JP6793863B2 - 深紫外発光素子用の反射電極の製造方法、深紫外発光素子の製造方法および深紫外発光素子 - Google Patents

深紫外発光素子用の反射電極の製造方法、深紫外発光素子の製造方法および深紫外発光素子 Download PDF

Info

Publication number
JP6793863B2
JP6793863B2 JP2020006377A JP2020006377A JP6793863B2 JP 6793863 B2 JP6793863 B2 JP 6793863B2 JP 2020006377 A JP2020006377 A JP 2020006377A JP 2020006377 A JP2020006377 A JP 2020006377A JP 6793863 B2 JP6793863 B2 JP 6793863B2
Authority
JP
Japan
Prior art keywords
layer
forming
light emitting
composition ratio
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020006377A
Other languages
English (en)
Other versions
JP2020120114A (ja
Inventor
康弘 渡邉
康弘 渡邉
中野 雅之
雅之 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to PCT/JP2020/001761 priority Critical patent/WO2020153308A1/ja
Priority to CN202080010391.9A priority patent/CN113330586A/zh
Priority to US17/424,562 priority patent/US20220123177A1/en
Priority to TW109102621A priority patent/TWI722784B/zh
Publication of JP2020120114A publication Critical patent/JP2020120114A/ja
Application granted granted Critical
Publication of JP6793863B2 publication Critical patent/JP6793863B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、深紫外発光素子用の反射電極の製造方法、深紫外発光素子の製造方法および深紫外発光素子に関し、特に、高い発光出力および優れた信頼性を両立できる深紫外発光素子用の反射電極の製造方法に関する。
Al,Ga,InなどとNとの化合物からなるIII族窒化物半導体は、直接遷移型バンド構造をもつワイドバンドギャップ半導体であり、殺菌、浄水、医療、照明、高密度光記録などの幅広い応用分野が期待される材料である。特に、発光層にIII族窒化物半導体を用いた発光素子は、III族元素の含有比率を調整することで深紫外光から可視光領域までをカバーすることができ、種々の光源への実用化が進められている。
波長200〜350nmの光は深紫外光と呼ばれ、深紫外光を発光する深紫外発光素子は、一般的には以下のとおりにして作製される。すなわち、サファイアやAlN単結晶等の基板上に、バッファ層を形成し、III族窒化物半導体からなるn型半導体層、発光層、p型半導体層を順次形成する。次いで、n型半導体層と電気的に接続するn側電極、p型半導体層と電気的に接続するp側電極をそれぞれ形成する。ここで、p型半導体層のp側電極側には、オーミック接触を取るため、ホール濃度を高めやすいp型GaNコンタクト層を形成するのがこれまで一般的であった。なお、発光層には、III族窒化物半導体からなる障壁層と井戸層とを交互に積層した多重量子井戸(MQW)構造が広く用いられている。
ここで、深紫外発光素子に要求される特性の一つとして、高い外部量子効率特性が挙げられる。外部量子効率は、(i)内部量子効率、(ii)電子流入効率、および(iii)光取り出し効率によって定まる。
特許文献1では、AlGaN混晶のp型コンタクト層と、発光層からの放射光に対し反射性を示すp側の反射電極とを備え、基板側を光取り出し方向とする深紫外発光ダイオードが開示されている。短波長の光に対しては、AlGaNよりなるp型コンタクト層のAl組成比を高くするほど、p型コンタクト層の透過率を高くすることができる。そこで、特許文献1では、従来一般的であったGaNよりなるp型コンタクト層に替えて、発光波長に応じた透過率を有するAlGaNよりなるp型コンタクト層を用いることを提案している。また、その際の反射電極としては、Alを主成分とする金属膜が好ましいとしている。そしてオーミックコンタクトのための挿入金属層として、Niを使用している。
特許文献2では、ニッケル(Ni)及びコバルト(Co)などの金属は、波長が380nm〜550nm(青紫、青、緑)の可視光の反射量が小さいことを考慮し、p型半導体層(例えばp型GaN層)上の正電極に、銀(Ag)、ロジウム(Rh)、ルテニウム(Ru)、白金(Pt)又はパラジウム(Pd)を用いつつ、上記p型半導体層上の正電極との間にコバルト(Co)又はニッケル(Ni)からなる厚さ0.2〜20nmの第1薄膜金属層を備えたIII族窒化物半導体発光素子が開示されている。
特開2015−216352号公報 特開2000−36619号公報
特許文献1によれば、放射光に対するp型コンタクト層の透過率は高ければ高いほど好ましいとされる。そのため、特許文献1に従えば、p型コンタクト層のAl組成比は高いほど好ましいこととなる。
しかしながら、本発明者らの実験によると、p側電極とコンタクトするp型コンタクト層のAl組成比を単に高くすることのみによって、放出される深紫外光の中心発光波長に対する透過性を高めた場合、実用には適さないことが以下の理由により判明した。まず、p型コンタクト層における深紫外光への透過性を高めることで、従来技術に比べて発光出力の高い深紫外発光素子を得ることは確かに可能である。しかしながら、こうして作製した深紫外発光素子のサンプルに対して過負荷信頼性試験(具体的には100mAで3秒間の通電)を行うと、サンプルの一部において、初期の発光出力に対して半減するほどに発光出力が突然低下する、あるいは突然不点灯となる現象(以下、「頓死」とも言う。)が確認された。
また、本発明者らは、深紫外発光ダイオードに用いる電極の種類とp型コンタクト層のAl組成比との関係についても研究を行った。反射電極としてアルミニウム(Al)には劣るものの紫外域での反射率が比較的大きいロジウム(Rh)を用いる場合、p型GaN層上に形成した場合は電極として使用可能であるものの、単層構造でAl組成が30%以上のp型AlGaN層上に形成した場合は、上述した頓死が確認され、電極としての信頼性が得られないことが分かった。
このように発光出力が突然劣化する素子は信頼性が不十分であり、信頼性が不十分な素子が製品に混入することは、製品の品質管理上許容できない。そこで、本発明は、高い発光出力と優れた信頼性を両立できる深紫外発光素子用の反射電極の製造方法を提供することを目的とする。さらに本発明は、当該反射電極を用いた深紫外発光素子の製造方法及びそれにより得られる深紫外発光素子を提供することを目的とする。
本発明者らは、上記課題を解決する方途について鋭意検討した。そして、反射電極の金属材料として紫外域での反射率が比較的大きいロジウム(Rh)を用いる場合には、ロジウムと、超格子構造のp型コンタクト層との間にニッケル(Ni)からなる金属層を設けることで上記課題を解決できることを実験的に確認し、本発明を完成するに至った。すなわち、本発明の要旨構成は以下のとおりである。
(1)超格子構造を有するp型コンタクト層上に、
第1金属層としてNiを3〜20nmの厚さで形成する第1工程と、
前記第1金属層上に第2金属層としてRhを20nm以上2μm以下の厚さで形成する第2工程と、
前記第1金属層及び前記第2金属層に対して300℃以上600℃以下の加熱処理を行う第3工程と、
を具え、
前記第工程の後に、前記第2金属層上に、第3金属層としてNi層を形成する工程と、前記第3金属層上に第4金属層としてRh層を形成する工程をさらに含むことを特徴とする深紫外発光素子用の反射電極の製造方法。
(2)超格子構造を有するp型コンタクト層上に、
第1金属層としてNiを3〜20nmの厚さで形成する第1工程と、
前記第1金属層上に第2金属層としてRhを20nm以上2μm以下の厚さで形成する第2工程と、
前記第1金属層及び前記第2金属層に対して300℃以上600℃以下の加熱処理を行う第3工程と、
を具え、
前記第2工程の後に、前記第2金属層上に、第3金属層としてNi層を形成する工程と、前記第3金属層上に第4金属層としてRh層を形成する工程をさらに含み、
前記第4金属層を形成する工程の後に前記第3工程が行われ、
前記第3工程は、前記第3金属層及び前記第4金属層に対して前記加熱処理を行う工程をさらに含む深紫外発光素子用の反射電極の製造方法。
(3)前記第3工程における加熱処理を行うときの雰囲気ガスが酸素を含む、上記(1)又は(2)に記載の深紫外発光素子用の反射電極の製造方法。
(4)基板上に、n型半導体層を形成する工程と、
前記n型半導体層上に発光層を形成する工程と、
前記発光層上にp型電子ブロック層を形成する工程と、
前記p型電子ブロック層上にp型コンタクト層を形成する工程と、
前記p型コンタクト層上に反射電極を形成する工程と、
を具える深紫外発光素子の製造方法であって、
前記p型コンタクト層を形成する工程は、Al組成比xを有するAlGa1−xNからなる第1層を形成する第1工程と、前記Al組成比xよりも低いAl組成比yを有するAlGa1−yNからなる第2層を形成する第2工程と、を交互に繰り返して超格子構造を有する前記p型コンタクト層を形成し、かつ、前記第2層のAl組成比yが0.15以上であり、
前記反射電極を形成する工程は、
前記p型コンタクト層の最表面の前記第2層上に、
第1金属層としてNiを3〜20nmの厚さで形成する第1工程と、
前記第1金属層上に第2金属層としてRhを20nm以上2μm以下の厚さで形成する第2工程と、
前記第1金属層及び前記第2金属層に対して300〜600℃の加熱処理を行う第3工程と、
を具え、
前記第工程の後に、前記第2金属層上に、第3金属層としてNi層を形成する工程と、前記第3金属層上に第4金属層としてRh層を形成する工程をさらに含むことを特徴とする深紫外発光素子の製造方法。
(5)基板上に、n型半導体層を形成する工程と、
前記n型半導体層上に発光層を形成する工程と、
前記発光層上にp型電子ブロック層を形成する工程と、
前記p型電子ブロック層上にp型コンタクト層を形成する工程と、
前記p型コンタクト層上に反射電極を形成する工程と、
を具える深紫外発光素子の製造方法であって、
前記p型コンタクト層を形成する工程は、Al組成比xを有するAl Ga 1−x Nからなる第1層を形成する第1工程と、前記Al組成比xよりも低いAl組成比yを有するAl Ga 1−y Nからなる第2層を形成する第2工程と、を交互に繰り返して超格子構造を有する前記p型コンタクト層を形成し、かつ、前記第2層のAl組成比yが0.15以上であり、
前記反射電極を形成する工程は、
前記p型コンタクト層の最表面の前記第2層上に、
第1金属層としてNiを3〜20nmの厚さで形成する第1工程と、
前記第1金属層上に第2金属層としてRhを20nm以上2μm以下の厚さで形成する第2工程と、
前記第1金属層及び前記第2金属層に対して300〜600℃の加熱処理を行う第3工程と、
を具え、
前記第2工程の後に、前記第2金属層上に、第3金属層としてNi層を形成する工程と、前記第3金属層上に第4金属層としてRh層を形成する工程をさらに含むことを特徴とする深紫外発光素子の製造方法。
前記第4金属層を形成する工程の後に前記第3工程が行われ、
前記第3工程は、前記第3金属層及び前記第4金属層に対して前記加熱処理を行う工程をさらに含む深紫外発光素子の製造方法。
(6)前記p型コンタクト層の超格子構造において、
前記発光層において深紫外光を放出する層のAl組成比をw としたときに、
前記第1層の前記Al組成比xは前記Al組成比w よりも高く、
前記第2層の前記Al組成比yは前記Al組成比xよりも低く、
前記Al組成比w 、前記Al組成比x、前記Al組成比y、および前記p型コンタクト層の厚さ平均Al組成比zは下記式[1]、[2]:
0.030<z−w <0.20 ・・・[1]
0.050≦x−y≦0.47 ・・・[2]
を満足する、上記(4)又は(5)に記載の深紫外発光素子の製造方法。
(7)前記発光層における前記p型電子ブロック層に最も近い井戸層と、前記p型電子ブロック層との間に、前記発光層の障壁層及び前記p型電子ブロック層のいずれのAl組成比よりもAl組成比の高いガイド層をさらに有する、上記(6)に記載の深紫外発光素子の製造方法。
(8)前記ガイド層はAlNからなる、上記(7)に記載の深紫外発光素子の製造方法。
(9)前記Al組成比w は、0.25以上0.60以下である、上記()〜()のいずれかに記載の深紫外発光素子の製造方法。
(10)前p型電子ブロック層と前記p型コンタクト層とのp型層の合計厚さが、65〜100nmである、上記(4)〜()のいずれかに記載の深紫外発光素子の製造方法。
本発明によれば、高い発光出力および優れた信頼性を両立できる深紫外発光素子用の反射電極の製造方法を提供することができる。さらに本発明は、当該反射電極を用いた深紫外発光素子の製造方法及びそれにより得られる深紫外発光素子を提供することができる。
本発明の一実施形態に関連する深紫外発光素子用の反射電極の製造方法を説明するための、模式断面図による工程図である。 本発明の一実施形態に従う深紫外発光素子用の反射電極の製造方法を説明するための、模式断面図による工程図である。 本発明の一実施形態に従う深紫外発光素子を説明する模式断面図である。 本発明の一実施形態に従う深紫外発光素子の製造方法を説明するための、模式断面図による工程図である。
本発明に従う実施形態の説明に先立ち、以下の点について予め説明する。まず、本明細書においてAl組成比を明示せずに単に「AlGaN」と表記する場合は、III族元素(Al,Gaの合計)とNとの組成比が1:1であり、III族元素AlとGaとの比率は不定の任意の化合物を意味するものとする。また「AlGaN」は、III族元素であるInについての表記がなくとも、III族元素としてのAlとGaの合計に対して5%以内のInを含んでいてもよいこととし、Inを含めて記載した組成式は、Al組成比をx0としIn組成比をy0(0≦y0≦0.05)としてAlx0Iny0Ga1-x0-y0Nとする。単に「AlN」又は「GaN」と表記する場合は、それぞれGa及びAlは含まれないことを意味するが、明示がない限り、単に「AlGaN」と表記することによって、AlN又はGaNのいずれかであることを排除するものではない。なお、Al組成比の値は、フォトルミネッセンス測定及びX線回折測定などによって測定することができる。
また、本明細書において、電気的にp型として機能する層をp型層と称し、電気的にn型として機能する層をn型層と称する。一方、MgやSi等の特定の不純物を意図的には添加しておらず、電気的にp型またはn型として機能しない場合、「i型」または「アンドープ」と言う。アンドープの層には、製造過程における不可避的な不純物の混入はあってよく、具体的には、キャリア密度が小さい(例えば4×1016/cm3未満)場合、本明細書において「アンドープ」と称する。また、MgやSi等の不純物濃度の値は、SIMS分析によるものとする。
また、エピタキシャル成長により形成される各層の厚さ全体は、光干渉式膜厚測定器を用いて測定することができる。さらに、各層の厚さのそれぞれは、隣接する各層の組成が十分異なる場合(例えばAl組成比が、0.01以上異なる場合)、透過型電子顕微鏡による成長層の断面観察から算出できる。また、隣接する層のうち、Al組成比が同一であるか、または、ほぼ等しい(例えば0.01未満)ものの、不純物濃度の異なる層の境界および厚さについては、両者の境界ならびに各層の厚さは、TEM−EDSに基づく測定によるものとする。そして、両者の不純物濃度は、SIMS分析により測定できる。また、超格子構造のように各層の厚さが薄い場合にはTEM−EDSを用いて厚さを測定することができる。
以下、図面を参照して本発明の実施形態について説明する。なお、同一の構成要素には原則として同一の参照番号を付して、説明を省略する。また、各図において、説明の便宜上、基板および各層の縦横の比率を実際の比率から誇張して示している。
(反射電極)
図1Aに、本発明の一実施形態に関連する深紫外発光素子用の反射電極の製造方法により得られるp側の反射電極80を示す。図2はこの反射電極80を有する深紫外発光素子100の模式断面図である。以下では図1A及び図2の符号を参照する。反射電極80は、p型コンタクト層70の直上に設けることができる。そして、反射電極80は、発光層40から放射される紫外光に対して高い反射率(例えば60%以上)を有する金属を用いた反射電極であり、本発明では、このような反射率を有する金属(以下、「反射金属」と言う。)としてロジウム(Rh)を用いる。ロジウム(Rh)は、例えば市販される金属ロジウム(例えば純度3N)を蒸着源として使用することができる。そして、p型コンタクト層70が超格子構造を有し、かつ、p型コンタクト層70上にニッケル(Ni)を一定の厚さ以上で介して上記反射金属を形成することで得られるp側の反射電極は深紫外光への反射率が高い。さらに、300℃以上600℃以下の加熱処理を行うことで、p型コンタクト層70とp側の反射電極80とで比較的良好なオーミック接触を取ることもでき、さらに高電流にも耐えられる信頼性を有することが分かった。なお、上記の反射電極80の反射率は、深紫外発光素子100の状態で反射電極80の反射率を直接測定することが極めて困難であるため、サファイア基板上に第1金属層81と第2金属層82を成膜し、熱処理工程前と熱処理工程後において透明なサファイア基板側から反射電極80に向けて各波長の光を当て、紫外可視分光光度計を用いて波長に対する反射率(例えば波長300nmに対する反射率)を測定することにより代用するものとする。
すなわち、図1Aを参照するように、本発明の一実施形態に関連する深紫外発光素子用の反射電極の製造方法は、超格子構造を有するp型コンタクト層70(図1Aステップ1A)上に、第1金属層81としてNiを3〜20nmの厚さで形成する第1工程(図1Aステップ1B)と、第1金属層81上に第2金属層82としてRhを20nm以上2μm以下の厚さで形成する第2工程(図1Aステップ1C)と、前記第1金属層及び前記第2金属層に対して300℃以上600℃以下の加熱処理を行う第3工程(図1Aステップ1D)と、を具える。
<第1工程>
第1工程ではp型コンタクト層70上に第1金属層81としてNiを3〜20nmの厚さで形成する。Niは電子ビーム蒸着法及び抵抗加熱蒸着法などの真空蒸着法、並びにスパッタ法などの一般的な手法によりp型コンタクト層70の表面に蒸着することができる。3nm未満では前述の頓死を抑制することが困難となり、20nmを超えると反射電極の反射率の低下が著しいためである。また、第1金属層81の厚さを3〜10nmとすることがさらに好ましい。第1金属層81を10nm以下の厚さで形成することで、加熱処理後の反射電極80による波長300nmに対する反射率を60%以上とすることができる。なお、第1金属層81の厚さは、水晶振動子の膜厚計を用いて測定することができる。
<第2工程>
第2工程では第1金属層81上に第2金属層82としてRhを20nm以上2μm以下の厚さで形成する。20nm未満では第2金属層82の紫外光に対する反射率が十分に高いものとならないことがあるためである。また、2μmを超えるとRhに掛かる費用の問題が生じるためである。後述の熱処理工程による第1金属層81の拡散後の反射電極の反射率を向上させるためには第2金属層82の厚さは30nm以上とすることがより好ましく、費用を抑えるため100nm以下とすることがより好ましい。第2工程も第1工程と同様に真空蒸着法及びスパッタ法などの一般的な手法により第2金属層を形成することができる。第2金属層82の厚さは、水晶振動子の膜厚計を用いて測定することができる。
<第3工程>
第3工程では第1金属層81及び第2金属層82に対して300℃以上600℃以下の加熱処理を行い、反射電極80を得る。本工程のように、p側電極を形成した後にオーミック接触を取るための加熱処理を行う際に用いる雰囲気ガスとして窒素などの不活性ガスを用いることが一般的である。本工程においても不活性ガスのみを雰囲気ガスとして用いてもよい。ただし本工程においては、雰囲気ガス中に酸素を含むことがより好ましい。雰囲気ガス中の酸素の割合としては、流量比として0%超50%以下とすることが好ましい。
こうして得られる反射電極80は、NiとRhからなる電極である。第3工程の加熱処理に伴い第1金属層81としてのNiは、p型コンタクト層70と接する界面から第2金属層82のRh側へと拡散する。そしてNiの拡散によりp型コンタクト層70と反射電極80との界面におけるRhの割合が増えるため、熱処理前に比べて当該界面での反射率が上昇する。熱処理後の反射電極80ではNiは層状を保っておらず拡散しているため、熱処理後(すなわち拡散後)のNi量を正確に測定することは困難である。そこで、熱処理後の反射電極の断面(垂直断面)のSEM-EDS分析においてNi及びRhのそれぞれのピークがともに観察されれば、NiとRhからなる反射電極80が設けられたと判断される。そして、反射電極80において、Rhは体積比(反射電極の断面のSEM-EDS分析のマッピングにおける面積比に相当)で50%以上であり、75%以上が好ましい。反射電極80におけるRhの体積比を75%以上にすることで、加熱処理後の反射電極80による波長300nmに対する反射率を60%以上とすることができる。
また、上記の反射電極(熱処理工程後)の反射率測定において、Rh単体の波長300nmに対する反射率が70〜73%であり、NiとAuの合金の反射率が40%未満であるため、本発明のNiとRhからなる反射電極80は、第1金属層81の厚さを3〜20nm、第2金属層82の厚さを20nm〜2μm範囲とすることにより、波長300nmに対する反射率を40%以上67%未満の範囲とすることができ、第1金属層81の厚さを3〜10nm、第2金属層82の厚さを30nm〜100nmの範囲とすることにより、波長300nmに対する反射率を60%以上70%未満とすることができる。なお、NiはRhと合金化してもRh単体による反射率を大きく下げない。また、反射電極80において、Ni及びRh以外に含有され得る反射率を大きく下げない不純物としては、ルテニウム(Ru)、金(Au)、白金(Pt)、パラジウム(Pd)、チタン(Ti)が考えられ、その不純物含有量は40質量%以下であり、10質量%以下が好ましい。
以上説明した本実施形態に従う深紫外発光素子用の反射電極80を深紫外発光素子に用いることで、高い発光出力および優れた信頼性を両立することができる。
図1Bを参照する。本発明の実施形態として、第2工程の後に、前記第2金属層上に、第3金属層83としてNi層を形成する工程と、第3金属層83上に第4金属層84としてRh層を形成する工程をさらに含む。この工程は、第2工程と第3工程の間に行っても、第3工程の後に行ってもよいが、第2工程と第3工程の間において第2工程の直後に行うことが作業効率の面で好ましい。第3金属層83として、Ni層は、1〜20nmの厚さで形成することができる。また、第4金属層84としてRh層は、5nm以上2μm以下の厚さで形成することができる。さらに、第4金属層84上に、再度、第3金属層及び第4金属層に対応するNi層とRh層を形成することを繰り返し、反射電極を、Ni層とRh層の順で複数回繰り返し積層した積層体としてもよい。
第2金属層82上にAuが存在した状態では、第3工程などの加熱を経てAuが反射電極中を拡散すると頓死が生じる恐れがあるが、NiとRhからなる反射電極を、Ni及びRhの積層順を複数回繰り返す積層構造にすることで、頓死を抑制することができる。そのため、Ni層と、Rh層とを複数回積層すれば、積層後のRh層上に他の金属(金など)を接触させて外部との電気的接続を形成する実装工程や外部との接続方法(半田など加熱を必要とする場合を含む)に拠らずに、頓死する恐れをより確実に回避可能な電極とすることができるため好ましい。この観点では、反射電極を構成する金属元素は、Ni及びRhのみからなることが特に好ましい。
(深紫外発光素子)
次に、本発明により得られる反射電極80を有する深紫外発光素子100を説明する。本発明の一実施形態に従う深紫外発光素子100は、図2に示すように、基板10上に、n型半導体層30、発光層40、p型電子ブロック層60およびp型コンタクト層70、そして上記のp側の反射電極80を順次有する深紫外発光素子である。そして、反射電極80はp型コンタクト層の最表面の第2層72上に設けられる。p型コンタクト層70は、Al組成比xを有するAlxGa1-xNからなる第1層71と、Al組成比yを有するAlyGa1-yNからなる第2層72と、を交互に積層してなる超格子構造を有する。また、第2層72のAl組成比yは0.15以上(y≧0.15)である。
特に、発光層40において深紫外光を放出する層のAl組成比をw0としたときに、第1層71のAl組成比xはAl組成比w0よりも高く、第2層72のAl組成比yはAl組成比xよりも低く、Al組成比w0、Al組成比x、Al組成比yおよびp型コンタクト層70の厚さ平均Al組成比zは下記式[1]、[2]:
0.030<z−w0<0.20 ・・・[1]
0.050≦x−y≦0.47 ・・・[2]
を満足することが好ましい。
なお、図2に示すように、基板10とn型半導体層30との間にバッファ層20を設け、p型コンタクト層70の直上にはp側の反射電極80を、n型半導体層30の露出面にはn側電極90を設けていることは、深紫外発光素子100の好ましい態様である。
以下では、説明を簡便化するためにp型コンタクト層70の超格子構造における第1層71および第2層72の各層のAl組成比および厚さは一定であるとして説明する。この場合、p型コンタクト層70の厚さ平均Al組成比zは、以下のとおりにして定義される。まず、超格子構造における第1層71の層数をNとし、第1層71の各層の厚さをtaと表わす。同様に、第2層72の層数をMとして、第2層72の各層の厚さをtbと表わす。このとき、p型コンタクト層70の厚さ平均Al組成比zは下記式[3]に従う。
Figure 0006793863
なお、p型コンタクト層70の超格子構造における第1層71および第2層72の各層Al組成比および厚さは必ずしも一定である必要はない。この超格子構造における第1層71および第2層72の各層Al組成比および厚さに変動がある場合、厚さ平均Al組成比zは、第1層71および第2層72のそれぞれの厚さおよびAl組成比による加重平均値(重み付き平均値)を用いればよく、第1層71および第2層72のそれぞれのAl組成比x、yは、厚さによる加重平均値を指すものとする。
引き続き、図2を参照しつつ、深紫外発光素子100における基板10、n型半導体層30、発光層40、p型電子ブロック層60およびp型コンタクト層70の各構成の詳細をまず説明する。
<基板>
基板10としては、発光層40による発光を透過することのできる基板を用いることが好ましく、例えばサファイア基板または単結晶AlN基板などを用いることができる。また、基板10として、サファイア基板の表面にアンドープのAlN層をエピタキシャル成長させたAlNテンプレート基板を用いてもよい。
<n型半導体層>
n型半導体層30は必要によりバッファ層20を介し、基板10上に設けられる。n型半導体層30を基板10上に直接設けてもよい。n型半導体層30には、n型のドーパントがドープされる。n型ドーパントの具体例として、シリコン(Si),ゲルマニウム(Ge),錫(Sn),硫黄(S),酸素(O),チタン(Ti),ジルコニウム(Zr)等を挙げることができる。n型ドーパントのドーパント濃度は、n型半導体層30がn型として機能することのできるドーパント濃度であれば特に限定されず、例えば1.0×1018atoms/cm3〜1.0×1020atoms/cm3とすることができる。また、n型半導体層30のバンドギャップは、発光層40(量子井戸構造とする場合は井戸層41)のバンドギャップよりも広く、発光する深紫外光に対し透過性を有することが好ましい。また、n型半導体層30を単層構造や複数層からなる構造の他、III族元素の組成比を結晶成長方向に組成傾斜させた組成傾斜層や超格子構造を含む構成することもできる。n型半導体層30は、n側電極とのコンタクト部を形成するだけでなく、基板から発光層に至るまでに結晶性を高める機能を兼ねる。
<発光層>
発光層40はn型半導体層30上に設けられ、深紫外光を放射する。発光層40は、AlGaNよりなることができ、そのAl組成比は、放射光の波長が深紫外光の200〜350nmとなるよう、または、中心発光波長が265nm以上317nm以下となるよう設定することができる。このようなAl組成比は、例えば0.25〜0.60の範囲内とすることができる。
発光層40はAl組成比が一定の単層構造であってもよいし、Al組成比の異なるAlGaNからなる井戸層41と障壁層42とを繰り返し形成した多重量子井戸(MQW:Multiple Quantum Well)構造で構成することも好ましい。発光層40がAl組成比一定の単層構造である場合、発光層40において深紫外光を放出する層のAl組成比w0は発光層40のAl組成比そのものである。また、発光層40が多重量子井戸構造を有する場合、井戸層41が発光層40において深紫外光を放出する層に相当するため、便宜的に、井戸層41のAl組成比wが上記Al組成比w0に相当するものとして取り扱う。なお、放射光の波長が深紫外光の200〜350nmとなるよう、または、中心発光波長が265nm以上317nm以下となるよう、深紫外光を放出する層のAl組成比w0(または井戸層のAl組成比w)を0.25〜0.60とすることが好ましい。
また、障壁層42のAl組成比bは、井戸層41のAl組成比wよりも高く(すなわち、b>w)する。Al組成比bについては、b>wの条件の下、障壁層42のAl組成比bを例えば0.40〜0.95とすることができる。また、井戸層41および障壁層42の繰り返し回数は特に制限されず、例えば1〜10回とすることができる。発光層40の厚み方向の両端側(すなわち最初と最後)を障壁層とすることが好ましく、井戸層41および障壁層42の繰り返し回数をnとすると、この場合は「n.5組の井戸層および障壁層」と表記することとする。また、井戸層41の厚みを0.5nm〜5nm、障壁層42の厚みを3nm〜30nmとすることができる。
<ガイド層>
発光層40が上述した量子井戸構造を有する場合、発光層40におけるp型電子ブロック層60に最も近い井戸層41と、後記のp型電子ブロック層60との間に、障壁層42及びp型電子ブロック層60のいずれのAl組成比よりもAl組成比の高いガイド層が設けられることも好ましい。これにより、深紫外発光素子100の発光出力を高めることができる。この場合、ガイド層のAl組成比をbgと表記し、後記するp型電子ブロック層60のAl組成比αを用いれば、各Al組成比の関係は以下のとおりである。
w(井戸層)<b(障壁層)<α(p型電子ブロック層)<bg(ガイド層)
また、発光層40を障壁層42から始まるn組の井戸層41および障壁層42とし、発光層40及びp型電子ブロック層60の両者と接する層を上記したガイド層とし、その厚さを他の障壁層に比べて薄くすることも好ましい。例えば、ガイド層がAlNからなり(この場合、特にAlNガイド層と称する)、その厚さを0.7〜1.7nmとすることも好ましい。
<p型電子ブロック層>
p型電子ブロック層60は、発光層40上に設けられる。p型電子ブロック層60は電子を堰止めし、電子を発光層40(MQW構造の場合には井戸層41)内に注入して、電子の注入効率を高めるための層として用いられる。この目的のため、深紫外光を放出する層のAl組成比w0(量子井戸構造の場合、井戸層41のAl組成比wに相当)にもよるが、p型電子ブロック層60のAl組成比αを、0.35≦α≦0.95とすることが好ましい。なお、Al組成比αが0.35以上であれば、p型電子ブロック層60はIII族元素としてのAlとGaに対して5%以内の量のInを含んでいてもよい。ここで、Al組成比αは上記条件を満足しつつ、p型コンタクト層70の厚さ平均Al組成比zよりも高くすることが好ましい。すなわち、α>zとすることが好ましい。また、p型電子ブロック層60のAl組成比αおよび障壁層42のAl組成比bの両者に関し、0<α−b≦0.55を満足することがより好ましい。こうすることで、p型電子ブロック層60による井戸層41への電子の注入効率を確実に高めることができる。
p型電子ブロック層60の厚さは特に制限されないが、例えば10nm〜80nmとすることが好ましい。p型電子ブロック層60の厚さがこの範囲であれば、高い発光出力を確実に得ることができる。なお、p型電子ブロック層60の厚さは、障壁層42の厚さよりは厚いことが好ましい。また、p型電子ブロック層60にドープするp型ドーパントとしては、マグネシウム(Mg),亜鉛(Zn),カルシウム(Ca),ベリリウム(Be),マンガン(Mn)等を例示することができ、Mgを用いることが一般的である。p型電子ブロック層60のドーパント濃度は、p型層として機能することのできるドーパント濃度であれば特に限定されず、例えば1.0×1018atoms/cm3〜5.0×1021atoms/cm3とすることができる。
<p型コンタクト層>
p型コンタクト層70は、p型電子ブロック層60上に設けられる。p型コンタクト層70は、その直上に設けられるp側の反射電極80と、p型電子ブロック層60との間の接触抵抗を低減するための層である。したがって、p型コンタクト層70およびp側の反射電極80との間に、製造上不可避的な不純物以外の所期の構成は存在しないこととなる。すなわち、超格子構造のp型コンタクト層70上に接してp側の反射電極80がある。
さて、前述のとおり、p型コンタクト層70は、AlxGa1-xNからなる第1層71と、AlyGa1-yNからなる第2層72と、を交互に積層してなる超格子構造を有する。ここで、第1層71のAl組成比xは、発光層40において深紫外光を放出する層のAl組成比w0よりも高くして(x>w0)、深紫外光に対する透過率を高めることが好ましい。発光層40が単層構造であれば、Al組成比xを発光層40のAl組成比よりも高くすればよく、発光層40が量子井戸構造を有すれば、Al組成比xを井戸層41のAl組成比wよりも高くすればよい。
そして前述のとおり、Al組成比w0、Al組成比x、Al組成比y、およびp型コンタクト層の厚さ平均Al組成比zは下記式[1]、[2]:
0.030<z−w0<0.20 ・・・[1]
0.050≦x−y≦0.47 ・・・[2]
を満足することが好ましい。
従来技術においては、深紫外発光素子のp型コンタクト層として、ホール濃度を高めやすいp型GaN層を用いることが一般的であった。しかしながら、p型GaN層はそのバンドギャップのために、波長360nm以下の光を吸収してしまう。そのため、発光層から放射される深紫外光のうち、p型コンタクト層の側からの光取り出し、あるいは、p側電極での反射による光取り出し効果はほとんど期待できない。一方、p型コンタクト層を、Al組成比を高くしたAlGaNとすれば、ホール濃度がGaNに比べてある程度低減し得るものの、発光層から放射された深紫外光はp型コンタクト層を透過できるため、深紫外発光素子全体としての光取り出し効率が高まり、結果として深紫外発光素子の発光出力を高くすることができる。しかしながら、p型コンタクト層のAl組成比が高くなり過ぎると、信頼性が不十分な深紫外発光素子となり得ることが本発明者らの実験により判明した。一方、上述したAl組成比により形成された超格子構造のp型コンタクト層70であれば、発光層40において深紫外光を放出する層のAl組成比w0よりも厚さ平均Al組成比zが高い(z>w0)ために、深紫外光がp型コンタクト層70を透過でき、結果的により高い発光出力が得られるため好ましい。
ここで、深紫外光がp型コンタクト層70をより確実に透過させるため、上記式[1]のとおり、厚さ平均Al組成比zと、深紫外光を放出する層のAl組成比wとの差を0.030よりも高くする(すなわち、z−w0>0.030)ことが好ましい。この目的のため、Al組成比zとAl組成比wとの差を0.040よりも高くする(z−w0>0.040)ことがより好ましく、0.050よりも高くする(z−w0>0.050)ことがさらに好ましく、0.06よりも高くする(z−w0>0.060)ことが特に好ましい。
また、p型コンタクト層70と、p側の反射電極80とで良好なオーミックコンタクトをとって信頼性を十分なものとするため、厚さ平均Al組成比の上限を設けることが好ましい。そこで、上記式[1]のとおり、厚さ平均Al組成比zと、深紫外光を放出する層のAl組成比wとの差の上限を0.20とすることが好ましく(z−w0<0.20)、この目的のため、Al組成比zとAl組成比wとの差の上限を0.19とする(z−w0<0.19)ことがより好ましく、上限を0.18とする(z−w0<0.18)ことがさらに好ましい。
さらに、上記式[2]のとおり、第1層71のAl組成比xと第2層72のAl組成比yの差は絶対値で0.050以上(x−y≧0.050)とすることが好ましい。これは、p型コンタクト層70を超格子構造として確実に機能させるためである。また、超格子構造全体の歪を減らすとともに、低Al組成比でp側の反射電極80と接触させるため、Al組成比xとAl組成比yの差は絶対値で0.1以上(x−y≧0.10)とすることが好ましく、0.15以上(x−y≧0.15)とすることがより好ましい。一方、Al組成比xとAl組成比yの差が過大であると、第1層と第2層間の格子定数が大きく変わることとなるため歪が増加し、結晶性の良い超格子層を得るのが難しくなるおそれがある。そのため、本発明効果をより確実に得るためにはx−y≦0.47とすることが好ましく、x−y≦0.45とすることがより好ましい。
なお、超格子構造における低Al組成比の層である第2層72のAl組成比yを0.20以上とすれば、発光層40からの深紫外光の透過率をより確実に高めることができ、好ましい。この目的のため、Al組成比yを0.21以上とすることがより好ましく、0.25以上とすることがさらに好ましい。一方、Al組成比yを0.55以下とすると、高い信頼性をより確実に維持することができるため好ましく、この目的のため、Al組成比yを0.51以下とすることがさらに好ましく、0.40以下とすることが特に好ましい。なお、厚さ平均Al組成比zが発光層40において深紫外光を放出する層のAl組成比w0よりも高い限りは、Al組成比yはAl組成比w0より高くても低くてもよい。また、Al組成比xは、上述した式[1],[2]を満足する限りで適宜設定すればよく、Al組成比xの上限および下限は制限されない。式[1],[2]を満足した上で、Al組成比xを概ね、0.40〜0.85の範囲内で設定すればよい。
また、第1層71および第2層72のそれぞれの厚さta、tbは、超格子構造を形成し、かつ、厚さ平均Al組成zの、発光層40のAl組成比に対する条件を満足する限りは特に制限されない。例えば第1層71の厚さtaを1.0nm以上10.0nm以下とすることができ、第2層72の厚さtbを1.0nm以上10.0nm以下とすることができる。厚さta、tbの大小関係は制限されず、どちらが大きくても構わないし、両者の厚さが同じでもよい。また、p型コンタクト層70の全体の厚さが20nm以上100nm以下、好ましくは70nm以下の範囲内となるように、第1層71および第2層72の繰り返し回数を、例えば3〜15回の範囲で適宜設定することが好ましい。
そして、上記p型電子ブロック層60の厚さとp型コンタクト層70との厚さの合計であるp型層の合計厚さが、65nm以上100nm以下であることが好ましく、70nm以上95nm以下とすることがより好ましい。この範囲内とすることで、高い発光出力をより確実に得ることができる。
ここで、p型コンタクト層70の厚さ方向における、p型電子ブロック層60に近い方の末端の層が第1層71であることが好ましい。換言すれば、p型コンタクト層70と、p型電子ブロック層60との間に介在する他の層が無く、両者が接触している場合は、p型電子ブロック層60の直上に第1層71が設けられることが好ましい。第1層71のAl組成比xは、第2層72のAl組成比yよりも高く、Al組成比xの方がp型電子ブロック層60のAl組成比αに近いため、p型電子ブロック層60と、p型コンタクト層70との間の歪みによる欠陥生成をより確実に抑制することができる。
一方、p型コンタクト層70の厚さ方向において、p型電子ブロック層60から遠い方の末端の層は第2層72であることが好ましい。換言すれば、p側の反射電極80と接する層は第2層72であることが好ましい。第1層71のAl組成比xと第2層72のAl組成比yとを比べると、Al組成比yの方が低いため、p側の反射電極80とオーミックコンタクトを取りやすくなるためである。
なお、p型コンタクト層70の厚さ方向における、p型電子ブロック層60に近い方の末端の層が第1層71であり、かつ、p型電子ブロック層60から遠い方の末端の層が第2層72である場合は、第1層71の層数と、第2層72の層数が一致することとなる。ただし、本実施形態において、必ずしも両者の層数が一致する必要はない。本実施形態は、p型コンタクト層70の厚さ方向における末端の両層が第2層72である場合(この場合、第2層72の層数は第1層71の層数に比べて1層多い。)を含む。
また、本発明に従う一実施形態として、第1層71と第2層72の2層を繰り返し積層した超格子構造をこれまで説明してきたが、本発明に従う他の実施形態として、上述した第1層と第2層の関係を同じくしつつ、第1層と第2層との間のAl組成比を有する第3層を第1層と第2層の間に配置した3層構造の超格子構造を適用することもできる。この場合も、上述した本発明効果と同様の効果が得られる。
ここで、p型コンタクト層70はp側の反射電極80と接する側において、Mg濃度が3×1020atoms/cm3以上の高濃度領域を有することが好ましく、この高濃度領域におけるMg濃度が5×1020atoms/cm3以上であることがより好ましい。p型コンタクト層70のホール濃度を高めて、深紫外発光素子100の順方向電圧Vfを低下することができる。なお、上限の限定を意図しないが、工業的生産性を考慮すれば、本実施形態においては高濃度領域におけるMg濃度の上限を1×1021atoms/cm3とすることができる。この場合、p型コンタクト層70におけるp型電子ブロック層60側の領域のMg濃度は一般的な範囲とすることができ、通常5×1019atoms/cm3以上3×1020atoms/cm3未満である。なお、p型コンタクト層におけるMg濃度は、SIMS測定による各領域での平均濃度である。p型コンタクト層70の結晶性を保つため、高濃度領域の厚さは、通常15nm以下であり、p側の反射電極80と接する側の数層程度を高濃度領域とすることができる。
さらにまた、p型コンタクト層70は、p側の反射電極80と接する側において、Si濃度が5×1016atoms/cm3以上1×1020atoms/cm3以下のSiドープ領域を有することも好ましい。当該領域におけるSi濃度を2×1019atoms/cm3以上5×1019atoms/cm3以下とすることがより好ましい。こうすることで、深紫外発光素子100の発光出力をより高めることができる。なお、Siドープ領域の厚さは、1〜5nm程度あれば、この効果を確実に得ることができる。Siドープ領域を、p型コンタクト層の超格子構造における最後の第2層とするとも好ましい。上述したMg濃度が3×1020atoms/cm3以上の高濃度領域にさらにSiをドープしたコドープ領域としてもよい。また、Siドープ領域にはSiのみがドープされていてもよい(すなわち、Mgはドープされていなくてよい)。
なお、p型コンタクト層70のp側の反射電極80と接する側にSiのみがドーピングされたSiドープ領域が設けられつつ、Mgがドーピングされていない場合、当該領域は導電型としてはn型と考えることもできる。しかしながら、上記厚さ範囲(1〜5nm)の場合であれば、Mgがドーピングされていなくとも、p型コンタクト層70の最上層としてp型電極に接すればサイリスタにはならない。そこで、このような場合でも、Siドープ領域はp型コンタクト層70の一部とみなす。
以上説明した本実施形態に従う深紫外発光素子100は、高い発光出力および優れた信頼性を両立することができる。
以下、本実施形態の深紫外発光素子100に適用可能な具体的態様について述べるが、本実施形態は以下の態様に限定されない。
<バッファ層>
図2に示すように、基板10と、n型半導体層30との間に、両者の格子不整合を緩和するためのバッファ層20を設けることも好ましい。バッファ層20としてアンドープのIII族窒化物半導体層を用いることができ、バッファ層20を超格子構造とすることも好ましい。
<n側電極>
また、n型半導体層30の露出面上に設けられ得るn側電極90は、例えばTi含有膜およびこのTi含有膜上に形成されたAl含有膜を有する金属複合膜とすることができる。n側電極90の厚さ、形状およびサイズは、発光素子の形状およびサイズに応じて適宜選択することができる。n側電極90は、図2に示すような、n型半導体層30の露出面上への形成に限定されず、n型半導体層と電気的に接続していればよい。
<その他の構成>
なお、図2には図示しないが、発光層40と、p型電子ブロック層60との間に、p型電子ブロック層60のAl組成比αよりもAl組成比の高いAlGaNからなるガイド層を設けてもよい。ガイド層を設けることで、発光層40への正孔の注入を促進することができる。
<p型クラッド層>
また、図2には図示しないが、AlGaNよりなるp型クラッド層をp型電子ブロック層60とp型コンタクト層70との間に設けても構わない。p型クラッド層とは、発光層40における深紫外光を放出する層のAl組成比(量子井戸構造の場合はAl組成比w)およびp型コンタクト層70の厚さ平均Al組成比zより高く、一方、p型電子ブロック層60のAl組成比αより低いAl組成比を持つ層である。つまり、p型電子ブロック層60とp型クラッド層は、いずれも深紫外光を放出する層のAl組成比より高いAl組成比を持つ層であり、発光層40から発光された深紫外光を実質的に透過する層である。ただし、p型クラッド層は設けない方が好ましい。この理由は、特開2016-111370号公報に記載されているとおりであり、その開示内容全体が参照により本明細書に組み入れられる。なお、p型クラッド層を設ける場合、p型クラッド層のAl組成比をβとすると、α>βであり、かつ、β>yである。
なお、本実施形態に従う深紫外発光素子100は、p側の反射電極80を反射電極材料により形成して深紫外光を反射させることで、基板側または基板水平方向を主な光取り出し方向とすることができる。また、深紫外発光素子100を、いわゆるフリップチップ型と呼ばれる形態とすることができる。
(深紫外発光素子の製造方法)
次に、上述した深紫外発光素子100の製造方法を得るための一実施形態を、図3を用いて説明する。本発明に従う深紫外発光素子100の製造方法の一実施形態は、基板10上に(図3ステップ3A参照)、n型半導体層30を形成する工程と、n型半導体層30上に発光層40を形成する工程と、発光層40上にp型電子ブロック層60を形成する工程(図3ステップ3B参照)と、前記p型電子ブロック層上にp型コンタクト層を形成する工程(図3ステップ3C参照)と、前記p型コンタクト層上に反射電極を形成する工程(図3ステップ3D参照)と、を具える。そして、前記p型コンタクト層を形成する工程は、Al組成比xを有するAlxGa1-xNからなる第1層を形成する第1工程と、前記Al組成比xよりも低いAl組成比yを有するAlyGa1-yNからなる第2層を形成する第2工程と、を交互に繰り返して超格子構造を有する前記p型コンタクト層を形成し、かつ、前記第2層のAl組成比yが0.15以上である。そして、反射電極80の実施形態に述べたように、反射電極を形成する工程は、超格子構造を有するp型コンタクト層70上に、第1金属層81としてNiを3〜20nmの厚さで形成する第1工程と、第1金属層81上に第2金属層82としてRhを20nm以上2μm以下の厚さで形成する第2工程と、前記第1金属層及び前記第2金属層に対して300℃以上600℃以下の加熱処理を行う第3工程と、を具える(図1A参照)。また、p型コンタクト層70を形成する工程(ステップ3C参照)は、Al組成比xを有するAlxGa1-xNからなる第1層71を形成する第1工程と、Al組成比xよりも低いAl組成比yを有するAlyGa1-yNからなる第2層72を形成する第2工程と、を交互に繰り返して超格子構造を有するp型コンタクト層70を形成する工程であり、第2層72のAl組成比yは0.15以上(y≧0.15)である。
さらに、発光層40において深紫外光を放出する層のAl組成比をw0としたときに、第1層71のAl組成比xはAl組成比w0よりも高く、第2層72のAl組成比yはAl組成比xよりも低く、Al組成比w0、Al組成比x、Al組成比yおよびp型コンタクト層70の厚さ平均Al組成比zは下記式[1]、[2]:
0.030<z−w0<0.20 ・・・[1]
0.050≦x−y≦0.47 ・・・[2]
を満足することが好ましい。
図3のフローチャートを参照して引き続き説明する。ただし、前述の実施形態と重複する説明については省略する。
まず、図3のステップ3A,3Bに示すように、基板10上にn型半導体層30、発光層40およびp型電子ブロック層60を順次形成する。これらの各工程では、有機金属気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法や分子線エピタキシ(MBE:Molecular Beam Epitaxy)法、スパッタ法などの公知のエピタキシャル成長技術により各層を形成することができる。
n型半導体層30、発光層40、ガイド層およびp型電子ブロック層60の各層の形成にあたり、エピタキシャル成長させるための成長温度、成長圧力、成長時間については、各層のAl組成比および厚さに応じた一般的な条件とすることができる。エピタキシャル成長させるためのキャリアガスとしては、水素ガスもしくは窒素ガス、または両者の混合ガスなどを用いてチャンバ内に供給すればよい。さらに、上記各層を成長させる原料ガスとして、III族元素の原料ガスとしてTMA(トリメチルアルミニウム)、TMG(トリメチルガリウム)などを用いることができ、V族元素ガスとしてNH3ガスを用いることができる。NH3ガスなどのV族元素ガスと、TMAガスなどのIII族元素ガスの成長ガス流量を元に計算されるIII族元素に対するV族元素のモル比(以降、V/III比と記載する)についても、一般的な条件とすればよい。さらにドーパント源のガスとしては、p型ドーパントについては、Mg源としてシクロペンタジニエルマグネシウムガス(CP2Mg)などを、n型ドーパントについては、Si源として例えばモノシランガス(SiH4)、Zn源としての塩化亜鉛ガス(ZnCl2)などを適宜選択し、所定の流量でチャンバ内に供給すればよい。
次に、図3のステップCに示すp型コンタクト層形成工程では、p型電子ブロック層60上に、前述の第1層71および第2層72を繰り返した超格子構造のp型コンタクト層70を形成する。p型コンタクト層70の厚さ範囲およびAl組成比の条件については既述のとおりである。p型コンタクト層70も、MOCVD法などによるエピタキシャル成長によって結晶成長すればよい。
なお、p型コンタクト層70において、p側の反射電極80と接する側の高濃度領域72のMg濃度を3×1020atoms/cm3以上とするためには、p型コンタクト層形成工程において、以下のとおりの処理を行えばよい。すなわち、p型コンタクト層形成工程において、III族原料ガス、V族原料ガスおよびMg原料ガスの供給により前述の超格子構造を結晶成長させ、結晶成長の終了直後に、III族原料ガスの流量を結晶成長時の流量の1/4以下に下げると共に、引き続きV族原料ガスおよびMg原料ガスを1分以上20分以下供給すればよい。
また、p型コンタクト層70において、p側の反射電極80と接する側に、MgとSiの両方をドーピングするには、Mg源としてCP2Mgガスをチャンバに供給するとともに、Si源としてモノシランガス(SiH4)等を流せばよい。Siのみをドーピングするのであれば、Mg源としてのCP2Mgガスをチャンバに供給するのを止めるとともに、Si源としてモノシランガス(SiH4)を流せばよい。なお、上記のように、p型コンタクト層70のp側の反射電極80と接する側にSiをドーピングする場合は、上記したMgの高濃度領域の形成は任意である。
また、図3のステップDに示すように、発光層40、p型電子ブロック層60およびp型コンタクト層70の一部をエッチング等により除去し、露出したn型半導体層30上にn側電極90を形成することができる。なお、n側電極90は、スパッタ法や真空蒸着法などにより成膜することができる。また、バッファ層20を基板10の表面10A上に形成することも好ましい。
以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではない。
参考例1
図1A及び図3に示した工程図に従って、発明例1に係る深紫外発光素子を作製した。まず、サファイア基板(直径2インチ、厚さ:430μm、面方位:(0001))を用意した。次いで、MOCVD法により、上記サファイア基板上に中心膜厚0.60μmのAlN層を成長させ、AlNテンプレート基板とした。その際、AlN層の成長温度は1300℃、チャンバ内の成長圧力は10Torrであり、V/III比が163となるようにアンモニアガスとTMAガスの成長ガス流量を設定した。なお、AlN層の膜厚については、光干渉式膜厚測定機(ナノスペックM6100A;ナノメトリックス社製)を用いて、ウェーハ内の中心を含む、等間隔に分散させた計25箇所の膜厚を測定した。
次いで、上記AlNテンプレート基板を熱処理炉に導入し、炉内を窒素ガス雰囲気とした後に、炉内の温度を昇温してAlNテンプレート基板に対して熱処理を施した。その際、加熱温度は1650℃、加熱時間は4時間とした。
続いて、MOCVD法により、アンドープのAl0.55Ga0.45Nからなる厚さ1μmのバッファ層を形成した。次に、Al0.45Ga0.55Nからなり、Siドープした厚さ2μmのn型半導体層を上記バッファ層上に形成した。なお、SIMS分析の結果、n型半導体層のSi濃度は1.0×1019atoms/cm3であった。
さらに、n型半導体層上に、Al0.29Ga0.71Nからなる厚さ3nmの井戸層およびAl0.51Ga0.49Nからなる厚さ7nmの障壁層を交互に3組繰り返して積層した発光層を形成した。井戸層のAl組成比wは0.29である。次いで、発光層上にAlNからなら厚さ1nmのガイド層を形成した。なお、障壁層を形成する際にはSiドープし、井戸層及びガイド層を形成する際にはアンドープとした。
その後、ガイド層上に、水素ガスをキャリアガスとして、Al0.58Ga0.42Nからなる厚さ40nmのp型電子ブロック層を形成した。p型電子ブロック層の形成にあたり、Mg源としてCP2Mgガスをチャンバに供給してMgをドープした。なお、SIMS分析の結果、p型電子ブロック層のMg濃度は5.0×1018atoms/cm3であった。
続いて、p型電子ブロック層の直上に第1層としてAl0.47Ga0.53Nを形成し、次いで第2層としてAl0.31Ga0.69Nを形成し、両者の形成を7組繰り返して、合計14層の超格子構造のp型コンタクト層を形成した。なお、第1層の厚さを5.0nm、第2層の厚さを2.5nmとし、p型コンタクト層の厚さの合計は52.5nmであり、厚さ平均のAl組成は0.42とした。また、p型コンタクト層の形成にあたっては、III族源のTMAガス、TMGガス、およびV族源のアンモニアガスと共にMg源としてCP2Mgガスをチャンバに供給してMgをドープしたp型コンタクト層を結晶成長させた。その後、III族源ガスの供給のみ停止し、Mg源ガスおよびV族源ガスのみを10.5分間供給し、p型コンタクト層の表面側に高濃度領域を形成した。
なお、上記p型コンタクト層のAl組成の特定に際しては、フォトルミネッセンス測定により分析されたp型コンタクト層の発光波長(バンドギャップエネルギー)からp型コンタクト層のAl組成比を決定した。
SIMS分析の結果、p型コンタクト層において、p型電子ブロック層側のMg濃度は1×1020atoms/cm3であり、p型電子ブロック層と反対のp側の反射電極80を形成する表面側のMgを高濃度とした側(高濃度領域)のMg濃度は3×1020atom/cm3であった。
参考例1の層構造を表1に示す。
Figure 0006793863
p型コンタクト層の上にマスクを形成してドライエッチングによるメサエッチングを行い、n型半導体層を露出させた。次に、p型コンタクト層の最表面の第2層(Al0.31Ga0.69N)上に、電子ビーム蒸着法を用いて、厚さ7nmのNi層(第1金属層)と、Ni層上の厚さ50nmのRh層(第2金属層)とを順に形成した。Ni層とRh層は、水晶振動子の膜厚計(CRTM-9000G;ulvac社製)を用いて厚さ測定を行った。振動子には、金メッキ、固有周波数4.5MHz〜5.0MHzを使用した。水晶振動子の検量線(校正)には、目的の金属の単膜を100nm以上の膜厚で成膜し、成膜有無間の段差を、触針式段差計(Tencor社製 P-6)を用いて計測することにより行った。
また、露出したn型半導体層上には、Ti/Alからなるn側電極を形成した。Tiの厚さは20nmであり、Alの厚さは150nmである。
最後に、RTA装置(アドバンス理工製;赤外線ランプアニール加熱装置)を用いて最高到達温度550℃に10分間保持して、オーミックコンタクトのための熱処理を行い、NiとRhからなる反射電極を形成した。なお、RTA装置内での熱処理雰囲気は、N2とO2の混合ガスとし、混合ガス中のN2流量を1.0slm,O2流量を0.5slmとした。サファイア基板をレーザースクライブしてチップサイズ1000μm×1000μmに個片化し、参考例1に係る深紫外発光素子を作製した。
サファイア基板上に厚さ7nmのNi層(第1金属層)と厚さ50nmのRh層(第2金属層)を成膜し、上記の熱処理工程後において透明なサファイア基板側から反射電極に向けて紫外可視分光光度計(日本分光製;V−650)を用いて波長に対する反射率を測定したところ、波長300nmに対する反射率は62%であった。
参考例2
参考例1における混合ガス雰囲気に代えて、RTA装置内での熱処理雰囲気をN2ガス(N2流量1.5slm)とした以外は、参考例1と同様にして参考例2に係る深紫外発光素子を作製し評価した。
参考例3
第1層のAl組成比xを0.43とし、第2層のAl組成yを0.27とした以外は、参考例1と同様にして参考例3に係る深紫外発光素子を作製し評価した。
(比較例1)
参考例1における反射電極のNiの厚さを2nmに変えた以外は、参考例1と同様にして、比較例1に係る深紫外発光素子を作製し評価した。
サファイア基板上に厚さ2nmのNi層(第1金属層)と厚さ50nmのRh層(第2金属層)を成膜し、上記の熱処理工程後において透明なサファイア基板側から反射電極に向けて紫外可視分光光度計(日本分光製;V−650)を用いて波長に対する反射率を測定したところ、波長300nmに対する反射率は67%であった。
(比較例2)
参考例1における反射電極のNiを設けなかった以外は、参考例1と同様にして、比較例2に係る深紫外発光素子を作製し評価した。
(比較例3)
参考例1における超格子構造のp型コンタクト層(合計厚さ52.5nm)を、Al0.42Ga0.58N層の厚さ50nmの単層構造に変えた以外は参考例1と同様として、比較例3に係る深紫外発光素子を作製し評価した。
(比較例4)
参考例1におけるNiとRhからなる反射電極を、厚さ10nmのNi層と、Ni層上の厚さ20nmのAu層とを順に形成したものに変えた以外は、参考例1と同様にして比較例4に係る深紫外発光素子を作製し発光出力を評価した。
(比較例5)
参考例1におけるNiとRhからなる反射電極を、厚さ10nmのNi層と、Ni層上の厚さ20nmのAu層とを順に形成したものに変え、第1層のAl組成比xを0.43とし、第2層のAl組成yを0.27とした以外は、参考例1と同様にして比較例5に係る深紫外発光素子の発光出力を評価した。
(比較例11〜13)
参考例1における超格子構造のp型コンタクト層を、AlGaN層の単層構造に替え、そのAl組成比および厚さを表3に記載のとおりとし、反射電極にNiを用いなかった。また、チップサイズを560μm×780μmとした以外は、参考例1と同様にして比較例11〜13に係る深紫外発光素子を作製し評価した。
(評価1:Po、Vf評価)
参考例1〜3および比較例1〜5で得られた発光素子(チップサイズ□1000μm)を、フリップチップ方式で球状Auバンプを用いてAlN製サブマウント(サイズ20mm×15mm、厚さ0.8mm)に実装した。さらにAlN製サブマウントにAl製ヒートシンクを接続した状態で、定電流電源装置を用いて350mAの通電を行い、その際の順方向電圧を測定すると共にサファイア基板側に配置した受光部によりフォトディテクターによる発光出力の測定を行った。結果を表2に示す。なお、スペクトルアナライザによる発光波長の測定を行ったところ、発光中心波長はいずれも310nmであった。値は測定個数10個の平均値である。
(評価2:信頼性評価その1)
実施例および比較例1〜5に対して、上記評価1の測定を行った後、350mAを160時間連続通電した。連続通電後に出力を再測定して初期出力と比較し、不点灯あるいは初期の発光出力から半減以下へ出力の急減が有る場合に頓死があったと判定した。測定個数10個のうち、頓死したチップの比率を表2に示す。
(評価3:信頼性評価その2)
比較例11〜13については、p型コンタクト層の上にマスクを形成してドライエッチングによるメサエッチングを行い、n型半導体層を露出させたあとの、露出したn型半導体層とp型コンタクト層に対し、サイズ560μm×780μmの小型チップをAuバンプを用いてAlN製サブマウント(サイズ:1.5×1.1mm厚さ:0.2mm)に実装し、20mAを通電した際の発光出力と順方向電厚を測定した。値は測定個数10個の平均値である。さらに、ウェーハ内10か所から抜き取ったチップについて、電流20mAで通電して初期の発光出力を確認し、次いで、電流を20mAで250時間連続通電し、通電後に初期の発光出力から半減以下の出力となる(すなわち、頓死した)チップの比率を表3に示す。なお、発光出力の測定にあたっては、サファイア基板面側に配置したフォトディテクターを用いた。
Figure 0006793863
Figure 0006793863
なお、第1層の厚さは5.0nm、第2層の厚さは2.5nmのため、p型コンタクト層の厚さ平均Al組成比zは、[z=(2/3)x+(1/3)y]として算出される。参考例1および2では、z−w0=0.42−0.29=0.13であり、x−y=0.47−0.31=0.16である。
よって、下記[1]と[2]式の条件を同時に満足する。
0.030<z−w0<0.20 ・・・[1]
0.050≦x−y≦0.47 ・・・[2]
(評価結果の考察)
比較例1〜3で頓死が発生したのは、p型コンタクト層とp側の反射電極界面におけるコンタクト不良が発生したためだと考えられる。一方、参考例1〜3では、p型コンタクト層が超格子構造を有し、かつNi層が十分な厚さを有するため、コンタクト不良が発生しなかったと推定される。また、比較例4,5と参考例1〜3との比較により、NiとRhからなる反射電極は、順方向電圧を大きく変えることなく発光出力の増大に効果があることが分かる。
以上の結果から、本発明条件を満足するp側の反射電極を超格子構造のp型コンタクト層上に形成することにより、高い発光出力を得ることができるとともに、信頼性を両立できることが確認できた。
参考例4
参考例1〜3では発光中心波長310nmであったところ、これに代えて発光中心波長が280nmとなる深紫外発光素子により実験を行った。参考例1における各半導体層のAl組成比を下記表4に記載のとおりに変えた以外は参考例1と同様にして参考例4に係る深紫外発光素子を作製した。なお、AlNテンプレート基板上のアンドープのAlGaN層は、Al組成比0.85から0.65まで結晶成長方向に組成傾斜させることで形成した。
Figure 0006793863
(比較例6)
参考例4におけるNiとRhからなる反射電極を、厚さ10nmのNi層と、Ni層上の厚さ20nmのAu層とを順に形成したものに変えた以外は、参考例4と同様にして比較例6に係る深紫外発光素子を作製し発光出力を評価した。
(比較例7)
参考例4における超格子構造のp型コンタクト層(合計厚さ52.5nm)を、Al0.59Ga0.41N層の厚さ50nmの単層構造に変えた以外は参考例1と同様として、比較例3に係る深紫外発光素子を作製し評価した。
(評価4)
参考例4および比較例6,7(いずれも参考例1と同様チップサイズ1000μm×1000μm)に対して、上述の評価1と同様にして発光出力Po及び順方向電圧Vfを測定評価した。結果を表5に示す。次いで、この測定を行った後、350mAを20時間連続通電した。連続通電後に出力を再測定して初期出力と比較し、不点灯あるいは初期の発光出力から半減以下へ出力の急減が有る場合に頓死があったと判定した。測定個数10個のうち、頓死したチップの比率を表5に併せて示す。
Figure 0006793863
参考例4では、z−w0=0.59−0.45=0.14であり、x−y=0.71−0.35=0.36である。よって、下記[1]と[2]式の条件を同時に満足する。
0.030<z−w0<0.20 ・・・[1]
0.050≦x−y≦0.47 ・・・[2]
(評価結果の考察)
比較例7で頓死が発生したのは、比較例3と同様、p型コンタクト層とp側の反射電極界面におけるコンタクト不良が発生したためだと考えられる。一方、参考例4では、p型コンタクト層が超格子構造を有し、かつNi層が十分な厚さを有するため、コンタクト不良が発生しなかったと推定される。また、参考例4と比較例6とを比較すると、NiとRhからなる反射電極は、順方向電圧を大きく変えることなく発光出力の増大に効果があることが分かる。
(実施例5)
参考例4と同様にして各半導体層を形成し、次いで、電子ビーム蒸着法を用いて、厚さ7nmのNi層(第1金属層)と、Ni層上の厚さ50nmのRh層(第2金属層)とを順に形成した。続けて、そのRh層(第2金属層)の上に第3金属層として厚さ3nmのNi層を形成し、次いで第4金属層として厚さ20nmのRh層を順に形成した。その後、参考例4と同様に、オーミックコンタクトのための熱処理を行った。その他の作製条件は参考例4と同様である。こうして、実施例5に係る深紫外発光素子を作製した。なお、p型電子ブロック層およびp型コンタクト層のp型層の合計厚さは92.5nmである。
(比較例8)
実施例5ではRh層(第2金属層)の上に第3金属層として厚さ3nmのNi層を形成し、次いで第4金属層として厚さ20nmのRh層を順に形成したところ、Rh層(第2金属層)の上に厚さ20nmのAu層を形成した以外は、実施例5と同様にして比較例8に係る深紫外発光素子を作製した。
(比較例9)
実施例5ではRh層(第2金属層)の上に第3金属層として厚さ3nmのNi層を形成し、次いで第4金属層として厚さ20nmのRh層を順に形成したところ、Rh層(第2金属層)の上に第3金属層として厚さ3nmのNi層を、第4金属層として厚さ20nmのAu層を順に形成した以外は、実施例5と同様にして比較例9に係る深紫外発光素子を作製した。
(評価5)
評価4では連続通電時間を20時間としていたところ、これを168時間および1000時間に時間を延ばして連続通電した以外は評価4と同様にして、上記の実施例と比較例の頓死の有無を確認した。評価5による評価結果を表6に示す。
Figure 0006793863
表6より、本発明に従う超格子構造のp型コンタクト層と、Ni及びRhの反射電極との組み合わせによって頓死発生が抑制されても、Rh層(第2金属層)上にAuが存在した状態では、第3工程などの加熱を経てAuが反射電極中を拡散すると、頓死が生じる恐れがあることが分かった。そして、NiとRhの反射電極を、NiとRhの層順を複数回繰り返す積層構造にすることで、長時間にわたり頓死発生率を抑制できることが分かった。
(実施例6)
p型電子ブロック層の厚さ40nmから33nmに変更した以外は、実施例5と同様にして実施例6に係る深紫外発光素子を作製し評価した。p型電子ブロック層およびp型コンタクト層のp型層の合計厚さは85.5nmである。
(実施例7)
p型コンタクト層の第1層の厚さを5nmから2.5nmへと薄くし、厚さ平均Al組成比zを0.53とした以外は、実施例5と同様にして、実施例7に係る深紫外発光素子を作製し評価した。前記pブロック層および前記p型コンタクト層のp型の合計厚さは75nmである。
実施例6、7について、上記評価5と同様にして頓死の有無を確認した。上記実施例6、7の作製条件及び評価結果を、比較のために先に説明した実施例5、比較例6と併せて下記表7に示す。
Figure 0006793863
表7より、p型電子ブロック層60の厚さとp型コンタクト層70の厚さの合計(p型層の合計厚さ)を調整することで、発光出力をさらに向上させることができることが分かった。p型層の合計厚さは。65nm以上100nm以下であることが好ましく、70nm以上95nm以下とすることがより好ましい。そして、NiとAuを用いた電極よりも、発光出力が高くなり、かつ、信頼性が高い電極を得ることができた。
本発明によれば、高い発光出力および優れた信頼性を両立できる深紫外発光素子用の反射電極の製造方法を提供することができる。さらに本発明は、当該反射電極を用いた深紫外発光素子の製造方法及びそれにより得られる深紫外発光素子を提供することができる。
10 基板
20 バッファ層
30 n型半導体層
40 発光層
41 井戸層
42 障壁層
60 p型電子ブロック層
70 p型コンタクト層
71 第1層
72 第2層
80 反射電極
81 第1金属層
82 第2金属層
83 第3金属層
84 第4金属層
90 n側電極
100 深紫外発光素子

Claims (10)

  1. 超格子構造を有するp型コンタクト層上に、
    第1金属層としてNiを3〜20nmの厚さで形成する第1工程と、
    前記第1金属層上に第2金属層としてRhを20nm以上2μm以下の厚さで形成する第2工程と、
    前記第1金属層及び前記第2金属層に対して300℃以上600℃以下の加熱処理を行う第3工程と、
    を具え、
    前記第工程の後に、前記第2金属層上に、第3金属層としてNi層を形成する工程と、前記第3金属層上に第4金属層としてRh層を形成する工程をさらに含むことを特徴とする深紫外発光素子用の反射電極の製造方法。
  2. 超格子構造を有するp型コンタクト層上に、
    第1金属層としてNiを3〜20nmの厚さで形成する第1工程と、
    前記第1金属層上に第2金属層としてRhを20nm以上2μm以下の厚さで形成する第2工程と、
    前記第1金属層及び前記第2金属層に対して300℃以上600℃以下の加熱処理を行う第3工程と、
    を具え、
    前記第2工程の後に、前記第2金属層上に、第3金属層としてNi層を形成する工程と、前記第3金属層上に第4金属層としてRh層を形成する工程をさらに含み、
    前記第4金属層を形成する工程の後に前記第3工程が行われ、
    前記第3工程は、前記第3金属層及び前記第4金属層に対して前記加熱処理を行う工程をさらに含む深紫外発光素子用の反射電極の製造方法。
  3. 前記第3工程における加熱処理を行うときの雰囲気ガスが酸素を含む、請求項1又は2に記載の深紫外発光素子用の反射電極の製造方法。
  4. 基板上に、n型半導体層を形成する工程と、
    前記n型半導体層上に発光層を形成する工程と、
    前記発光層上にp型電子ブロック層を形成する工程と、
    前記p型電子ブロック層上にp型コンタクト層を形成する工程と、
    前記p型コンタクト層上に反射電極を形成する工程と、
    を具える深紫外発光素子の製造方法であって、
    前記p型コンタクト層を形成する工程は、Al組成比xを有するAlGa1−xNからなる第1層を形成する第1工程と、前記Al組成比xよりも低いAl組成比yを有するAlGa1−yNからなる第2層を形成する第2工程と、を交互に繰り返して超格子構造を有する前記p型コンタクト層を形成し、かつ、前記第2層のAl組成比yが0.15以上であり、
    前記反射電極を形成する工程は、
    前記p型コンタクト層の最表面の前記第2層上に、
    第1金属層としてNiを3〜20nmの厚さで形成する第1工程と、
    前記第1金属層上に第2金属層としてRhを20nm以上2μm以下の厚さで形成する第2工程と、
    前記第1金属層及び前記第2金属層に対して300〜600℃の加熱処理を行う第3工程と、
    を具え、
    前記第工程の後に、前記第2金属層上に、第3金属層としてNi層を形成する工程と、前記第3金属層上に第4金属層としてRh層を形成する工程をさらに含むことを特徴とする深紫外発光素子の製造方法。
  5. 基板上に、n型半導体層を形成する工程と、
    前記n型半導体層上に発光層を形成する工程と、
    前記発光層上にp型電子ブロック層を形成する工程と、
    前記p型電子ブロック層上にp型コンタクト層を形成する工程と、
    前記p型コンタクト層上に反射電極を形成する工程と、
    を具える深紫外発光素子の製造方法であって、
    前記p型コンタクト層を形成する工程は、Al組成比xを有するAl Ga 1−x Nからなる第1層を形成する第1工程と、前記Al組成比xよりも低いAl組成比yを有するAl Ga 1−y Nからなる第2層を形成する第2工程と、を交互に繰り返して超格子構造を有する前記p型コンタクト層を形成し、かつ、前記第2層のAl組成比yが0.15以上であり、
    前記反射電極を形成する工程は、
    前記p型コンタクト層の最表面の前記第2層上に、
    第1金属層としてNiを3〜20nmの厚さで形成する第1工程と、
    前記第1金属層上に第2金属層としてRhを20nm以上2μm以下の厚さで形成する第2工程と、
    前記第1金属層及び前記第2金属層に対して300〜600℃の加熱処理を行う第3工程と、
    を具え、
    前記第2工程の後に、前記第2金属層上に、第3金属層としてNi層を形成する工程と、前記第3金属層上に第4金属層としてRh層を形成する工程をさらに含み、
    前記第4金属層を形成する工程の後に前記第3工程が行われ、
    前記第3工程は、前記第3金属層及び前記第4金属層に対して前記加熱処理を行う工程をさらに含む深紫外発光素子用の反射電極の製造方法。
  6. 前記p型コンタクト層の超格子構造において、
    前記発光層において深紫外光を放出する層のAl組成比をw0としたときに、
    前記第1層の前記Al組成比xは前記Al組成比w0よりも高く、
    前記第2層の前記Al組成比yは前記Al組成比xよりも低く、
    前記Al組成比w0、前記Al組成比x、前記Al組成比y、および前記p型コンタクト層の厚さ平均Al組成比zは下記式[1]、[2]:
    0.030<z−w0<0.20 ・・・[1]
    0.050≦x−y≦0.47 ・・・[2]
    を満足する、請求項4又は5に記載の深紫外発光素子の製造方法。
  7. 前記発光層における前記p型電子ブロック層に最も近い井戸層と、前記p型電子ブロック層との間に、前記発光層の障壁層及び前記p型電子ブロック層のいずれのAl組成比よりもAl組成比の高いガイド層をさらに有する、請求項に記載の深紫外発光素子の製造方法。
  8. 前記ガイド層はAlNからなる、請求項に記載の深紫外発光素子の製造方法。
  9. 前記Al組成比w0は、0.25以上0.60以下である、請求項のいずれか1項に記載の深紫外発光素子の製造方法。
  10. 前記p型電子ブロック層と前記p型コンタクト層とのp型層の合計厚さが、65〜100nmである、請求項4〜のいずれか1項に記載の深紫外発光素子の製造方法。
JP2020006377A 2019-01-22 2020-01-17 深紫外発光素子用の反射電極の製造方法、深紫外発光素子の製造方法および深紫外発光素子 Active JP6793863B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2020/001761 WO2020153308A1 (ja) 2019-01-22 2020-01-20 深紫外発光素子用の反射電極の製造方法、深紫外発光素子の製造方法および深紫外発光素子
CN202080010391.9A CN113330586A (zh) 2019-01-22 2020-01-20 深紫外发光元件用反射电极的制造方法、深紫外发光元件的制造方法及深紫外发光元件
US17/424,562 US20220123177A1 (en) 2019-01-22 2020-01-20 Method of producing reflective electrode for deep ultraviolet light-emitting element, method of producing deep ultraviolet light-emitting element, and deep ultraviolet light-emitting element
TW109102621A TWI722784B (zh) 2019-01-22 2020-01-22 深紫外發光元件用的反射電極的製造方法、深紫外發光元件的製造方法及深紫外發光元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019008785 2019-01-22
JP2019008785 2019-01-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020090012A Division JP2020129697A (ja) 2019-01-22 2020-05-22 深紫外発光素子用の反射電極の製造方法、深紫外発光素子の製造方法および深紫外発光素子

Publications (2)

Publication Number Publication Date
JP2020120114A JP2020120114A (ja) 2020-08-06
JP6793863B2 true JP6793863B2 (ja) 2020-12-02

Family

ID=71891254

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020006377A Active JP6793863B2 (ja) 2019-01-22 2020-01-17 深紫外発光素子用の反射電極の製造方法、深紫外発光素子の製造方法および深紫外発光素子
JP2020090012A Pending JP2020129697A (ja) 2019-01-22 2020-05-22 深紫外発光素子用の反射電極の製造方法、深紫外発光素子の製造方法および深紫外発光素子

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020090012A Pending JP2020129697A (ja) 2019-01-22 2020-05-22 深紫外発光素子用の反射電極の製造方法、深紫外発光素子の製造方法および深紫外発光素子

Country Status (3)

Country Link
JP (2) JP6793863B2 (ja)
CN (1) CN113330586A (ja)
TW (1) TWI722784B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091173A1 (ja) * 2020-10-26 2022-05-05 創光科学株式会社 窒化物半導体紫外線発光素子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3631157B2 (ja) * 2001-03-21 2005-03-23 日本電信電話株式会社 紫外発光ダイオード
US7501295B2 (en) * 2006-05-25 2009-03-10 Philips Lumileds Lighting Company, Llc Method of fabricating a reflective electrode for a semiconductor light emitting device
KR101055090B1 (ko) * 2009-03-02 2011-08-08 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
JP4940363B1 (ja) * 2011-02-28 2012-05-30 株式会社東芝 半導体発光素子及び半導体発光装置
JP5601281B2 (ja) * 2011-05-30 2014-10-08 豊田合成株式会社 Iii族窒化物半導体発光素子の製造方法
TWI467807B (zh) * 2011-10-28 2015-01-01 Rgb Consulting Co Ltd 覆晶式之發光二極體
JP6092961B2 (ja) * 2015-07-30 2017-03-08 Dowaエレクトロニクス株式会社 Iii族窒化物半導体発光素子およびその製造方法
US11107952B2 (en) * 2017-03-27 2021-08-31 Dowa Electronics Materials Co., Ltd. Group III nitride semiconductor light emitting element and method of manufacturing the same

Also Published As

Publication number Publication date
CN113330586A (zh) 2021-08-31
TWI722784B (zh) 2021-03-21
TW202029523A (zh) 2020-08-01
JP2020120114A (ja) 2020-08-06
JP2020129697A (ja) 2020-08-27

Similar Documents

Publication Publication Date Title
JP6849641B2 (ja) 深紫外発光素子およびその製造方法
JP6793815B2 (ja) Iii族窒化物半導体発光素子およびその製造方法
JP3920315B2 (ja) 窒化物系半導体発光素子
US20110017976A1 (en) Ultraviolet light emitting diode/laser diode with nested superlattice
US8357607B2 (en) Method for fabricating nitride-based semiconductor device having electrode on m-plane
JP6753995B2 (ja) Iii族窒化物半導体発光素子及びその製造方法
JP2007157853A (ja) 半導体発光素子およびその製造方法
WO2006054673A1 (en) Group iii nitride semiconductor light-emitting device
JP2007081368A (ja) 窒化物系半導体発光素子
WO2020153308A1 (ja) 深紫外発光素子用の反射電極の製造方法、深紫外発光素子の製造方法および深紫外発光素子
JP6793863B2 (ja) 深紫外発光素子用の反射電極の製造方法、深紫外発光素子の製造方法および深紫外発光素子
JP2008288532A (ja) 窒化物系半導体装置
JP2016136594A (ja) エピタキシャルウエハ、半導体発光素子、発光装置及びエピタキシャルウエハの製造方法
WO2020122137A1 (ja) Iii族窒化物半導体発光素子及びその製造方法
JP2005340789A (ja) Iii族窒化物半導体発光素子
JP5547279B2 (ja) 窒化物系半導体素子およびその製造方法
JP2006019713A (ja) Iii族窒化物半導体発光素子およびそれを用いたled
KR20130078343A (ko) 높은 자유 정공 농도를 가지는 질화물계 발광소자의 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201110

R150 Certificate of patent or registration of utility model

Ref document number: 6793863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250