JP6808106B1 - 加工プログラム変換装置、数値制御装置、加工プログラム変換方法および機械学習装置 - Google Patents

加工プログラム変換装置、数値制御装置、加工プログラム変換方法および機械学習装置 Download PDF

Info

Publication number
JP6808106B1
JP6808106B1 JP2020540366A JP2020540366A JP6808106B1 JP 6808106 B1 JP6808106 B1 JP 6808106B1 JP 2020540366 A JP2020540366 A JP 2020540366A JP 2020540366 A JP2020540366 A JP 2020540366A JP 6808106 B1 JP6808106 B1 JP 6808106B1
Authority
JP
Japan
Prior art keywords
tool
machining
path
point
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020540366A
Other languages
English (en)
Other versions
JPWO2020179798A1 (ja
Inventor
弘樹 金子
弘樹 金子
入口 健二
健二 入口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6808106B1 publication Critical patent/JP6808106B1/ja
Publication of JPWO2020179798A1 publication Critical patent/JPWO2020179798A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Numerical Control (AREA)

Abstract

加工プログラム変換装置(100)は、工具経路上に設けられた複数の指令点(P)の間に曲線経路(TP)を生成する曲線経路生成部(104)と、曲線経路(TP)上に設けた点を評価点(Q)とし、工具と加工曲面が接触する点を基準点(C)とした場合に、評価点(Q)と基準点(C)との距離である距離Lに対する許容範囲の値が入力される許容寸法公差入力部(107)と、距離Lが、許容範囲以内か否かを判断する曲線経路評価部(108)と、距離Lが許容範囲から外れている場合に、許容範囲から外れている評価点のみを、距離Lが許容範囲以内となる位置に移動させ、移動後の評価点を新たな指令点(R)とし、工具経路を修正する工具経路修正部(109)と、修正された工具経路を外部装置に出力するためのプログラムに変換する変換後加工プログラム出力部(110)とを備える。

Description

本開示は、数値制御加工プログラムを変換する加工プログラム変換装置、数値制御装置、加工プログラム変換方法および機械学習装置に関する。
数値制御装置により加工対象物を加工するためには、加工対象物または数値制御装置により制御される工作機械(以下、単に「数値制御工作機械」と称する)に装着された工具を、予め設定された経路に移動させるための移動指令が記述された数値制御加工プログラム(以下、単に「加工プログラム」と称する)が用いられる。加工プログラムは、例えば、市販のCAD(Computer−Aided Design)/CAM(Computer−Aided Manufacturing)システムによって作成され、Gコード及びマクロ文など文字列の所定のフォーマットで記述される。
従来、自由曲面を有する形状の加工を行う際には、CAD/CAMシステムを利用して加工対象の曲面(以下、単に「加工曲面」と称する)に接するようにして仮想的に工具を移動させた理想的な経路を、加工プログラムで点列化して指令点を生成し、各指令点を結んだ微小線分によって近似した経路を作成した後、数値制御工作機械によってその工具経路に沿って工具を移動させて加工対象物を切削加工することが行われている。
CAD/CAMシステムから出力される工具経路は、数値制御装置が解釈できるGコードの移動指令として加工プログラムに記述され、加工プログラムは数値制御工作機械が有する数値制御装置に入力される。数値制御装置は、加工プログラムを読み取り解釈することによって、移動指令から補間周期ごとに工具経路を補間した補間データを作成する。数値制御装置は、作成した補間データによって数値制御工作機械の各軸を制御し、工具を所望の位置に移動させることにより、加工対象物を加工する。
上述の手順により生成された工具経路を用いて加工を行う場合、微小線分によって表現された直線上を補間することにより加工されるため、加工品質が低下してしまう。このような場合に、工具経路から近似的に曲線経路を生成し、生成した曲線経路を補間して加工することが行われている。これにより、滑らかな加工結果を得ることが期待できる。
例えば、特許文献1には、工具経路上に等間隔で複数の目標点を設定し、複数の目標点に基づいて近似曲線を演算し、近似曲線に沿った工具経路を生成することを特徴とした工具経路の生成方法が開示されている。
特開2011−96077号公報
しかしながら、特許文献1に記載の工具経路の生成方法および工具経路の生成装置では、微小線分がつくる工具経路から近似的に曲線経路を生成するため、生成した曲線経路が所望の加工曲面と一致する保証がなく、加工結果が所望の加工曲面の形状とかけ離れてしまうという課題があった。また、所望の加工精度を得られなかったために追加加工が必要となり、CAD/CAMシステムに戻って工具経路を作成し直し、再度加工プログラムを出力する工程等が発生し、作業者の作業効率が低下するという課題があった。
本開示は、上述のような問題を解決するためになされたもので、加工対象物の加工結果の加工精度を向上させることができる加工プログラム変換装置および数値制御装置を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本開示にかかる加工プログラム変換装置は、工具に対する移動指令が記述された加工プログラムから求めた工具経路に基づき、移動指令に従い工具経路上に設けられた複数の指令点の間に曲線経路を生成する曲線経路生成部と、曲線経路に従って動作する工具が、加工対象物の仕上がり形状である加工曲面に沿って動作するか否かを判断するために曲線経路上に設けた点を評価点とし、工具と加工曲面が接触する点を基準点とした場合に、評価点と基準点との距離である距離Lに対する許容範囲の値が入力される許容寸法公差入力部と、距離Lが、許容寸法公差入力部に入力された、許容範囲の値以内か否かを判断する曲線経路評価部と、距離Lが許容範囲から外れている場合に、許容範囲から外れている評価点のみを、距離Lが許容範囲以内となる位置に移動させ、移動後の評価点を新たな指令点とし、工具経路を修正する工具経路修正部とを備える。
また、本開示に係る数値制御装置は、工具に対する移動指令が記述された加工プログラムから求めた工具経路に基づき、移動指令に従い工具経路上に設けられた複数の指令点の間に曲線経路を生成する曲線経路生成部と、曲線経路に従って動作する工具が、加工対象物の仕上がり形状である加工曲面に沿って動作するかを判断するために曲線経路上に設けた点を評価点とし、工具と前記加工曲面が接触する点を基準点とした場合に、評価点と基準点との距離である距離Lに対する許容範囲の値が入力される許容寸法公差入力部と、距離Lが、許容寸法公差入力部に入力された、許容範囲の値以内か否かを判断する曲線経路評価部と、距離Lが前記許容範囲から外れている場合に、許容範囲から外れている評価点のみを、距離Lが前記許容範囲以内となる位置に移動させ、移動後の評価点を新たな指令点とし、工具経路を修正する工具経路修正部とを備える。
本開示に係る加工プログラム変換装置によれば、曲線経路上の評価点と、加工曲面上に設けた基準点との距離が許容範囲以下となるように工具経路を修正することで、加工対象物の加工結果の加工精度を向上させることができる。
また、本開示に係る数値制御装置によれば、修正された工具経路に従って数値制御することが可能となるため、作業効率を向上できる。
実施の形態1及び実施の形態2に係る加工プログラム変換装置の構成を示した図である。 実施の形態1に係る加工プログラム変換装置の動作のフローチャートである。 実施の形態1に係る加工プログラム変換装置が加工プログラムから読み取った工具経路の一例を示した図である。 実施の形態1に係る加工プログラム変換装置が加工プログラムから読み取った工具経路に従って生成された曲線経路の一例を示した図である。 実施の形態1から3において、工具経路上を通過する工具の一例を示した図である。 実施の形態1に係る加工プログラム変換装置において、工具経路で加工される仕上がり形状の一例を示した図である。 実施の形態1に係る加工プログラム変換装置において、曲線経路と仕上り形状とが対応するように配置した状態を断面方向から示した図である。 実施の形態1に係る加工プログラム変換装置において、ボールエンドミル工具である場合を例に、工具と加工曲面が離れている状態にある様子を示した図である。 実施の形態1に係る加工プログラム変換装置において、ボールエンドミル工具である場合を例に、工具と加工曲面が接している状態にある様子を示した図である。 実施の形態1に係る加工プログラム変換装置において、ボールエンドミル工具である場合を例に、工具と加工曲面が干渉している状態にある様子を示した図である。 実施の形態1に係る加工プログラム変換装置において、フラットエンドミル工具である場合を例に、工具と加工曲面が離れている状態にある様子を示した図である。 実施の形態1に係る加工プログラム変換装置において、フラットエンドミル工具である場合を例に、工具と加工曲面が接している状態にある様子を示した図である。 実施の形態1に係る加工プログラム変換装置において、フラットエンドミル工具である場合を例に、工具と加工曲面が干渉している状態にある様子を示した図である。 実施の形態1に係る加工プログラム変換装置において、ラジアスエンドミル工具である場合を例に、工具と加工曲面が離れている状態にある様子を示した図である。 実施の形態1に係る加工プログラム変換装置において、ラジアスエンドミル工具である場合を例に、工具と加工曲面が接している状態にある様子を示した図である。 実施の形態1に係る加工プログラム変換装置において、ラジアスエンドミル工具である場合を例に、工具と加工曲面が干渉している状態にある様子を示した図である。 実施の形態1に係る加工プログラム変換装置において、工具と加工曲面とが接するように評価点を移動させ、新たな指令点を追加する様子の一例を示した図である。 実施の形態1に係る加工プログラム変換装置において、新たな指令点を追加することにより修正した工具経路を示した図である。 実施の形態2に係る加工プログラム変換装置の動作のフローチャートである。 実施の形態2に係る加工プログラム変換装置が加工プログラムから読み取った工具経路の一例を示した図である。 実施の形態2に係る加工プログラム変換装置において、隣接した3点の指令点から真ん中の点を除外した後の2点を通過する曲線経路の一例を示した図である。 実施の形態2に係る加工プログラム変換装置において、工具経路で加工される仕上がり形状の一例を示した図である。 実施の形態2に係る加工プログラム変換装置において、曲線経路と仕上り形状とが対応するように配置した状態を断面方向から示した図である。 実施の形態2に係る加工プログラム変換装置において、ボールエンドミル工具である場合を例に、工具と加工曲面が離れている状態にある様子を示した図である。 実施の形態2に係る加工プログラム変換装置において、ボールエンドミル工具である場合を例に、工具と加工曲面が接している状態にある様子を示した図である。 実施の形態2に係る加工プログラム変換装置において、ボールエンドミル工具である場合を例に、工具と加工曲面が干渉している状態にある様子を示した図である。 実施の形態2に係る加工プログラム変換装置において、工具経路から指令点を削除して工具経路を修正した一例を示した図である。 実施の形態3に係る数値制御装置の構成を示した図である。 実施の形態3に係る数値制御装置の動作のフローチャートである。 実施の形態4に係る機械学習装置の構成例を示す図である。
以下に、本開示の実施の形態に係る加工プログラム変換装置、数値制御装置、加工プログラム変換方法および機械学習装置を図面に基づいて説明する。なお、この実施の形態に限定されるものではない。
実施の形態1.
図1は、実施の形態1に係る加工プログラム変換装置の構成例を示す図である。加工プログラム変換装置100は、外部から入力される加工プログラムを受け取る加工プログラム入力部101と、入力された加工プログラムを解析し、工具経路を求める加工プログラム解析部102と、加工プログラム解析部102で求めた工具経路が記憶される工具経路記憶部103と、工具経路記憶部103に記憶された工具経路に従って曲線経路を生成する曲線経路生成部104と、工具のデータを入力する工具データ入力部105と、加工対象物の加工後の形状データを入力する形状データ入力部106と、工具が加工対象物の加工曲面に沿って動作するかを判断するため曲線経路上に設けた点と加工曲面との距離の許容範囲を入力する許容寸法公差入力部107と、曲線経路上に設けた点と加工曲面との距離が許容範囲内か否かを判断する曲線経路評価部108と、工具経路を修正する工具経路修正部109と、変換後加工プログラム出力部110と、を備える。変換後加工プログラム出力部110は、所定の変換方法に従って、工具経路を修正した後の加工プログラムを変換し、外部装置である数値制御装置111に出力される。なお、本実施の形態においては外部装置が数値制御装置である場合について説明するが、外部装置は数値制御装置に限定されず、例えばプログラム確認装置や、工具経路表示装置等であってもよい。
図2は、実施の形態1に係る加工プログラム変換装置100の動作例を示すフローチャートである。図2に基づき、加工プログラム変換装置100が工具経路を生成または修正する動作の手順について説明する。
加工プログラム変換装置100が工具経路を生成する動作においては、まず、加工プログラムが加工プログラム変換装置100に入力される(ステップS101)。すなわち、加工プログラム変換装置100において、加工プログラム入力部101が工作機械を制御するための加工プログラムを外部から読み込む。加工プログラムには、加工対象物である被加工物または工具を、予め設定された経路に移動させるための移動指令が記述されている。
ステップS101で実行する加工プログラムの入力は、CAD/CAMシステムにより出力された、例えばGコードのフォーマット記述されたファイルを読込むことにより実現される。または、作業者がキーボードなどの入力機器を操作することにより必要な情報を入力して加工プログラムを作成することにより実現される。
加工プログラム変換装置100は、次に、ステップS101を実行して取得した加工プログラムを加工プログラム解析部102で解析し、加工プログラムに記述された工具経路を求める(ステップS102)。具体的には、Gコード等で記述された加工プログラムの読み取り、つまり工具経路情報の読み取りを行う。読み取った工具経路は、工具経路記憶部103に記憶される(ステップS103)。図3は、加工プログラムから変換する工具経路の一例である。図3において、工具経路は、指令点P1〜P6を有し、各指令点間を直線で結んだものである。ここで、指令点とは、加工プログラムで指令される点をいう。各指令点間の間隔は、加工プログラムで予め決められている。
次に、曲線経路生成部104において、工具経路記憶部103に記憶された工具経路に従って、各々の隣接した指令点の間に曲線経路を生成する(ステップS104)。図4は、指令点P1〜P6を有する工具経路に従って生成された曲線経路の一例を示す。図4に示した曲線経路は、各指令点の間を曲線経路TP1〜TP6に沿って工具が通過するように生成したものである。
また、加工プログラム変換装置100が生成する曲線経路は、数値制御装置111が動く曲線、つまり、数値制御装置111が加工する加工対象物の形状を作れるような曲線と同じ曲線である必要がある。よって、曲線経路の生成方法は、加工プログラム変換装置100に入力された加工プログラムが最終的に入力される数値制御装置111における曲線経路の生成方法と同一であることが望ましい。曲線経路を生成する方法の他の例としては、例えば各々の指令点を通過するようにスプライン曲線を補間する方法などがある。
工具データ入力部105には、工具データが外部入力される(ステップS105)。工具データは、加工対象物を加工するための工具の形状を定義する情報であり、工具の種別を表現する情報、工具径、工具刃先半径および工具長といった工具の形状を表現する情報を含む。また、テーパ等を有する工具形状の場合、工具データ入力部105には、工具の中心軸に対する工具外径母線の傾きの情報などが与えられても良いし、旋削工具等の非対称な形状である工具の情報が与えられてもよい。外部入力は、作業者によるキーボードなどの入力操作、CADデータからのデータ変換などの方法による。加工プログラム変換装置100は、工具データに基づいて工具モデルを生成することが可能である。図5は、工具経路上を通過する工具の一例を示す。工具T10は、工具データに基づき生成されたボールエンドミルの形状である。
形状データ入力部106には、形状データが外部入力される(ステップS105)。形状データは、加工対象物の加工後の形状を定義する情報であり、加工対象物の目標の形状である仕上り形状を生成できる情報である。仕上り形状は、加工すべき曲面である加工曲面S1を有する。また、仕上り形状は、加工プログラムに従って工作機械が加工対象物を加工することにより、結果として加工される加工物の理想的な形状である。工作機械は、仕上り形状と加工物との誤差が少なくなるように加工対象物を加工する。外部入力は、作業者によるキーボードなどの入力操作、CADデータからのデータ変換などの方法による。
図6は、工具経路で加工される仕上がり形状の一例である。図6に示した仕上り形状M1は、形状データ入力部106に入力された形状データに基づいて生成されるもので、加工曲面S1を有する。
図7は、曲線経路と仕上り形状M1とが対応するように配置した状態を断面方向から示し、さらに一例として、曲線経路TP3上に評価点Q1〜Q5を設定した図である。ここで、評価点は、曲線経路に従って動作する工具が、加工対象物の加工曲面に沿って動作するか否かを判断するために曲線経路上に設けた点をいう。評価点の求め方は、例えば曲線経路上を曲線パラメータが等間隔となるようにサンプリングした点として求める方法や、隣接する評価点を結んだ線分と曲線経路の間の最大誤差が所定の値以下となるまで繰り返し処理によって求める方法がある。
図8、図9、図10は、工具がボールエンドミル工具(以下、工具T10とする。)である場合における、工具T10と加工曲面S1の関係を示す図である。図8は、加工曲面S1と工具T10が離れている状態にある様子を示している。図8において、工具T10と加工曲面S1の距離が最短となる加工曲面S1上の点を、基準点C1とする。基準点C1は、後述するステップS106において工具上に配置した評価点Qと加工曲面S1の距離が最短となる、加工曲面S1上の点でもある。ここで、評価点Qと基準点C1の距離を距離L1とする。
図9は、加工曲面S1と工具T10が接している状態にある様子を示している。図9において、工具T10と加工曲面S1が接触する点を基準点C2とする。基準点C2は工具T10が加工曲面S1を切削するときの切削点でもある。評価点Qと基準点C2の距離を距離L2とすると、距離L2は工作機械で加工対象物を加工する上で、最も理想的な値である。
図10は、工具T10が加工曲面S1に干渉する状態にある様子を示している。図10において、工具T10の評価点Qと加工曲面S1との距離が最短となる、加工曲面S1上の点を基準点C3とする。また、このような工具と加工曲面が干渉する状態の場合、工具と加工曲面とが接触する状態となるまで工具をオフセットし、オフセット工具と加工曲面が接触した点を基準点C3として求めることもできる。基準点C3は、図10において点線で示した工具T10オフセットと加工曲面S1とが接触している点であるともいえる。ここで、評価点Qと基準点C3の距離を距離L3とする。
ここで、距離Lに対する許容範囲について、距離L2を2.00mmと仮定した場合について説明する。ある加工対象物の加工曲面の寸法公差が、標準公差に対して±0.05mmであったとすれば、距離L1については2.00mm<距離L1≦2.05mm、距離L3については1.95mm≦距離L3<2.00mmとなる。よって、距離Lの許容範囲は、1.95mm≦距離L≦2.05mmとなる。
なお、図8、図9、図10において、工具T10の評価点Qを、工具T10の中心軸かつ先端付近に設けているが、評価点Qは、例えば工具の先端に設けられても良いし、工具T10上の加工対象物を切削する部分または点に設けられてもよいし、工具T10と加工曲面S1の距離が最短となるような工具T10上の点に設けられても良い。ただし、工具上の特定の位置を評価点Qとして設定した後、設定した評価点Qで距離Lを評価する。
許容寸法公差入力部107では、距離Lに対する許容範囲が入力される(ステップS105)。許容範囲の値は、加工対象物のそれぞれが目標とする加工精度によって決まる。また、形状データ入力部106において入力される形状データが、加工対象物の加工曲面に対する加工公差の情報を有する場合は、加工公差に従って許容範囲の値を求めても良い。この場合、加工部位に応じて許容範囲を自動で設定することができ、作業効率が向上する。なお、距離Lに対する許容範囲は許容寸法公差ともいうことができる。
さらに、許容寸法公差入力部107に入力される許容範囲の値は、工具と仕上り形状の間の最短距離の許容範囲であってもよい。例えば、ある加工対象物の加工曲面の寸法公差が標準公差に対して±0.05mmであったとすれば、工具と仕上り形状の加工曲面との最短距離の差が0.05mm以内となればよいため、許容範囲の値は、0.05mmとして与える。
なお、本実施の形態において、距離Lに対する許容範囲は許容寸法公差入力部107に入力されるが、距離Lに対する許容範囲の値は、あらかじめ図示しない加工プログラム変換装置100の許容寸法公差記憶部に記憶されてもよい。
図11、図12、図13は、工具がフラットエンドミル工具(以下、工具T11とする。)である場合における、工具T11と加工曲面S2の関係を示す図である。図11は、加工曲面S2と工具T11が離れている状態にある様子を示している。図11において、工具T11と加工曲面S2の距離が最短となる加工曲面S2上の点を、基準点C2とする。評価点Qと基準点C11の距離を距離L11とする。
図12は、加工曲面S2と工具T11が接している状態にある様子を示している。図12において、工具T11と加工曲面S2が接する点を基準点C12とする。評価点Qと基準点C12の距離を距離L12とすると、距離L12は工作機械で加工対象物を加工する上で、最も理想的な値である。
図13は、工具T11が加工曲面S2に干渉する状態にある様子を示している。図13において、工具T11の評価点Qと加工曲面S2との距離が最短となる、加工曲面S2上の点を基準点C13とする。また、このような工具と加工曲面が干渉する状態の場合、工具と加工曲面とが接触する状態となるまで工具を内側へオフセットすることがある。基準点C13は、図13において点線で示した工具T11オフセットと加工曲面S2とが接触している点であるともいえる。評価点Qと基準点C13の距離を距離L13とする。
なお、図11、図12、図13において、工具T11の評価点Qを、工具T11の先端の中心に設けているが、評価点Qは、例えば工具T11上の加工対象物を切削する部分または点に設けられてもよいし、工具T11と加工曲面S2の距離が最短となるような工具T11上の点に設けられても良い。ただし、工具上の特定の位置を評価点Qとして設定した後は、設定した評価点Qで距離Lを評価する。
図14、図15、図16は、工具がラジアスエンドミル工具(以下、工具T12とする。)である場合における、工具T12と加工曲面S3の関係を示す図である。図14は、加工曲面S3と工具T12が離れている状態にある様子を示している。図14において、工具T12と加工曲面S3の距離が最短となる加工曲面S3上の点を、基準点C21とする。評価点Qと基準点C21の距離を距離L21とする。
図15は、加工曲面S3と工具T12が接している状態にある様子を示している。図15において、工具T12と加工曲面S3が接する点を基準点C22とする。評価点Qと基準点C22の距離を距離L22とすると、距離L22は工作機械で加工対象物を加工する上で、最も理想的な値である。
図16は、工具T12が加工曲面S3に干渉する状態にある様子を示している。図16において、工具T12の評価点Qと加工曲面S3との距離が最短となる、加工曲面S3上の点を基準点C23とする。また、このような工具と加工曲面が干渉する状態の場合、工具と加工曲面とが接触する状態となるまで工具を内側へオフセットすることがある。基準点C23は、図16において点線で示した工具T12オフセットと加工曲面S3とが接触している点であるともいえる。評価点Qと基準点C23の距離を距離L23とする。
なお、図14、図15、図16において、工具T12の評価点Qを、工具T12の中心軸かつ先端付近に設けているが、評価点Qは、例えば、工具T12上の加工対象物を切削する部分または点に設けられてもよいし、工具T12と加工曲面S3の距離が最短となるような工具T10上の点に設けられても良い。ただし、工具上の特定の位置を評価点Qとして設定した後は、設定した評価点Qで距離Lを評価する。
次に、曲線経路評価部108において、曲線経路生成部104において生成された曲線経路TPを、工具データ、形状データ、許容寸法公差入力部に入力される許容範囲の値に従って評価する(ステップS106)。まず、曲線経路TP1〜TP6上に複数の評価点を求める。続いて、図8〜図16に示すように、求めた評価点Qに対応するように、ステップ5で入力した工具データに基づいて生成された工具を配置する。このとき、評価点Qに工具を配置すると、理想的には工具と仕上り形状の加工曲面が接する。
曲線経路評価部108は、曲線経路TPについて、距離Lの値が許容範囲内か否かを評価する。ある曲線経路TPにおいて求めた距離Lが、距離Lに対する許容範囲より大きい場合、当該曲線経路TPを修正対象の曲線経路として後述するステップS107へ進む。すべての曲線経路TPにおいて求めた距離Lが距離Lに対する許容範囲以内であった場合には後述するステップS108へ進む。
曲線経路評価部108において、距離Lの値が距離Lに対する許容範囲を超えた場合、すなわち、ステップS106において「NO」の場合、工具経路を修正する(ステップS107)。ここで、工具経路を修正するための動作について、ボールエンドミルである工具T10が、図10に示すような工具T10と加工曲面S1とが干渉する状態の場合を例に、図17を用いて説明する。
図17は、工具T10と加工曲面S1とが接するように評価点を移動させ、新たな指令点を追加する様子の一例を示した図である。まず、工具経路修正部109において、ステップS106で得られた修正対象の曲線経路TP上の評価点Qのうち、距離Lに対する許容範囲から最も大きく外れている評価点Qを抽出する。図17においては、曲線経路TP3が修正対象の曲線経路であり、曲線経路TP3上の評価点Q3が、距離L3に対する許容範囲から最も大きく外れている評価点であるとする。
次に、工具T10と加工曲面S1とが接する状態になるように、評価点Q3を移動させる。このとき、移動後の評価点を新たな指令点R1とする。このとき、評価点Q3を移動させる方向としては、工具軸方向や、評価点Q3に工具を配置したときの加工曲面上における基準点における加工曲面の法線方向、または、任意の方向に移動してもよい。
また、工具T10と加工曲面S1が接する状態になるように評価点Q3を移動させる方法は、与えられた移動方向に微小距離だけ動かして移動後の移動評価点Qにおける距離L3を計算することを、距離L3に対する許容範囲以下となるまで繰り返すことにより求めることができる。
さらに、工具経路修正部109では、ステップS103で工具経路記憶部103に記憶した工具経路に対して、距離L3が、距離L3に対する許容範囲以下となった、移動後の評価点Q3を新たな指令点R1として工具経路に追加し、工具経路を修正する。これにより、加工対象物の加工結果の精度が向上する。
修正後の工具経路は、工具経路記憶部103に記憶する。図18は、指令点P1〜P6について、ステップS107において新たな指令点R1を追加することにより修正した工具経路を示す図である。ステップS107の実行後は、ステップS104に戻り、処理を繰り返す。この場合、ステップS105の処理は省略しても良い。
ステップS106の処理において、すべての評価点Qにおける距離L3が距離L3に対する許容範囲以下となり、工具経路の修正が完了した場合、修正後の工具経路が工具経路記憶部103に記憶される。次に、変換後加工プログラム出力部110において、工具経路記憶部103に記憶された工具経路に従って、所定の変換方法に従って工具経路から修正後の加工プログラムを生成し、修正後の加工プログラムを変換後に加工プログラム変換装置100の外部へ出力する(ステップS108)。
ステップS108の実行後は処理を終了し、出力された変換後の加工プログラムは数値制御装置111に入力され、加工対象物の加工が行われる。なお、ステップS106からステップS108においては、ボールエンドミルである工具T10と加工曲面S1が干渉する場合について説明したが、その他の場合についても同様である。
以上より、実施の形態1に係る加工プログラム変換装置によれば、評価点と基準点の距離Lが、距離Lに対する許容範囲以下となるように工具経路を修正するため、加工対象物の加工結果の加工精度を向上させることができる。
さらに、距離Lが、距離Lに対する許容範囲を超えた評価点のみ移動させ、新たな指令点を追加するため、追加される指令点は必要な数に抑えることができ、プログラムのデータ量が必要以上に増えて処理が遅くなることを回避することができる。
実施の形態2.
実施の形態2に係る加工プログラム変換装置100の構成は、本実施の形態1に係る加工プログラム変換装置100の構成と同様であるため、説明を省略する。実施の形態2に係る加工プログラム変換装置100は、図19に示すフローチャートに従って動作する。
ステップS201からステップS203における動作は、実施の形態1におけるステップS101からステップS103までの動作と同様である。実施の形態2においては、曲線経路の生成方法が、本実施の形態1と相違する。
図20は、加工プログラム変換装置が加工プログラムから読み取った工具経路の一例を示した図である。図20に示した工具経路は、指令点P11〜P17を有し、各指令点間を直線で結んだものである。本実施の形態2のステップS204においては、隣接した3点の指令点である第1、第2、第3の指令点から、両端の第1および第3の指令点の間を通過する曲線経路を生成する。図21は、一例として、第1の指令点である指令点P13、第2に指令点であるP14、第3の指令点であるP15のうち、P13とP15の間に曲線経路TP11を生成した様子を示している。次に、工具データ入力部105に工具データが外部入力され、形状データ入力部106に形状データが外部入力される(ステップS205)。
曲線経路評価部108において、曲線経路TP11に複数点設定した評価点における、それぞれの距離Lを、工具データ、形状データ、許容寸法公差入力部に入力される許容範囲の値に従って評価する(ステップS206)。つまり、距離Lが、距離Lに対する許容範囲以下か許容範囲より大きいかを評価する。ここで、全ての距離Lが、距離Lに対する許容範囲以下であった場合、工具経路記憶部103に記憶されている工具経路から、指令点P14を削除する(ステップS207)。さらに、この場合は修正対象の曲線経路がないため、曲線経路TP11は最終的に変換されて出力される工具経路となる(ステップS208)。
図22は、工具経路で加工される仕上がり形状の一例である。図22に示した仕上り形状M2は、形状データ入力部106に入力された形状データに基づいて生成されるもので、加工曲面S4を有する。
ステップS206を図23、図24、図25を用いて具体的に説明する。図23は、曲線経路と仕上り形状M2とが対応するように配置した状態を断面方向から示し、さらに一例として、曲線経路TP11上に評価点Q11〜Q14を設定した図である。図24は、工具がボールエンドミル工具である場合に、加工曲面S4と工具T10が接している状態にある様子を示している。図24において、工具T10と加工曲面S4が接する点を基準点C31とする。図24においては、曲線経路TP11上の評価点Q12に工具を配置し、評価点Q12と基準点C31の距離L32とする。
図24、図25、図26は、工具がボールエンドミル工具(以下、工具T10とする。)である場合における、工具T10と加工曲面S4の関係を示す図である。工具TP10は、曲線経路TP11上の評価点Q12に配置する。図24は、加工曲面S4と工具T10が離れている状態にある様子を示している。図24において、工具T10と加工曲面S4の距離が最短となる加工曲面S4上の点を、基準点C31とする。ここで、評価点Q12と基準点C31の距離を距離L31とする。
図25は、加工曲面S4と工具T10が接している状態にある様子を示している。図25において、工具T10と加工曲面S4が接する点を基準点C32とする。評価点Q12と基準点C32の距離を距離L32とすると、距離L32は工作機械で加工対象物を加工する上で、最も理想的な値である。
図26は、工具T10が加工曲面S4に干渉する状態にある様子を示している。図26において、工具T10の評価点Q12と加工曲面S4との距離が最短となる、加工曲面S4上の点を基準点C31とする。また、このような工具と加工曲面が干渉する状態の場合、工具と加工曲面とが接触する状態となるまで工具をオフセットすることがある。基準点C31は、図26において点線で示した工具T10オフセットと加工曲面S4とが接触している点であるともいえる。ここで、評価点Q12と基準点C33の距離を距離L33とする。
曲線経路評価部108において、全ての距離L(距離L31〜距離L33)が、距離Lに対する許容範囲以下であった場合、工具経路記憶部103に記憶されている工具経路から、第2の指令点である指令点P14を削除する(ステップS207)。さらに、この場合は修正対象の曲線経路がないため、曲線経路TP11は最終的に変換されて出力される工具経路となる(ステップS208)。図27は、本実施の形態2において工具経路を修正した最終形態の一例である。
曲線経路評価部108において、曲線経路TP11に複数点設定した評価点Qにおける、それぞれの距離Lのうち、1点でも距離Lに対する許容範囲より大きい距離になる評価点がある場合、指令点P14は削除せず、指令点P13とP14の間の曲線経路、P14とP15の間の曲線経路を生成する(ステップS209)。
次に、実施の形態1のステップS106から108までの流れと同様に、曲線経路評価部108において、曲線経路生成部104において生成された各曲線経路を、工具データ、形状データ、許容寸法公差入力部に入力される許容範囲の値に従って距離Lの値が許容範囲内か否かを評価する(ステップS210)。曲線経路評価部108において、距離Lの値が距離Lに対する許容範囲を超えた場合、すなわち、ステップS210において「NO」の場合、工具経路を修正する(ステップS211)。ここで、工具経路を修正するための動作は、実施の形態1と同様である。
ステップS210の処理において、すべての評価点Qにおける距離Lが距離Lに対する許容範囲以下となり、工具経路の修正が完了した場合、修正後の工具経路が工具経路記憶部103に記憶される。次に、変換後加工プログラム出力部110において、工具経路記憶部103に記憶された工具経路に従って、所定の変換方法に従って工具経路から修正後の加工プログラムを生成し、修正後の加工プログラムを変換後に加工プログラム変換装置100の外部へ出力する(ステップS208)。
以上より、実施の形態2に係る加工プログラム変換装置によれば、隣接した3点の指令点のうち、両端の2点を通過する曲線経路上に設けた評価点と基準点の距離Lが、距離Lに対する許容範囲以下となることを満たした場合は、工具経路から既存の真ん中の指令点を削除するため、加工プログラムのデータ量を削減することができ、作業効率が向上する。さらに、加工対象物の加工結果の加工精度が所望の精度を満たすこともできる。
実施の形態3.
以下に、実施の形態3に係る数値制御装置を図面に基づいて説明する。なお、この実施の形態により、限定されるわけではない。
数値制御装置200は、外部から入力される加工プログラムを受け取る加工プログラム入力部201と、入力された加工プログラムを解析し、工具経路を求める加工プログラム解析部202と、加工プログラム解析部202で求めた工具経路が記憶される工具経路記憶部203と、工具経路記憶部203に記憶された工具経路に従って曲線経路を生成する曲線経路生成部204と、工具のデータを入力する工具データ入力部205と、加工対象物の加工後の形状データを入力する形状データ入力部206と、工具が加工対象物の加工曲面に沿って動作するかを判断するため曲線経路上に設けた点と加工曲面との距離の許容範囲を入力する許容寸法公差入力部207と、曲線経路上に設けた点と加工曲面との距離が許容範囲内か否かを判断する曲線経路評価部208と、工具経路を修正する工具経路修正部209と、曲線経路補間部210とを備える。本実施の形態に係る数値制御装置200は、外部から囲うプログラムが入力されると、加工プログラムを解析して工具経路を生成し、モータ駆動部211へ出力する動作を実行する。
図28に示した実施の形態3に係る数値制御装置200が工具経路を生成する手順について説明する。図29は、実施の形態3に係る数値制御装置200の動作例を示すフローチャートである。図29のフローチャートは、数値制御装置200が工具経路を生成する動作の手順を示している。図29において、ステップS301からステップS307までの手順は、実施の形態1におけるステップS101からステップS107までの動作の手順と同様である。
ステップS306において、曲線経路生成部204は、評価点Qにおける距離Lが、距離Lに対する許容範囲以下となった場合、生成した曲線経路を曲線経路補間部210に渡す。
数値制御装置200は、次に、曲線経路補間部210において、曲線経路を補間する(ステップS308)。具体的には、曲線経路補間部210が曲線経路生成部204から受け取った曲線経路上に、単位時間である補間周期あたりの工具の移動量を求めて補間した補間点を生成する。ステップS308で補間処理を行った後の曲線経路が、最終的な工具経路となる。曲線経路補間部210は、補間点の生成が終了すると、補間点を外部のモータ駆動部211に渡す。
以上のような手順で動作することにより、実施の形態3に係る数値制御装置200は、工具経路を生成する。
実施の形態3に係る数値制御装置によれば、修正された工具経路に従って数値制御することが可能となるため、加工プログラムを一度変換した後、変換後の加工プログラムを出力する必要がなく、また、加工対象物の所望の加工精度を満たすことが可能となることから、手戻りが発生せず、作業効率が向上する。
実施の形態4.
以下に実施の形態4に係る機械学習装置を図面に基づいて詳細に説明する。なお、この実施の形態に限定されるものではない。
図30は、実施の形態4に係る機械学習装置の構成例を示す図である。図30に示した工作機械401は、実施の形態1の数値制御装置111によって制御されることにより、加工対象物を加工する。数値制御装置111と工作機械401は、数値制御工作機械を構成する。数値制御装置111には、実施の形態1と同様に、加工プログラム変換装置100から出力された変換後の加工プログラムである変換後加工プログラムが入力される。
本実施の形態の機械学習装置410は、工作機械401による加工結果の加工精度を示す情報と、加工プログラム変換装置100から取得した情報とを用いて、工作機械401による加工結果が所望の加工精度を満たす許容寸法公差を学習する。許容寸法公差は、距離Lに対する許容範囲である。距離Lは、実施の形態1で述べたように、工具経路上に設けられた複数の指令点の間に生成された曲線経路に従って動作する工具が加工対象物の仕上がり形状である加工曲面に沿って動作するか否かを判断するために曲線経路上に設けられた点を評価点とし、工具と加工曲面とが接触する点を基準点とした場合の、評価点と基準点との距離である。工作機械401による加工結果は、距離Lが許容寸法公差以内となるように工具経路を修正した後の加工プログラムに基づいて行われた加工結果である。
本実施の形態の加工プログラム変換装置100は、加工対象物の仕上がり形状である加工曲面、工具に対する移動指令が記述された加工プログラムから求めた工具経路、工具データを機械学習装置410へ出力する。また、加工プログラム変換装置100は、後述する機械学習により生成された学習済モデルを用いた推論により求められた許容寸法公差を、機械学習装置410から受け取り、受け取った許容寸法公差を入力として用いて曲線経路評価部108における判断が行われる。このように、本実施の形態では、加工プログラム変換装置100は、機械学習装置410との間で入出力の動作を行うが、これらの動作以外は、実施の形態1の加工プログラム変換装置100の動作と同様である。実施の形態1と同様の機能を有する構成要素は、実施の形態1と同一の符号を付して重複する説明を省略する。以下実施の形態1と異なる点を主に説明する。
機械学習装置410は、所望の加工精度を満たす許容寸法公差を機械学習する。ここで、所望の加工精度を満たす許容寸法公差を機械学習するとは、所望の加工精度を満たす許容寸法公差を推論するための学習済みモデルを作成することを意味する。機械学習装置410が用いる学習アルゴリズムはどのようなものを用いてもよい。一例として、強化学習(Reinforcement Learning)を適用した場合について説明する。強化学習は、ある環境内におけるエージェント(行動主体)が、現在の状態を観測し、取るべき行動を決定する、というものである。強化学習では、エージェントは行動を選択することで環境から報酬を得て、一連の行動を通じて報酬が最も多く得られるような方策を学習する。例えば、Q学習の場合、行動価値関数Q(s,a)の一般的な更新式(行動価値テーブル)は、下記式(1)で表される。
Figure 0006808106
式(1)において、tは時刻tにおける環境を表し、aは時刻tにおける行動を表す。行動aにより、環境はst+1に変わる。rt+1はその環境の変化によってもらえる報酬を表し、γは割引率を表し、αは学習係数を表す。なお、γは0<γ≦1、αは0<α≦1の範囲とする。本実施の形態にQ学習を適用した場合、入力される許容寸法公差が行動aとなる。
式(1)で表される更新式は、時刻t+1における最良の行動aの行動価値が、時刻tにおいて実行された行動aの行動価値Qよりも大きければ、行動価値Qを大きくし、逆の場合は、行動価値Qを小さくする。換言すれば、時刻tにおける行動aの行動価値Qを、時刻t+1における最良の行動価値に近づけるように、行動価値関数Q(s,a)を更新する。それにより、或る環境における最良の行動価値が、それ以前の環境における行動価値に 順次伝播していくようになる。
図30に示すように、本実施の形態の機械学習装置410は、状態観測部411、学習部412および推論部413を備える。状態観測部411は、数値制御工作機械による加工の状態を示す状態変数を含むデータセットを取得するデータ取得部である。学習フェーズでは、状態観測部411は、データセットを学習部412へ出力する。状態観測部411は、推論フェーズでは、データセットを推論部413へ渡す。学習部412は、データセットを用いて、所望の加工精度を満たす許容寸法公差を学習することにより学習済モデルを生成し、推論部413へ渡す。推論部413は、状態変数を学習済モデルへ入力することにより、加工精度を満たす許容寸法公差を推論し、推論した許容寸法公差を加工プログラム変換装置100へ入力する。
詳細には、状態観測部411は、状態変数として、加工対象物の仕上がり形状を示す情報を、加工プログラム変換装置100の形状データ入力部106から取得する。実施の形態1で述べたように、形状データ入力部106には、加工対象物の目標の形状である仕上り形状を生成できる情報が入力され、仕上り形状は、加工すべき曲面である加工曲面を有する。すなわち、仕上がり形状を示す情報には加工曲面を示す情報が含まれる。
状態観測部411は、状態変数として工具経路を加工プログラム変換装置100の工具経路記憶部103から取得する。工具経路は、実施の形態1で述べたように、工具に対する移動指令が記述された加工プログラムから求められる。また、状態観測部411は、加工プログラム変換装置100の工具データを工具データ入力部105から取得する。
さらに、状態観測部411は、状態変数として、変換後加工プログラムに基づく数値制御装置111の制御のもとで工作機械401によって加工された加工対象物の加工精度、すなわち変換後加工プログラムに基づく加工結果の加工精度を取得する。加工精度は、例えば三次元測定機、表面粗さ測定器、画像寸法測定器などの機器を用いて測定された値を用いることができる。図30では、これらの測定を行う機器が工作機械401に備えられている例を示しているが、機器が工作機械401とは別に設けられていてもよい。
また、状態観測部411は、学習フェーズでは、強化学習における行動である許容寸法公差を、加工プログラム変換装置100の許容寸法公差入力部107から取得して、学習部412へ渡す。
学習部412は、状態観測部411によって観測された状態変数、すなわち、加工対象物の仕上がり形状である加工曲面、加工プログラムから求めた工具経路、工具データ、および変換後加工プログラムに基づく加工結果の加工精度を、状態観測部411から受け取る。学習部412は、状態変数に基づいて作成されるデータセットに従って、加工精度を満たす最大の許容寸法公差を学習する。なお、本実施の形態4では、一例として、加工精度を満たす最大の許容寸法公差を学習することとしているが、これに限定されず、学習する許容寸法公差は、ユーザの所望する許容寸法公差を満たしていればよい。
図30に示すように、学習部412は、報酬計算部421および関数更新部422を備える。報酬計算部421は、状態変数に基づいて報酬を計算する。報酬計算部421は、変換後加工プログラムに基づく加工結果の加工精度に基づいて、報酬rを計算する。例えば、報酬計算部421は、変換後加工プログラムに基づく加工結果の加工精度が所望の加工精度より良い場合には報酬rを増大させる。例えば、報酬計算部421は、変換後加工プログラムに基づく加工結果の加工精度が所望の加工精度より良い場合には「1」の報酬を与える。他方、変換後加工プログラムに基づく加工結果の加工精度が所望の加工精度より悪い場合には報酬rを低減させる。例えば、報酬計算部421は、変換後加工プログラムに基づく加工結果の加工精度が所望の加工精度より悪い場合には「−1」の報酬を与える。変換後加工プログラムに基づく加工結果の加工精度は、公知の方法に従って抽出される。例えば、加工が完了した加工対象物に対して、三次元測定機、表面粗さ測定器、画像寸法測定器などの機器を用いて測定された値を求め、加工対象物の設計値に基づいて加工結果の加工精度を算出することができる。
関数更新部422は、報酬計算部421によって計算される報酬に従って、変換後加工プログラムに基づく加工結果の加工精度を満たす許容寸法公差を決定するための関数を更新する。例えばQ学習の場合、式(1)で表される行動価値関数Q(s,a)を変換後加工プログラムに基づく加工結果の加工精度を満たす許容寸法公差を算出するための関数として用いる。学習フェーズにおいて、報酬計算部421による報酬の計算と関数更新部422による関数の更新が繰り返されることにより学習済モデルすなわち、s,aに応じたQの値を示す関数が生成される。
推論部413は、関数更新部422が生成した学習済みモデルと、状態観測部411から取得した状態変数とを用いて、行動価値関数Q(s,a)が大きくなる行動aすなわち許容寸法公差を、推論結果として求める。なお、学習部412は、推論部413による推論と同時に学習を行ってもよい。なお、学習済みモデルは類似の形状の加工対象物を加工する際にも用いることが可能となる。これにより、学習時間を短縮しつつ類似の形状についても加工結果の加工精度を満たす許容寸法公差を決定することが可能となる。
なお、本実施の形態では、学習部412が用いる学習アルゴリズムに強化学習を適用した場合について説明したが、これに限られるものではない。学習アルゴリズムについては、強化学習以外にも、教師あり学習、教師なし学習、又は半教師あり学習等を適用することも可能である。例えば、教師あり学習を用いる場合、上述した加工対象物の仕上がり形状を示す情報、工具経路、工具データおよび加工結果の加工精度が所望の加工精度を満たしたか否かを示す情報を入力データとし、入力した許容寸法公差を正解データとしたデータセットを教師データとして用いて、学習済モデルを生成する。そして、学習済モデルに、加工対象物の仕上がり形状を示す情報、工具経路、工具データおよび加工結果の加工精度が所望の加工精度を満たすという判定結果を入力することで、所望の加工精度を満たす許容寸法公差を求めることができる。
また、上述した学習アルゴリズムとしては、特徴量そのものの抽出を学習する、深層学習(Deep Learning)を用いることもでき、他の公知の方法、例えばニューラルネットワーク、遺伝的プログラミング、機能論理プログラミング、サポートベクターマシンなどに従って機械学習を実行してもよい。
なお、機械学習装置410は、図30に示すように、加工プログラム変換装置100とは別の装置であってもよいし、加工プログラム変換装置100の内部に機械学習装置410が設けられていてもよい。また、機械学習装置410は、数値制御装置111の内部に設けられていてもよい。さらに、機械学習装置410は、1台または複数台のコンピュータにより実現されてもよいし、クラウドサーバ上に存在していてもよい。
また、機械学習装置410は、複数の加工プログラム変換装置100から取得した状態変数および行動であるデータセットに基づいて、所望の加工精度を満たす許容寸法公差を学習するようにしてもよい。なお、機械学習装置410は、同一の現場で使用される複数の加工プログラム変換装置100からデータセットを取得してもよいし、異なる現場で独立して稼働する複数の加工プログラム変換装置100および工作機械401からデータセットを収集して、所望の加工精度を満たす許容寸法公差を学習してもよい。さらに、データセットの収集対象となる加工プログラム変換装置100を途中で追加してもよいし、逆に対象から除去することも可能である。さらに、ある加工プログラム変換装置100に関して所望の加工精度を満たす許容寸法公差を学習した機械学習装置410により生成された学習済モデルを、別の加工プログラム変換装置100に対応する別の機械学習装置410に設定し、別の機械学習装置410が、新たに取得するデータセットを用いた再学習により学習済モデルを更新するようにしてもよい。
なお、以上述べた例では、機械学習装置410が、実施の形態1の加工プログラム変換装置100からデータセットを取得したが、このかわりに、実施の形態2の加工プログラム変換装置100からデータセットを取得してもよいし、実施の形態3の数値制御装置200からデータセットを取得してもよい。また、実施の形態3の数値制御装置200に機械学習装置410が内蔵されていてもよい。
上述した実施の形態4では、機械学習装置410の状態観測部411が、状態変数として、変換後加工プログラムに基づく加工結果の加工精度を取得していたが、加工精度は、変換加工プログラムに基づく加工結果の加工精度でなくともよい。例えば、変換前の加工プログラムに基づく加工結果の加工精度を用いてもよい。つまり、工作機械401を用いて、加工対象物を加工した加工結果の加工精度であれば、上述の、加工曲面、工具経路、工具データとともにデータセットを構成することが可能であり、所望の加工精度を満たす許容寸法公差を推論するための学習モデルを生成することが可能となる。
以上のように、本実施の形態では、変換後加工プログラムに基づく加工結果が所望の加工精度を満たすように、自動的に許容寸法公差を求めることができる。これにより、作業者が適切な許容寸法公差を算出する場合などに比べて、許容寸法公差を決定するための時間が短縮されるため作業能率が向上する。
100 加工プログラム変換装置、101,201 加工プログラム入力部、102,202 加工プログラム解析部、103,203 工具経路記憶部、104,204 曲線経路生成部、105,205 工具データ入力部、106,206 形状データ入力部、107,207 許容寸法公差入力部、108,208 曲線経路評価部、109,209 工具経路修正部、110 変換後加工プログラム出力部、111,200 数値制御装置、210 曲線経路補間部、401 工作機械、410 機械学習装置、411 状態観測部、412 学習部、413 推論部、421 報酬計算部、422 関数更新部、P1〜P6,P11〜P17,R1 指令点、Q1〜Q 評価点、C1〜C3,C11〜C13,C21〜C23 基準点、L1〜L3,L11〜L13,L21〜L23 距離、S1〜S3 加工曲面、T10〜T12 工具、TP1〜TP 曲線経路。

Claims (14)

  1. 工具に対する移動指令が記述された加工プログラムから求めた工具経路に基づき、前記移動指令に従い前記工具経路上に設けられた複数の指令点の間に曲線経路を生成する曲線経路生成部と、
    前記曲線経路に従って動作する工具が、加工対象物の仕上がり形状である加工曲面に沿って動作するか否かを判断するために前記曲線経路上に設けた点を評価点とし、前記工具と前記加工曲面が接触する点を基準点とした場合に、前記評価点と前記基準点との距離である距離Lに対する許容範囲の値が入力される許容寸法公差入力部と、
    前記距離Lが、前記許容寸法公差入力部に入力された、前記許容範囲の値以内か否かを判断する曲線経路評価部と、
    前記距離Lが前記許容範囲から外れている場合に、前記許容範囲から外れている評価点を、前記距離Lが前記許容範囲以内となる位置に移動させ、移動後の評価点を新たな指令点とし、前記工具経路を修正する工具経路修正部と、
    を備える加工プログラム変換装置。
  2. 前記曲線経路生成部は、連続した第1、第2、および第3の指令点のうち、前記第1の指令点と前記第3の指令点を結ぶ曲線経路を生成し、
    前記工具経路修正部は、工具が、前記第1と第3の指令点を結ぶ曲線経路を通過する場合の前記距離Lが前記許容範囲以下であった場合に、前記第2の指令点を削除すること
    を特徴とする請求項1に記載の加工プログラム変換装置。
  3. 前記工具を定義する工具データが入力される工具データ入力部と、
    前記加工対象物の前記加工曲面を定義する形状データが入力される形状データ入力部と、
    をさらに備えることを特徴とする請求項1又は2に記載の加工プログラム変換装置。
  4. 前記形状データは、前記加工曲面における加工公差を含み、前記許容範囲は、前記加工曲面における前記加工公差に従って決定されること、
    を特徴とする請求項3に記載の加工プログラム変換装置。
  5. 工具に対する移動指令が記述された加工プログラムから求めた工具経路に基づき、前記移動指令に従い前記工具経路上に設けられた複数の指令点の間に曲線経路を生成する曲線経路生成部と、
    前記曲線経路に従って動作する工具が、加工対象物の仕上がり形状である加工曲面に沿って動作するかを判断するために前記曲線経路上に設けた点を評価点とし、前記工具と前記加工曲面が接触する点を基準点とした場合に、前記評価点と前記基準点との距離である距離Lに対する許容範囲の値が入力される許容寸法公差入力部と、
    前記距離Lが、前記許容寸法公差入力部に入力された、前記許容範囲の値以内か否かを判断する曲線経路評価部と、
    前記距離Lが前記許容範囲から外れている場合に、前記許容範囲から外れている評価点のみを、前記距離Lが前記許容範囲以内となる位置に移動させ、移動後の評価点を新たな指令点とし、前記工具経路を修正する工具経路修正部と、
    を備える数値制御装置。
  6. 前記曲線経路生成部で生成した曲線経路上に、一定時間周期である補間周期あたりの工具の移動量を求めて補間した補間点を生成する曲線経路補間部を備える、
    ことを特徴とする請求項5に記載の数値制御装置。
  7. 前記工具経路修正部は、前記距離Lに対する許容範囲から外れている前記評価点を、前記距離Lが前記許容範囲以下となる位置に移動させ、移動後の新たな指令点として追加すること、
    を特徴とする請求項5又は6に記載の数値制御装置。
  8. 前記曲線経路生成部は、連続した第1、第2、および第3の指令点のうち、前記第1の指令点と前記第3の指令点を結ぶ曲線経路を生成し、
    前記工具経路修正部は、工具が、前記第1と第3の指令点を結ぶ曲線経路を通過するときの前記距離Lが前記許容範囲以下であった場合に、前記第2の指令点を削除すること
    を特徴とする請求項5に記載の数値制御装置。
  9. 前記工具を定義する工具データが入力される工具データ入力部と、
    前記加工対象物の仕上がり形状を定義する形状データが入力される形状データ入力部と、
    をさらに備えることを特徴とする請求項5から8のいずれか1項に記載の数値制御装置。
  10. 前記形状データは、前記加工曲面における加工公差を含み、前記許容範囲は、前記加工曲面における前記加工公差に従って決定されること、
    を特徴とする請求項9に記載の数値制御装置。
  11. 加工プログラム変換装置又は数値制御装置が実行する加工プログラム変換方法であって、
    工具および加工対象物に対する移動指令が記述された加工プログラムから求めた工具経路に基づき、前記移動指令に従い前記工具経路上に設けられた複数の指令点の間に曲線経路を生成するステップと、
    前記曲線経路に従って動作する工具が、加工対象物の仕上がり形状である加工曲面に沿って動作するかを判断するために前記曲線経路上に設けた点を評価点とし、前記工具と前記加工曲面が接触する点を基準点とした場合に、前記評価点と前記基準点との距離である距離Lに対する許容範囲の値を入力するステップと、
    前記距離Lが、入力された、前記許容範囲の値以内か否かを判断するステップと、
    前記距離Lが前記許容範囲から外れている場合に、前記許容範囲から外れている評価点のみを、前記距離Lが前記許容範囲以内となる位置に移動させ、移動後の評価点を新たな指令点とし、前記工具経路を修正するステップと、
    前記工具経路を修正する前記ステップで修正された工具経路を外部に出力するためのプログラムに変換するステップと、
    を含む加工プログラム変換方法。
  12. 前記加工曲面、前記工具経路、前記工具を定義する工具データ、および前記工具経路修正部により前記工具経路を修正した後の加工プログラムに基づいて行われた加工結果の加工精度を含むデータセットを取得するデータ取得部と、
    前記データセットを用いて、前記加工結果が所望の加工精度を満たす、前記距離Lに対する許容範囲を推論するための学習モデルを生成する学習部と、
    を備えることを特徴とする請求項1から4のいずれか1項に記載の加工プログラム変換装置。
  13. 前記加工曲面、前記工具経路、前記工具を定義する工具データ、および前記工具経路修正部により前記工具経路を修正した後の加工プログラムに基づいて行われた加工結果の加工精度を含むデータセットを取得するデータ取得部と、
    前記データセットを用いて、前記加工結果が所望の加工結果を満たす、前記距離Lに対する許容範囲を推論するための学習モデルを生成する学習部と、
    を備えることを特徴とする請求項5から10のいずれか1項に記載の数値制御装置。
  14. 加工対象物の仕上がり形状である加工曲面、工具に対する移動指令が記述された加工プログラムから求めた工具経路、前記工具を定義する工具データ、および、前記加工対象物の加工結果の加工精度、を含むデータセットを取得するデータ取得部と、
    前記データセットを用いて、前記加工結果が所望の加工精度を満たす、許容寸法公差を推論するための学習済モデルを生成する学習部と、
    を備え、
    前記加工精度は、前記工具経路上に設けられた複数の指令点の間に生成された曲線経路に従って動作する前記工具が前記加工曲面に沿って動作するか否かを、前記曲線経路上に設けられた点を評価点とし前記工具と前記加工曲面とが接触する点を基準点として、前記評価点と前記基準点との間の距離である距離Lが前記距離Lに対する許容範囲を示す前記許容寸法公差以内であるか否かを判断し、前記距離Lが前記許容寸法公差から外れている場合に、前記距離Lが前記許容寸法公差以内となるように前記工具経路を修正した後の加工プログラムに基づいて行われた加工結果の加工精度である
    ことを特徴とする機械学習装置。
JP2020540366A 2019-03-05 2020-03-03 加工プログラム変換装置、数値制御装置、加工プログラム変換方法および機械学習装置 Active JP6808106B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/008587 WO2020178978A1 (ja) 2019-03-05 2019-03-05 加工プログラム変換装置、数値制御装置および加工プログラム変換方法
JPPCT/JP2019/008587 2019-03-05
PCT/JP2020/008990 WO2020179798A1 (ja) 2019-03-05 2020-03-03 加工プログラム変換装置、数値制御装置、加工プログラム変換方法および機械学習装置

Publications (2)

Publication Number Publication Date
JP6808106B1 true JP6808106B1 (ja) 2021-01-06
JPWO2020179798A1 JPWO2020179798A1 (ja) 2021-03-11

Family

ID=72337450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020540366A Active JP6808106B1 (ja) 2019-03-05 2020-03-03 加工プログラム変換装置、数値制御装置、加工プログラム変換方法および機械学習装置

Country Status (4)

Country Link
JP (1) JP6808106B1 (ja)
CN (1) CN113490894A (ja)
DE (1) DE112020000656T5 (ja)
WO (2) WO2020178978A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023007581A1 (ja) * 2021-07-27 2023-02-02 ファナック株式会社 数値制御装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021005488T5 (de) * 2020-12-25 2023-08-10 Fanuc Corporation Numerische steuervorrichtung
JP7274649B1 (ja) * 2022-06-15 2023-05-16 Dmg森精機株式会社 情報処理装置および情報処理プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03259307A (ja) * 1990-01-21 1991-11-19 Sony Corp 自由曲面加工データ作成方法
JPH10240329A (ja) * 1997-02-26 1998-09-11 Mitsubishi Electric Corp 曲線の微小線分化方法およびスプライン補間機能を有する数値制御装置
WO2017110236A1 (ja) * 2015-12-24 2017-06-29 三菱電機株式会社 工具経路修正装置および工具経路修正方法
JP2018106417A (ja) * 2016-12-26 2018-07-05 ファナック株式会社 数値制御装置及び機械学習装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3662799B2 (ja) * 2000-03-09 2005-06-22 三菱電機株式会社 数値制御装置及び数値制御方法
EP2336839A4 (en) * 2008-09-16 2013-11-06 Shin Nippon Koki Co Ltd NUMERICAL CONTROL
JP2011096077A (ja) 2009-10-30 2011-05-12 Makino Milling Mach Co Ltd 工具経路の生成方法及び装置
CN103246237B (zh) * 2013-05-23 2015-06-03 南京工业大学 基于局部结束点的数控系统速度控制方法
DE112016007478B4 (de) * 2016-12-27 2021-11-25 Mitsubishi Electric Corporation Numerische Steuervorrichtung, Programmkonvertierungsvorrichtung, numerisches Steuerungsverfahren und Programmkonvertierungsverfahren

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03259307A (ja) * 1990-01-21 1991-11-19 Sony Corp 自由曲面加工データ作成方法
JPH10240329A (ja) * 1997-02-26 1998-09-11 Mitsubishi Electric Corp 曲線の微小線分化方法およびスプライン補間機能を有する数値制御装置
WO2017110236A1 (ja) * 2015-12-24 2017-06-29 三菱電機株式会社 工具経路修正装置および工具経路修正方法
JP2018106417A (ja) * 2016-12-26 2018-07-05 ファナック株式会社 数値制御装置及び機械学習装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023007581A1 (ja) * 2021-07-27 2023-02-02 ファナック株式会社 数値制御装置

Also Published As

Publication number Publication date
WO2020179798A1 (ja) 2020-09-10
CN113490894A (zh) 2021-10-08
WO2020178978A1 (ja) 2020-09-10
DE112020000656T5 (de) 2021-12-09
JPWO2020179798A1 (ja) 2021-03-11

Similar Documents

Publication Publication Date Title
JP6808106B1 (ja) 加工プログラム変換装置、数値制御装置、加工プログラム変換方法および機械学習装置
US11072070B2 (en) Trajectory planning apparatus, trajectory planning method, and production system
JP6490127B2 (ja) 機械学習装置、サーボ制御装置、サーボ制御システム、及び機械学習方法
JP4223894B2 (ja) Pidパラメータ調整装置
JP5750657B2 (ja) 強化学習装置、制御装置、および強化学習方法
JP7010877B2 (ja) 機械学習装置、数値制御システム及び機械学習方法
JP6717164B2 (ja) 動作経路計画方法
KR20100074113A (ko) 보간처리방법, 및 보간처리장치
CN107844460B (zh) 一种基于p-maxq的多水下机器人的围捕方法
JP2009053926A (ja) 経路計画装置及び経路計画方法
JP2019200661A (ja) シミュレーション装置
CN109117986B (zh) 运动规划方法、装置、设备及计算机可读存储介质
CN115202293B (zh) 一种工业机器人两段式速度规划方法
JP4667764B2 (ja) 経路設定方法
JPWO2018122988A1 (ja) 数値制御装置、プログラム変換装置、数値制御方法およびプログラム変換方法
JP4760732B2 (ja) 経路作成装置
CN111283683B (zh) 一种机器人视觉特征规划轨迹的伺服跟踪加速收敛方法
WO2021095170A1 (ja) 加工プログラム変換装置、数値制御装置および加工プログラムの変換方法
JP4102521B2 (ja) 軌跡制御装置
JP2022024333A (ja) 付加製造装置および付加製造方法
JP4304512B2 (ja) 経路計画装置
JP2018144147A (ja) ロボットの動作プログラム生成装置
JP6903255B1 (ja) 加工プログラム修正装置、数値制御装置、加工プログラム修正方法および機械学習装置
JP2002366208A (ja) 工作機械の自由曲線補間方法及び数値制御装置
JP2021074816A (ja) 工具条件決定装置、学習装置、および方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200720

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200720

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201208

R150 Certificate of patent or registration of utility model

Ref document number: 6808106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250