JP6885000B2 - 半導体再配線層形成用樹脂フィルム、半導体再配線層形成用複合フィルム、それらを用いた半導体装置及び半導体装置の製造方法 - Google Patents

半導体再配線層形成用樹脂フィルム、半導体再配線層形成用複合フィルム、それらを用いた半導体装置及び半導体装置の製造方法 Download PDF

Info

Publication number
JP6885000B2
JP6885000B2 JP2016141386A JP2016141386A JP6885000B2 JP 6885000 B2 JP6885000 B2 JP 6885000B2 JP 2016141386 A JP2016141386 A JP 2016141386A JP 2016141386 A JP2016141386 A JP 2016141386A JP 6885000 B2 JP6885000 B2 JP 6885000B2
Authority
JP
Japan
Prior art keywords
forming
semiconductor
rewiring layer
resin
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016141386A
Other languages
English (en)
Other versions
JP2018012748A (ja
Inventor
哲郎 岩倉
哲郎 岩倉
彩 笠原
彩 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2016141386A priority Critical patent/JP6885000B2/ja
Publication of JP2018012748A publication Critical patent/JP2018012748A/ja
Application granted granted Critical
Publication of JP6885000B2 publication Critical patent/JP6885000B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、半導体再配線層形成用樹脂フィルム、半導体再配線層形成用複合フィルム、それらを用いた半導体装置及び半導体装置の製造方法に関する。
近年、半導体装置の製造方法として、FOWLP(Fan−Out Wafer Level Package)と呼ばれるパッケージの製造が開始されている。FOWLPは、チップとパッケージ基板との接続を薄膜の配線層で行うので、従来のフリップチップBGAと異なりパッケージ基板がない構造である。そのため、パッケージの薄型化が可能であり、配線長が短いため伝送が速く、パッケージ基板の分のコストが低減できるといった特性が期待されている。
FOWLPの製造には、例えば、チップファースト(Chip−first)法と呼ばれるプロセスが採用される。チップファースト法では、まず、任意の間隔で配列したチップを樹脂封止して疑似ウェーハを形成し、この疑似ウェーハに配線層を設ける。その後、チップ間の分割予定ラインに沿って疑似ウェーハを分割することで、複数のパッケージを得ることができる。
ところで、FOWLPの製造にあたり、チップ(チップ)の外に層間絶縁膜及び配線層を形成し、回路を積み上げていく手法が知られている。この手法により形成される回路層を再配線層といい、薄型化するパッケージにおいて、再配線層を最大限に活用してパッケージの情報量を増やすことが重要視されている。
層間絶縁膜として、従来は感光性を有する有機物が使用されてきている。しかし、ポリイミド樹脂は、像形成後の加熱硬化温度が300℃程度以上と高く、半導体素子内の材料等の耐熱性の点から、より低い温度で加熱硬化可能な感光性樹脂が求められている。
かかる要求に応えるため、近年、低温硬化可能な感光性樹脂組成物として、ポリイミド前駆体に付加重合性化合物を加えた感光性樹脂組成物が提案されている(例えば、特許文献1〜3参照)。
特開2004−191404号公報 特開2005−49504号公報 特開2008−197160号公報
しかしながら、上記特許文献1〜3に記載された感光性樹脂組成物は溶液タイプのものにスピンコーターを用いて均一に塗布して膜を形成させるため、取り扱いが難しいという課題があった。
さらに、FOWLPでは、熱や衝撃などによって生じた応力により基板に反りが生じることがあり、この反りを抑制するため、熱膨張係数の小さな層間絶縁層も要求されている。また、従来のFOWLPでは、高周波特性に優れないため、高周波帯での使用が難しいという課題があった。
本発明は、上記従来技術の有する課題に鑑みてなされたものであり、容易に絶縁層を形成することが可能で、熱膨張係数が低く、誘電正接に優れる半導体再配線層形成用樹脂フィルム、半導体再配線層形成用複合フィルム、それらを用いた半導体装置及び半導体装置の製造方法を提供することを目的とする。
本発明者らは、上記の課題を解決すべく検討を進めた結果、特定の樹脂フィルムにより上記課題を解決できることを見出した。
すなわち、本発明は、次の[1]〜[5]を提供する。
[1]N−置換マレイミド基を少なくとも2個有するマレイミド化合物(a1)由来の構造単位とジアミン化合物(a2)由来の構造単位とを有するポリイミド化合物(A)、変性ポリブタジエン(B)、及び無機充填材(C)を含有する層を含む、半導体再配線層形成用樹脂フィルム。
[2][1]に記載の半導体再配線層形成用樹脂フィルムを含む第一の樹脂層と、第二の樹脂層とを含む、半導体再配線層形成用複合フィルム。
[3]前記第二の樹脂層が、多官能エポキシ樹脂(D)、活性エステル硬化剤(E)及びフェノール性水酸基含有ポリブタジエン変性ポリアミド樹脂(F)を含有する第二の熱硬化性樹脂組成物を含む、[2]に記載の半導体再配線層形成用複合フィルム。
[4][1]に記載の半導体再配線層形成用樹脂フィルム若しくは[2]又は[3]に記載の半導体再配線層形成用複合フィルムの硬化物を備える、半導体装置。
[5]以下の工程(1)〜工程(6)を備える、半導体装置の製造方法。
工程(1):支持基板の上に仮固定材半導体素子を配置する工程。
工程(2):半導体素子を封止する工程。
工程(3):[1]に記載の半導体再配線層形成用樹脂フィルム若しくは[2]又は[3]に記載の半導体再配線層形成用複合フィルムをさらにラミネートする工程。
工程(4):[1]に記載の半導体再配線層形成用樹脂フィルム若しくは[2]又は[3]に記載の半導体再配線層形成用複合フィルムを熱硬化し、絶縁層を形成する工程。
工程(5):絶縁層の表面にめっきして配線を形成する工程。
工程(6):外部接続端子を形成して、個片化する工程。
本発明によれば、容易に絶縁層を形成することが可能で、熱膨張係数が低く、誘電正接に優れる半導体再配線層形成用樹脂フィルム、半導体再配線層形成用複合フィルム、それらを用いた半導体装置及び半導体装置の製造方法を提供できる。
以下、本発明の実施形態について詳細に説明する。なお、本明細書においてはX以上でありY以下である数値範囲(X、Yは実数)を「X〜Y」と表すことがある。例えば、「0.1〜2」という記載は0.1以上であり2以下である数値範囲を示し、当該数値範囲には0.1、0.34、1.03、2等が含まれる。
また、本明細書において「樹脂組成物」とは、後述する各成分の混合物、当該混合物を半硬化させた(いわゆるBステージ状とした)物及び硬化させた(いわゆるCステージ状とした)物の全てを含む。
また、本明細書において「層間絶縁層」とは、2層の導体層の間に位置し、半導体素子の再配線層の導体層を絶縁するための層である。本明細書の「層間絶縁層」は、例えば、半導体再配線層形成用樹脂フィルムの硬化物、複合フィルムの硬化物等が挙げられる。なお、本明細書において「層」とは、一部が欠けているもの、ビア又はパターンが形成されているものも含む。
[樹脂フィルム]
本実施形態にかかる樹脂フィルムは、本実施形態にかかる熱硬化性樹脂組成物の降下物を含む。本実施形態の熱硬化性樹脂組成物(以下、第一の熱硬化性樹脂組成物ともいう)は、N−置換マレイミド基を少なくとも2個有するマレイミド化合物(a1)由来の構造単位とジアミン化合物(a2)由来の構造単位とを有するポリイミド化合物(A)(以下、「ポリイミド化合物(A)」又は「成分(A)」ともいう)、変性ポリブタジエン(B)(以下、「成分(B)」ともいう)、及び無機充填材(C)(以下、「成分(C)」ともいう)を含有するものである。
<ポリイミド化合物(A)>
ポリイミド化合物(A)は、N−置換マレイミド基を少なくとも2個有するマレイミド化合物(a1)由来の構造単位とジアミン化合物(a2)由来の構造単位とを有するものである。
N−置換マレイミド基を少なくとも2個有するマレイミド化合物(a1)(以下、「成分(a1)」ともいう)は、N−置換マレイミド基を2個以上有するマレイミド化合物であれば、特に限定されない。
成分(a1)としては、例えば、ビス(4−マレイミドフェニル)メタン、ポリフェニルメタンマレイミド、ビス(4−マレイミドフェニル)エーテル、ビス(4−マレイミドフェニル)スルホン、3,3’−ジメチル−5,5’−ジエチル−4,4’−ジフェニルメタンビスマレイミド、4−メチル−1,3−フェニレンビスマレイミド、m−フェニレンビスマレイミド、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン等が挙げられる。これらは1種類を単独で用いても、2種類以上を併用してもよい。
成分(a1)は、安価である点から、ビス(4−マレイミドフェニル)メタンが好ましく、誘電特性に優れ、低吸水性である点から、3,3’−ジメチル−5,5’−ジエチル−4,4’−ジフェニルメタンビスマレイミドが好ましく、導体との高接着性、伸び、破断強度等の機械特性に優れる点から、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパンが好ましい。
成分(a1)由来の構造単位としては、例えば、下記一般式(1−1)で表される基、下記一般式(1−2)で表される基等が挙げられる。
Figure 0006885000
一般式(1−1)及び(1−2)中、Aは成分(a1)の残基を示し、*は結合部を示す。Aは特に限定されないが、例えば後述するAと同様の残基が好ましい。
なお、残基とは、原料成分から結合に供された官能基(成分(a1)においてはマレイミド基)を除いた部分の構造をいう。
ポリイミド化合物(A)中における、成分(a1)由来の構造単位の合計含有量は、60質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。好ましい含有量の上限は特に限定されず、100質量%であってもよい。成分(a1)由来の構造単位の含有量を上記範囲内とすることにより、本実施形態の熱硬化性樹脂組成物において、より良好な高周波特性、耐熱性、難燃性、及びガラス転移温度が得られる傾向にある。
ジアミン化合物(a2)(以下、「成分(a2)」ともいう)は、アミノ基を2個有する化合物であれば、特に制限されない。
成分(a2)としては、例えば、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノ−3,3’−ジメチルジフェニルメタン、4,4’−ジアミノ−3,3’−ジエチルジフェニルメタン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルケトン、4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ジメチル−4,4’−ジアミノビフェニル、3,3’−ジヒドロキシベンジジン、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)プロパン、3,3’−ジメチル−5,5’−ジエチル−4,4’−ジアミノジフェニルメタン、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、1,3−ビス(1−(4−(4−アミノフェノキシ)フェニル)−1−メチルエチル)ベンゼン、1,4−ビス(1−(4−(4−アミノフェノキシ)フェニル)−1−メチルエチル)ベンゼン、4,4’−[1,3−フェニレンビス(1−メチルエチリデン)]ビスアニリン、4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビスアニリン、3,3’−[1,3−フェニレンビス(1−メチルエチリデン)]ビスアニリン、ビス(4−(4−アミノフェノキシ)フェニル)スルホン、ビス(4−(3−アミノフェノキシ)フェニル)スルホン、9,9−ビス(4−アミノフェニル)フルオレン等が挙げられる。これらは1種類を単独で用いても、2種類以上を併用してもよい。
成分(a2)は、有機溶媒への溶解性、合成時の反応性、及び耐熱性に優れる点から、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノ−3,3’−ジメチルジフェニルメタン、4,4’−ジアミノ−3,3’−ジエチルジフェニルメタン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン、4,4’−[1,3−フェニレンビス(1−メチルエチリデン)]ビスアニリン、及び4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビスアニリンが好ましい。また、成分(a2)は、誘電特性及び低吸水性に優れる観点から、3,3’−ジメチル−5,5’−ジエチル−4,4’−ジアミノジフェニルメタンが好ましい。また、成分(a2)は、導体との高接着性、伸び、破断強度等の機械特性に優れる観点から、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパンが好ましい。更に、上記の有機溶媒への溶解性、合成時の反応性、耐熱性、導体との高接着性に優れるのに加えて、優れた高周波特性と低吸湿性を発現できる観点から、成分(a2)は、4,4’−[1,3−フェニレンビス(1−メチルエチリデン)]ビスアニリン、4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビスアニリンが好ましい。これらは目的、用途等に合わせて、1種類を単独で用いても、2種類以上を併用してもよい。
成分(a2)由来の構造単位としては、例えば、下記一般式(2−1)で表される基、下記一般式(2−2)で表される基等が挙げられる。
Figure 0006885000
一般式(2−1)及び(2−2)中、Aは成分(a2)の残基を示し、*は結合部を示す。Aは特に限定されないが、例えば後述するAと同様の残基が好ましい。
ポリイミド化合物(A)中における、成分(a2)由来の構造単位の合計含有量は、60質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。好ましい含有量の上限は特に限定されず、100質量%であってもよい。成分(a2)由来の構造単位の含有量を上記範囲内とすることにより、本実施形態の熱硬化性樹脂組成物において、より良好な高周波特性、耐熱性、難燃性、及びガラス転移温度が得られる傾向にある。
ポリイミド化合物(A)中における成分(a1)由来の構造単位と、成分(a2)由来の構造単位との含有比率は、ポリイミド化合物(A)中における、成分(a2)の−NH基由来の基(−NHも含む)の合計当量(Ta2)と、成分(a1)に由来するマレイミド基由来の基(マレイミド基も含む)の合計当量(Ta1)との当量比(Ta1/Ta2)が、1.0〜10.0の範囲であることが好ましく、2.0〜10.0の範囲であることがより好ましい。上記範囲内とすることにより、本実施形態の熱硬化性樹脂組成物において、より良好な高周波特性、耐熱性、難燃性、及びガラス転移温度が得られる傾向にある。
ポリイミド化合物(A)は、有機溶媒への溶解性、高周波特性、導体との高接着性、及びプリプレグの成形性等の点から、下記一般式(3)で表されるポリアミノビスマレイミド化合物を含むことが好ましい。
Figure 0006885000
(式中、Aは下記一般式(4)、(5)、(6)、又は(7)で表される残基であり、Aは下記一般式(8)で表される残基である。)
Figure 0006885000
(式中、Rは各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基、又はハロゲン原子を示す。)
Figure 0006885000
(式中、R及びRは各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基、又はハロゲン原子を示し、Aは炭素数1〜5のアルキレン基若しくはアルキリデン基、エーテル基、スルフィド基、スルフォニル基、カルボオキシ基、ケトン基、単結合、又は下記一般式(5−1)で表される残基である。)
Figure 0006885000
(式中、R及びRは各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基、又はハロゲン原子を示し、Aは炭素数1〜5のアルキレン基、イソプロピリデン基、エーテル基、スルフィド基、スルフォニル基、カルボオキシ基、ケトン基、又は単結合である。)
Figure 0006885000
(式中、iは1〜10の整数である。)
Figure 0006885000
(式中、R及びRは各々独立に、水素原子又は炭素数1〜5の脂肪族炭化水素基を示し、jは1〜8の整数である。)
Figure 0006885000
(式中、R及びRは各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基、炭素数1〜5のアルコキシ基、水酸基、又はハロゲン原子を示し、Aは炭素数1〜5のアルキレン基若しくはアルキリデン基、エーテル基、スルフィド基、スルフォニル基、カルボオキシ基、ケトン基、フルオレニレン基、単結合、下記一般式(8−1)、又は下記一般式(8−2)で表される残基である。)
Figure 0006885000
(式中、R10及びR11は各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基、又はハロゲン原子を示し、Aは炭素数1〜5のアルキレン基、イソプロピリデン基、m−又はp−フェニレンジイソプロピリデン基、エーテル基、スルフィド基、スルフォニル基、カルボオキシ基、ケトン基、又は単結合である。)
Figure 0006885000
(式中、R12は各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基、又はハロゲン原子を示し、A及びA10は炭素数1〜5のアルキレン基、イソプロピリデン基、エーテル基、スルフィド基、スルフォニル基、カルボオキシ基、ケトン基、又は単結合である。)
ポリイミド化合物(A)は、例えば、成分(a1)と成分(a2)とを有機溶媒中で反応させることで製造できる。
ポリイミド化合物(A)を製造する際に使用される有機溶媒は特に制限はなく、公知の溶媒を使用できる。有機溶媒は、後述する半導体再配線層形成用樹脂フィルム用ワニスの製造に用いられる有機溶媒であってもよい。
ポリイミド化合物(A)を製造する際の成分(a1)と成分(a2)の使用量は、成分(a2)の−NH基当量(Ta2’)と、成分(a1)のマレイミド基当量(Ta1’)との当量比(Ta1’/Ta2’)が1.0〜10.0の範囲になるように配合することが好ましく、2.0〜10.0の範囲になるように配合することがより好ましい。上記範囲内で成分(a1)と成分(a2)を配合することにより、本実施形態の熱硬化性樹脂組成物において、より良好な高周波特性、耐熱性、難燃性、及びガラス転移温度が得られる傾向にある。
成分(a1)と成分(a2)とを反応させてポリイミド化合物(A)を製造する際には、反応触媒を必要に応じて使用することもできる。反応触媒としては制限されないが、例えば、p−トルエンスルホン酸等の酸性触媒;トリエチルアミン、ピリジン、トリブチルアミン等のアミン類;メチルイミダゾール、フェニルイミダゾール等のイミダゾール類;トリフェニルホスフィン等のリン系触媒などが挙げられる。これらは単独又は2種類以上を混合して用いてもよい。また、反応触媒の配合量は特に限定されないが、例えば、成分(a1)及び成分(a2)の合計量100質量部に対して、0.01〜5.0質量部の範囲で使用することができる。
成分(a1)、成分(a2)、必要によりその他の成分を合成釜に所定量仕込み、成分(a1)と成分(a2)とをマイケル付加反応させることによりポリイミド化合物(A)が得られる。この工程での反応条件としては、特に限定されないが、例えば、反応速度等の作業性、ゲル化抑制などの観点から、反応温度は50〜160℃が好ましく、反応時間は1〜10時間が好ましい。
また、この工程では前述の有機溶媒を追加又は濃縮して反応原料の固形分濃度、溶液粘度を調整することができる。反応原料の固形分濃度は、特に制限はないが、例えば、10〜90質量%が好ましく、20〜80質量%がより好ましい。反応原料の固形分濃度が10質量%以上の場合、反応速度が遅くなりすぎず、製造コストの面で有利である。また、反応原料の固形分濃度が90質量%以下の場合、より良好な溶解性が得られ、攪拌効率が良く、またゲル化することも少ない。
なお、ポリイミド化合物(A)の製造後に、目的に合わせて有機溶媒の一部又は全部を除去して濃縮してもよく、有機溶媒を追加して希釈してもよい。追加で使用される有機溶媒としては、ポリイミド化合物(A)の製造工程で例示した有機溶媒が適用できる。これらは1種類を単独で用いてもよく、2種類以上を混合して用いてもよい。また、使用する有機溶媒は、溶解性の観点から、メチルエチルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドが好ましい。
ポリイミド化合物(A)の重量平均分子量は、特に限定されないが、例えば、800〜1500の範囲が好ましく、800〜1300の範囲がより好ましく、800〜1100の範囲がさらに好ましい。ポリイミド化合物(A)の重量平均分子量は、実施例に記載の方法により求めることができる。
本実施形態の熱硬化性樹脂組成物中におけるポリイミド化合物(A)の含有量は、特に限定されないが、本実施形態の熱硬化性樹脂組成物中に含まれる全樹脂成分の合計質量中、50〜95質量%が好ましく、60〜90質量%がより好ましく、70〜85質量%がさらに好ましい。ポリイミド化合物(A)の含有量を前記範囲内とすることにより、誘電正接がより低くなる傾向にある。
<変性ポリブタジエン(B)>
本実施形態において、変性ポリブタジエン(B)は、化学変性されているポリブタジエンであれば、特に限定されない。変性ポリブタジエン(B)を用いると、得られる絶縁層において、無機充填材(C)と樹脂成分との分離、光沢ムラ等を低減できる。本明細書において、化学変性されているポリブタジエンとは、分子中の側鎖の1,2−ビニル基及び/又は末端の両方若しくは片方が、酸無水物化、エポキシ化、グリコール化、フェノール化、マレイン化、(メタ)アクリル化、ウレタン化等の化学変性されたものを指す。
変性ポリブタジエン(B)は、側鎖に1,2−ビニル基を有する1,2−ブタジエン単位を分子中に含有するものが好ましく、前記1,2−ブタジエン単位を40質量%以上含有するものがより好ましい。
より誘電正接が低い熱硬化性樹脂組成物を得る観点から、変性ポリブタジエン(B)は酸無水物で変性されているポリブタジエンが好ましい。酸無水物としては限定されないが、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸、無水コハク酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸等が挙げられ、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸のいずれかであることが好ましく、無水マレイン酸がより好ましい。
変性ポリブタジエン(B)が酸無水物で変性されている場合、変性ポリブタジエン(B)1分子中に含まれる酸無水物由来の基(以下、「酸無水物基」ともいう)の数は、1〜10が好ましく、1〜6がより好ましく、2〜5がさらに好ましい。酸無水物基の数が1分子中に1以上であると、絶縁層を形成した際の無機充填材(C)と樹脂成分との分離がより抑制される傾向にある。また、酸無水物基の数が1分子中に10以下であると、得られる熱硬化性樹脂組成物の誘電正接がより低くなる傾向にある。
すなわち、変性ポリブタジエン(B)が無水マレイン酸で変性されている場合、上記と同様の観点から、変性ポリブタジエン(B)1分子中に含まれる無水マレイン酸由来の基(以下、「無水マレイン酸基」ともいう)の数は、1〜10が好ましく、1〜6がより好ましく、2〜5がさらに好ましい。
また、変性ポリブタジエン(B)の重量平均分子量は、500〜25000であることが好ましく、1000〜20000であることがより好ましく、2000〜13000であることがさらに好ましく、3000〜10000であることが特に好ましい。変性ポリブタジエン(B)の重量平均分子量が500以上の場合、得られる熱硬化性樹脂組成物の硬化性及び硬化物としたときの誘電特性がより良好となる傾向にある。また、変性ポリブタジエン(B)の重量平均分子量が25000以下である場合、得られる絶縁層において、無機充填材(C)と樹脂成分との分離及び光沢ムラがより抑制される傾向にある。なお、変性ポリブタジエン(B)の重量平均分子量は、本明細書の実施例におけるポリイミド化合物(A)の重量平均分子量の測定方法が適用できる。
本実施形態に用いる変性ポリブタジエン(B)としては、市販品を用いてもよい。変性ポリブタジエン(B)の市販品としては、例えば、Ricon130MA8、Ricon131MA5、Ricon184MA6(クレイバレー社製、商品名)、POLYVEST MA75、POLYVEST EP MA120(エボニック社製、商品名)等が挙げられる。
本実施形態の熱硬化性樹脂組成物中における変性ポリブタジエン(B)の含有量は、特に制限はないが、本実施形態の熱硬化性樹脂組成物中に含まれる全樹脂成分の合計質量中、1〜50質量%が好ましく、5〜40質量%がより好ましく、10〜30質量%がさらに好ましい。変性ポリブタジエン(B)の含有量を前記範囲内とすることにより、樹脂分離及び光沢ムラをより少なくすることができる傾向にある。
本実施形態の熱硬化性樹脂組成物中におけるポリイミド化合物(A)及び変性ポリブタジエン(B)の合計含有量は、特に制限はないが、本実施形態の熱硬化性樹脂組成物中に含まれる全樹脂成分の合計質量中、80質量%以上が好ましく、85質量%以上がより好ましく、90質量%以上がさらに好ましい。含有量の上限は特に限定されず、100%であってもよい。
本実施形態の熱硬化性樹脂組成物中におけるポリイミド化合物(A)及び変性ポリブタジエン(B)の合計含有量は、特に制限はないが、本実施形態の熱硬化性樹脂組成物の合計質量中、20〜90質量%が好ましく、30〜80質量%がより好ましく、35〜70質量%がさらに好ましい。
<無機充填材(C)>
無機充填材(C)としては、特に限定されず、例えば、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウム等が挙げられる。得られる絶縁層をより低熱膨張化できる観点から、成分(C)は、シリカが好ましい。
成分(C)の体積平均粒径は、特に限定されないが、例えば、0.05〜5μmが好ましく、0.1〜3μmがより好ましく、0.2〜1μmがさらに好ましい。成分(C)の体積平均粒径が5μm以下であれば、絶縁層上に回路パターンを形成する際にファインパターンの形成をより安定的に行える傾向にある。また、成分(C)の体積平均粒径が0.1μm以上であれば、耐熱性がより良好となる傾向にある。なお、体積平均粒径とは、粒子の全体積を100%として、粒子径による累積度数分布曲線を求めたときの体積50%に相当する点の粒径のことであり、レーザー回折散乱法を用いた粒度分布測定装置等で測定できる。
また、成分(C)の分散性及び成分(C)と熱硬化性樹脂組成物中の有機成分との接着性を向上させる目的で、必要に応じ、カップリング剤を併用してもよい。カップリング剤としては特に限定されず、例えば、各種のシランカップリング剤、チタネートカップリング剤等を用いることができる。これらは1種類を単独で用いても、2種類以上を併用してもよい。また、その使用量も特に限定されず、例えば、使用する成分(C)100質量部に対して0.1〜5質量部が好ましく、0.5〜3質量部がより好ましい。この範囲であれば、成分(C)の使用による特長をより効果的に発揮できる。
カップリング剤を用いる場合、その添加方式は、本実施形態の熱硬化性樹脂組成物中に成分(C)を配合した後、カップリング剤を添加する、いわゆるインテグラルブレンド処理方式であってもよいが、より効果的に成分(C)の特長を発現させる観点から、予め無機充填材にカップリング剤を乾式又は湿式で表面処理した無機充填材を使用する方式であってもよい。
成分(C)の熱硬化性樹脂組成物への分散性の観点から、必要に応じ、成分(C)を予め有機溶媒中に分散させたスラリーとして用いることが好ましい。成分(C)をスラリー化する際に使用される有機溶媒は特に制限はないが、例えば、上述したポリイミド化合物(A)の製造工程で例示した有機溶媒が適用できる。これらは1種類を単独で用いてもよく、2種類以上を混合して用いてもよい。また、これらの有機溶媒の中でも、より高い分散性の観点から、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンが好ましい。
また、成分(C)のスラリーの不揮発分濃度は特に制限はないが、例えば、無機充填材(C)の沈降性及び分散性の観点から、50〜80質量%が好ましく、60〜80質量%がより好ましい。
成分(C)の含有量は、例えば、熱硬化性樹脂組成物の樹脂成分の全体積中のフィラーを50〜75体積%含む組成物を含有することが好ましい。成分(C)の含量が50体積%未満である場合は、硬化物の線膨張係数が高くなる傾向にあり、75体積%超である場合は、弾性率が高くなり過ぎ、ラミネート成形性が劣る傾向にある。
本実施形態の熱硬化性樹脂組成物は、必要に応じて、難燃剤、硬化促進剤等を含有してもよい。
本実施形態の熱硬化性樹脂組成物に難燃剤を含有させることで、より良好な難燃性を付与することができる。難燃剤としては特に限定されず、例えば、塩素系難燃剤、臭素系難燃剤、リン系難燃剤、金属水和物系難燃剤等が挙げられる。環境への適合性からは、リン系難燃剤又は金属水和物系難燃剤が好ましい。
本実施形態の熱硬化性樹脂組成物に適切な硬化促進剤を含有させることで、熱硬化性樹脂組成物の硬化性を向上させ、絶縁層の誘電特性、耐熱性、高弾性率性、ガラス転移温度等をより向上させることができる。硬化促進剤としては、特に限定されず、例えば、各種イミダゾール化合物及びその誘導体;各種第3級アミン化合物、各種第4級アンモニウム化合物、トリフェニルホスフィン等の各種リン系化合物などが挙げられる。
本実施形態の熱硬化性樹脂組成物には、その他にも酸化防止剤、流動調整剤等の添加剤を含有させてもよい。
[半導体再配線層形成用樹脂フィルム]
本実施形態の半導体再配線層形成用樹脂フィルムは、第一の熱硬化性樹脂組成物を含むものである。
本実施形態の半導体再配線層形成用樹脂フィルムは、そのいずれか一方の面に支持体が設けられたものであってもよい。
支持体としては、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィンのフィルム;ポリエチレンテレフタレート(以下、「PET」ともいう)、ポリエチレンナフタレート等のポリエステルのフィルム;ポリカーボネートフィルム、ポリイミドフィルム等の各種プラスチックフィルムなどが挙げられる。また、銅箔、アルミニウム箔等の金属箔、離型紙などを使用してもよい。支持体及び後述する保護フィルムには、マット処理、コロナ処理等の表面処理が施してあってもよい。また、支持体及び後述する保護フィルムには、シリコーン樹脂系離型剤、アルキッド樹脂系離型剤、フッ素樹脂系離型剤等による離型処理が施してあってもよい。
支持体の厚さは特に限定されないが、10〜150μmが好ましく、25〜50μmがより好ましい。
<半導体再配線層形成用樹脂フィルムの製造方法>
本実施形態の半導体再配線層形成用樹脂フィルムは、例えば、次のようにして製造することができる。
まず、成分(A)、成分(B)、成分(C)及び必要に応じて使用されるその他の成分を有機溶媒に溶解又は分散した樹脂ワニス(以下、「半導体再配線層形成用樹脂フィルム用ワニス」ともいう)の状態にすることが好ましい。
半導体再配線層形成用樹脂フィルム用ワニスを製造するのに用いられる有機溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテル、カルビトールアセテート等の酢酸エステル類;セロソルブ、ブチルカルビトール等のカルビトール類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等のアミド系溶媒などを挙げることができる。これらの有機溶媒は単独で又は2種以上を組み合わせて使用してもよい。
有機溶媒の配合量は、半導体再配線層形成用樹脂フィルム用ワニスの全質量100質量部に対して、10〜60質量部が好ましく、10〜35質量部がより好ましい。
半導体再配線層形成用樹脂フィルム用ワニスを前記支持体に塗工した後、加熱乾燥させることにより、半導体再配線層形成用樹脂フィルムを得られる。
支持体に半導体再配線層形成用樹脂フィルム用ワニスを塗工する方法としては、例えば、コンマコーター、バーコーター、キスコーター、ロールコーター、グラビアコーター、ダイコーター等の塗工装置を用いることができる。これらの塗工装置は、膜厚によって、適宜選択することが好ましい。
塗工後の乾燥条件は特に限定されないが、例えば、30〜60質量%の有機溶媒を含む半導体再配線層形成用樹脂フィルム用ワニスの場合、50〜150℃で3〜10分程度乾燥させることにより、半導体再配線層形成用樹脂フィルムを好適に形成することができる。乾燥後の半導体再配線層形成用樹脂フィルム中の揮発成分(主に有機溶媒)の含有量が、10質量%以下となるように乾燥させることが好ましく、6質量%以下となるように乾燥させることがより好ましい。
支持体上に形成された半導体再配線層形成用樹脂フィルムの、支持体とは反対側の面には、保護フィルムを設けてもよい。保護フィルムの厚さは、特に限定されないが、例えば、1〜40μmである。保護フィルムを積層することにより、半導体再配線層形成用樹脂フィルムの表面へのゴミ等の付着及びキズ付きを防止することができる。半導体再配線層形成用樹脂フィルムは、ロール状に巻き取って保管することができる。
[複合フィルム]
本実施形態の複合フィルムは、本実施形態の熱硬化性樹脂組成物を含む第一の樹脂層と、第二の樹脂層とを含む複合フィルムであってもよい。
本実施形態に係る複合フィルムは、第一の樹脂層及び第二の樹脂層、並びに必要に応じて支持体及び/又は保護フィルムを備えている。
なお、第一の樹脂層と第二の樹脂層との間には、明確な界面が存在せず、例えば、第一の樹脂層の構成成分の一部と、第二の樹脂層の構成成分の一部とが、相溶及び/又は混合した状態であってもよい。
<第一の樹脂層>
第一の樹脂層は、本実施形態の熱硬化性樹脂組成物を含むものである。第一の樹脂層は、例えば、本実施形態の複合フィルムを用いて多層プリント配線板を製造する場合において、回路基板と接着補助層との間に設けられ、回路基板の導体層とその上の層とを絶縁するために用いられる。また、第一の樹脂層は、回路基板にスルーホール、ビアホール等が存在する場合、それらの中に流動し、該ホール内を充填する役割も果たす。
<第二の樹脂層>
第二の樹脂層は、後述する本実施形態のプリント配線板において、本実施形態の熱硬化性樹脂組成物を含む第一の樹脂層の硬化物と、導体層との間に位置し、導体層との接着性を向上させることを目的として設けられるものである。第二の樹脂層を設けることにより、平滑な表面が得られ、且つ、めっきにて形成される導体層ともより良好な接着強度が得られる。したがって、微細配線を形成する観点から、第二の樹脂層を設けることが好ましい。
第二の樹脂層としては、導体層との接着性を向上させるものであれば、特に限定されないが、例えば、表面粗さが小さくてもめっき銅との接着性に優れ、且つ誘電正接が低い絶縁層を得る観点から、多官能エポキシ樹脂(D)、活性エステル硬化剤(E)、及びフェノール性水酸基含有ポリブタジエン変性ポリアミド樹脂(F)(以下、「成分(F)」ともいう)を含有する、第二の熱硬化性樹脂組成物を含むことが好ましい。
<多官能エポキシ樹脂(D)>
多官能エポキシ樹脂(D)は、エポキシ基を2個以上有する樹脂であれば、特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフトール型エポキシ樹脂、アントラセン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、フルオレン型エポキシ樹脂、キサンテン型エポキシ樹脂等が挙げられる。めっき銅との接着性の観点から、ビフェニル構造を有することが好ましく、ビフェニル構造を有する多官能エポキシ樹脂又はビフェニル構造を有するアラルキルノボラック型エポキシ樹脂がより好ましい。
多官能エポキシ樹脂(D)としては、市販品を用いてもよい。市販されている多官能エポキシ樹脂(D)としては、ビフェニル構造を有するアラルキルノボラック型エポキシ樹脂である、日本化薬株式会社製「NC−3000−H」、「NC−3000−L」、「NC−3100」、「NC−3000」等が挙げられる。
多官能エポキシ樹脂(D)は、1種類を単独で使用してもよく、2種類以上を組み合わせて使用してもよい。
多官能エポキシ樹脂(D)のエポキシ当量としては、特に限定されないが、接着性の観点からは150〜450g/molが好ましく、200〜400g/molがより好ましく、250〜350g/molがさらに好ましい。
第二の熱硬化性樹脂組成物中の多官能エポキシ樹脂(D)の含有量は、特に限定されないが、第二の熱硬化性樹脂組成物に含まれる全樹脂成分の合計質量中、10〜90質量%が好ましく、20〜80質量%がより好ましく、30〜70質量%がさらに好ましい。多官能エポキシ樹脂(D)の含有量が、10質量%以上であれば、めっき銅とのより良好な接着強度が得られ、90質量%以下であれば、より低い誘電正接が得られる傾向にある。
<活性エステル硬化剤(E)>
活性エステル硬化剤(E)は、エステル基を1分子中に1個以上有し、エポキシ樹脂の硬化作用を有するものをいう。
活性エステル硬化剤(E)としては、特に限定されないが、例えば、脂肪族又は芳香族カルボン酸と脂肪族又は芳香族ヒドロキシ化合物とから得られるエステル化合物等が挙げられる。
これらの中でも、脂肪族カルボン酸、脂肪族ヒドロキシ化合物等から得られるエステル化合物は、脂肪族鎖を含むことにより有機溶媒への可溶性及びエポキシ樹脂との相溶性を高くできる傾向にある。
また、芳香族カルボン酸、芳香族ヒドロキシ化合物等から得られるエステル化合物は、芳香族環を有することで耐熱性を高められる傾向にある。
活性エステル硬化剤(E)としては、例えば、フェノールエステル化合物、チオフェノールエステル化合物、N−ヒドロキシアミンエステル化合物、複素環ヒドロキシ化合物のエステル化化合物等が挙げられる。
より具体的には、例えば、芳香族カルボン酸とフェノール性水酸基との縮合反応にて得られる芳香族エステルが挙げられ、ベンゼン、ナフタレン、ビフェニル、ジフェニルプロパン、ジフェニルメタン、ジフェニルエーテル、ジフェニルスルホン酸等の芳香環の水素原子の2〜4個をカルボキシ基で置換したものから選ばれる芳香族カルボン酸成分と、上述した芳香環の水素原子の1個を水酸基で置換した1価フェノールと芳香環の水素原子の2〜4個を水酸基で置換した多価フェノールとの混合物を原材料として、芳香族カルボン酸とフェノール性水酸基との縮合反応にて得られる芳香族エステル等が好ましい。すなわち、上記芳香族カルボン酸成分由来の構造単位と上記1価フェノール由来の構造単位と上記多価フェノール由来の構造単位とを有する芳香族エステルが好ましい。
活性エステル硬化剤(E)としては、市販品を用いてもよい。活性エステル硬化剤(E)の市販品としては、例えば、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物として、「EXB9451」、「EXB9460」、「EXB9460S」、「HPC−8000−65T」(DIC株式会社製)、ナフタレン構造を含む活性エステル化合物として「EXB9416−70BK」(DIC株式会社製)、フェノールノボラックのアセチル化物を含む活性エステル化合物として「DC808」(三菱化学株式会社製)、フェノールノボラックのベンゾイル化物を含む活性エステル化合物として「YLH1026」(三菱化学株式会社製)等が挙げられる。
活性エステル硬化剤(E)は、1種類を単独で使用してもよく、2種類以上を組み合わせて使用してもよい。
活性エステル硬化剤(E)のエステル当量は、特に限定されないが、150〜400g/molが好ましく、170〜300g/molがより好ましく、200〜250g/molがさらに好ましい。
第二の熱硬化性樹脂組成物中の、多官能エポキシ樹脂(D)のエポキシ基に対する、活性エステル硬化剤(E)のエステル基の当量比(エステル基/エポキシ基)は、0.05〜1.5が好ましく、0.1〜1.3がより好ましく、0.2〜1.0がさらに好ましい。当量比(エステル基/エポキシ基)が上記範囲内であると、めっき銅との接着強度をより高め、且つより低い誘電正接と平滑な表面を得られるため、微細配線を形成する観点から好適である。
<フェノール性水酸基含有ポリブタジエン変性ポリアミド樹脂(F)>
成分(F)は、フェノール性水酸基を有するポリブタジエン変性されたポリアミド樹脂であれば、特に限定されないが、ジアミン由来の構造単位と、フェノール性水酸基を含有するジカルボン酸由来の構造単位と、フェノール性水酸基を含有しないジカルボン酸由来の構造単位と、両末端にカルボキシ基を有するポリブタジエン由来の構造単位とを有するものが好ましい。具体的には、下記一般式(i)で表される構造単位、下記一般式(ii)で表される構造単位、及び下記一般式(iii)で表される構造単位を有するものが好ましく挙げられる。
Figure 0006885000
一般式(i)〜(iii)中、a、b、c、x、y及びzは、それぞれ平均重合度を示す整数であって、a=2〜10、b=0〜3、c=3〜30、x=1に対しy+z=2〜300((y+z)/x)を示し、さらにy=1に対しz≧20(z/y)である。
一般式(i)〜(iii)中、R’はそれぞれ独立に、芳香族ジアミン又は脂肪族ジアミンに由来する2価の基を示し、一般式(iii)中、R’’は芳香族ジカルボン酸、脂肪族ジカルボン酸又は両末端にカルボキシ基を有するオリゴマーに由来する2価の基を示す。
一般式(i)〜(iii)中に含まれる複数のR’同士は同一であっても異なっていてもよい。また、zが2以上の整数のとき、複数のR’’同士は同一であっても異なっていてもよい。
なお、一般式(i)〜(iii)中、R’は、具体的には、後述する芳香族ジアミン又は脂肪族ジアミンに由来する2価の基であり、R’’は、後述する芳香族ジカルボン酸、脂肪族ジカルボン酸又は両末端にカルボキシ基を有するオリゴマーに由来する2価の基であることが好ましい。
成分(F)にジアミン由来の構造単位を形成するために使用するジアミンとしては、例えば、芳香族ジアミン、脂肪族ジアミン等が挙げられる。
芳香族ジアミンとしては、例えば、ジアミノベンゼン、ジアミノトルエン、ジアミノフェノール、ジアミノジメチルベンゼン、ジアミノメシチレン、ジアミノニトロベンゼン、ジアミノジアゾベンゼン、ジアミノナフタレン、ジアミノビフェニル、ジアミノジメトキシビフェニル、ジアミノジフェニルエーテル、ジアミノジメチルジフェニルエーテル、メチレンジアミン、メチレンビス(ジメチルアニリン)、メチレンビス(メトキシアニリン)、メチレンビス(ジメトキシアニリン)、メチレンビス(エチルアニリン)、メチレンビス(ジエチルアニリン)、メチレンビス(エトキシアニリン)、メチレンビス(ジエトキシアニリン)、イソプロピリデンジアニリン、ジアミノベンゾフェノン、ジアミノジメチルベンゾフェノン、ジアミノアントラキノン、ジアミノジフェニルチオエーテル、ジアミノジメチルジフェニルチオエーテル、ジアミノジフェニルスルホン、ジアミノジフェニルスルホキシド、ジアミノフルオレン等が挙げられる。
脂肪族ジアミンとしては、例えば、エチレンジアミン、プロパンジアミン、ヒドロキシプロパンジアミン、ブタンジアミン、へプタンジアミン、ヘキサンジアミン、シクロペンタンジアミン、シクロヘキサンジアミン、アザペンタンジアミン、トリアザウンデカジアミン等が挙げられる。
成分(F)にフェノール性水酸基を含有するジカルボン酸由来の構造単位を形成するために使用するフェノール性水酸基を含有するジカルボン酸としては、例えば、ヒドロキシイソフタル酸、ヒドロキシフタル酸、ヒドロキシテレフタル酸、ジヒドロキシイソフタル酸、ジヒドロキシテレフタル酸等が挙げられる。
成分(F)にフェノール性水酸基を含有しないジカルボン酸由来の構造単位を形成するために使用するフェノール性水酸基を含有しないジカルボン酸としては、例えば、芳香族ジカルボン酸、脂肪族ジカルボン酸、両末端にカルボキシ基を有するオリゴマー等が挙げられる。
芳香族ジカルボン酸としては、例えば、フタル酸、イソフタル酸、テレフタル酸、ビフェニルジカルボン酸、メチレン二安息香酸、チオ二安息香酸、カルボニル二安息香酸、スルホニル安息香酸、ナフタレンジカルボン酸等が挙げられる。
脂肪族ジカルボン酸としては、例えば、シュウ酸、マロン酸、メチルマロン酸、コハク酸、グルタル酸、アジピン酸、マレイン酸、フマル酸、りんご酸、酒石酸、(メタ)アクリロイルオキシコハク酸、ジ(メタ)アクリロイルオキシコハク酸、(メタ)アクリロイルオキシりんご酸、(メタ)アクリルアミドコハク酸、(メタ)アクリルアミドりんご酸等が挙げられる。
成分(F)に両末端にカルボキシ基を有するポリブタジエン由来の構造単位を形成するために使用する両末端にカルボキシ基を有するポリブタジエンとしては、例えば、数平均分子量が200〜10,000であることが好ましく、数平均分子量が500〜5,000のオリゴマーであることがより好ましい。
成分(F)の重量平均分子量は、特に限定されないが、例えば、60,000〜250,000であることが好ましく、80,000〜200,000であることがより好ましい。成分(F)の重量平均分子量は、ポリイミド化合物(B1)の重量平均分子量と同様の方法により求めることができる。
成分(F)の活性水酸基当量は、特に限定されないが、1,500〜7,000g/molが好ましく、2,000〜6,000g/molがより好ましく、3,000〜5,000g/molがさらに好ましい。
成分(F)は、例えば、ジアミンと、フェノール性水酸基を含有するジカルボン酸と、フェノール性水酸基を含有しないジカルボン酸と、両末端にカルボキシ基を有するポリブタジエンとを、ジメチルアセトアミド等の有機溶媒中で、触媒として亜リン酸エステルとピリジン誘導体の存在下で反応性させて、カルボキシ基とアミノ基とを重縮合させることにより合成される。製造に使用できる各化合物は、上記したものを例示できる。
成分(F)としては、市販品を使用することができ、市販品の成分(F)としては、例えば、日本化薬株式会社製の「KAYAFLEX BPAM−155」等が挙げられる。
第二の熱硬化性樹脂組成物中の成分(F)の含有量は、特に限定されないが、第二の熱硬化性樹脂組成物に含まれる全樹脂成分の合計質量中、1〜20質量%が好ましく、2〜15質量%がより好ましく、3〜10質量%がさらに好ましい。成分(F)の含有量が、1質量%以上であれば、樹脂組成物の強靭性を高くすることができ、緻密な粗化形状が得られ、めっき銅との接着強度を高めることができる。また、20質量%以下であれば、耐熱性の低下がなく、粗化工程時の薬液に対する耐性の低下も防ぐことができる。また、めっき銅との十分な接着性を確保できる。
<リン系硬化促進剤(G)>
第二の熱硬化性樹脂組成物は、更にリン系硬化促進剤(G)を含有することが好ましい。
リン系硬化促進剤(G)としては、リン原子を含有し、多官能エポキシ樹脂(D)と活性エステル硬化剤(E)との反応を促進させる硬化促進剤であれば特に限定なく使用することができる。
第二の熱硬化性樹脂組成物は、リン系硬化促進剤(G)を含有することによって、硬化反応をより一層十分に進めることができる。この理由は、リン系硬化促進剤(G)を用いることによって、活性エステル硬化剤(E)中のカルボニル基の電子求引性を高めることができ、これにより活性エステル硬化剤(E)と多官能エポキシ樹脂(D)との反応が促進されるためと推察される。
このように第二の熱硬化性樹脂組成物は、リン系硬化促進剤(G)を含有することにより、他の硬化促進剤を用いた場合より、多官能エポキシ樹脂(D)と活性エステル硬化剤(E)との硬化反応がより一層十分に進行するため、第一の樹脂層と組み合わせた際に、低い誘電正接が得られると考えられる。
リン系硬化促進剤(G)としては、例えば、トリフェニルホスフィン、ジフェニル(アルキルフェニル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキルアルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等の有機ホスフィン類;有機ホスフィン類と有機ボロン類との錯体;及び第三ホスフィンとキノン類との付加物などが挙げられる。硬化反応がより十分に進み、高いめっき銅との接着性を発揮できる観点から、第三ホスフィンとキノン類との付加物が好ましい。
第三ホスフィンとしては、特に限定されないが、例えば、トリ−n−ブチルホスフィン、ジブチルフェニルホスフィン、ブチルジフェニルホスフィン、エチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4−メチルフェニル)ホスフィン、トリス(4−メトキシフェニル)ホスフィン等が挙げられる。また、キノン類としては、例えば、o−ベンゾキノン、p−ベンゾキノン、ジフェノキノン、1,4−ナフトキノン、アントラキノン等が挙げられる。めっき銅との接着性、耐熱性、及び平滑な表面が得られる点から、トリ−n−ブチルホスフィンとp−ベンゾキノンとの付加物がより好ましい。
第三ホスフィンとキノン類との付加物の製造方法としては、例えば、原料となる第三ホスフィンとキノン類がともに溶解する溶媒中で両者を撹拌混合し、付加反応させた後、単離する方法等が挙げられる。この場合の製造条件としては、例えば、第三ホスフィンとキノン類とを、20〜80℃の範囲で、メチルイソブチルケトン、メチルエチルケトン、アセトン等のケトン類などの溶媒中で、1〜12時間撹拌し、付加反応させることが好ましい。
リン系硬化促進剤(G)は、1種類を単独で使用してもよく、2種類以上を組み合わせて使用してもよい。また、リン系硬化促進剤(G)以外の硬化促進剤を1種類以上を併用してもよい。
第二の熱硬化性樹脂組成物中のリン系硬化促進剤(G)の含有量は、特に限定されないが、第二の熱硬化性樹脂組成物に含まれる全樹脂成分の合計質量中、0.1〜20質量%が好ましく、0.2〜15質量%がより好ましく、0.4〜10質量%がさらに好ましい。リン系硬化促進剤(G)の含有量が、0.1質量%以上であれば、硬化反応を十分進めることができ、20質量%以下であれば、硬化物の均質性を保つことができる。
<充填材(H)>
第二の熱硬化性樹脂組成物は、充填材(H)を含有していてもよい。充填材(H)としては、無機充填材、有機充填材等が挙げられる。
充填材(H)を含有することで、第二の樹脂層をレーザー加工する際に樹脂の飛散をより低減できる。
無機充填材としては特に限定されないが、例えば、無機充填材(A)として例示したものと同様のものを使用できる。
無機充填材の比表面積は、第二の樹脂層上に微細配線を形成する観点から、20m/g以上が好ましく、50m/g以上がより好ましい。比表面積の上限に特に限定されないが、入手容易性の観点からは、500m/g以下が好ましく、200m/g以下がより好ましい。
比表面積は、不活性気体の低温低湿物理吸着によるBET法で求めることができる。具体的には、粉体粒子表面に、窒素等の吸着占有面積が既知の分子を液体窒素温度で吸着させ、その吸着量から粉体粒子の比表面積を求めることができる。
比表面積が20m/g以上の無機充填材としては、市販品を用いてもよい。市販品としては、例えば、ヒュームドシリカである「AEROSIL(登録商標) R972」(日本アエロジル株式会社製、商品名、比表面積110±20m/g)、及び「AEROSIL(登録商標) R202」(日本アエロジル株式会社製、商品名、比表面積100±20m/g)、コロイダルシリカである「PL−1」(扶桑化学工業株式会社製、商品名、比表面積181m/g)、「PL−7」(扶桑化学工業株式会社製、商品名、比表面積36m/g)等が挙げられる。また、耐湿性を向上させる観点からは、シランカップリング剤等の表面処理剤で表面処理された無機充填材であることが好ましい。
第二の熱硬化性樹脂組成物中の無機充填材の含有量は、第二の熱硬化性樹脂組成物の固形分中、1〜30質量%が好ましく、2〜25質量%がより好ましく、3〜20質量%がさらに好ましく、5〜20質量%が特に好ましい。無機充填材の含有量が、1質量%以上であれば、より良好なレーザー加工性が得られる傾向にあり、30質量%以下であれば、第二の樹脂層と導体層とのより向上する傾向にある。
有機充填材としては、特に限定されないが、例えば、アクリロニトリルブタジエンの共重合物として、アクリロニトリルとブタジエンとを共重合した架橋NBR粒子、アクリロニトリルとブタジエンとアクリル酸等のカルボン酸とを共重合したもの、ポリブタジエン、NBR、シリコーンゴムをコアとし、アクリル酸誘導体をシェルとした、いわゆるコア−シェルゴム粒子等が挙げられる。有機充填材を含有することで、樹脂層の伸び性がより向上する。
[半導体装置]
本発明の半導体装置は、本発明の半導体再配線層形成用樹脂フィルムを用いてなるものである。
以下では、本発明の半導体再配線層形成用樹脂フィルムを半導体素子にラミネートし、半導体装置を製造する方法の例について説明する。
本実施形態にかかる半導体装置の製造方法は、次の工程(1)〜(6)の工程を含む。
工程(1):支持体の上に仮固定材半導体素子を配置する工程。
工程(2):半導体素子を封止する工程。
工程(3):請求項1に記載の半導体再配線層形成用樹脂フィルム若しくは請求項2又は3に記載の半導体再配線層形成用複合フィルムをさらにラミネートする工程。
工程(4):請求項1に記載の半導体再配線層形成用樹脂フィルム若しくは請求項2又は3に記載の半導体再配線層形成用複合フィルムを熱硬化し、絶縁層を形成する工程。
工程(5):絶縁層の表面にめっきして配線を形成する工程。
工程(6):外部接続端子を形成して、個片化する工程。
<工程(1)>
工程(1)は、支持基板の上に仮固定材半導体素子を配置する工程である。配置する方法は特に限定されず、例えば、仮固定用フィルムを用いて固定する方法が挙げられる。当該手法では、まず、支持体の片側に仮固定用フィルムを貼り合せる。次いで、半導体素子を所定の間隔で半導体仮固定用フィルムに貼り合わさるように再配置する。支持基板の材質は特に限定されず、熱による寸法変化が小さいSUS板やシリコンウェハなどが好適である。仮固定用フィルムについても特に限定するものでなく、市販されており一般に入手可能な材料で構わない。
<工程(2)>
次いで、工程(1)で固定した半導体素子を封止する。封止する手段は特に限定されず、例えば、トランスファー成形を用いてもよく、シート状の封止材を張り合わせる手法を用いても良い。当該工程では、公知の真空ラミネータ、ロールラミネータ、プレス機などにより貼り合わせる工程を経ることにより形成させることができる。封止温度は特に限定されないが、好ましくは50〜140℃であり、より好ましくは70〜100℃である。この範囲であれば、充分に樹脂を充填することが容易になる。封止時間は限定されないが、生産性、重点製の観点から、好ましくは10〜300秒であり、より好ましくは30〜120秒である。封止圧力は限定されないが、好ましくは0.2〜2.0MPaであり、より好ましくは、0.2〜1.0MPaである。
<工程(3)>
工程(3)は、本発明の半導体再配線層形成用樹脂フィルムを、回路基板の片面又は両面にラミネートする工程である。半導体再配線層形成用樹脂フィルムをラミネートする装置としては、真空ラミネーターが好適である。真空ラミネーターとしては市販品を用いることができ、市販品の真空ラミネーターとしては、例えば、ニチゴー・モートン株式会社製のバキュームアップリケーター、株式会社名機製作所製の真空加圧式ラミネーター、日立インダストリーズ株式会社製のロール式ドライコータ、日立エーアイシー株式会社製の真空ラミネーター等が挙げられる。
ラミネートにおいて、半導体再配線層形成用樹脂フィルム又は半導体再配線層形成用複合フィルムが保護フィルムを有している場合には、保護フィルムを除去した後、半導体再配線層形成用樹脂フィルムを加圧及び加熱しながら回路基板に圧着する。
ラミネートの条件は、半導体再配線層形成用樹脂フィルム半導体素子を再配線した基板を必要に応じてプレヒートし、圧着温度(ラミネート温度)を60〜140℃、圧着圧力を0.1〜1.1mPa(9.8×10〜107.9×10N/m)、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。また、ラミネートの方法は、バッチ式であっても、ロールでの連続式であってもよい。
<工程(4)>
工程(4)は、工程(3)でラミネートされた半導体再配線層形成用樹脂フィルム又は半導体再配線層形成用複合フィルムを熱硬化し、絶縁層を形成する工程である。熱硬化の温度及び時間は特に限定されないが、例えば、170〜220℃で20〜80分の範囲で選択することができる。離型処理の施された支持体を使用した場合には、熱硬化させた後に、支持体を剥離してもよい。離型処理の施された支持体を使用した場合には、熱硬化させた後に、支持体を剥離してもよい。
また、形成された絶縁層に穴あけしてもよい。穴あけの方法としては、例えば、ドリル、レーザー、プラズマ、又はこれらの組み合わせ等の方法が挙げられ、これらによりビアホール、スルーホール等を形成してもよい。レーザーとしては、炭酸ガスレーザー、YAGレーザー、UVレーザー、エキシマレーザー等が一般的に用いられる。
<工程(5)>
工程(5)は、絶縁層の表面にめっきして配線を形成する工程である。本工程では、絶縁層の表面に無電解めっきにて給電層を形成前に、スミアを絶縁層の表面を粗化処理する工程を含んでもよい。本工程では、工程(3)で形成した絶縁層の表面を酸化剤により粗化処理を行うと同時に、ビアホール、スルーホール等が形成されている場合には、これらを形成する際に発生する「スミア」の除去を行うこともできる。
酸化剤としては、特に限定されるものではないが、例えば、過マンガン酸塩(過マンガン酸カリウム、過マンガン酸ナトリウム)、重クロム酸塩、オゾン、過酸化水素、硫酸、硝酸等が挙げられる。これらの中でも、ビルドアップ工法による多層プリント配線板の製造における絶縁層の粗化に汎用されている酸化剤であるアルカリ性過マンガン酸溶液(例えば、過マンガン酸カリウム、過マンガン酸ナトリウム溶液)を用いて粗化、及びスミアの除去を行うことが好ましい。
本工程では、絶縁層の表面に無電解めっきにて給電層を形成し、次いで導体層とは逆パターンのめっきレジストを形成し、電解めっきにより導体層(回路)を形成する、セミアディティブ法を用いることができる。なお、導体層形成後、例えば、150〜200℃で20〜90分間アニール処理を施すことにより、絶縁層と導体層との密着強度をさらに向上及び安定化させることができる。
さらに、このようにして作製された導体層の表面を粗化する工程を有していてもよい。導体層の表面の粗化は、導体層に接する樹脂との密着性を高める効果を有する。導体層を粗化するには、有機酸系マイクロエッチング剤である、メックエッチボンドCZ−8100、メックエッチボンドCZ−8101、メックエッチボンドCZ−5480(以上、メック株式会社製、商品名)等を用いることが好ましい。
次いで、絶縁層に設けた開口から露出した配線パターン上に無電解ニッケルめっきと金めっきを行うことができる。特にめっき厚みは限定するものではないが、ニッケルめっき厚は1〜10μm、金めっき厚は0.1μm程度が好ましい。
<工程(6)>
次いで、絶縁層の開口部に外接続用端子としての導電材料を形成する。導電材料は、特に限定されるものではないが、環境保全の観点から、Sn−Ag系やSn−Ag−Cu系のはんだを使用することが好ましい。回路形成用レジストを用いて、Cuポストを形成しても構わない。
次いで、例えばダイサー等で個片化することで、単独の半導体装置を得ることができる。
このようにして得られた本発明の半導体装置の製造方法で得られる半導体装置は、小型化及び薄型化が進むウェハレベルの半導体装置において特に好適である。
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<ポリイミド化合物(A)の製造>
温度計、還流冷却管、撹拌装置を備えた加熱及び冷却可能な容積1リットルのガラス製フラスコ容器に、3,3’−ジメチル−5,5’−ジエチル−4,4’−ジフェニルメタンビスマレイミド(大和化成工業株式会社製、商品名:BMI−5100)114.8g、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパンビス(4−マレイミドフェニル)メタン(大和化成工業株式会社製、商品名:BMI−4000)345.5g、4,4’−[1,3−フェニレンビス(1−メチルエチリデン)]ビスアニリン(三井化学ファイン株式会社製、商品名:ビスアニリンM)59.6g及びプロピレングリコールモノメチルエーテル280gを投入し、液温を120℃に保ったまま、撹拌しながら3時間反応させた後、ゲルパーミエーションクロマトグラフィーにより重量平均分子量が900の範囲であることを確認し、冷却及び200メッシュ濾過してポリイミド化合物(A)(固形分65%)を製造した。
<重量平均分子量の測定方法>
得られたポリイミド化合物(A)の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準ポリスチレンを用いた検量線から換算した。検量線は、標準ポリスチレン:TSKstandard POLYSTYRENE(Type;A−2500、A−5000、F−1、F−2、F−4、F−10、F−20、F−40)[東ソー株式会社製、商品名])を用いて3次式で近似した。GPCの条件は、以下に示す。
装置:(ポンプ:L−6200型[株式会社日立ハイテクノロジーズ製])、
(検出器:L−3300型RI[株式会社日立ハイテクノロジーズ製])、
(カラムオーブン:L−655A−52[株式会社日立ハイテクノロジーズ製])
カラム:ガードカラム;TSK Guardcolumn HHR−L + カラム;TSK gel−G4000HHR+TSK gel−G2000HHR(すべて東ソー株式会社製、商品名)
カラムサイズ:6.0×40mm(ガードカラム)、7.8×300mm(カラム)
溶離液:テトラヒドロフラン
試料濃度:30mg/5mL
注入量:20μL
流量:1.00mL/分
測定温度:40℃
<ラミネート用部材の準備>
まず、支持体として直径220mm、厚み1.5mmのSUS板を準備した。次に、SUS板の片側に仮固定用フィルムを、ラミネータを用いて貼り付けた。
SUS板からはみ出した仮固定用フィルムについては、カッターナイフで切り離した
7.3mm×7.3mmの半導体素子を半導体素子の受動面(裏面)と仮固定用フィルムが貼り合わさるように格子状に配置した。半導体素子の搭載数は193個、ピッチは縦方向、横方向ともに9.6mmとした。半導体素子の配置にはダイソーター(キヤノンマシナリー株式会社製 CAP3500)を用いた。配置時の荷重は半導体素子1個当り1kgfとした。次に、仮固定用フィルム上に配置された半導体素子を覆うように封止した。さらに、仮固定用フィルムを剥離し、半導体素子の能動面(表面)を露出させてラミネート評価用部材を作製した。
<実施例1>
[半導体再配線層形成用樹脂フィルムの作製]
無機充填材(C)としてアミノシランカップリング剤処理を施したシリカフィラー(株式会社アドマテックス製、商品名:SC−2050−KNK、固形分濃度70質量%のメチルイソブチルケトン分散液)65体積%(有機溶剤を含まない全重量に対して)と、変性ポリブタジエン(クレイバレー社製、商品名:Ricon130MA8)を全樹脂成分に対して20%を混合した。
そこに製造例1で製造したポリイミド化合物(A)を全樹脂成分に対して80%を混合し、高速回転ミキサーにより室温で溶解させた。
その後、硬化促進剤を成分(a1)に対して0.3phr混合しナノマイザー処理によって分散し、半導体再配線層形成用樹脂フィルムを作製するためのワニス1を得た。
次に、このワニス1を、支持体であるPETフィルム(厚さ38μm)上に、乾燥後の半導体再配線層形成用樹脂フィルムの厚さが30μmとなるようにコンマコーターを用いて塗布した後、85℃で2分間乾燥した。なお、乾燥後の半導体再配線層形成用樹脂フィルム中の残留溶剤の量は約6質量%であった。次いで、半導体再配線層形成用樹脂フィルムの表面に保護フィルムとして厚さ15μmのポリプロピレンフィルムを貼り合わせながらロール状に巻き取り、シート状の支持体及び保護フィルムを有する半導体再配線層形成用樹脂フィルムを得た。
<比較例1>
感光性絶縁材AH−1170T(日立化成株式会社製、商品名)をPETフィルム(厚さ38μm)上に、乾燥後の半導体再配線層形成用樹脂フィルムの厚さが30μmとなるようにコンマコーターを用いて塗布した後、85℃で2分間乾燥した。
[樹脂板の作製]
誘電正接の測定に用いた樹脂板は、以下の手順により作製した。
(I)実施例1及び比較例1で得られた支持体及び保護フィルムを有する半導体再配線層形成用樹脂フィルムから保護フィルムを剥離した後、110℃で3分間乾燥して、残留溶剤を除去した。
次に、乾燥後の支持体を有する半導体再配線層形成用樹脂フィルムを、真空加圧式ラミネーター(株式会社名機製作所、商品名:MVLP−500/600−II)を用いて、銅箔(電界銅箔、厚さ35μm)の光沢面上に、半導体再配線層形成用樹脂フィルムと銅箔とが当接するようにラミネートして、銅箔、半導体再配線層形成用樹脂フィルム、支持体がこの順に積層された積層体(1)を得た。前記ラミネートは、30秒間減圧して圧力を0.5MPaとした後、130℃、30秒間、圧着圧力0.5MPaでプレスする方法により行った。その後、積層体(1)から支持体を剥離した。
(II)次に、上記(I)で使用した支持体及び保護フィルムを有する半導体再配線層形成用樹脂フィルムと同一の支持体及び保護フィルムを有する半導体再配線層形成用樹脂フィルムを準備し、保護フィルムを剥離した後、上記(I)と同様の乾燥を行った。
(III)次に、上記(I)で得られた支持体を剥離した積層体(1)と、上記(II)で得られた乾燥後の支持体を有する半導体再配線層形成用樹脂フィルムとを、半導体再配線層形成用樹脂フィルム同士が当接するように、前記(I)と同様の条件でラミネートして、銅箔、半導体再配線層形成用樹脂フィルム2層からなる層、支持体がこの順に積層された積層体(2)を得た。その後、積層体(2)から支持体を剥離した。
(IV)次に、上記(III)で得られた支持体を剥離した積層体(2)と、上記(II)と同様の方法により得られた乾燥後の支持体を有する半導体再配線層形成用樹脂フィルムとを、半導体再配線層形成用樹脂フィルム同士が当接するように、前記(I)と同様の条件でラミネートして、銅箔、半導体再配線層形成用樹脂フィルム3層からなる層、支持体がこの順に積層された積層体(3)を得た。
(V)前記(I)〜(III)と同様の方法により、積層体(2)を作製した。
(VI)上記(V)で得られた積層体(2)と、上記(I)〜(IV)で得られた積層体(3)の支持体をそれぞれ剥離し、積層体(2)と積層体(3)の半導体再配線層形成用樹脂フィルム同士を貼り合わせ、圧着圧力3.0MPaで190℃、60分間、真空プレスを用いてプレス成型を行った。得られた両面銅箔付き樹脂板を、190℃で2時間硬化させた後、過硫酸アンモニウムで銅箔をエッチングすることで、樹脂板を得た。
[誘電正接の測定方法]
上記で作製された樹脂板を幅2mm、長さ70mmの試験片に切り出し、ネットワークアナライザ(アジレント・テクノロジー株式会社製、商品名:E8364B)と5GHz対応空洞共振器を用いて、誘電正接を測定した。測定温度は25℃とした。評価結果を表1に示す。誘電正接が低いほど、誘電特性に優れることを示す。
[熱膨張率の測定方法]
上記で作製された樹脂板を幅4mm、長さ15mmの試験片に切り出し、SII製熱応力歪測定装置(TMA,型式: TMA/SS6100型)を用いて測定した。室温から260℃まで加熱(1st)した後、260℃から−30℃に冷却、その後−30℃から300℃まで加熱(2nd)した際の、2ndの30℃から120℃の範囲での熱膨張度合いを熱膨張率とした。なお、昇温速度は10℃/分、荷重は0.05Nで測定を行った。
[膜均一性の評価方法]
支持体として直径220mm、厚み1.5mmのSUS板を準備した。
次に、SUS板を有する半導体再配線層形成用樹脂フィルムを、真空加圧式ラミネーター(株式会社名機製作所、商品名:MVLP−500/600−II)を用いて、半導体再配線層形成用樹脂フィルムと導体素子の能動面とが当接するようにラミネートして、積層体(1)を得た。前記ラミネートは、30秒間減圧して圧力を0.5MPaとした後、130℃、30秒間、圧着圧力0.5MPaでプレスする方法により行った。その後、積層体(1)から支持体を剥離した。
得られた部材の直径220mmについて中心部と中心を通る直線上の端部から10mmの部分の2箇所の合計3箇所の厚みについて、接触式の膜厚計で厚み測定を行った。
3箇所の膜厚の最大値と最小値の差が5μm未満であるフィルムを○、5μm以上であるフィルムを×とした。
Figure 0006885000
表1より、本実施形態の熱硬化性樹脂組成物を用いた実施例1の半導体素子の半導体再配線層形成用樹脂フィルムは、誘電正接が小さく、低熱膨張率であり、膜の均一性にも優れる。
本発明の層間絶縁用複合フィルムは誘電正接が小さく、低熱膨張率であり、膜の均一性にも優れる。したがって、本発明の半導体再配線層形成用樹脂フィルムは、再配線層を形成したFOWLP(Fan−Out Wafer Level Package)と呼ばれるパッケージの製造に有用である。

Claims (6)

  1. N−置換マレイミド基を少なくとも2個有するマレイミド化合物(a1)由来の構造単位とジアミン化合物(a2)由来の構造単位とを有するポリイミド化合物(A)、変性ポリブタジエン(B)、及び無機充填材(C)を含有する層を含む、半導体再配線層形成用樹脂フィルムであって、
    前記変性ポリブタジエン(B)が、分子中の側鎖の1,2−ビニル基及び末端の1,2−ビニル基の両方又は片方が、酸無水物化、グリコール化、フェノール化、マレイン化及び(メタ)アクリル化からなる群から選択される少なくとも1種によって化学変性されたものである、半導体再配線層形成用樹脂フィルム
  2. 前記変性ポリブタジエン(B)が、酸無水物で変性されているポリブタジエンである、請求項1に記載の半導体再配線層形成用樹脂フィルム。
  3. 請求項1又は2に記載の半導体再配線層形成用樹脂フィルムを含む第一の樹脂層と、第二の樹脂層とを含む、半導体再配線層形成用複合フィルム。
  4. 前記第二の樹脂層が、多官能エポキシ樹脂(D)、活性エステル硬化剤(E)及びフェノール性水酸基含有ポリブタジエン変性ポリアミド樹脂(F)を含有する第二の熱硬化性樹脂組成物を含む、請求項に記載の半導体再配線層形成用複合フィルム。
  5. 請求項1又は2に記載の半導体再配線層形成用樹脂フィルム若しくは請求項又はに記載の半導体再配線層形成用複合フィルムの硬化物を備える、半導体装置。
  6. 以下の工程(1)〜工程(6)を備える、半導体装置の製造方法。
    工程(1):支持基板の上に仮固定材半導体素子を配置する工程。
    工程(2):半導体素子を封止する工程。
    工程(3):請求項1又は2に記載の半導体再配線層形成用樹脂フィルム若しくは請求項又はに記載の半導体再配線層形成用複合フィルムをさらにラミネートする工程。
    工程(4):請求項1又は2に記載の半導体再配線層形成用樹脂フィルム若しくは請求項又はに記載の半導体再配線層形成用複合フィルムを熱硬化し、絶縁層を形成する工程。
    工程(5):絶縁層の表面にめっきして配線を形成する工程。
    工程(6):外部接続端子を形成して、個片化する工程。
JP2016141386A 2016-07-19 2016-07-19 半導体再配線層形成用樹脂フィルム、半導体再配線層形成用複合フィルム、それらを用いた半導体装置及び半導体装置の製造方法 Active JP6885000B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016141386A JP6885000B2 (ja) 2016-07-19 2016-07-19 半導体再配線層形成用樹脂フィルム、半導体再配線層形成用複合フィルム、それらを用いた半導体装置及び半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016141386A JP6885000B2 (ja) 2016-07-19 2016-07-19 半導体再配線層形成用樹脂フィルム、半導体再配線層形成用複合フィルム、それらを用いた半導体装置及び半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2018012748A JP2018012748A (ja) 2018-01-25
JP6885000B2 true JP6885000B2 (ja) 2021-06-09

Family

ID=61021013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016141386A Active JP6885000B2 (ja) 2016-07-19 2016-07-19 半導体再配線層形成用樹脂フィルム、半導体再配線層形成用複合フィルム、それらを用いた半導体装置及び半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP6885000B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7452040B2 (ja) 2020-01-30 2024-03-19 富士電機株式会社 半導体装置および半導体装置の製造方法
JP2023092046A (ja) * 2021-12-21 2023-07-03 日本化薬株式会社 硬化性高分子化合物、及び該化合物を含む樹脂組成物
TW202343693A (zh) * 2022-01-13 2023-11-01 日商味之素股份有限公司 電路基板之製造方法及用於其之樹脂薄片

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072829B2 (ja) * 1987-11-04 1995-01-18 株式会社日立製作所 積層板
JP4273259B2 (ja) * 2003-06-27 2009-06-03 味の素株式会社 回路基板用フィルム
JP4400337B2 (ja) * 2003-06-27 2010-01-20 味の素株式会社 多層プリント配線板用樹脂組成物および接着フィルム
JP4929623B2 (ja) * 2004-06-21 2012-05-09 味の素株式会社 変性ポリイミド樹脂を含有する熱硬化性樹脂組成物
JP2008274210A (ja) * 2007-03-30 2008-11-13 Hitachi Chem Co Ltd 回路基板用接着フィルム、それを用いた回路基板及び半導体チップ搭載用基板並びに半導体パッケージ
JP2013211348A (ja) * 2012-03-30 2013-10-10 Nippon Steel & Sumikin Chemical Co Ltd チップ用保護膜形成フィルム
JP2013251368A (ja) * 2012-05-31 2013-12-12 Hitachi Chemical Co Ltd 半導体装置の製造方法及びそれに用いる熱硬化性樹脂組成物並びにそれにより得られる半導体装置
KR102375044B1 (ko) * 2015-01-16 2022-03-15 쇼와덴코머티리얼즈가부시끼가이샤 열경화성 수지 조성물, 층간 절연용 수지 필름, 복합 필름, 프린트 배선판 및 그의 제조 방법

Also Published As

Publication number Publication date
JP2018012748A (ja) 2018-01-25

Similar Documents

Publication Publication Date Title
JP6903915B2 (ja) 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及びその製造方法
JP6809014B2 (ja) 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及びその製造方法
KR102310777B1 (ko) 열경화성 수지 조성물, 층간 절연용 수지 필름, 복합 필름, 프린트 배선판 및 그의 제조 방법
KR102356391B1 (ko) 고주파 대역의 신호를 사용하는 전자 기기용 복합 필름, 프린트 배선판 및 그의 제조 방법
JP2018012747A (ja) 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及びその製造方法
JP2021175795A (ja) 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及びその製造方法
JP2019157027A (ja) 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及びその製造方法
JP6885000B2 (ja) 半導体再配線層形成用樹脂フィルム、半導体再配線層形成用複合フィルム、それらを用いた半導体装置及び半導体装置の製造方法
JP2018014388A (ja) 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、プリント配線板及びその製造方法
WO2018181516A1 (ja) コアレス基板用プリプレグ、コアレス基板、コアレス基板の製造方法及び半導体パッケージ
JP6801280B2 (ja) 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及びその製造方法
JP6801279B2 (ja) 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及びその製造方法
WO2018181514A1 (ja) コアレス基板用プリプレグ、コアレス基板及び半導体パッケージ
JP6880585B2 (ja) 高周波帯域の信号を使用する電子機器用複合フィルム、プリント配線板及びその製造方法
JP6819062B2 (ja) 熱硬化性樹脂組成物、これを用いたプリプレグ、樹脂付フィルム、積層板、プリント配線板及び半導体パッケージ、並びにイミド樹脂及びその製造方法
KR102479357B1 (ko) 반도체 장치의 제조 방법
JP2018012777A (ja) 絶縁樹脂材料、層間絶縁用樹脂フィルム及びその製造方法、複合フィルム及びその製造方法、並びにプリント配線板及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200806

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201005

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210426

R151 Written notification of patent or utility model registration

Ref document number: 6885000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350