含有量は、相分離効果を制御する観点から、例えば、フェノール化合物100質量部に対して、5質量部以上、好ましくは25質量部以上、より好ましくは50~100質量部である。なお、70質量部以上のリン酸化合物を使用する場合には、反応系への分割投入により、反応初期の発熱を抑えて安全性を確保することが好ましい。
 反応補助溶媒としての非反応性含酸素有機溶剤は、相分離反応の促進に極めて重要な役割を果たすものである。反応補助溶媒としては、アルコール化合物、多価アルコール系エーテル、環状エーテル化合物、多価アルコール系エステル、ケトン化合物、スルホキシド化合物からなる群から選ばれる少なくとも一種の化合物を用いることが好ましい。
 アルコール化合物としては、例えば、メタノール、エタノール、プロパノール等の一価アルコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、エチレングリコール、プロピレングリコール、トリメチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、ポリエチレングリコール等の二価アルコール、グリセリン等の三価アルコールなどが挙げられる。
 多価アルコール系エーテルとしては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノペンチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールエチルメチルエーテル、エチレングリコールグリコールエーテル等が挙げられる。
 環状エーテル化合物としては、例えば、1,3-ジオキサン、1,4-ジオキサン等が挙げられ、多価アルコール系エステルとしては、例えば、エチレングリコールアセテート等のグリコールエステル化合物などが挙げられる。ケトン化合物としては、例えば、アセトン、メチルエチルケトン(以下、「MEK」ともいう)、メチルイソブチルケトン等が挙げられ、スルホキシド化合物としては、例えば、ジメチルスルホキシド、ジエチルスルホキシド等が挙げられる。
 これらの中でも、エチレングリコールモノメチルエーテル、ポリエチレングリコール、1,4-ジオキサンが好ましい。
 反応補助溶媒は、上記の例示に限定されず、上記の特質を有し、かつ反応時に液状を呈するものであれば、固体であってもよく、それぞれ単独で又は2種以上を混合して使用してもよい。
 反応補助溶媒の配合量としては、特に限定されないが、例えば、フェノール化合物100質量部に対して、5質量部以上、好ましくは10~200質量部である。
 前記不均一反応工程中に、さらに、界面活性剤を用いることによって、相分離反応を促進し、反応時間を短縮することが可能となり、収率向上にも寄与できる。
 界面活性剤としては、例えば、石鹸、アルファオレフィンスルホン酸塩、アルキルベンゼンスルホン酸及びその塩、アルキル硫酸エステル塩、アルキルエーテル硫酸エステル塩、フェニルエーテルエステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、エーテルスルホン酸塩、エーテルカルボン酸塩等のアニオン系界面活性剤;ポリオキシエチレンアルキルフェニルエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレンスチレン化フェノールエーテル、ポリオキシエチレンアルキルアミノエーテル、ポリエチレングリコール脂肪族エステル、脂肪族モノグリセライド、ソルビタン脂肪族エステル、ペンタエリストール脂肪族エステル、ポリオキシエチレンポリプロピレングリコール、脂肪族アルキロールアマイド等のノニオン系界面活性剤;モノアルキルアンモニウムクロライド、ジアルキルアンモニウムクロライド、アミン酸塩化合物等のカチオン系界面活性剤などが挙げられる。
 界面活性剤の配合量は、特に限定されないが、例えば、フェノール化合物100質量部に対して、0.5質量部以上、好ましくは1~10質量部である。
 反応系中の水の量は相分離効果、生産効率に影響を与えるが、一般的には質量基準で、40質量%以下である。水の量を40質量%以下とすることにより、生産効率を良好に保つことができる。
 フェノール化合物とアルデヒド化合物との反応温度は、フェノール化合物の種類、反応条件等によって異なり、特に限定されないが、一般的には40℃以上、好ましくは80℃~還流温度、より好ましくは還流温度である。反応温度が40℃以上であると、十分な反応速度が得られる。反応時間は、反応温度、リン酸の配合量、反応系中の含水量等によって異なるが、一般的には1~10時間程度である。
 また、反応環境としては、通常は常圧であるが、本発明の特長である不均一反応を維持する観点からは、加圧下又は減圧下で反応を行ってもよい。例えば、0.03~1.50MPaの加圧下においては、反応速度を上げることができ、さらに、反応補助溶媒としてメタノール等の低沸点溶剤の使用が可能となる。
 前記(a)ノボラック型フェノール樹脂の製造方法により、重量平均分子量(Mw)と数平均分子量(Mn)との分散比(Mw/Mn)が、1.05~1.8であるノボラック型フェノール樹脂を製造することができる。
 フェノール化合物の種類によって異なるものの、アルデヒド化合物(F)とフェノール化合物(P)の配合モル比(F/P)の範囲によって、例えば、以下のような(a)ノボラック型フェノール樹脂が得られる。
 配合モル比(F/P)が0.33以上0.80未満の範囲では、ゲルパーミエーションクロマトグラフィー(GPC)の面積法による測定法で、フェノール化合物のモノマー成分の含有量が、例えば、3質量%以下、好ましくは1質量%以下であり、フェノール化合物のダイマー成分の含有量が、例えば、5~95質量%、好ましくは10~95質量%であり、さらにGPC測定による重量平均分子量(Mw)と数平均分子量(Mn)との分散比(Mw/Mn)が、1.05~1.8、好ましくは1.1~1.7であるノボラック型フェノール樹脂を高収率で製造することができる。
 (a)ノボラック型フェノール樹脂としては、市販品を使用することができ、例えば、「PAPS-PN2」(旭有機材工業株式会社製、商品名)、「PAPS-PN3」(旭有機材工業株式会社製、商品名)等が挙げられる。
 接着フィルム用樹脂組成物は、本発明の効果を阻害しない範囲において、(a)ノボラック型フェノール樹脂以外のエポキシ樹脂硬化剤(以下、単に「エポキシ樹脂硬化剤」ともいう)を併用してもよい。
 エポキシ樹脂硬化剤としては、例えば、(a)ノボラック型フェノール樹脂以外の各種フェノール樹脂化合物、酸無水物化合物、アミン化合物、ヒドラジット化合物等が挙げられる。フェノール樹脂化合物としては、例えば、(a)ノボラック型フェノール樹脂以外のノボラック型フェノール樹脂、レゾール型フェノール樹脂等が挙げられ、酸無水物化合物としては、例えば、無水フタル酸、ベンゾフェノンテトラカルボン酸二無水物、無水メチルハイミック酸等が挙げられる。また、アミン化合物としては、例えば、ジシアンジアミド、ジアミノジフェニルメタン、グアニル尿素等が挙げられる。
 これらのエポキシ樹脂硬化剤の中でも、信頼性を向上させる観点から、(a)ノボラック型フェノール樹脂以外のノボラック型フェノール樹脂が好ましい。
 また、金属箔の引き剥がし強さ及び化学粗化後の無電解めっきの引き剥がし強さが向上する観点からは、トリアジン環含有ノボラック型フェノール樹脂及びジシアンジアミドが好ましい。
 (a)ノボラック型フェノール樹脂以外のノボラック型フェノール樹脂は、市販品を用いてよく、例えば、「TD2090」(DIC株式会社製、商品名)等のフェノールノボラック樹脂、「KA-1165」(DIC株式会社製、商品名)等のクレゾールノボラック樹脂などが挙げられる。また、トリアジン環含有ノボラック型フェノール樹脂の市販品としては、例えば、「フェノライトLA-1356」(DIC株式会社製、商品名)、「フェノライトLA7050シリーズ」(DIC株式会社製、商品名)等が挙げられ、トリアジン含有クレゾールノボラック樹脂の市販品としては、例えば、「フェノライトLA-3018」(商品名、DIC株式会社製)等が挙げられる。
<(A)エポキシ樹脂>
 (A)エポキシ樹脂は、下記一般式(I)で表されるエポキシ樹脂である。
Figure JPOXMLDOC01-appb-C000003
 (式中、pは、1~5の整数を示す。)
 (A)エポキシ樹脂としては、市販品を用いてもよい。市販品の(A)エポキシ樹脂としては、例えば、「NC-3000」(式(1)におけるpが1.7であるエポキシ樹脂)、「NC-3000-H」(式(1)におけるpが2.8であるエポキシ樹脂)(いずれも日本化薬株式会社製、商品名)等が挙げられる。
 接着フィルム用樹脂組成物は、本発明の効果を阻害しない範囲において、(A)エポキシ樹脂以外のエポキシ樹脂、フェノキシ樹脂等の高分子タイプのエポキシ樹脂などを含んでいてもよい。
<硬化促進剤>
 接着フィルム用樹脂組成物は、(a)ノボラック型フェノール樹脂と(A)エポキシ樹脂との反応を速める観点から、硬化促進剤を含んでいてもよい。硬化促進剤としては、例えば、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート等のイミダゾール化合物;トリフェニルホスフィン等の有機リン化合物;ホスホニウムボレート等のオニウム塩;1,8-ジアザビシクロウンデセン等のアミン類;3-(3,4-ジクロロフェニル)-1,1-ジメチルウレアなどが挙げられる。これらは単独で又は2種以上を混合して使用してもよい。
<(c)無機充填材>
 接着フィルム用樹脂組成物は、平均粒径が0.1μm以上の(c)無機充填材を含む。
 (c)無機充填材としては、例えば、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウム等が挙げられる。これらは単独で又は2種以上を混合して使用してもよい。これらの中でも、接着フィルムを硬化して形成される層間絶縁層の熱膨張係数を下げる観点から、シリカであることが好ましい。
 (c)無機充填材の形状は、特に限定されないが、内層回路に形成されたスルーホール及び回路パターンの凹凸を埋め込み易くする観点から、球形であることが好ましい。
 (c)無機充填材の平均粒径は0.1μm以上であり、優れた埋め込み性を得る観点から、0.2μm以上が好ましく、0.3μm以上がより好ましい。
 平均粒径が0.1μm未満の無機充填材の含有量は、埋め込み性の観点から、固形分で、3vol%以下が好ましく、1vol%以下がより好ましく、平均粒径が0.1μm未満の無機充填材を含有しないことがさらに好ましい。なお、(c)無機充填材は、1種を単独で用いてもよく、異なる平均粒径のものを混合して使用してもよい。
 (c)無機充填材としては、市販品を用いてもよい。市販品の(c)無機充填材としては、例えば、球形のシリカである「SO-C1」(平均粒径:0.25μm)、「SO-C2」(平均粒径:0.5μm)、「SO-C3」(平均粒径:0.9μm)、「SO-C5」(平均粒径:1.6μm)、「SO-C6」(平均粒径:2.2μm)(すべて株式会社アドマテックス製)等が挙げられる。
 (c)無機充填材は表面処理を施したものであってもよい。例えば、(c)無機充填材としてシリカを使用する場合、表面処理として、シランカップリング剤処理を施していてもよい。シランカップリング剤としては、例えば、アミノシランカップリング剤、ビニルシランカップリング剤、エポキシシランカップリング剤等が挙げられる。これらの中でも、アミノシランカップリング剤で表面処理を施したシリカが好ましい。
 接着フィルム用樹脂組成物中における(c)無機充填材の量は次のように定義する。まず、支持体フィルム上に層形成する樹脂組成物を、200℃で30分間乾燥し、樹脂組成物に含まれる溶剤を除去して、溶剤を除去した後の重さ(固形分)を測定する。この固形分中に含まれる(c)無機充填材の量を、樹脂固形分のうちの(c)無機充填材の量と定義する。
 また、(c)無機充填材の測定方法として、予め配合する(c)無機充填材の固形分の量を計算しておくと、固形分中の割合を容易に求めることができる。溶剤に分散した(c)無機充填材(以下、「(c)無機充填材分散液」ともいう)を使用する場合における計算例を以下に示す。
 (c)無機充填材分散液中における(c)無機充填材の固形分は、200℃で30分間乾燥して計算した結果、70質量%であった。この(c)無機充填材分散液40gを用いて樹脂組成物を配合した結果、得られた樹脂組成物の総量は100gであった。100gの樹脂組成物を200℃で30分乾燥し、乾燥後の固形分の重量を測定した結果60gであった。固形分中に含まれる(c)無機充填材の量は、40g×70質量%=28gであるため、樹脂固形分のうちの(c)無機充填材の量は、28/60=47質量%(46.6質量%)と求められる。
 接着フィルム用樹脂組成物中における(c)無機充填材の量は、熱硬化後の層間絶縁層の熱膨張係数を低くする観点からは、多いほど好ましいが、形成する内層回路基板の配線パターンの凹凸及びスルーホールを埋め込む観点から、適切な無機充填材の量がある。このような観点から、(c)無機充填材の含有量は、樹脂固形分のうち20~95質量%であり、30~90質量%が好ましく、50~90質量%がより好ましい。(c)無機充填材の含有量が20質量%以上であると、熱膨張係数を低くすることができ、95質量%以下であると、埋め込み性を良好に保つことができる。
<難燃剤>
 接着フィルム用樹脂組成物は、さらに、難燃剤を含んでいてもよい。
 難燃剤としては、特に限定されないが、例えば、無機難燃剤、樹脂難燃剤等が挙げられる。
 無機難燃剤としては、例えば、(c)無機充填材として例示される水酸化アルミニウム、水酸化マグネシウム等が挙げられる。
 樹脂難燃剤としては、ハロゲン系樹脂であっても、非ハロゲン系樹脂であってもよいが、環境負荷への配慮から、非ハロゲン系樹脂を用いることが好ましい。樹脂難燃剤は、充填材として配合するものであってもよく、熱硬化性樹脂と反応する官能基を有するものであってもよい。
 樹脂難燃剤は、市販品を使用することができる。充填材として配合する樹脂難燃剤の市販品としては、例えば、芳香族リン酸エステル系難燃剤である「PX-200」(大八化学工業株式会社製、商品名)、ポリリン酸塩化合物である「Exolit OP 930」(クラリアントジャパン株式会社製、商品名)等が挙げられる。
 熱硬化性樹脂と反応する官能基を有する樹脂難燃剤の市販品としては、エポキシ系リン含有難燃剤、フェノール系リン含有難燃剤等が挙げられる。エポキシ系リン含有難燃剤としては、例えば、「FX-305」(新日鐵住金化学株式会社製、商品名)等が挙げられ、フェノール系リン含有難燃剤としては、例えば、「HCA-HQ」(三光株式会社製、商品名)、「XZ92741」(ダウ・ケミカル社製、商品名)等が挙げられる。これらは単独で又は2種以上を混合して使用してもよい。
<溶剤>
 接着フィルム用樹脂組成物は、層形成を効率的に行う観点から、溶剤を含むことが好ましい。溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン化合物;酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル化合物;セロソルブ、メチルカルビトール、ブチルカルビトール等のカルビトール化合物;トルエン、キシレン等の芳香族炭化水素化合物;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルなどを挙げることができる。これらは単独で又は2種以上を混合して使用してもよい。
<残留溶剤量>
 本発明の接着フィルム中における残留溶剤量は、取り扱う材料によって異なるが、1~20質量%が好ましく、2~15質量%がより好ましく、2~10質量%がさらに好ましい。残留溶剤量が1質量%以上であると、接着フィルムの取り扱い性が向上し、例えば、カッターで切断をする際の粉落ちの発生、割れの発生等を抑制することができる。一方、20質量%以下であると、ベトつきを抑制し、フィルムの巻き取り及び巻きだしが容易になる。また、巻きだしを可能にするため、乾燥後に接着フィルムのワニス塗布面に保護フィルムを設けることが多いが、残留溶剤量が20質量%以下であると、保護フィルムと本発明の接着フィルムとの間の剥離が容易になる。
 また、残留溶剤は、多層プリント配線板を作製する工程で、乾燥及び熱硬化によって除去されるものであるため、環境負荷の観点から少ないほうが好ましく、乾燥及び熱硬化の前後の膜厚変化を小さくするためにも少ないほうが好ましい。
 なお、本発明の接着フィルムの製造にあたっては、目標とする残留溶剤量になるように、乾燥条件を決定することが好ましい。乾燥条件は、前述の樹脂組成物中に含まれる溶剤の種類、溶剤の量等によって異なるため、それぞれの塗工装置によって、予め条件出しを行った後、決定することが好ましい。
 ここで、本発明における残留溶剤量とは、支持体フィルムの樹脂組成物層中に含まれる、溶剤の割合(質量%)であり、次のように定義できる。
 まず、支持体フィルムの重量(W)を測定し、その上に樹脂組成物層を形成した後の重量(W)を測定する。その後、支持体フィルムとその上に形成した樹脂組成物層を200℃の乾燥機の中に10分間放置し、乾燥後の重量(W)を測定する。得られた重量(W)~(W)を用いて下記式により計算することができる。
 溶剤の割合(質量%)=(1-((W)-(W))/((W)-(W)))×100
<その他の成分>
 本発明の接着フィルムは、本発明の効果を阻害しない範囲で、その他の成分を含んでいてもよい。その他の成分としては、例えば、オルベン、ベントン等の増粘剤;チアゾール系、トリアゾール系等の紫外線吸収剤;シランカップリング剤等の密着付与剤;フタロシアニンブルー、フタロシアニングリーン、アイオジングリーン、ジスアゾイエロー、カーボンブラック等の着色剤;上記以外の任意の樹脂成分などが挙げられる。
[支持体フィルム]
 本発明における支持体フィルムとは、本発明の接着フィルムを製造する際の支持体となるものであり、多層プリント配線板を製造する際に、通常、最終的に剥離又は除去されるものである。
 支持体フィルムとしては、特に限定されないが、例えば、有機樹脂フィルム、金属箔、離型紙等が挙げられる。
 有機樹脂フィルムの材質としては、ポリエチレン、ポリ塩化ビニル等のポリオレフィン;ポリエチレンテレフタレート(以下、「PET」ともいう)、ポリエチレンナフタレート等のポリエステル;ポリカーボネート、ポリイミドなどが挙げられる。これらの中でも、価格及び取り扱い性の観点から、PETが好ましい。
 金属箔としては、銅箔、アルミニウム箔等が挙げられる。支持体に銅箔を用いる場合には、銅箔をそのまま導体層とし、回路を形成することもできる。この場合、銅箔としては、圧延銅、電解銅箔等を用いることができる。また、銅箔の厚さは、特に限定されないが、例えば、2~36μmの厚さを有するものを使用することができる。厚さの薄い銅箔を用いる場合には、作業性を向上させる観点から、キャリア付き銅箔を使用してもよい。
 これらの支持体フィルム及び後述する保護フィルムには、離型処理、プラズマ処理、コロナ処理等の表面処理が施されていてもよい。離型処理としては、シリコーン樹脂系離型剤、アルキッド樹脂系離型剤、フッ素樹脂系離型剤等による離型処理などが挙げられる。
 支持体フィルムの厚さは、特に限定されないが、取り扱い性の観点から、10~120μmが好ましく、15~80μmがより好ましく、15~70μmがさらに好ましい。
 支持体フィルムは、上述のように単一の成分である必要はなく、複数層(2層以上)の別材料で形成されていてもよい。
 支持体フィルムが2層構造である例を示すと、例えば、1層目の支持体フィルムとして、上記で挙げられた支持体フィルムを用い、2層目として、エポキシ樹脂、エポキシ樹脂の硬化剤、充填材等から形成される層を有するものが挙げられる。2層目に用いられる材料は、本発明の接着フィルムに使用する材料において挙げられた材料も使用できる。
 1層目の支持体フィルムの上に形成される層(2層目以降、2層以上の複数層あってもよい)は、機能を付与することを意図して作製される層であり、例えば、メッキ銅との接着性の向上等を目的として用いることができる。
 2層目の形成方法としては、特に制限されないが、例えば、各材料を溶剤中に溶解及び分散したワニスを、1層目の支持体フィルム上に塗布及び乾燥させる方法が挙げられる。
 支持体フィルムが複数層から形成される場合、1層目の支持体フィルムの厚さは、10~100μmが好ましく、10~60μmがより好ましく、13~50μmがさらに好ましい。
 1層目の支持体フィルムの上に形成される層(2層目以降、2層以上の複数層あってもよい)の厚さは、1~20μmが好ましい。1μm以上であると、意図する機能を果たすことができ、また、20μm以下であると、支持体フィルムとしての経済性に優れる。
 支持体フィルムが複数層で形成されている場合、支持体フィルムを剥離する際には、本発明の接着フィルムと共に多層プリント配線板側に形成して残す層(2層以上でもよい)と、剥離又は除去される層(2層以上でもよい)とに分離されてもよい。
[保護フィルム]
 本発明の接着フィルムは、保護フィルムを有していてもよい。保護フィルムは、接着フィルムの支持体が設けられている面とは反対側の面に設けられるものであり、接着フィルムへの異物等の付着及びキズ付きを防止する目的で使用される。保護フィルムは、本発明の接着フィルムをラミネート、熱プレス等で回路基板等に積層する前に剥離される。
 保護フィルムとしては、特に限定されないが、支持体フィルムと同様の材料を用いることができる。保護フィルムの厚さは、特に限定されないが、例えば、1~40μmの厚さを有するものを使用することができる。
[接着フィルムの製造方法]
 本発明の接着フィルムは、支持体フィルム上に接着フィルム用樹脂組成物を塗布及び乾燥することにより製造することができる。得られた接着フィルムは、ロール状に巻き取って、保存及び貯蔵することができる。より具体的には、例えば、前記有機溶剤に前記各樹脂成分を溶解した後、(c)無機充填材等を混合して接着フィルム用樹脂組成物を調製し、該ワニスを支持体フィルム上に塗布し、加熱、熱風吹きつけ等によって、有機溶剤を乾燥させて、支持体フィルム上に樹脂組成物層を形成することにより製造することができる。
 なお、本発明の接着フィルムにおいて、支持体フィルム上に形成した樹脂組成物層は、乾燥させて得られる未硬化の状態であってもよく、半硬化(Bステージ化)した状態であってもよい。
 支持体フィルムにワニスを塗工する方法としては、特に限定されないが、例えば、コンマコーター、バーコーター、キスコーター、ロールコーター、グラビアコーター、ダイコーター等の公知の塗工装置を用いて塗工する方法を適用することができる。塗工装置は、目標とする膜厚に応じて、適宜選択すればよい。
[2]第2の発明
 次に、第2の発明に係る層間絶縁層用樹脂フィルム、多層樹脂フィルム及び多層プリント配線板について説明する。
[層間絶縁層用樹脂フィルム]
 第2の発明に係る層間絶縁層用樹脂フィルムは、(A)エポキシ樹脂、(B)シアネート樹脂、(C)無機充填材及び(D)単官能フェノール化合物を含有する熱硬化性樹脂組成物(以下、「層間絶縁層用樹脂組成物」ともいう)を用いて形成される層間絶縁層用樹脂フィルムであり、(C)無機充填材の含有量が、前記熱硬化性樹脂組成物の固形分100質量部に対して、50~85質量部である、層間絶縁層用樹脂フィルムである。
 本明細書において、「固形分」とは、溶剤等の揮発する物質を除いた不揮発分のことであり、樹脂組成物を乾燥させた際に、揮発せずに残る成分を示し、室温で液状、水飴状及びワックス状のものも含む。ここで、本明細書において室温とは25℃を示す。
 なお、層間絶縁層用樹脂フィルムは、一般的に、層間絶縁フィルムと称することもある。
<層間絶縁層用樹脂組成物>
 第2の発明に係る層間絶縁層用樹脂フィルムの形成に用いられる層間絶縁層用樹脂組成物は、(A)エポキシ樹脂、(B)シアネート樹脂、(C)無機充填材及び(D)単官能フェノール化合物を含有する。以下、各成分について説明する。
〔(A)エポキシ樹脂〕
 (A)エポキシ樹脂としては、特に限定されないが、例えば、1分子中に2個以上のエポキシ基を有するエポキシ樹脂が好ましく挙げられる。
 このような(A)エポキシ樹脂としては、グリシジルエーテルタイプのエポキシ樹脂、グリシジルアミンタイプのエポキシ樹脂、グリシジルエステルタイプのエポキシ樹脂等が挙げられる。これらの中でも、グリシジルエーテルタイプのエポキシ樹脂が好ましい。
 (A)エポキシ樹脂は、主骨格の違いによっても分類され、上記それぞれのタイプのエポキシ樹脂において、さらに、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフトールアルキルフェノール共重合ノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;スチルベン型エポキシ樹脂;トリアジン骨格含有エポキシ樹脂;フルオレン骨格含有エポキシ樹脂;ナフタレン型エポキシ樹脂;トリフェニルメタン型エポキシ樹脂;ビフェニル型エポキシ樹脂;キシリレン型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂等の脂環式エポキシ樹脂などに分類される。前記アラルキルノボラック型エポキシ樹脂としては、ナフトール骨格を有するアラルキルクレゾール共重合ノボラック型エポキシ樹脂、ビフェニル骨格を有するアラルキルノボラック型エポキシ樹脂等が挙げられる。(A)エポキシ樹脂は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、層間絶縁層用樹脂フィルムの保存安定性及び取り扱い性、並びに得られる層間絶縁層の電気特性及び耐熱性の観点から、ノボラック型エポキシ樹脂が好ましく、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂がより好ましい。また、同様の観点から、クレゾールノボラック型エポキシ樹脂とビスフェノールAノボラック型エポキシ樹脂とを併用することが好ましい。
 クレゾールノボラック型エポキシ樹脂とビスフェノールAノボラック型エポキシ樹脂とを併用する場合、その質量比(クレゾールノボラック型エポキシ樹脂/ビスフェノールAノボラック型エポキシ樹脂)は、層間絶縁層用樹脂フィルムの保存安定性及び取り扱い性、並びに得られる層間絶縁層の電気特性及び耐熱性の観点から、40/60~90/10が好ましく、50/50~80/20がより好ましく、60/40~70/30がさらに好ましい。
 また、(A)エポキシ樹脂は、層間絶縁層用樹脂フィルムの取り扱い性向上の観点から、室温で液状のエポキシ樹脂を含有していてもよい。液状のエポキシ樹脂としては、特には制限されないが、ビスフェノールA型液状エポキシ樹脂等の2官能の液状エポキシ樹脂などが挙げられる。(A)エポキシ樹脂が液状エポキシ樹脂を含有する場合、その含有量は、層間絶縁層用樹脂フィルムの取り扱い性向上の観点から、(A)エポキシ樹脂に対して、好ましくは2~30質量%、より好ましくは4~20質量%、さらに好ましくは6~15質量%である。
 (A)エポキシ樹脂のエポキシ当量は、層間絶縁層用樹脂フィルムの保存安定性及び取り扱い性、並びに得られる層間絶縁層の電気特性及び耐熱性の観点から、120~500g/eqが好ましく、150~350g/eqがより好ましく、180~250g/eqがさらに好ましい。
 ここで、エポキシ当量は、エポキシ基あたりの樹脂の質量(g/eq)であり、JISK 7236(2001年)に規定された方法に従って測定することができる。具体的には、三菱ケミカル株式会社製の自動滴定装置「GT-200型」を用いて、200mlビーカーにエポキシ樹脂2gを秤量し、メチルエチルケトン90mlを滴下し、超音波洗浄器溶解後、氷酢酸10ml及び臭化セチルトリメチルアンモニウム1.5gを添加し、0.1mol/Lの過塩素酸/酢酸溶液で滴定することにより求められる。
 層間絶縁層用樹脂組成物中における(A)エポキシ樹脂の含有量は、層間絶縁層用樹脂フィルムの保存安定性及び取り扱い性、並びに得られる層間絶縁層の電気特性及び耐熱性の観点から、層間絶縁層用樹脂組成物の固形分100質量部に対して、5~50質量部が好ましく、10~35質量部がより好ましく、15~25質量部がさらに好ましい。
〔(B)シアネート樹脂〕
 (B)シアネート樹脂としては、特に限定されないが、例えば、1分子中に2個以上のシアナト基を有するシアネート樹脂が好ましく挙げられる。
 (B)シアネート樹脂としては、2,2-ビス(4-シアナトフェニル)プロパン[ビスフェノールA型シアネート樹脂]、ビス(4-シアナトフェニル)エタン[ビスフェノールE型シアネート樹脂]、ビス(3,5-ジメチル-4-シアナトフェニル)メタン[テトラメチルビスフェノールF型シアネート樹脂]、2,2-ビス(4-シアナトフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン[ヘキサフルオロビスフェノールA型シアネート樹脂]等のビスフェノール型シアネート樹脂;フェノール付加ジシクロペンタジエン重合体のシアネートエステル化合物等のジシクロペンタジエン型シアネート樹脂;フェノールノボラック型シアネートエステル化合物、クレゾールノボラック型シアネートエステル化合物等のノボラック型シアネート樹脂;α,α’-ビス(4-シアナトフェニル)-m-ジイソプロピルベンゼン;これらのシアネート樹脂のプレポリマー(以下、「シアネートプレポリマー」ともいう)などが挙げられる。(B)シアネート樹脂は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、層間絶縁層用樹脂フィルムの保存安定性及び取り扱い性、並びに得られる層間絶縁層の電気特性及び耐熱性の観点から、ビスフェノール型シアネート樹脂、ノボラック型シアネート樹脂、及びこれらのプレポリマーが好ましい。ビスフェノール型シアネート樹脂としては、下記一般式(1)で表されるジシアネート樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000004

(式中、RB1は、ハロゲン原子で置換されていてもよい炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、硫黄原子、下記一般式(1-1)又は下記式(1-2)で表される2価の基を示す。RB2及びRB3は、各々独立に、水素原子、炭素数1~4のアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000005

(式中、RB4は、各々独立に、炭素数1~5のアルキレン基又は炭素数2~5のアルキリデン基を示す。)
Figure JPOXMLDOC01-appb-C000006
 一般式(1)中、RB1が示す炭素数1~5のアルキレン基としては、メチレン基、エチレン基、1,2-ジメチレン基、1,3-トリメチレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基等が挙げられる。
 一般式(1)中、RB1が示す炭素数2~5のアルキリデン基としては、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等が挙げられる。
 前記炭素数1~5のアルキレン基を置換するハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 一般式(1-1)中、RB4が示す炭素数1~5のアルキレン基及び炭素数2~5のアルキリデン基は、一般式(1)中のRB1の場合と同様に説明される。
 これらのRB1が示す基の中でも、メチレン基、プロピリデン基が好ましく、プロピリデン基がより好ましい。
 一般式(1)中、RB2及びRB3が示す炭素数1~4のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基等が挙げられる。RB2及びRB3としては、水素原子であることが好ましい。
 前記シアネートプレポリマーとは、シアネート樹脂同士が環化反応によりトリアジン環を形成したポリマーをいい、主にシアネートエステル化合物の3、5、7、9、11量体等が挙げられる。このシアネートプレポリマーにおいて、シアナト基の転化率は、有機溶剤に対する良好な溶解性を得る観点から、20~70質量%が好ましく、30~65質量%がより好ましい。
 シアネートプレポリマーとしては、層間絶縁層用樹脂フィルムの保存安定性及び取り扱い性、並びに得られる層間絶縁層の電気特性及び耐熱性の観点から、1分子中に2個のシアナト基を有するジシアネート化合物のプレポリマーが好ましく、前記一般式(1)で表されるジシアネート樹脂のプレポリマーがより好ましく、ビスフェノールA型シアネート樹脂の少なくとも一部がトリアジン化されて3量体となった下記式(2)で表されるプレポリマーがさらに好ましい。
Figure JPOXMLDOC01-appb-C000007
 シアネートプレポリマーの重量平均分子量(Mw)は、有機溶剤に対する溶解性及び作業性の観点から、500~4,500が好ましく、600~4,000がより好ましく、1,000~4,000がさらに好ましく、1,500~4,000が特に好ましい。シアネートプレポリマーの重量平均分子量が500以上であれば、シアネートプレポリマーの結晶化が抑制され、有機溶剤に対する溶解性が良好になる傾向にあり、また、4,500以下であれば、粘度の増大が抑制され、作業性に優れる傾向にある。
 本発明における重量平均分子量及び後述する数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法(ポリスチレン換算)で測定した値であり、実施例に記載の方法により測定することができる。
 シアネートプレポリマーは、後述する(D)単官能フェノール化合物の存在下でシアネート樹脂をプレポリマー化したものであってもよい。これにより、得られる硬化物中の未反応のシアナト基を低減することができ、耐湿性及び電気特性が優れる傾向にある。
 シアネート樹脂と(D)単官能フェノール化合物との反応により、-O-C(=NH)-O-で表される基を有する化合物(つまりイミノカーボネート)が形成され、さらに該イミノカーボネート同士が反応するか、又は該イミノカーボネートとジシアネート化合物とが反応することにより、(D)単官能フェノール化合物が脱離する一方で、トリアジン環を有するシアネートプレポリマーが得られる。前記反応は、例えば、シアネート樹脂と(D)単官能フェノール化合物とを、トルエン等の溶剤の存在下で混合して溶解し、80~120℃に保持しながら、必要に応じてナフテン酸亜鉛等の反応促進剤を添加して行うことができる。
 シアネートプレポリマーの製造に(D)単官能フェノール化合物を用いる場合、(D)単官能フェノール化合物の使用量は、(D)単官能フェノール化合物が有するフェノール性水酸基と、シアネートプレポリマーの原料として用いるシアネート樹脂が有するシアナト基との当量比(水酸基/シアナト基)が、0.01~0.30になる量が好ましく、0.01~0.20になる量がより好ましく、0.01~0.15になる量がさらに好ましい。(D)単官能フェノール化合物の使用量が前記範囲内であると、特に高周波数帯域での誘電正接が十分低いものが得られる傾向にあることに加えて、良好な耐湿性が得られる傾向にある。
 (B)シアネート樹脂としては、市販品を用いてもよい。(B)シアネート樹脂の市販品としては、ビスフェノールA型シアネート樹脂である「プリマセット(Primaset)BADCy」(ロンザ社製)及び「アロシー(Arocy)B-10」(ハンツマン社製)、ビスフェノールE型シアネート樹脂である「アロシー(Arocy)L10」(ハンツマン社製)及び「プリマセット(Primaset)LECy」(ロンザ社製)、テトラメチルビスフェノールF型シアネート樹脂である「プリマセット(Primaset)METHYLCy」(ロンザ社製)、フェノールノボラック型シアネート樹脂である「プリマセット(Primaset)PT30」(ロンザ社製)等が挙げられる。
 また、シアネート樹脂のプレポリマーの市販品としては、ビスフェノールA型シアネート樹脂をプレポリマー化した「プリマセット(Primaset)BA200」、「プリマセット(Primaset)BA230S」、「プリマセット(Primaset)BA3000S」(以上、ロンザ社製)等が挙げられる。
 上記以外のシアネート樹脂としては、「アロシー(Arocy)XU-371」(ハンツマン社製)、ジシクロペンタジエン構造を含有するシアネート樹脂である「アロシー(Arocy)XP71787.02L」(ハンツマン社製)、「プリマセット(Primaset)DT-4000」(ロンザ社製)、「プリマセット(Primaset)DT―7000」(ロンザ社製)等が挙げられる。
 層間絶縁層用樹脂組成物中における(B)シアネート樹脂の含有量は、層間絶縁層用樹脂フィルムの保存安定性及び取り扱い性、並びに得られる層間絶縁層の電気特性及び耐熱性の観点から、層間絶縁層用樹脂組成物の固形分100質量部に対して、1~30質量部が好ましく、2~22質量部がより好ましく、3~10質量部がさらに好ましい。
 層間絶縁層用樹脂組成物中における、(A)エポキシ樹脂と(B)シアネート樹脂との質量比[(A)/(B)]は、層間絶縁層用樹脂フィルムの保存安定性及び取り扱い性、並びに得られる層間絶縁層の電気特性及び耐熱性の観点から、1~10が好ましく、2~7がより好ましく、2.5~4がさらに好ましい。質量比[(A)/(B)]が1以上であると、(B)シアネート樹脂の含有量が多くなりすぎず、硬化温度の上昇を抑制できる傾向にあり、また、10以下であると、得られる層間絶縁層中における未反応のエポキシ基の量を低減できる傾向にある。
〔(C)無機充填材〕
 (C)無機充填材としては、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウム等が挙げられる。これらの中でも、層間絶縁層用樹脂フィルムの保存安定性及び取り扱い性、並びに得られる層間絶縁層の電気特性及び耐熱性の観点から、シリカが好ましい。(C)無機充填材は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 (C)無機充填材の体積平均粒径は、良好な回路基板の埋め込み性を得る観点及び絶縁信頼性の観点から、0.01~5μmが好ましく、0.1~2μmがより好ましく、0.2~1μmがさらに好ましい。
 なお、体積平均粒径とは、粒子の全体積を100%として粒径による累積度数分布曲線を求めたとき、体積50%に相当する点の粒径のことであり、レーザー回折散乱法を用いた粒度分布測定装置等で測定することができる。
 (C)無機充填材の形状は、パターン埋め込み性の観点から、球状であることが好ましい。
 (C)無機充填材は、市販品を用いてもよい。市販品の(C)無機充填材としては、球状シリカである「SO-C1」(体積平均粒径:0.25μm)、「SO-C2」(体積平均粒径:0.5μm)、「SO-C3」(体積平均粒径:0.9μm)、「SO-C5」(体積平均粒径:1.6μm)、「SO-C6」(体積平均粒径:2.2μm)(以上、株式会社アドマテックス製)等が挙げられる。
 (C)無機充填材は、耐湿性を向上させる観点から、シランカップリング剤で表面処理されたものであってもよい。シランカップリング剤としては、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、フェニルシラン系カップリング剤、アルキルシラン系カップリング剤、アルケニルシラン系カップリング剤、メルカプトシラン系カップリング剤、イソシアネートシラン系カップリング剤等が挙げられる。これらの中でも、層間絶縁層用樹脂組成物の保存安定性の観点から、アミノシラン系カップリング剤が好ましい。
 シランカップリング剤による表面処理の方式は、配合前の無機充填材に対して乾式又は湿式で表面処理する方式であってもよく、表面未処理の無機充填材を、他の成分に配合して組成物とした後、該組成物にシランカップリング剤を添加する、いわゆるインテグラルブレンド処理方式であってもよい。
 層間絶縁層用樹脂組成物中における(C)無機充填材の含有量は、低熱膨張性、高周波特性及び配線パターンへの埋め込み性の観点から、層間絶縁層用樹脂組成物の固形分100質量部に対して、50~85質量部であり、55~80質量部が好ましく、60~75質量部がより好ましい。(C)無機充填材の含有量が、50質量部以上であると、良好な低熱膨張性及び高周波特性が得られる傾向にあり、85質量部以下であると、良好な配線パターンへの埋め込み性が得られる傾向にある。
〔(D)単官能フェノール化合物〕
 層間絶縁層用樹脂組成物は、(D)単官能フェノール化合物を含有する。本発明の層間絶縁層用樹脂フィルムは、(D)単官能フェノール化合物を含有する層間絶縁層用樹脂組成物を用いて形成することにより、電気特性、耐熱性、保存安定性及び取り扱い性に優れたものとなる。
 (D)単官能フェノール化合物としては、下記一般式(3-1)で表される化合物、下記一般式(3-2)で表される化合物、下記一般式(3-3)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000008

(式中、RD1は、各々独立に、炭素数1~10のアルキル基を示し、m1は、0~5の整数を示す。)
Figure JPOXMLDOC01-appb-C000009

(式中、RD2及びRD3は、各々独立に、水素原子又は炭素数1~5のアルキル基を示し、ArD1は、各々独立に、炭素数6~20のアリール基を示し、m2は、1~5の整数を示す。)
Figure JPOXMLDOC01-appb-C000010

(式中、RD4は、各々独立に、炭素数1~5のアルキレン基を示し、ArD2は、各々独立に、炭素数6~20のアリール基を示し、m3は、1~5の整数を示す。)
 一般式(3-1)中、RD1が示す炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、オクチル基、ノニル基等が挙げられる。これらの中でも、炭素数1~3のアルキル基が好ましく、メチル基がより好ましい。
 一般式(3-1)中、m1は、0~5の整数を示し、1~4の整数が好ましく、2~4の整数がより好ましい。
 一般式(3-2)中、RD2及びRD3が示す炭素数1~5のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。これらの中でも、メチル基が好ましい。
 一般式(3-2)中、ArD1が示す炭素数6~20のアリール基としては、フェニル基、ナフチル基、アントリル基、ビフェニリル基等が挙げられる。これらの中でも、フェニル基が好ましい。
 一般式(3-2)中、m2は、1~5の整数を示し、1~3の整数が好ましく、1又は2の整数がより好ましく、1がさらに好ましい。
 一般式(3-3)中、RD4が示す炭素数1~5のアルキレン基としては、メチレン基、エチレン基、1,2-ジメチレン基、1,3-トリメチレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基等が挙げられる。これらの中でも、メチレン基が好ましい。
 一般式(3-3)中、ArD1が示す炭素数6~20のアリール基としては、フェニル基、ナフチル基、アントリル基、ビフェニリル基等が挙げられる。これらの中でも、フェニル基が好ましい。
 一般式(3-3)中、m3は、1~5の整数を示し、1~3の整数が好ましく、1又は2の整数がより好ましく、1がさらに好ましい。
 一般式(3-1)で表される化合物としては、クレゾール、3-エチルフェノール、p-tert-ブチルフェノール、p-tert-アミルフェノール、p-tert-オクチルフェノール、p-ノニルフェノール、2,3-ジメチルフェノール、3,4-ジメチルフェノール、3,5-ジメチルフェノール、2,3,6-トリメチルフェノール等のアルキル基置換フェノール系化合物などが挙げられる。
 一般式(3-2)で表される化合物としては、p-(α-クミル)フェノール、4-ベンジルフェノール等が挙げられる。
 一般式(3-3)で表される化合物としては、4-(ベンジルオキシ)フェノール、3-(ベンジルオキシ)フェノール、2-(ベンジルオキシ)フェノール等が挙げられる。
 これらの中でも、層間絶縁層用樹脂フィルムの保存安定性及び取り扱い性、並びに得られる層間絶縁層の電気特性及び耐熱性の観点から、2,3,6-トリメチルフェノール、p-(α-クミル)フェノール、4-(ベンジルオキシ)フェノールが好ましい。
 (D)単官能フェノール化合物は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 層間絶縁層用樹脂組成物中における(D)単官能フェノール化合物の含有量は、層間絶縁層用樹脂フィルムの保存安定性及び取り扱い性、並びに得られる層間絶縁層の電気特性及び耐熱性の観点から、(B)シアネート樹脂100質量部に対して、0.5~35質量部が好ましく、1~30質量部がより好ましく、1.5~25質量部がさらに好ましく、2~20質量部が特に好ましく、2~15質量部が極めて好ましく、2~12質量部が最も好ましい。
 なお、(B)シアネート樹脂として、上記のように(D)単官能フェノール化合物を用いて調製したシアネートプレポリマーを含有する場合、該シアネートプレポリマーの原料として用いた(D)単官能フェノール化合物は、上記(D)単官能フェノール化合物の含有量に含めないものとする。
〔(E)フェノキシ樹脂〕
 層間絶縁層用樹脂組成物は、(E)フェノキシ樹脂を含有することが好ましい。
 ここで、「フェノキシ樹脂」とは主鎖が芳香族ジオールと芳香族ジグリシジルエーテルとの重付加構造である高分子の総称であり、本明細書においては、重量平均分子量が、10,000以上のものを指す。なお、主鎖が芳香族ジオールと芳香族ジグリシジルエーテルの重付加構造である高分子がエポキシ基を有する場合、重量平均分子量が10,000以上のものは(E)フェノキシ樹脂と分類し、重量平均分子量が10,000未満のものは(A)エポキシ樹脂と分類する。
 (E)フェノキシ樹脂は、層間絶縁層用樹脂フィルムの取り扱い性を向上させる観点から、脂環式構造を含有することが好ましい。ここで、「脂環式構造」とは、「炭素原子が環状に結合した構造の有機化合物のうち芳香族化合物を除いたもの」を意味する。これらの中でも、環状の飽和炭化水素(シクロアルカン)及び環状の不飽和炭化水素で二重結合を環内に1個含むもの(シクロアルケン)から選ばれる1種以上が好ましい。
 (E)フェノキシ樹脂としては、シクロヘキサン構造を含有するフェノキシ樹脂、トリメチルシクロヘキサン構造を含有するフェノキシ樹脂、テルペン構造を含有するフェノキシ樹脂等が挙げられる。これらの中でも、層間絶縁層用樹脂フィルムの取り扱い性を向上させる観点から、テルペン構造及びトリメチルシクロヘキサン構造から選ばれる1種以上を含有するフェノキシ樹脂が好ましく、トリメチルシクロヘキサン構造を含有するフェノキシ樹脂がより好ましい。
 トリメチルシクロヘキサン構造を含有するフェノキシ樹脂としては、特開2006-176658号公報に開示されている、ビスフェノールTMC(ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン)を原料とするフェノキシ樹脂等が挙げられる。
 テルペン構造を含有するフェノキシ樹脂としては、例えば、特開2006-176658号公報に開示されているフェノキシ樹脂において、原料の2価フェノール化合物として、ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサンの代わりにテルペンジフェノールを使用して合成されるフェノキシ樹脂等が挙げられる。
 (E)フェノキシ樹脂は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 (E)フェノキシ樹脂の重量平均分子量は、10,000~60,000が好ましく、12,000~50,000がより好ましく、15,000~45,000がさらに好ましく、17,000~40,000が特に好ましく、20,000~37,000が極めて好ましい。(E)フェノキシ樹脂の重量平均分子量が前記下限値以上であると、優れた導体層とのピール強度が得られる傾向にあり、前記上限値以下であると、粗度の増加及び熱膨張率の増加を防止することができる。
 (E)フェノキシ樹脂の製造方法としては、例えば、トリメチルシクロヘキサン構造を含有するビスフェノール化合物又はテルペン構造を含有するビスフェノール化合物と2官能エポキシ樹脂とを原料として、公知のフェノキシ樹脂の製法に準じてエポキシ基とフェノール性水酸基の当量比(フェノール性水酸基/エポキシ基)が、例えば、1/0.9~1/1.1となる範囲で反応させることにより製造することができる。
 (E)フェノキシ樹脂は、市販品を用いることができる。市販品の(E)フェノキシ樹脂としては、ビフェニル型エポキシ樹脂とトリメチルシクロヘキサン構造を含有するビスフェノール化合物(1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン)とに由来する骨格を含有する「jER(登録商標)YX7200B35」(三菱ケミカル株式会社製、商品名)が好ましい。
 層間絶縁層用樹脂組成物が(E)フェノキシ樹脂を含有する場合、その含有量は、層間絶縁層用樹脂組成物の固形分100質量部に対して、0.2~10質量部が好ましく、1~7質量部がより好ましく、2~4質量部がさらに好ましい。(E)フェノキシ樹脂の含有量が、0.2質量部以上であると、可撓性、取り扱い性に優れると共に、導体層のピール強度が優れる傾向にあり、10質量部以下であると、保存安定性、流動性に優れると共に、適切な粗度が得られる傾向にある。
〔(F)活性エステル硬化剤〕
 層間絶縁層用樹脂組成物は、(F)活性エステル硬化剤を含有することが好ましい。(F)活性エステル硬化剤を含有することで、誘電正接が低減される傾向にある。
 (F)活性エステル硬化剤としては、特に限定されないが、例えば、1分子中にエステル基を2個以上有する化合物が好ましく挙げられる。
 具体的には、フェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等が挙げられる。
 (F)活性エステル硬化剤は、カルボン酸化合物及びチオカルボン酸化合物から選ばれる1種以上と、ヒドロキシ化合物及びチオール化合物から選ばれる1種以上との縮合反応によって得られるものが好ましい。特に、耐熱性向上の観点から、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル硬化剤が好ましく、カルボン酸化合物とフェノール化合物及びナフトール化合物から選ばれる1種以上とから得られる活性エステル硬化剤がより好ましい。
 カルボン酸化合物としては、安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。
 フェノール化合物としては、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエニルジフェノール、フェノールノボラック等が挙げられる。
 ナフトール化合物としては、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン等が挙げられる。これらは単独で又は2種以上を混合して使用してもよい。
 (F)活性エステル硬化剤としては、特開2004-277460号公報に開示されている活性エステル硬化剤を用いてもよく、また、市販品を用いることもできる。
 市販品の(F)活性エステル硬化剤としては、ジシクロペンタジエニルジフェノール構造を含むもの、フェノールノボラックのアセチル化物、フェノールノボラックのベンゾイル化物等が挙げられる。
 ジシクロペンタジエニルジフェノール構造を含むものとしては、「EXB9451」、「EXB9460」、「EXB9460S-65T」、「HPC-8000-65T」(以上、DIC株式会社製、活性基当量223g/eq)等が挙げられる。
 フェノールノボラックのアセチル化物としては、「DC808」(三菱ケミカル株式会社製、活性基当量149g/eq)等が挙げられる。
 フェノールノボラックのベンゾイル化物としては、「YLH1026」(活性基当量200g/eq)、「YLH1030」(活性基当量201g/eq)、「YLH1048」(活性基当量245g/eq)(以上、三菱ケミカル株式会社製)等が挙げられる。
 これらの中でも、ワニスの保存安定性及び硬化物の熱膨張率の観点、並びにリフロー耐熱性、保存安定性及びスミア除去性に優れる層間絶縁層を得る観点から、ジシクロペンタジエニルジフェノール構造を含む「HPC-8000-65T」が好ましい。
 層間絶縁層用樹脂組成物が(F)活性エステル硬化剤を含有する場合、(F)活性エステル硬化剤由来の活性エステル基と、(A)エポキシ樹脂由来のエポキシ基との当量比(活性エステル基/エポキシ基)は、優れた電気特性を得る観点から、0.1~0.7が好ましく、0.2~0.6がより好ましく、0.3~0.5がさらに好ましい。
〔(G)硬化促進剤〕
 層間絶縁層用樹脂組成物は、低温で短時間の硬化を可能にする観点から、(G)硬化促進剤を含有していてもよい。
 (G)硬化促進剤としては、金属系硬化促進剤、有機系硬化促進剤等が挙げられる。
(金属系硬化促進剤)
 金属系硬化促進剤としては、例えば、有機金属系硬化促進剤を使用することができる。有機金属系硬化促進剤は、(B)シアネート樹脂の自己重合反応の促進作用及び(A)エポキシ樹脂と(B)シアネート樹脂との反応の促進作用を有するものである。
 有機金属系硬化促進剤としては、遷移金属、12族金属の有機金属塩及び有機金属錯体等が挙げられる。金属としては、銅、コバルト、マンガン、鉄、ニッケル、亜鉛、スズ等が挙げられる。
 有機金属塩としては、カルボン酸塩が挙げられ、その具体例としては、ナフテン酸コバルト、ナフテン酸亜鉛等のナフテン酸塩、2-エチルヘキサン酸コバルト、2-エチルヘキサン酸亜鉛等の2-エチルヘキサン酸塩、オクチル酸亜鉛、オクチル酸スズ、ステアリン酸スズ、ステアリン酸亜鉛などが挙げられる。
 有機金属錯体としては、アセチルアセトン錯体等のキレート錯体が挙げられ、その具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体;銅(II)アセチルアセトナート等の有機銅錯体;亜鉛(II)アセチルアセトナート等の有機亜鉛錯体;鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体;マンガン(II)アセチルアセトナート等の有機マンガン錯体などが挙げられる。これらの中でも、硬化性及び溶解性の観点から、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート、亜鉛(II)アセチルアセトナート、鉄(III)アセチルアセトナート、ナフテン酸亜鉛、ナフテン酸コバルトが好ましい。これらは単独で又は2種以上を混合して使用してもよい。
 層間絶縁層用樹脂組成物が金属系硬化促進剤を含有する場合、その含有量は、反応性及び保存安定性の観点から、(B)シアネート樹脂の固形分質量に対して、質量で10~500ppmが好ましく、50~400ppmがより好ましく、150~300ppmがさらに好ましい。金属系硬化促進剤は、一度に又は複数回に分けて配合してもよい。
(有機系硬化促進剤)
 有機系硬化促進剤(但し、前記有機金属系硬化促進剤を含まない。)としては、有機リン化合物、イミダゾール化合物、第二級アミン、第三級アミン等のアミン系化合物;第四級アンモニウム塩などが挙げられる。これらは単独で又は2種以上を混合して使用してもよい。これらの中でも、ビアホール内のスミア除去性の観点から、有機リン化合物、イミダゾール化合物、アミン系化合物が好ましく、有機リン化合物がより好ましい。有機系硬化促進剤は、一度に又は複数回に分けて配合してもよい。
 有機リン化合物としては、エチルホスフィン、プロピルホスフィン、ブチルホスフィン、フェニルホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィン/トリフェニルボラン錯体、テトラフェニルホスホニウムテトラフェニルボレート、リン原子に少なくとも1つのアルキル基が結合したホスフィン化合物とキノン化合物との付加反応物等が挙げられる。これらの中でも、トリフェニルホスフィン、リン原子に少なくとも1つのアルキル基が結合したホスフィン化合物とキノン化合物との付加反応物が好ましい。
 リン原子に少なくとも1つのアルキル基が結合したホスフィン化合物とキノン化合物との付加反応物としては、下記一般式(G-1)で表されるリン原子に1つ以上のアルキル基が結合したホスフィン化合物と、下記一般式(G-2)で表されるキノン化合物との付加反応物であることが好ましい。
Figure JPOXMLDOC01-appb-C000011

(一般式(G-1)中、RG1は炭素数1~12のアルキル基を示し、RG2及びRG3は、各々独立に、水素原子又は炭素数1~12の炭化水素基を示す。一般式(G-2)中、RG4~RG6は、各々独立に、水素原子又は炭素数1~18の炭化水素基を示し、RG4とRG5は互いに結合して環状構造となっていてもよい。)
 前記一般式(G-1)中のRG1で表される炭素数1~12のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基等の鎖状アルキル基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロペンテニル基、シクロヘキセニル基等の環状アルキル基;ベンジル基等のアリール基置換アルキル基;メトキシ基置換アルキル基、エトキシ基置換アルキル基、ブトキシ基置換アルキル基等のアルコキシ基置換アルキル基;ジメチルアミノ基、ジエチルアミノ基等のアミノ基置換アルキル基;水酸基置換アルキル基などが挙げられる。
 また、RG2及びRG3で表される炭素数1~12の炭化水素基としては、炭素数1~12の置換又は非置換の脂肪族炭化水素基、炭素数1~12の置換又は非置換の脂環式炭化水素基、炭素数1~12の置換又は非置換の芳香族炭化水素基等が挙げられる。
 炭素数1~12の置換又は非置換の脂肪族炭化水素基としては、例えば、前記RG1で表される炭素数1~12のアルキル基と同様の基が挙げられる。
 炭素数1~12の置換又は非置換の脂環式炭化水素基としては、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロペンテニル基、シクロヘキセニル基、これらにアルキル基、アルコキシ基、アリール基、水酸基、アミノ基、ハロゲン等が置換したものなどが挙げられる。
 炭素数1~12の置換又は非置換の芳香族炭化水素基としては、フェニル基、ナフチル基等のアリール基;トリル基、ジメチルフェニル基、エチルフェニル基、ブチルフェニル基、t-ブチルフェニル基、ジメチルナフチル基等のアルキル基置換アリール基;メトキシフェニル基、エトキシフェニル基、ブトキシフェニル基、t-ブトキシフェニル基、メトキシナフチル基等のアルコキシ基置換アリール基;ジメチルアミノ基、ジエチルアミノ基等のアミノ基置換アリール基;ヒドロキシフェニル基、ジヒドロキシフェニル基等のハロゲン置換アリール基;フェノキシ基、クレゾキシ基等のアリーロキシ基;フェニルチオ基、トリルチオ基、ジフェニルアミノ基、これらにアミノ基、ハロゲン等が置換したものなどが挙げられる。中でも、置換又は非置換のアルキル基及びアリール基が好ましい。
 前記一般式(G-1)で表されるホスフィン化合物としては、トリシクロヘキシルホスフィン、トリブチルホスフィン、トリオクチルホスフィン等のトリアルキルホスフィン;シクロヘキシルジフェニルホスフィン、ジシクロヘキシルフェニルホスフィン、ブチルジフェニルホスフィン、ジブチルフェニルホスフィン、オクチルジフェニルホスフィン、ジオクチルフェニルホスフィン等のアルキルジフェニルホスフィン;ジアルキルフェニルホスフィンなどが挙げられるが、ワニス溶解性の観点からは、トリブチルホスフィン、トリ(p-メチルフェニル)ホスフィン、トリ(m-メチルフェニル)ホスフィン、トリ(o-メチルフェニル)ホスフィンが特に好ましい。
 前記一般式(G-2)中のRG4~RG6で表される炭素数1~18の炭化水素基としては、炭素数1~18の置換又は非置換の脂肪族炭化水素基、炭素数1~18の置換又は非置換の脂環式炭化水素基、炭素数1~18の置換又は非置換の芳香族炭化水素基等が挙げられる。
 炭素数1~18の置換又は非置換の脂肪族炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基等のアルキル基;ビニル基、アリル基、プロペニル基、ブテニル基等のアルケニル基;メトキシ基、エトキシ基、プロポキシル基、n-ブトキシ基、tert-ブトキシ基等のアルコキシ基;ジメチルアミノ基、ジエチルアミノ基等のアルキルアミノ基;メチルチオ基、エチルチオ基、ブチルチオ基、ドデシルチオ基等のアルキルチオ基;アミノ基置換アルキル基、アルコキシ置換アルキル基、水酸基置換アルキル基、アリール基置換アルキル基等の置換アルキル基;アミノ基置換アルコキシ基、水酸基置換アルコキシ基、アリール基置換アルコキシ基等の置換アルコキシ基などが挙げられる。
 炭素数1~18の置換又は非置換の脂環式炭化水素基としては、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロペンテニル基、シクロヘキセニル基、これらにアルキル基、アルコキシ基、アリール基、水酸基、アミノ基、ハロゲン等が置換したものなどが挙げられる。
 炭素数1~18の置換又は非置換の芳香族炭化水素基としては、フェニル基、トリル基等のアリール基;ジメチルフェニル基、エチルフェニル基、ブチルフェニル基、t-ブチルフェニル基等のアルキル基置換アリール基;メトキシフェニル基、エトキシフェニル基、ブトキシフェニル基、t-ブトキシフェニル基等のアルコキシ基置換アリール基;フェノキシ基、クレゾキシ基等のアリーロキシ基;フェニルチオ基、トリルチオ基、ジフェニルアミノ基、これらにアミノ基、ハロゲン等が置換したものなどが挙げられる。
 なかでも、水素原子、置換又は非置換のアルキル基、置換又は非置換のアルコキシ基、置換又は非置換のアリーロキシ基、置換又は非置換のアリール基、置換又は非置換のアルキルチオ基及び置換又は非置換のアリールチオ基が好ましい。
 また、前記一般式(G-2)で表されるキノン化合物は、RG4とRG5が結合し環状構造となっていてもよい。RG4とRG5が結合して環状構造を形成するキノン化合物としては、置換したテトラメチレン基、テトラメチン基等が結合した下記一般式(G-3)~(G-5)のいずれかで表される多環式キノン化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000012

(一般式(G-3)~(G-5)中、RG6は、前記一般式(G-2)と同様である。)
 前記一般式(G-2)で表されるキノン化合物の中でも、ホスフィン化合物との反応性の観点からは、1,4-ベンゾキノン及びメチル-1,4-ベンゾキノンが好ましく、吸湿時の硬化性の観点からは、2,3-ジメトキシ-1,4ベンゾキノン、2,5-ジメトキシ-1,4-ベンゾキノン、メトキシ-1,4-ベンゾキノン等のアルコキシ基置換1,4-ベンゾキノン;2,3-ジメチル-1,4-ベンゾキノン、2,5-ジメチル-1,4-ベンゾキノン、メチル-1,4-ベンゾキノン等のアルキル基置換1,4-ベンゾキノンが好ましく、保存安定性の観点からは、2,5-ジ-t-ブチル-1,4-ベンゾキノン、t-ブチル-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノンが好ましい。
 前記一般式(G-1)で表されるホスフィン化合物と前記一般式(G-2)で表されるキノン化合物との付加反応物としては、下記一般式(G-6)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000013

(一般式(G-6)中、RG1~RG6は、前記一般式(G-1)及び(G-2)と同様である。)
 リン原子に少なくとも1つのアルキル基が結合したホスフィン化合物とキノン化合物との付加反応物の製造方法としては、例えば、原料として用いられるホスフィン化合物とキノン化合物とを、両者が溶解する有機溶剤中で付加反応させた後、単離する方法が挙げられる。
 リン原子に少なくとも一つのアルキル基が結合したホスフィン化合物とキノン化合物との付加反応物は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
 層間絶縁層用樹脂組成物が有機系硬化促進剤を含有する場合、その含有量は、反応性及び保存安定性の観点から、(A)エポキシ樹脂100質量部に対して、0.01~5質量部が好ましく、0.01~3質量部がより好ましく、0.01~2質量部がさらに好ましい。
<その他の成分>
 層間絶縁層用樹脂組成物は、本発明の効果を阻害しない範囲で、上記各成分以外の成分を含有していてもよい。その他の成分としては、上記各成分以外の樹脂成分(以下、「他の樹脂成分」ともいう)、添加剤、難燃剤等が挙げられる。
(他の樹脂成分)
 他の樹脂成分としては、ビスマレイミド化合物とジアミン化合物との重合物、ビスマレイミド化合物、ビスアリルナジイミド樹脂、ベンゾオキサジン化合物等が挙げられる。
(添加剤)
 添加剤としては、オルベン、ベントン等の増粘剤;イミダゾール系、チアゾール系、トリアゾール系、シランカップリング剤等の密着付与剤;ゴム粒子;着色剤などが挙げられる。
(難燃剤)
 難燃剤としては、無機難燃剤、樹脂難燃剤等が挙げられる。無機難燃剤としては、水酸化アルミニウム、水酸化マグネシウム等が挙げられる。樹脂難燃剤は、ハロゲン系樹脂であっても、非ハロゲン系樹脂であってもよいが、環境負荷への配慮から、非ハロゲン系樹脂が好ましい。
 層間絶縁層用樹脂組成物は、(A)~(D)成分、必要に応じて含有される(E)~(G)成分及びその他の成分を混合することにより製造することができる。混合方法としては、公知の方法を適用することができ、例えば、ビーズミル等を用いて混合すればよい。
<層間絶縁層用樹脂フィルムの厚さ>
 層間絶縁層用樹脂フィルムの厚さは、例えば、プリント配線板に形成される導体層の厚みによって決定することができる。導体層の厚さは、通常、5~70μmであるため、層間絶縁層用樹脂フィルムの厚さは、10~100μmが好ましく、多層プリント配線板の薄型化を可能とする観点からは、15~80μmがより好ましく、20~50μmがさらに好ましい。
<支持体>
 本発明の層間絶縁層用樹脂フィルムは、支持体の上に形成されたものであってもよい。
 支持体としては、有機樹脂フィルム、金属箔、離型紙等が挙げられる。
 有機樹脂フィルムの材質としては、ポリエチレン、ポリ塩化ビニル等のポリオレフィン;ポリエチレンテレフタレート(以下、「PET」ともいう)、ポリエチレンナフタレート等のポリエステル;ポリカーボネート、ポリイミドなどが挙げられる。これらの中でも、価格及び取り扱い性の観点から、PETが好ましい。
 金属箔としては、銅箔、アルミニウム箔等が挙げられる。支持体に銅箔を用いる場合には、銅箔をそのまま導体層とし、回路を形成することもできる。この場合、銅箔としては、圧延銅、電解銅箔等を用いることができる。また、銅箔の厚さは、例えば、2~36μmとすることができる。厚さの薄い銅箔を用いる場合には、作業性を向上させる観点から、キャリア付き銅箔を使用してもよい。
 これらの支持体及び後述する保護フィルムには、離型処理、プラズマ処理、コロナ処理等の表面処理が施されていてもよい。離型処理としては、シリコーン樹脂系離型剤、アルキッド樹脂系離型剤又はフッ素樹脂系離型剤等による離型処理などが挙げられる。
 支持体の厚さは、取り扱い性及び経済性の観点から、10~120μmが好ましく、15~80μmがより好ましく、25~50μmがさらに好ましい。
 支持体は、多層プリント配線板を製造する際に、通常、最終的に剥離又は除去される。
<保護フィルム>
 本発明の層間絶縁層用樹脂フィルムの支持体とは反対側の面には、保護フィルムを配してもよい。保護フィルムは、層間絶縁層用樹脂フィルムの支持体が設けられている面とは反対側の面に設けられるものであり、層間絶縁層用樹脂フィルムへの異物等の付着及びキズ付きを防止する目的で使用される。保護フィルムは、層間絶縁層用樹脂フィルムをラミネート、熱プレス等で回路基板等に積層する前に剥離される。
 保護フィルムとしては、支持体と同様の材料を用いることができる。保護フィルムの厚さは、例えば、1~40μmの厚さを有するものを使用することができる。
<層間絶縁層用樹脂フィルムの製造方法>
 本発明の層間絶縁層用樹脂フィルムは、例えば、支持体上に層間絶縁層用樹脂組成物を塗工した後、乾燥して製造することができる。その際、層間絶縁層用樹脂組成物は有機溶剤に溶解及び/又は分散させてワニスの状態にすることが好ましい。
(有機溶剤)
 有機溶剤としては、アセトン、メチルエチルケトン(以下、「MEK」ともいう)、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤;酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル系溶剤;セロソルブ、ブチルカルビトール等のカルビトール系溶剤;トルエン、キシレン等の芳香族炭化水素系溶剤;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶剤などが挙げられる。これらは単独で又は2種以上を混合して使用してもよい。これらの中でも、溶解性の観点から、ケトン系溶剤が好ましく、MEK、メチルイソブチルケトンがより好ましい。
 層間絶縁層用樹脂組成物を塗工する方法としては、コンマコーター、バーコーター、キスコーター、ロールコーター、グラビアコーター、ダイコーター等の公知の塗工装置を用いて塗工する方法を適用することができる。塗工装置は、目標とする膜厚に応じて、適宜選択すればよい。
 層間絶縁層用樹脂組成物を塗工した後の乾燥条件としては、得られる層間絶縁層用樹脂フィルム中の有機溶剤の含有量が、10質量%以下となるように乾燥させることが好ましく、5質量%以下となるように乾燥させることがより好ましい。
 乾燥条件は、ワニス中の有機溶剤の量及び種類によっても異なるが、例えば、20~80質量%の有機溶剤を含むワニスであれば、50~150℃で1~10分間乾燥すればよい。
[多層樹脂フィルム]
 本発明の多層樹脂フィルムは、本発明の層間絶縁層用樹脂フィルムからなる層間絶縁層用樹脂組成物層と、接着補助層と、を含有する。
<層間絶縁層用樹脂組成物層>
 層間絶縁層用樹脂組成物層は、本発明の層間絶縁層用樹脂フィルムからなる層であり、その好適な態様は、本発明の層間絶縁層用樹脂フィルムの説明のとおりである。
 層間絶縁層用樹脂組成物層は、本発明の多層樹脂フィルムを用いて多層プリント配線板を製造する場合において、回路基板と接着補助層との間に設けられる層であり、該層間絶縁層用樹脂組成物層を硬化して得られる絶縁層は、例えば、多層プリント配線板において、多層化された回路パターン同士を絶縁する役割を果たす。また、層間絶縁層用樹脂組成物層は、回路基板にスルーホール、ビアホール等が存在する場合、それらの中に流動し、該ホール内を充填する役割も果たす。
 層間絶縁層用樹脂組成物層の厚さは、プリント配線板に形成される導体層の厚みによって決定することができる。導体層の厚さは、通常、5~70μmであるため、層間絶縁層用樹脂組成物層の厚さは、10~100μmが好ましく、多層プリント配線板の薄型化を可能とする観点からは、15~80μmがより好ましく、20~50μmがさらに好ましい。
<接着補助層>
 接着補助層は、ビルドアップ方式によって多層化された多層プリント配線板において、多層化された回路パターン同士を絶縁し、かつ平滑でめっきピール強度を高くする役割を果たす層である。
 接着補助層の厚さは、導体層との接着性が高い層間絶縁層を得る観点から、1~10μmが好ましく、2~8μmがより好ましい。
 接着補助層は、接着補助層用樹脂組成物を用いて形成することができる。
(接着補助層用樹脂組成物)
 接着補助層用樹脂組成物は、平滑な表面を有し、導体層との接着性が高い層間絶縁層を得る観点から、(H)シアネート樹脂を含有することが好ましい。
〔(H)シアネート樹脂〕
 (H)シアネート樹脂としては、前記層間絶縁層用樹脂組成物が含有する(B)シアネート樹脂と同様のものが挙げられ、好適な態様も同様である。
 接着補助層用樹脂組成物が(H)シアネート樹脂を含有する場合、その含有量は、平滑な表面を有し、導体層との接着性が高い層間絶縁層を得る観点から、接着補助層用樹脂組成物の固形分100質量部に対して、5~50質量部が好ましく、10~40質量部がより好ましく、20~35質量部がさらに好ましい。
〔(J)エポキシ樹脂〕
 接着補助層用樹脂組成物は、さらに、(J)エポキシ樹脂を含有することが好ましい。
 (J)エポキシ樹脂としては、前記層間絶縁層用樹脂組成物が含有することができる(A)エポキシ樹脂と同様のものが挙げられる。これらの中でも、得られる層間絶縁層のリフロー耐熱性が優れる観点から、アラルキルノボラック型エポキシ樹脂が好ましく、ビフェニル骨格を有するアラルキルノボラック型エポキシ樹脂がより好ましい。
 ビフェニル骨格を有するアラルキルノボラック型エポキシ樹脂とは、分子中にビフェニル誘導体の芳香族環を含有するアラルキルノボラック型のエポキシ樹脂をいい、下記一般式(4)で表される構造単位を含有するエポキシ樹脂等が挙げられる。
Figure JPOXMLDOC01-appb-C000014

(式中、RJ1は水素原子又はメチル基を示す。)
 一般式(4)で表される構造単位を含有するエポキシ樹脂中における、一般式(4)で表される構造単位の含有量は、デスミア後の表面粗さが小さく、めっき法によって形成した導体層との接着強度に優れる層間絶縁層を得る観点から、50~100質量%が好ましく、70~100質量%がより好ましく、80~100質量%がさらに好ましい。
 一般式(4)で表される構造単位を含有するエポキシ樹脂は、同様の観点から、下記一般式(4’)で表されるエポキシ樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000015

(式中、RJ1は、一般式(4)中におけるRJ1と同様であり、sは、1~20の整数を示す。)
 一般式(4’)中、sは、デスミア後の表面粗さを小さくする観点から、1~10の整数が好ましく、1~8の整数がより好ましい。
 接着補助層用樹脂組成物が(J)エポキシ樹脂を含有する場合、その含有量は、平滑な表面を有し、導体層との接着性が高い層間絶縁層を得る観点から、接着補助層用樹脂組成物の固形分100質量部に対して、20~80質量部が好ましく、30~70質量部がより好ましく、40~60質量部がさらに好ましい。
 また、接着補助層用樹脂組成物中における、(J)エポキシ樹脂と(H)シアネート樹脂との質量比[(J)/(H)]は、導体層との接着性が高い層間絶縁層を得る観点から、0.5~5が好ましく、1~3がより好ましく、1.2~2.5がさらに好ましい。
〔(K)ポリアミド樹脂、ポリイミド樹脂及びポリベンゾオキサゾール樹脂からなる群から選ばれる少なくとも1種〕
 接着補助層用樹脂組成物は、さらに、(K)ポリアミド樹脂、ポリイミド樹脂及びポリベンゾオキサゾール樹脂からなる群から選ばれる少なくとも1種を含有することが好ましい。これらの中でも、表面粗さが小さく、めっき法によって形成した導体層との接着強度に優れる層間絶縁層を得る観点から、ポリアミド樹脂を含有することが好ましい。
 (K)成分として用いるポリアミド樹脂は、表面粗さが小さく、めっき法によって形成した導体層との接着強度に優れる層間絶縁層を得る観点から、熱硬化性樹脂(例えば、エポキシ樹脂のエポキシ基)と反応する官能基(フェノール性水酸基、アミノ基等)を含有するものが好ましく、フェノール性水酸基を含有するものがより好ましい。また、同様の観点から、(K)成分として用いるポリアミド樹脂は、さらに、ポリブタジエン骨格を含有するものが好ましい。
 このようなポリアミド樹脂としては、下記一般式(5-1)で表される構造単位、下記一般式(5-2)で表される構造単位及び下記一般式(5-3)で表される構造単位を含有するフェノール性水酸基含有ポリブタジエン変性ポリアミド樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 一般式(5-1)~(5-3)中、a、b、c、x、y及びzは、それぞれ平均重合度であって、aは2~10、bは0~3、cは3~30の整数を示し、x=1に対しy+z=2~300((y+z)/x)であり、さらにy=1に対しz≧20(z/y)である。
 RK1、RK2及びRK3は、それぞれ独立に、芳香族ジアミン又は脂肪族ジアミンに由来する2価の基であり、RK4は、芳香族ジカルボン酸、脂肪族ジカルボン酸又は両末端にカルボキシ基を有するオリゴマーに由来する2価の基である。
 フェノール性水酸基含有ポリブタジエン変性ポリアミド樹脂の製造に用いられる芳香族ジアミンとしては、ジアミノベンゼン、ジアミノトルエン、ジアミノフェノール、ジアミノジメチルベンゼン、ジアミノメシチレン、ジアミノニトロベンゼン、ジアミノジアゾベンゼン、ジアミノナフタレン、ジアミノビフェニル、ジアミノジメトキシビフェニル、ジアミノジフェニルエーテル、ジアミノジメチルジフェニルエーテル、メチレンジアミン、メチレンビス(ジメチルアニリン)、メチレンビス(メトキシアニリン)、メチレンビス(ジメトキシアニリン)、メチレンビス(エチルアニリン)、メチレンビス(ジエチルアニリン)、メチレンビス(エトキシアニリン)、メチレンビス(ジエトキシアニリン)、イソプロピリデンジアニリン、ジアミノベンゾフェノン、ジアミノジメチルベンゾフェノン、ジアミノアントラキノン、ジアミノジフェニルチオエーテル、ジアミノジメチルジフェニルチオエーテル、ジアミノジフェニルスルホン、ジアミノジフェニルスルホキシド、ジアミノフルオレン等が挙げられる。
 フェノール性水酸基含有ポリブタジエン変性ポリアミド樹脂の製造に用いられる脂肪族ジアミンとしては、エチレンジアミン、プロパンジアミン、ヒドロキシプロパンジアミン、ブタンジアミン、ヘプタンジアミン、ヘキサンジアミン、ジアミノジエチルアミン、ジアミノプロピルアミン、シクロペンタンジアミン、シクロヘキサンジアミン、アザペンタンジアミン、トリアザウンデカンジアミン等が挙げられる。これらは単独で又は2種以上を混合して使用してもよい。
 フェノール性水酸基含有ポリブタジエン変性ポリアミド樹脂の製造に用いられるフェノール性水酸基含有ジカルボン酸としては、ヒドロキシイソフタル酸、ヒドロキシフタル酸、ヒドロキシテレフタル酸、ジヒドロキシイソフタル酸、ジヒドロキシテレフタル酸等が挙げられる。
 フェノール性水酸基含有ポリブタジエン変性ポリアミド樹脂の製造に用いられるフェノール性水酸基を含有しないジカルボン酸としては、芳香族ジカルボン酸、脂肪族ジカルボン酸、両末端にカルボキシ基を有するオリゴマー等が挙げられる。
 芳香族ジカルボン酸としては、フタル酸、イソフタル酸、テレフタル酸、ビフェニルジカルボン酸、メチレン二安息香酸、チオ二安息香酸、カルボニル二安息香酸、スルホニル安息香酸、ナフタレンジカルボン酸等が挙げられる。
 脂肪族ジカルボン酸としては、シュウ酸、マロン酸、メチルマロン酸、コハク酸、グルタル酸、アジピン酸、マレイン酸、フマル酸、りんご酸、酒石酸、(メタ)アクリロイルオキシコハク酸、ジ(メタ)アクリロイルオキシコハク酸、(メタ)アクリロイルオキシりんご酸、(メタ)アクリルアミドコハク酸、(メタ)アクリルアミドりんご酸等が挙げられる。これらは単独で又は2種以上を混合して使用してもよい。
 フェノール性水酸基含有ポリブタジエン変性ポリアミド樹脂としては、市販品を用いてもよく、市販品としては、日本化薬株式会社製のポリアミド樹脂「BPAM-01」、「BPAM-155」等が挙げられる。
 ポリアミド樹脂としては、表面粗さが小さく、めっき法によって形成した導体層との接着強度に優れる層間絶縁層を得る観点から、「BPAM-01」及び「BPAM-155」が好ましく、「BPAM-155」がより好ましい。「BPAM-155」は、末端にアミノ基を有するゴム変性ポリアミド樹脂であり、エポキシ基との反応性を有するため、「BPAM-155」を含有する熱硬化性樹脂組成物から得られる層間絶縁層は、めっき法によって形成した導体層との接着強度により優れ、表面粗さが小さくなる傾向にある。
 ポリアミド樹脂の数平均分子量は、溶剤への溶解性と、ラミネート後の接着補助層の膜厚保持性の観点から、20,000~30,000が好ましく、22,000~29,000がより好ましく、24,000~28,000がさらに好ましい。
 ポリアミド樹脂の重量平均分子量は、同様の観点から、100,000~140,000が好ましく、103,000~130,000がより好ましく、105,000~120,000がさらに好ましい。
 接着補助層用樹脂組成物がポリアミド樹脂を含有する場合、その含有量は、平滑な表面を有し、導体層との接着性が高い層間絶縁層を得る観点から、接着補助層用樹脂組成物の固形分100質量部に対して、2~15質量部が好ましく、4~13質量部がより好ましく、6~12質量部がさらに好ましい。ポリアミド樹脂の含有量が2質量部以上であると、めっき法によって形成した導体層との接着強度が優れる傾向にあり、15質量部以下であると酸化剤により層間絶縁層を粗化処理した際に、層間絶縁層の表面粗さが大きくなることが抑制される傾向にあり、リフロー耐熱性にも優れる傾向にある。
〔(L)比表面積が20~500m/gである無機充填材〕
 接着補助層用樹脂組成物は、さらに、(L)比表面積が20~500m/gである無機充填材(以下、単に「(L)無機充填材」ともいう)を含有することが好ましい。
 (L)無機充填材は、本発明の樹脂組成物を熱硬化して形成される層間絶縁層をレーザー加工する際に、樹脂の飛散を防止し、レーザー加工の形状を整えることを可能にする観点から重要である。また、層間絶縁層の表面を酸化剤で粗化する際に、適度な粗化面を形成し、めっきによって接着強度に優れる導体層の形成を可能にする観点から重要であり、そのような観点から選択することが好ましい。
 (L)無機充填材としては、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウム等が挙げられる。これらの中でも、優れたワニスの取り扱い性及び低熱膨張係数が得られる観点から、シリカが好ましい。(L)無機充填材は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 (L)無機充填材は、微細配線を形成する観点から、粒子径が小さいものが好ましい。同様の観点から、(L)無機充填材の比表面積は、20~500m/gであり、60~200m/gが好ましく、90~130m/gがより好ましい。
 (L)無機充填材の形状は、任意の形状であり、特に、後述するヒュームドシリカ、コロイダルシリカ等は球形でないため、適度な粗化面の形成、接着強度に優れる導体層の形成等の効果を発現させるために、比表面積を上記の範囲に調整することが好ましい。
 比表面積は、窒素等の不活性気体の低温低湿物理吸着によるBET法で求めることができる。具体的には、粉体粒子表面に、窒素等の吸着占有面積が既知の分子を液体窒素温度で吸着させ、その吸着量から粉体粒子の比表面積を求めることができる。
 (L)無機充填材としては、市販品を用いてもよい。市販品の(L)無機充填材としては、ヒュームドシリカである「AEROSIL(アエロジル)(登録商標)R972」(比表面積110±20m/g)及び「AEROSIL(アエロジル)(登録商標)R202」(比表面積100±20m/g)(以上、日本アエロジル株式会社製)、コロイダルシリカである「PL-1」(比表面積181m/g)及び「PL-7」(比表面積36m/g)(以上、扶桑化学工業株式会社製)等が挙げられる。
 (L)無機充填材は、耐湿性を向上させるために、シランカップリング剤等の表面処理剤で表面処理している無機充填材であってもよい。また、(L)無機充填材は、有機溶剤に溶解又は均一に分散するものであることが好ましい。
 接着補助層用樹脂組成物が(L)無機充填材を含有する場合、その含有量は、平滑な表面を有し、導体層との接着性が高い層間絶縁層を得る観点から、接着補助層用樹脂組成物の固形分100質量部に対して、3~40質量部が好ましく、5~30質量部がより好ましく、7~20質量部がさらに好ましい。(L)無機充填材の含有量が3質量部以上であると、レーザー加工の際に樹脂飛散の防止、及び層間絶縁層のレーザー加工形状を整えることができ、40質量部以下であると、高いめっきピール強度を得ることが可能となる。
〔(M)硬化促進剤〕
 接着補助層用樹脂組成物は、さらに、(M)硬化促進剤を含有することが好ましい。
 (M)硬化促進剤としては、前記(G)硬化促進剤と同様のものが挙げられる。これらの中でも、有機リン化合物が好ましく、トリフェニルホスフィンがより好ましい。
 接着補助層用樹脂組成物が(M)硬化促進剤を含有する場合、その含有量は、(M)硬化促進剤の種類によっても異なるが、例えば、(M)硬化促進剤として有機リン化合物を含有する場合、(J)エポキシ樹脂の固形分100質量部に対して、0.001~1質量部が好ましく、0.002~0.1質量部がより好ましく、0.003~0.05質量部がさらに好ましい。
〔その他の成分〕
 接着補助層用樹脂組成物は、本発明の効果を阻害しない範囲で、上記各成分以外の成分を含有していてもよい。その他の成分としては、層間絶縁層用樹脂組成物が含有していてもよいその他の成分と同様のものが挙げられる。
<多層樹脂フィルムの製造方法>
 本発明の多層樹脂フィルムの製造方法としては、例えば、支持体上にワニスの状態とした接着補助層用樹脂組成物を塗工した後、乾燥して、支持体上に接着補助層を形成した後、該接着補助層の上に、ワニスの状態とした層間絶縁層用樹脂組成物を塗工した後、乾燥して、層間絶縁層用樹脂組成物層を形成する方法が挙げられる。
 別の方法としては、例えば、上述の方法で支持体上に接着補助層を形成し、別途、層間絶縁層用樹脂組成物層を剥離可能なフィルムの上に形成し、支持体上に形成された接着補助層と、フィルム上に形成された層間絶縁層用樹脂組成物層とを、接着補助層が形成された面と層間絶縁層用樹脂組成物層が形成された面とが接するようにラミネートする方法も挙げられる。この場合、層間絶縁層用樹脂組成物層を剥離可能なフィルムは、保護フィルムとしての役割も果たすことができる。
 接着補助層用樹脂組成物及び層間絶縁層用樹脂組成物を塗工する方法及び乾燥条件としては、本発明の層間絶縁層用樹脂組成物フィルムの製造に用いることができる方法及び条件と同様である。
[多層プリント配線板]
 本発明の多層プリント配線板は、本発明の層間絶縁層用樹脂フィルム及び多層樹脂フィルムからなる群から選択される少なくとも1種を用いて得られるものである。つまり、本発明の層間絶縁層用樹脂フィルムは、多層プリント配線板用として有用である。さらには、本発明の層間絶縁層用樹脂フィルムは、多層プリント配線板、特にビルドアップ配線板のビルドアップ層形成用としても有用である。
 本発明の多層プリント配線板は、例えば、下記工程(1)~(6)[但し、工程(3)は任意である。]を含む製造方法により製造することができ、工程(1)、(2)又は(3)の後で支持体を剥離又は除去してもよい。
 なお、以下、単に「樹脂フィルム」と称する場合は、「層間絶縁層用樹脂フィルム」又は「多層樹脂フィルム」を指すものとする。
(1)本発明の樹脂フィルムを回路基板の片面又は両面にラミネートする工程[以下、ラミネート工程(1)と称する]。
(2)工程(1)でラミネートされた樹脂フィルムを熱硬化し、絶縁層を形成する工程[以下、絶縁層形成工程(2)と称する]。
(3)工程(2)で絶縁層を形成した回路基板に穴あけする工程[以下、穴あけ工程(3)と称する]。
(4)絶縁層の表面を酸化剤によって粗化処理する工程[以下、粗化処理工程(4)と称する]。
(5)粗化された絶縁層の表面にめっきにより導体層を形成する工程[以下、導体層形成工程(5)と称する]。
(6)導体層に回路形成する工程[以下、回路形成工程(6)と称する]。
 ラミネート工程(1)は、真空ラミネーターを用いて、本発明の樹脂フィルムを回路基板の片面又は両面にラミネートする工程である。真空ラミネーターとしては、ニチゴー・モートン株式会社製のバキュームアップリケーター、株式会社名機製作所製の真空加圧式ラミネーター、株式会社日立製作所製のロール式ドライコーター、日立化成エレクトロニクス株式会社製の真空ラミネーター等が挙げられる。
 樹脂フィルムに保護フィルムが設けられている場合には、保護フィルムを剥離又は除去した後、本発明の層間絶縁層用樹脂フィルム又は本発明の多層樹脂フィルムの層間絶縁層用樹脂組成物層が回路基板と接するように、加圧及び加熱しながら回路基板に圧着してラミネートすることができる。
 該ラミネートは、例えば、樹脂フィルム及び回路基板を必要に応じて予備加熱してから、圧着温度60~140℃、圧着圧力0.1~1.1MPa(9.8×10~107.9×10N/m)、空気圧20mmHg(26.7hPa)以下の減圧下で実施することができる。また、ラミネートの方法は、バッチ式であっても、ロールでの連続式であってもよい。
 絶縁層形成工程(2)では、まず、ラミネート工程(1)で回路基板にラミネートされた樹脂フィルムを室温付近に冷却する。
 支持体を剥離する場合は、剥離した後、回路基板にラミネートされた樹脂フィルムを加熱硬化させて絶縁層、つまり後に「層間絶縁層」となる絶縁層を形成する。多層樹脂フィルムを用いる場合、ここで形成される絶縁層は、層間絶縁層用樹脂組成物層の硬化物と接着補助層の硬化物とから構成される層になる。
 加熱硬化は、2段階で行ってもよく、その条件としては、例えば、1段階目は100~200℃で5~30分間であり、2段階目は140~220℃で20~80分間である。離型処理の施された支持体を使用した場合には、熱硬化させた後に、支持体を剥離してもよい。
 上記の方法により絶縁層を形成した後、必要に応じて穴あけ工程(3)を経てもよい。穴あけ工程(3)は、回路基板及び形成された絶縁層に、ドリル、レーザー、プラズマ、これらの組み合わせ等の方法により穴あけを行い、ビアホール、スルーホール等を形成する工程である。レーザーとしては、炭酸ガスレーザー、YAGレーザー、UVレーザー、エキシマレーザー等が用いられる。
 粗化処理工程(4)では、絶縁層の表面を酸化剤により粗化処理を行う。また、絶縁層及び回路基板にビアホール、スルーホール等が形成されている場合には、これらを形成する際に発生する、所謂「スミア」を、酸化剤によって除去してもよい。粗化処理と、スミアの除去は同時に行うことができる。
 酸化剤としては、過マンガン酸塩(過マンガン酸カリウム、過マンガン酸ナトリウム等)、重クロム酸塩、オゾン、過酸化水素、硫酸、硝酸等が挙げられる。これらの中でも、ビルドアップ工法による多層プリント配線板の製造における絶縁層の粗化に汎用されている酸化剤である、アルカリ性過マンガン酸溶液(例えば、過マンガン酸カリウム、過マンガン酸ナトリウムの水酸化ナトリウム水溶液)を用いることができる。
 粗化処理により、絶縁層の表面に凹凸のアンカーが形成する。
 導体層形成工程(5)では、粗化されて凹凸のアンカーが形成された絶縁層の表面に、めっきにより導体層を形成する。
 めっき方法としては、無電解めっき法、電解めっき法等が挙げられる。めっき用の金属は、めっきに使用し得る金属であれば特に制限されない。めっき用の金属は、銅、金、銀、ニッケル、白金、モリブデン、ルテニウム、アルミニウム、タングステン、鉄、チタン、クロム、又はこれらの金属元素のうちの少なくとも1種を含む合金の中から選択することができ、銅、ニッケルであることが好ましく、銅であることがより好ましい。
 なお、先に導体層(配線パターン)とは逆パターンのめっきレジストを形成しておき、その後、無電解めっきのみで導体層(配線パターン)を形成する方法を採用することもできる。
 導体層の形成後、150~200℃で20~120分間アニール処理を施してもよい。アニール処理を施すことにより、層間絶縁層と導体層との間の接着強度がさらに向上及び安定化する傾向にある。また、このアニール処理によって、層間絶縁層の硬化を進めてもよい。
 回路形成工程(6)において、導体層をパターン加工し、回路形成する方法としては、サブトラクティブ法、フルアディティブ法、セミアディティブ法(SAP:SemiAdditive Process)、モディファイドセミアディティブ法(m-SAP:modified Semi Additive Process)等の公知の方法を利用することができる。
 このようにして作製された導体層の表面を粗化してもよい。導体層の表面を粗化することにより、導体層に接する樹脂との密着性が向上する傾向にある。導体層を粗化するには、有機酸系マイクロエッチング剤である「CZ-8100」、「CZ-8101」、「CZ-5480」(全てメック株式会社製、商品名)等を用いることができる。
 本発明の多層プリント配線板に用いられる回路基板としては、ガラスエポキシ、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化性ポリフェニレンエーテル基板等の基板の片面又は両面に、パターン加工された導体層(回路)が形成されたものが挙げられる。
 また、導体層と絶縁層とが交互に層形成され、片面又は両面にパターン加工された導体層(回路)を有する多層プリント配線板、上記回路基板の片面又は両面に、本発明の樹脂フィルムから形成された層間絶縁層を有し、その片面又は両面にパターン加工された導体層(回路)を有するもの、本発明の樹脂フィルムを張り合わせて硬化して形成した硬化物(層構造としては、接着補助層、層間絶縁層用樹脂組成物層、層間絶縁層用樹脂組成物層、接着補助層の順番となる)の片面又は両面にパターン加工された導体層(回路)を有するものなども本発明における回路基板に含まれる。
 層間絶縁層の回路基板への接着性の観点からは、回路基板の導体層の表面は、黒化処理等により、予め粗化処理が施されていてもよい。
[半導体パッケージ]
 本発明の半導体パッケージは、本発明の多層プリント配線板に半導体が搭載されてなるものである。本発明の半導体パッケージは、本発明の多層プリント配線板の所定の位置に、半導体チップ、メモリ等を搭載することによって製造することができる。さらに、封止樹脂等によって半導体素子が封止されていてもよい。
[1]次に、第1の発明を実施例により、さらに詳細に説明するが、第1の発明は、これらの例によってなんら限定されるものではない。
実施例1
 エポキシ樹脂として、ビフェニルノボラック型エポキシ樹脂である「NC-3000-H」(日本化薬株式会社製、商品名、固形分濃度100質量%)を25.8質量部、
 ノボラック型フェノール樹脂として、「PAPS-PN2」(旭有機材工業株式会社製、商品名、固形分濃度100質量%、Mw/Mn=1.17)を6.3質量部、
 エポキシ樹脂硬化剤として、トリアジン変性フェノールノボラック樹脂である「LA-1356-60M」(DIC株式会社製、商品名、溶剤:MEK、固形分濃度60質量%)を4.9質量部、
 無機充填材として、「SO-C2」(株式会社アドマテックス製、商品名、平均粒径;0.5μm)の表面をアミノシランカップリング剤で処理し、さらに、MEK中に分散させたシリカ(固形分濃度70質量%)を92.9質量部、
 硬化促進剤として、2-エチル-4-メチルイミダゾールである「2E4MZ」(四国化成工業株式会社製、商品名、固形分濃度100質量%)を0.026質量部、
 追加溶剤としてMEKを13.1質量部配合し、混合及びビーズミル分散処理を施して接着フィルム用樹脂組成物ワニス1を作製した。
 上記で得られた接着フィルム用樹脂組成物ワニス1を、支持体フィルムであるPET(帝人デュポンフィルム株式会社製、商品名:G2、フィルム厚:50μm)上に塗布した後、乾燥して、樹脂組成物層を形成した。なお、塗工厚さは40μmとして、乾燥は、樹脂組成物層中の残留溶剤が8.0質量%になるように行った。乾燥後、樹脂組成物層面側に保護フィルムとして、ポリエチレンフィルム(タマポリ株式会社製、商品名:NF-13、厚さ:25μm)を積層した。その後、得られたフィルムをロール状に巻き取り、接着フィルム1を得た。
実施例2~6、8、比較例1~4
 実施例1において、原料組成、製造条件を表1に記載のとおりに変更した以外は、実施例1と同様にして、接着フィルム2~6、8~12を得た。
実施例7
 支持体フィルムであるPET(帝人デュポンフィルム株式会社製、商品名:G2、フィルム厚:50μm)の上に、10μmの膜厚になるように、以下の手順で作製した樹脂ワニスAを塗布及び乾燥して得られた60μm厚さの支持体フィルム2を準備した。
 上記で使用した樹脂ワニスAは、以下の手順で作製した。
 エポキシ樹脂として、ビフェニルノボラック型エポキシ樹脂である「NC-3000-H」(日本化薬株式会社製、商品名、固形分濃度100質量%)を63.9質量部、
 エポキシ樹脂硬化剤として、トリアジン変性フェノールノボラック樹脂である「LA-1356-60M」(DIC株式会社製、商品名、溶剤;MEK、固形分濃度60質量%)を18.0質量部、
 コアシェルゴム粒子である「EXL-2655」(ローム・アンド・ハース電子材料株式会社製、商品名)を15.2質量部、
 無機充填材として、ヒュームドシリカである「アエロジルR972」(日本アエロジル株式会社製、商品名、平均粒径;0.02μm、固形分濃度100質量%)を8.8質量部、
 硬化促進剤として、2-エチル-4-メチルイミダゾールである「2E4MZ」(四国化成工業株式会社製、商品名、固形分濃度100質量%)を1.28質量部、
 追加溶剤として、シクロヘキサノンを226.1質量部配合し、混合及びビーズミル分散処理を施して樹脂ワニスAを作製した。
 上記で得られた樹脂ワニスAを、支持体フィルムであるPET(帝人デュポンフィルム株式会社製、商品名:G2、フィルム厚:50μm)上に、10μmの膜厚になるように塗布した後、乾燥して、フィルム厚が60μmの支持体フィルム2を得た。
 次に、上記で得た支持体フィルム2上に塗布する接着フィルム用樹脂組成物ワニスを、表1に記載の原料組成、製造条件で、実施例1と同様にして作製した。
 支持体フィルム2と、接着フィルム用樹脂組成物ワニスを用いて、実施例1と同様にして接着フィルム7を得た。
[評価方法]
 得られた接着フィルム1~12は以下の方法により評価した。
(接着フィルムの取り扱い性試験用試料の作製及び試験方法)
 得られた接着フィルム1~12を500mm×500mmのサイズに切断し、接着フィルムの取り扱い性試験用試料1~12を作製した。
 作製した接着フィルムの取り扱い性試験用試料1~12を用いて、次の(1)~(3)の方法により取り扱い性を評価し、いずれかの試験において不良とされたものを「取り扱い性不良」、いずれの試験でも不良でなかったものを「取り扱い性良好」とした。
(1)接着フィルムの取り扱い性試験用試料1~12について、まず、保護フィルムを剥離した。保護フィルムを剥離する際に、塗布及び乾燥した樹脂が一部、保護フィルム側に付着したもの、又は粉落ちが発生したものを、取り扱い性不良とした。
(2)フィルムの中央端2点(500mm×250mmになるように、端部の2点)を持ち、塗布及び乾燥した樹脂に割れが発生したものを、取り扱い性不良とした。
(3)表面の銅箔に黒化及び還元処理を施した銅張積層板である「MCL-E-679FG(R)」(日立化成株式会社製、銅箔厚12μm、板厚0.41mm)に、バッチ式の真空加圧式ラミネーター「MVL-500」(株式会社名機製作所製、商品名)を用いてラミネートによって積層した。この際の真空度は30mmHg以下であり、温度は90℃、圧力は0.5MPaの設定とした。室温に冷却後、支持体フィルムを剥がした(接着フィルム7については、支持体フィルム2のうち、PETとその上に形成した樹脂層の間で剥がれた)。この際に、粉落ちが発生したり、PETが途中で破れた材料を取り扱い性不良とした。
(熱膨張係数測定用試料の作製及び試験方法)
 得られた接着フィルム1~12をそれぞれ200mm×200mmのサイズに切断し、保護フィルムを剥がし、18μm厚さの銅箔に、バッチ式の真空加圧式ラミネーター「MVL-500」(株式会社名機製作所製、商品名)を用いてラミネートによって積層した。この際の真空度は30mmHg以下であり、温度は90℃、圧力は0.5MPaの設定とした。
 室温に冷却後、支持体フィルムを剥がし(接着フィルム7については、支持体フィルム2のうち、PETとその上に形成した樹脂層の間で剥がれた)、180℃の乾燥機中で120分間硬化した。その後、塩化第二鉄液で銅箔を除去し、幅3mm、長さ8mmに切り出したものを、熱膨張係数測定用試料1~12とした。
 作製した熱膨張係数測定用試料1~12を用いて、次の方法により熱膨張係数を測定した。
 得られた熱膨張係数測定用試料1~12をセイコーインスツル株式会社製の熱機械分析装置を用い、昇温速度10℃/分で240℃まで昇温させ、-10℃まで冷却後、昇温速度10℃/分で300℃まで昇温させた際の膨張量の変化曲線を得て、該膨張量の変化曲線の0~150℃の平均熱膨張係数を求めた。
(埋め込み性評価基板の作製及び試験方法)
 埋め込み性評価基板に使用した内層回路は次のとおりである。銅箔厚が12μm、板厚が0.15mm(銅箔厚を含む)の銅張積層板である「MCL-E-679FG(R)」(日立化成株式会社製、商品名)に直径が0.15mmのスルーホールを5mm間隔で25個×25個の群になるようにドリル穴あけ法によって作製した。次いで、デスミア及び無電解めっきを施し、電解めっきを用いてスルーホール中に電解めっきを施した。
 その結果、銅厚を含む板厚が0.2mm、直径が0.1mm、5mm間隔で25個×25個のスルーホールを有する回路基板を得た。
 次に、保護フィルムを剥がした接着フィルム1~12を、樹脂組成物層が回路基板の回路面側と対向するように配置した後、バッチ式の真空ラミネーター「MVL-500」(株式会社名機製作所製、商品名)を用いてラミネートによって積層した。この際の真空度は30mmHgであり、温度は90℃、圧力は0.5MPaの設定とした。
 室温に冷却後、両面に接着フィルムが付いたスルーホールを有する回路基板を1mmの厚さのアルミ板2枚で挟み、前記真空ラミネーターを用いてラミネートを行った。この際の真空度は30mmHgであり、温度は90℃、圧力は0.7MPaの設定とした。
 室温に冷却後、支持体フィルムを剥がし(接着フィルム7については、支持体フィルム2のうち、PETとその上に形成した樹脂層の間で剥がれた)、180℃の乾燥機中で120分間硬化した。こうして、埋め込み性評価基板1~12を得た。
 作製した埋め込み性評価基板1~12を用いて、次の方法により埋め込み性を評価した。
 株式会社ミツトヨ製の接触式の表面粗さ計「SV2100」(商品名)を用い、埋め込み性評価基板1~12のスルーホール部分表面の段差を測定した。段差は、スルーホールの表面の中心部分が10個入るように測定し、10個の凹みの平均値を計算した。
Figure JPOXMLDOC01-appb-T000019
 表1の成分について以下に示す。
[エポキシ樹脂]
 ・NC-3000-H:ビフェニルノボラック型エポキシ樹脂(日本化薬株式会社製、商品名、固形分濃度100質量%)
 ・N-673-80M:クレゾールノボラック型エポキシ樹脂(DIC株式会社製、商品名、溶剤;MEK、固形分濃度80質量%)
[ノボラック型フェノール樹脂]
 ・PAPS-PN2:ノボラック型フェノール樹脂(旭有機材工業株式会社製、商品名、固形分濃度100質量%、Mw/Mn=1.17)
 ・PAPS-PN3:ノボラック型フェノール樹脂(旭有機材工業株式会社製、商品名、固形分濃度100質量%、Mw/Mn=1.50)
 ・HP-850:リン酸ではなく塩酸を使用して製造したノボラック型フェノール樹脂(日立化成株式会社製、商品名、固形分濃度100質量%)
[トリアジン変性フェノールノボラック樹脂]
 ・LA-1356-60M:トリアジン変性フェノールノボラック樹脂(DIC株式会社製、商品名、溶剤;MEK、固形分濃度60質量%)
[無機充填材]
 ・SO-C2:株式会社アドマテックス製のシリカ「SO-C2」(商品名、平均粒径;0.5μm)の表面をアミノシランカップリング剤で処理し、さらに、MEK溶剤中に分散させたシリカ(固形分濃度70質量%)
 ・SO-C6:株式会社アドマテックス製のシリカ「SO-C6」(商品名、平均粒径;2.2μm)の表面をアミノシランカップリング剤で処理し、さらに、MEK溶剤中に分散させたシリカ(固形分濃度70質量%)
 ・アエロジルR972:ヒュームドシリカ(日本アエロジル株式会社製、商品名、固形分濃度100質量%、比表面積:100m/g)
[硬化促進剤]
 ・2E4MZ:2-エチル-4-メチルイミダゾール(四国化成工業株式会社製、商品名、固形分濃度100質量%)
 表1から、本発明の接着フィルムは、取り扱い性が良好であり、本発明の接着フィルムから、熱膨張係数が低く、埋め込み性に優れた層間絶縁層が得られることが分かる。
 一方、本発明の接着フィルムを用いなかった場合、取り扱い性、熱膨張係数、埋め込み性のいずれかが劣っていた。
 すなわち、第1の発明によれば、熱膨張係数が低く、埋め込み性に優れ、取り扱い性に優れる接着フィルムを提供でき、硬化後の熱膨張係数が低い層間絶縁層を提供できることが分かる。
[2]次に、第2の発明をさらに詳細に説明するが、第2の発明は、これらの例によってなんら限定されるものではない。
 シアネートプレポリマーの重量平均分子量、ポリアミド樹脂の重量平均分子量及び数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準ポリスチレンを用いた検量線から換算して求めた。検量線は、標準ポリスチレン:TSKgel(SuperHZ2000、SuperHZ3000[東ソー株式会社製])を用いて3次式で近似した。GPCの条件を、以下に示す。
 ・装置:ポンプ:880-PU[日本分光株式会社製]
     RI検出器:830-RI[日本分光株式会社製]
     恒温槽:860-CO[日本分光株式会社製]
     オートサンプラー:AS-8020[東ソー株式会社製]
 ・溶離液:テトラヒドロフラン
 ・試料濃度:30mg/5mL
 ・注入量:20μL
 ・流量:1.00mL/分
 ・測定温度:40℃
[シアネートプレポリマーの合成]
製造例1
(シアネートプレポリマーAの合成)
 ディーンスターク還流冷却器、温度計及び撹拌器を備えた5Lのセパラブルフラスコに、ビスフェノールA型の2官能のシアネート樹脂(ビスフェノールA型ジシアネート樹脂)である「アロシー(登録商標)B-10」(ハンツマン社製、分子量278)を3,000g、p-(α-クミル)フェノール(三井化学ファイン株式会社製、分子量212)を45.8g、トルエンを1,303g投入して反応溶液とした。反応溶液の昇温を開始し、反応溶液の温度が90℃になるまで撹拌した。90℃に到達した時点で、ナフテン酸亜鉛(和光純薬工業株式会社製、固形分濃度8質量%、ミネラルスピリット溶液カット品)を反応溶液に2.799g添加した。その後、さらに110℃に昇温し、110℃で180分間撹拌させた。続いて、反応溶液の固形分濃度が70質量%になるようにトルエンを追加配合することによって、トルエンに溶解したシアネートプレポリマーA(重量平均分子量:約3,200)を作製した。
[支持体付き接着補助層の作製]
製造例2
 表2に示す配合組成(表中の数値は固形分の質量部であり、溶液(有機溶剤を除く)又は分散液の場合は固形分換算量である。)に従って組成物を配合し、樹脂成分が溶解するまで撹拌し、ビーズミル処理によって分散することによって、ワニス状の接着補助層用樹脂組成物(固形分濃度:20質量%)を得た。
 上記で得られた接着補助層用樹脂組成物を、厚さ38μmの支持体である片面に離型処理が施されたPETフィルム(帝人・デュポンフィルム株式会社製、NR-1、製品名)の離型処理面の上にダイコーターを用いて塗工し、130℃で2分間乾燥させることで、接着補助層の膜厚が3μmの支持体付き接着補助層を得た。使用した原料を表2に示す。
Figure JPOXMLDOC01-appb-T000020
 接着補助層用樹脂ワニスの配合に用いた材料を下記に示す。
[(H)シアネート樹脂]
 ・シアネートプレポリマーA:製造例1で合成したシアネートプレポリマーA
[(J)エポキシ樹脂]
 ・NC-3000-H:ビフェニルアラルキル構造含有ノボラック型エポキシ樹脂(日本化薬株式会社製「NC-3000-H」、エポキシ当量:289g/eq、固形分濃度100質量%)
[(K)ポリアミド樹脂]
 ・BPAM-155:末端にアミノ基を有するゴム変性ポリアミド樹脂(日本化薬株式会社製「BPAM-155」、数平均分子量:26,000、重量平均分子量:110,000、固形分濃度100質量%)を予めジメチルアセトアミドに固形分濃度が10質量%になるように溶解したもの。
[(L)無機充填材]
 ・アエロジルR972:ヒュームドシリカ(日本アエロジル株式会社製「アエロジル(登録商標)R972」、比表面積:100m/g、固形分濃度100質量%)
[(M)硬化促進剤]
 ・TPP:トリフェニルホスフィン(東京化成工業株式会社製、固形分濃度100質量%)
Figure JPOXMLDOC01-appb-C000021
[層間絶縁層用樹脂フィルムの作製]
実施例1
 表3に示す配合組成(表中の数値は固形分の質量部であり、溶液(有機溶剤を除く)又は分散液の場合は固形分換算量である。)に従って組成物を配合し、ビーズミル処理によって分散し、ワニス状の層間絶縁層用樹脂組成物1(固形分濃度:72質量%)を得た。
 次に、層間絶縁層用樹脂組成物1を、支持体である厚さ38μmの片面に離型処理が施されたPETフィルム(帝人・デュポンフィルム株式会社製、NR-1、製品名)の離型処理面の上にダイコーターを用いて塗工し、100℃で1.5分間乾燥させることで、PETフィルム上に膜厚が40μmの層間絶縁層用樹脂フィルムを得た。
実施例2~9、11~12、比較例1
 実施例1において、層間絶縁層用樹脂組成物の組成を表3に示す組成に変更した以外は、実施例1と同様にして、層間絶縁層用樹脂フィルムを得た。
実施例10
 実施例1と同様の手順で層間絶縁層用樹脂組成物1を得た。
 次に、製造例2で得られた支持体付き接着補助層の接着補助層(厚さ3μm)の上に、層間絶縁層用樹脂組成物1をダイコーターを用いて塗工し、100℃で1.5分間乾燥させることで、膜厚が37μmの層間絶縁層用樹脂組成物層を形成し、多層樹脂フィルムを得た。
 上記で得られた層間絶縁層用樹脂フィルム及び多層樹脂フィルム(以下、これらを単に「樹脂フィルム」とも称する)を、以下の評価方法に従って評価した。結果を表3に示す。
[評価方法]
(1)ガラス転移温度(Tg)(耐熱性の評価)
 ガラス転移温度(Tg)は、各例で得られた樹脂フィルムからシート状の硬化物を作製し、この硬化物について熱機械分析(TMA)を行って評価した。
 シート状の硬化物は、樹脂フィルムをラミネートにより1枚ずつ積層させ、合計5枚積層させた積層体を作製し、該積層体を190℃で180分間熱硬化させて作製した。
 該硬化物を、縦40mm(X方向)、横4mm(Y方向)、厚さ80mm(Z方向)に切り出したものを評価基板とし、該評価基板について、熱機械分析装置(TAインスツルメント社製、Q400)を用い、圧縮法で熱機械分析を行った。具体的には、前記評価基板を前記装置に引っ張り方向(x-y方向)に装着後、荷重5g、昇温速度10℃/分の測定条件にて連続して2回測定し、2回目の測定における熱膨張曲線の異なる接線の交点で示されるTgを求め、耐熱性の指標とした。
(2)誘電正接(電気特性の評価)
 ガラス転移温度の評価に用いた樹脂フィルムの硬化物の作製方法と同様の方法によりシート状の硬化物を作製し、該硬化物を、長さ70mm、幅2mmに切り出したものを評価サンプルとした。この評価サンプルについてアジレントテクノロジーズ(Agilent Technologies)社製の「HP8362B」を用い、空洞共振摂動法により、測定周波数5GHz、測定温度23℃にて誘電正接を測定した。
(3)取り扱い性の評価
 各例で得られた樹脂フィルムを室温(25℃)で5日間放置した後、樹脂面を外側(支持体を内側)にして180°に折り曲げ、割れの有無を目視にて確認した。樹脂フィルム20枚について確認し、表3に「割れが生じた樹脂フィルムの数/20」として示した。
(4)ゲルタイム保存率(保存安定性の評価)
 ゲルタイム保存率は、下記(i)~(iii)の方法により測定した。
(i)保存前におけるゲル化時間(ゲル化時間1)の測定
 各例で得られた樹脂フィルムの支持体から、樹脂組成物のみを取り出した。その樹脂組成物を180℃に設定したSUSプレート製のゲル化試験機(株式会社日新化学研究所製)に投入し、竹串を用いて1秒間に2回転のペースで撹拌し、ゲル化時間1を測定した。
(ii)保存後におけるゲル化時間(ゲル化時間2)の測定
 各例で得られた樹脂フィルムを5℃で30日間保管した後、取り出し、室温に戻した。次いで、樹脂フィルムの支持体から樹脂組成物のみを取り出した。得られた樹脂組成物について、ゲル化時間1と同様の方法で、ゲル化時間2を測定した。
(iii)ゲル化時間の保存率の算出
 ゲル化時間1とゲル化時間2から、下記式に従いゲル化時間の保存率を算出した。
 ゲル化時間の保存率(%)=(ゲル化時間2/ゲル化時間1)×100
 ゲル化時間の保存率が大きいほど、保存安定性に優れる。
Figure JPOXMLDOC01-appb-T000022
 表3の各成分について以下に示す。
[(A)エポキシ樹脂]
 ・N-673:クレゾールノボラック型エポキシ樹脂(DIC株式会社製「エピクロン(登録商標)N-673」、エポキシ当量:210g/eq、固形分濃度100質量%)
 ・jER157S70:ビスフェノールAノボラック型エポキシ樹脂(三菱ケミカル株式会社製「jER(登録商標)157S70」、エポキシ当量:210g/eq、固形分濃度100質量%)
 ・jER828:ビスフェノールA型の液状エポキシ樹脂(三菱ケミカル株式会社製「jER(登録商標)828」、固形分濃度100質量%、エポキシ当量:185g/eq)
[(B)シアネート樹脂]
 ・シアネートプレポリマーA:製造例1で合成したシアネートプレポリマーA
 ・BA230S:ビスフェノールA型シアネート樹脂のプレポリマー(ロンザ社製「プリマセットBA230S」)
 ・BA3000S:ビスフェノールA型シアネート樹脂のプレポリマー(ロンザ社製「プリマセットBA3000S」)
[(C)無機充填材]
 ・アミノシランカップリング剤処理SO-C2:アミノシランカップリング剤(信越化学株式会社製、商品名:KBM573)で処理を施した球状シリカ「SO-C2」(株式会社アドマテックス製、平均粒径:0.5μm)をMEK溶剤中に固形分濃度が70質量%になるように分散させたシリカスラリー
[(D)単官能フェノール化合物]
 ・p-(α-クミル)フェノール:関東化学株式会社製
 ・4-(ベンジルオキシ)フェノール:東京化成工業株式会社製
 ・2,3,6-トリメチルフェノール:本州化学工業株式会社製
[(E)フェノキシ樹脂]
 ・YX7200B35:フェノキシ樹脂(三菱ケミカル株式会社製「jER(登録商標)YX7200B35」、エポキシ当量:3,000~16,000g/eq、固形分濃度35質量%、MEKカット)
[(F)活性エステル硬化剤]
 ・HPC-8000-65T:活性エステル樹脂(DIC株式会社製「EPICLON(登録商標)HPC-8000-65T」、固形分濃度65質量%、トルエンカット品)
[(G)硬化促進剤]
 ・TPP:トリフェニルホスフィン(関東化学株式会社製)
 ・硬化促進剤1:特開2011-179008号公報を参考にして合成した下記式(G-7)で表されるトリブチルホスフィンと1,4-ベンゾキノンの付加反応物(固形分濃度100質量%)
Figure JPOXMLDOC01-appb-C000023
 ・ナフテン酸亜鉛:(和光純薬工業株式会社製、固形分濃度8質量%、ミネラルスピリット溶液)
 表3の結果より、実施例1~12で得られた層間絶縁層用樹脂フィルムにより形成された層間絶縁層は、ガラス転移温度が高く、低い誘電正接を有しており、さらに、ゲルタイム保存率及び取り扱い性にも優れていた。すなわち、本発明の層間絶縁層用樹脂フィルムは、保存安定性及び取り扱い性に優れ、本発明の層間絶縁層用樹脂フィルムにより形成される層間絶縁層は、電気特性及び耐熱性に優れることが分かる。
 一方、(D)単官能フェノール化合物を含有しない比較例1の層間絶縁層用樹脂フィルムは、取り扱い性が悪く、保存安定性(ゲルタイム保存率)、電気特性(誘電正接)も劣っていた。
 

Claims (1)

  1.  (a)重量平均分子量(Mw)と数平均分子量(Mn)との分散比(Mw/Mn)が、1.05~1.8であるノボラック型フェノール樹脂と、
     (b)下記一般式(I)で表されるエポキシ樹脂と、
     (c)無機充填材と、
     を含む樹脂組成物を、支持体フィルム上に層形成してなる樹脂組成物層を有し、
     該樹脂組成物層中の(c)無機充填材の平均粒径が0.1μm以上であり、
     (c)無機充填材の含有量が、樹脂固形分のうち20~95質量%である、多層プリント配線板用の接着フィルム。
    Figure JPOXMLDOC01-appb-C000001

    (式中、pは、1~5の整数を示す。)
     
PCT/JP2017/016095 2016-04-22 2017-04-21 多層プリント配線板用の接着フィルム WO2017183721A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018513231A JPWO2017183721A1 (ja) 2016-04-22 2017-04-21 多層プリント配線板用の接着フィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-086581 2016-04-22
JP2016086581 2016-04-22

Publications (1)

Publication Number Publication Date
WO2017183721A1 true WO2017183721A1 (ja) 2017-10-26

Family

ID=60116168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016095 WO2017183721A1 (ja) 2016-04-22 2017-04-21 多層プリント配線板用の接着フィルム

Country Status (3)

Country Link
JP (1) JPWO2017183721A1 (ja)
TW (1) TW201807138A (ja)
WO (1) WO2017183721A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101938317B1 (ko) * 2018-08-02 2019-01-14 주식회사 에스씨에스 레이저 드릴을 이용하여 가공된 비아홀을 포함하는 동박적층판

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256678A (ja) * 2003-02-26 2004-09-16 Sumitomo Bakelite Co Ltd 樹脂組成物、カバーレイ及びそれを用いたフレキシブルプリント配線板用銅張積層板
JP2004346256A (ja) * 2003-05-26 2004-12-09 Sumitomo Bakelite Co Ltd フレキシブルプリント配線板用樹脂組成物
JP2014107295A (ja) * 2012-11-22 2014-06-09 Hitachi Chemical Co Ltd 多層プリント配線板用の接着フィルム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256678A (ja) * 2003-02-26 2004-09-16 Sumitomo Bakelite Co Ltd 樹脂組成物、カバーレイ及びそれを用いたフレキシブルプリント配線板用銅張積層板
JP2004346256A (ja) * 2003-05-26 2004-12-09 Sumitomo Bakelite Co Ltd フレキシブルプリント配線板用樹脂組成物
JP2014107295A (ja) * 2012-11-22 2014-06-09 Hitachi Chemical Co Ltd 多層プリント配線板用の接着フィルム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101938317B1 (ko) * 2018-08-02 2019-01-14 주식회사 에스씨에스 레이저 드릴을 이용하여 가공된 비아홀을 포함하는 동박적층판

Also Published As

Publication number Publication date
TW201807138A (zh) 2018-03-01
JPWO2017183721A1 (ja) 2019-02-28

Similar Documents

Publication Publication Date Title
US10544305B2 (en) Thermosetting resin composition, resin film for interlayer insulation, composite film, printed wiring board, and method for producing same
JP6897008B2 (ja) 層間絶縁層用熱硬化性樹脂組成物、層間絶縁層用樹脂フィルム、多層樹脂フィルム、多層プリント配線板及びその製造方法
JP6420526B2 (ja) 多層プリント配線板用の接着フィルム
JP6808945B2 (ja) 多層プリント配線板用の接着フィルム
TWI769148B (zh) 樹脂組成物、層間絕緣層用樹脂膜、多層印刷配線板及半導體封裝體
JP2019157027A (ja) 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及びその製造方法
JP6885000B2 (ja) 半導体再配線層形成用樹脂フィルム、半導体再配線層形成用複合フィルム、それらを用いた半導体装置及び半導体装置の製造方法
TWI745369B (zh) 多層印刷配線板用的接著膜
WO2017183721A1 (ja) 多層プリント配線板用の接着フィルム
JP2017193690A (ja) 多層プリント配線板用の接着フィルム
JP6724408B2 (ja) 多層プリント配線板用の接着フィルム
JP6808944B2 (ja) 多層プリント配線板用の接着フィルム
KR102603150B1 (ko) 층간 절연용 수지 필름, 접착 보조층 구비 층간 절연용 수지 필름 및 프린트 배선판
JP6808943B2 (ja) 多層プリント配線板用の接着フィルム
JP7484711B2 (ja) 支持体付き層間絶縁層用樹脂フィルム、多層プリント配線板及び多層プリント配線板の製造方法
JP2017160384A (ja) 多層プリント配線板用の接着フィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018513231

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17786058

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17786058

Country of ref document: EP

Kind code of ref document: A1