TW202029523A - 深紫外發光元件用的反射電極的製造方法、深紫外發光元件的製造方法及深紫外發光元件 - Google Patents

深紫外發光元件用的反射電極的製造方法、深紫外發光元件的製造方法及深紫外發光元件 Download PDF

Info

Publication number
TW202029523A
TW202029523A TW109102621A TW109102621A TW202029523A TW 202029523 A TW202029523 A TW 202029523A TW 109102621 A TW109102621 A TW 109102621A TW 109102621 A TW109102621 A TW 109102621A TW 202029523 A TW202029523 A TW 202029523A
Authority
TW
Taiwan
Prior art keywords
layer
composition ratio
ultraviolet light
deep ultraviolet
type
Prior art date
Application number
TW109102621A
Other languages
English (en)
Other versions
TWI722784B (zh
Inventor
渡邉康弘
中野雅之
Original Assignee
日商同和電子科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商同和電子科技股份有限公司 filed Critical 日商同和電子科技股份有限公司
Publication of TW202029523A publication Critical patent/TW202029523A/zh
Application granted granted Critical
Publication of TWI722784B publication Critical patent/TWI722784B/zh

Links

Images

Landscapes

  • Led Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本發明提供一種可兼顧高的發光輸出與優異的可靠性的深紫外發光元件用的反射電極。依照本發明的深紫外發光元件用的反射電極的製造方法包括:第一步驟,於具有超晶格結構的p型接觸層上將Ni形成3 nm~20 nm的厚度作為第一金屬層;第二步驟,於所述第一金屬層上將Rh形成20 nm以上且2 μm以下的厚度作為反射金屬;以及第三步驟,對所述第一金屬層及所述第二金屬層進行300℃以上且600℃以下的加熱處理。

Description

深紫外發光元件用的反射電極的製造方法、深紫外發光元件的製造方法及深紫外發光元件
本發明是有關於一種深紫外發光元件用的反射電極的製造方法、深紫外發光元件的製造方法及深紫外發光元件,尤其是有關於一種可兼顧高的發光輸出與優異的可靠性的深紫外發光元件用的反射電極的製造方法。
包含Al、Ga、In等與N的化合物的III族氮化物半導體是具有直接能隙(direct bandgap)型帶狀結構的寬帶隙半導體,且是期待應用於殺菌、淨水、醫療、照明、高密度光記錄等廣泛領域的材料。尤其,關於於發光層中使用III族氮化物半導體的發光元件,其藉由調整III族元素的含有比率而可覆蓋深紫外光至可見光區域,從而推進了向各種光源的實用化。
波長200 nm~350 nm的光被稱為深紫外光,發出深紫外光的深紫外發光元件一般而言如下製作。即於藍寶石或AlN單晶等基板上形成緩衝層,並依次形成包括III族氮化物半導體的n型半導體層、發光層、p型半導體層。其後,分別形成與n型半導體層電性連接的n側電極、與p型半導體層電性連接的p側電極。此處,目前為止,通常是於p型半導體層的p側電極側形成容易提高電洞濃度的p型GaN接觸層,以獲取歐姆接觸。另外,於發光層中廣泛使用交替積層有包含III族氮化物半導體的障壁層與阱層的多重量子阱(Multiple Quantum Well,MQW)結構。
此處,作為深紫外發光元件所要求的特性之一,可列舉高的外部量子效率特性。外部量子效率由(i)內部量子效率、(ii)電子流入效率及(iii)光取出效率決定。
於專利文獻1中揭示了一種包括AlGaN混晶的p型接觸層、以及對來自發光層的放射光顯示出反射性的p側的反射電極,且以基板側作為光取出方向的深紫外發光二極體。對於短波長的光而言,越提高包含AlGaN的p型接觸層的Al組成比,越可提高p型接觸層的透過率。因此,於專利文獻1中提出使用具有對應於發光波長的透過率的包含AlGaN的p型接觸層來代替先前一般的包含GaN的p型接觸層。而且,作為此時的反射電極,認為較佳為以Al為主成分的金屬膜。並且,作為用於歐姆接觸的插入金屬層,使用了Ni。
於專利文獻2中揭示了一種III族氮化物半導體發光元件,其考慮到鎳(Ni)及鈷(Co)等金屬中,波長為380 nm~550 nm(藍紫、藍、綠)的可見光的反射量小,而於p型半導體層(例如p型GaN層)上的正電極中使用銀(Ag)、銠(Rh)、釕(Ru)、鉑(Pt)或鈀(Pd),並且於與所述p型半導體層上的正電極之間具有包括鈷(Co)或鎳(Ni)的厚度0.2 nm~20 nm的第一薄膜金屬層。 [現有技術文獻] [專利文獻]
[專利文獻1]日本專利特開2015-216352號公報 [專利文獻2]日本專利特開2000-36619號公報
[發明所欲解決之課題] 根據專利文獻1,認為p型接觸層相對於放射光的透過率越高越佳。因此,根據專利文獻1,p型接觸層的Al組成比越高越佳。
然而,根據本發明者們的實驗,藉由以下的理由而明確:僅藉由單純地提高與p側電極接觸的p型接觸層的Al組成比來提高相對於所放出的深紫外光的中心發光波長的透過性這一情況,不適合於實際應用。首先,藉由提高p型接觸層的對深紫外光的透過性,與先前技術相比,確實能夠獲得發光輸出高的深紫外發光元件。然而,當對如此製作的深紫外發光元件的樣本進行過負荷可靠性試驗(具體而言,以100 mA通電3秒鐘)時,於樣本的一部分中確認到發光輸出突然下降相對於初期的發光輸出減半的程度、或者突然變為未點亮的現象(以下,亦稱為「猝死」)。
而且,本發明者們針對深紫外發光二極體中使用的電極的種類與p型接觸層的Al組成比的關係亦進行了研究。可知:於使用作為反射電極遜色於鋁(Al)但於紫外域的反射率相對大的銠(Rh)的情況下,當形成於p型GaN層上時能夠作為電極來使用,但是當形成於單層結構且Al組成為30%以上的p型AlGaN層上時,確認到所述猝死,無法獲得作為電極而言的可靠性。
如此般發光輸出突然劣化的元件的可靠性不充分,可靠性不充分的元件混入製品中這於製品的品質管理上是無法容許的。因此,本發明的目的在於提供一種可兼顧高的發光輸出與優異的可靠性的深紫外發光元件用的反射電極的製造方法。進而,本發明的目的在於提供一種使用該反射電極的深紫外發光元件的製造方法及藉此而獲得的深紫外發光元件。 [解決課題之手段]
本發明者們針對解決所述課題的方法進行了積極研究。然後,經由試驗確認到:於使用於紫外域的反射率相對大的銠(Rh)作為反射電極的金屬材料的情況下,藉由於銠與超晶格結構的p型接觸層之間設置包含鎳(Ni)的金屬層,可解決所述課題,從而完成了本發明。即,本發明的主旨構成如下。
(1)一種深紫外發光元件用的反射電極的製造方法,其特徵在於,包括: 第一步驟,於具有超晶格結構的p型接觸層上,將Ni形成3 nm~20 nm的厚度作為第一金屬層; 第二步驟,於所述第一金屬層上將Rh形成20 nm以上且2 μm以下的厚度作為第二金屬層;以及 第三步驟,對所述第一金屬層及所述第二金屬層進行300℃以上且600℃以下的加熱處理。
(2)如所述(1)所述的深紫外發光元件用的反射電極的製造方法,其中進行所述第三步驟中的加熱處理時的環境氣體包含氧。
(3)如請求項1或請求項2所述的深紫外發光元件用的反射電極的製造方法,其中於所述第二步驟之後,更包括於所述第二金屬層上形成Ni層作為第三金屬層的步驟、及於所述第三金屬層上形成Rh層作為第四金屬層的步驟。
(4)一種深紫外發光元件的製造方法,包括: 於基板上形成n型半導體層的步驟; 於所述n型半導體層上形成發光層的步驟; 於所述發光層上形成p型電子阻擋層的步驟; 於所述p型電子阻擋層上形成p型接觸層的步驟;以及 於所述p型接觸層上形成反射電極的步驟,並且所述深紫外發光元件的製造方法的特徵在於, 形成所述p型接觸層的步驟是交替反覆進行形成第一層的第一步驟與形成第二層的第二步驟來形成具有超晶格結構的所述p型接觸層,所述第一層包括具有Al組成比x的Alx Ga1-x N,所述第二層包括具有較所述Al組成比x低的Al組成比y的Aly Ga1-y N,且所述第二層的Al組成比y為0.15以上, 形成所述反射電極的步驟包括: 第一步驟,於所述p型接觸層的最表面的所述第二層上,將Ni形成3 nm~20 nm的厚度作為第一金屬層; 第二步驟,於所述第一金屬層上將Rh形成20 nm以上且2 μm以下的厚度作為第二金屬層;以及 第三步驟,對所述第一金屬層及所述第二金屬層進行300℃~600℃的加熱處理。
(5)如所述(4)所述的深紫外發光元件的製造方法,其中於所述p型接觸層的超晶格結構中, 將所述發光層中放出深紫外光的層的Al組成比設為w0 時, 所述第一層的所述Al組成比x高於所述Al組成比w0 , 所述第二層的所述Al組成比y低於所述Al組成比x, 所述Al組成比w0 、所述Al組成比x、所述Al組成比y及所述p型接觸層的厚度平均Al組成比z滿足下述式[1]、式[2]: 0.030<z-w0 <0.20 ・・・[1] 0.050≦x-y≦0.47   ・・・[2]。
(6)如所述(5)所述的深紫外發光元件的製造方法,其中於所述發光層中的最接近所述p型電子阻擋層的阱層、與所述p型電子阻擋層之間,更具有Al組成比相較於所述發光層的障壁層及所述p型電子阻擋層中的任一者的Al組成比都高的引導層。
(7)如所述(6)所述的深紫外發光元件的製造方法,其中所述引導層包含AlN。
(8)如所述(5)至(7)中任一項所述的深紫外發光元件的製造方法,其中所述Al組成比w0 為0.25以上且0.60以下。
(9)如所述(4)至(8)中任一項所述的深紫外發光元件的製造方法,其中所述p型電子阻擋層與所述p型接觸層的p型層的合計厚度為65 nm~100 nm。
(10)如所述(4)至(9)中任一項所述的深紫外發光元件的製造方法,其中於所述第二步驟之後,更包括於所述第二金屬層上形成Ni層作為第三金屬層的步驟、及於所述第三金屬層上形成Rh層作為第四金屬層的步驟。
(11)一種深紫外發光元件,其特徵在於,於基板上依次具有n型半導體層、發光層、p型電子阻擋層及p型接觸層, 所述p型接觸層具有交替積層第一層與第二層而成的超晶格結構,所述第一層包括具有Al組成比x的Alx Ga1-x N,所述第二層包括具有Al組成比y的Aly Ga1-y N,且所述第二層的所述Al組成比y為0.15以上, 於所述p型接觸層的最表面的所述第二層上具有包括Ni與Rh的反射電極。
(12)如所述(11)所述的深紫外發光元件,其中於所述p型接觸層的超晶格結構中, 將所述發光層中放出深紫外光的層的Al組成比設為w0 時, 所述第一層的所述Al組成比x高於所述Al組成比w0 , 所述第二層的所述Al組成比y低於所述Al組成比x, 所述Al組成比w0 、所述Al組成比x、所述Al組成比y及所述p型接觸層的厚度平均Al組成比z滿足下述式[1]、式[2]: 0.030<z-w0 <0.20 ・・・[1] 0.050≦x-y≦0.47   ・・・[2]。
(13)如所述(11)或(12)所述的深紫外發光元件,其中所述p型電子阻擋層與所述p型接觸層的p型層的合計厚度為65 nm~100 nm。 [發明的效果]
根據本發明,可提供提供一種可兼顧高的發光輸出與優異的可靠性的深紫外發光元件用的反射電極的製造方法。進而,本發明可提供一種使用該反射電極的深紫外發光元件的製造方法及藉此而獲得的深紫外發光元件。
於對依照本發明的實施方式進行說明前,預先對以下方面進行說明。首先,本說明書中,於不明示Al組成比而僅表述為「AlGaN」的情況下,是指III族元素(Al、Ga的合計)與N的組成比為1:1,且III族元素Al與Ga的比率不定的任意的化合物。而且,「AlGaN」中,即便無關於作為III族元素的In的表述,但可包含相對於作為III族元素的Al與Ga的合計而為5%以內的In,關於包含In在內而記載的組成式,將Al組成比設為x0 ,將In組成比設為y0 (0≦y0 ≦0.05),而為Alx0 Iny0 Ga1-x0-y0 N。於僅表述為「AlN」或「GaN」的情況下,分別是指不包含Ga及Al,但只要無明示,則並不因僅表述為「AlGaN」,而排除為AlN或GaN的任一者的情況。另外,Al組成比的值可藉由光致發光測定及X射線繞射測定等來測定。
而且,本說明書中,將作為p型電性地發揮功能的層稱為p型層,將作為n型電性地發揮功能的層稱為n型層。另一方面,於未有意地添加Mg或Si等特定雜質而不作為p型或n型電性地發揮功能的情況下,稱為「i型」或「無摻雜」。亦可於無摻雜的層中混入製造過程中的不可避免的雜質,具體而言,本說明書中於載體密度小(例如不足4×1016 /cm3 )的情況下稱為「無摻雜」。而且,Mg或Si等雜質濃度的值設為藉由二次離子質譜(Secondary Ion Mass Spectroscopy,SIMS)分析而得者。
而且,藉由磊晶成長而形成的各層的厚度整體可使用光干涉式膜厚測定器來測定。進而,關於各層的各厚度,於鄰接的各層的組成充分不同的情況下(例如於Al組成比以0.01以上不同的情況下),可根據利用透過型電子顯微鏡進行的成長層的剖面觀察而計算出。而且,關於鄰接的層中Al組成比相同或大致相等(例如不足0.01)但雜質濃度不同的層的邊界及厚度,兩者的邊界及各層的厚度設為基於穿透式電子顯微鏡-能量散射光譜(Transmission Electron Microscope-Energy Dispersion Spectrum,TEM-EDS)而測定。並且,兩者的雜質濃度可藉由SIMS分析而測定。而且,於如超晶格結構般各層的厚度薄的情況下,可使用TEM-EDS測定厚度。
以下,參照圖式對本發明的實施方式進行說明。另外,原則上對相同構成要素標註相同的參照編號,省略說明。另外,各圖中,為了便於說明,將基板及各層的縱橫比率自實際比率誇張地表示。
(反射電極) 圖1A中示出藉由依照本發明的一實施方式的深紫外發光元件用的反射電極的製造方法而獲得的p側的反射電極80。圖2是具有此反射電極80的深紫外發光元件100的示意剖面圖。以下參照圖1A及圖2的符號。反射電極80可設置於p型接觸層70的正上方。並且,反射電極80是使用了對自發光層40放射的紫外光具有高的反射率(例如60%以上)的金屬的反射電極,於本發明中,作為具有此種反射率的金屬(以下,稱為「反射金屬」),使用銠(Rh)。關於銠(Rh),例如可將市售的金屬銠(例如純度3N)用作蒸鍍源。並且,p型接觸層70具有超晶格結構,且藉由於p型接觸層70上經由一定厚度以上的鎳(Ni)形成所述反射金屬而獲得的p側的反射電極對深紫外光的反射率高。進而,可知:藉由進行300℃以上且600℃以下的加熱處理,亦可於p型接觸層70與p側的反射電極80之間獲得相對良好的歐姆接觸,進而具有亦耐高電流的可靠性。另外,關於所述反射電極80的反射率,由於極難於深紫外發光元件100的狀態下直接測定反射電極80的反射率,所以藉由如下操作來代替:於藍寶石基板上進行第一金屬層81與第二金屬層82的成膜,於熱處理步驟前與熱處理步驟後自透明的藍寶石基板側朝反射電極80照射各波長的光,使用紫外可見分光光度計測定對波長的反射率(例如對波長300 nm的反射率)。
即,如參照圖1A般,依照本發明的一實施方式的深紫外發光元件用的反射電極的製造方法包括:第一步驟(圖1A步驟(step)1B),於具有超晶格結構的p型接觸層70(圖1A步驟1A)上,將Ni形成3 nm~20 nm的厚度作為第一金屬層81;第二步驟(圖1A步驟1C),於第一金屬層81上將Rh形成20 nm以上且2 μm以下的厚度作為第二金屬層82;以及第三步驟(圖1A步驟1D),對所述第一金屬層及所述第二金屬層進行300℃以上且600℃以下的加熱處理。
<第一步驟> 於第一步驟中,於p型接觸層70上,將Ni形成3 nm~20 nm的厚度作為第一金屬層81。Ni可藉由電子束蒸鍍法及電阻加熱蒸鍍法等真空蒸鍍法、以及濺鍍法等一般性方法蒸鍍於p型接觸層70的表面。這是因為若不足3 nm則難以抑制所述猝死,若超過20 nm則反射電極的反射率的下降明顯。而且,進而佳為將第一金屬層81的厚度設為3 nm~10 nm。藉由將第一金屬層81形成為10 nm以下的厚度,可將加熱處理後的反射電極80對波長300 nm的反射率設為60%以上。另外,第一金屬層81的厚度可使用晶體振子的膜厚計來進行測定。
<第二步驟> 於第二步驟中,於第一金屬層81上將Rh形成20 nm以上且2 μm以下的厚度作為第二金屬層82。這是因為若不足20 nm,則第二金屬層82對紫外光的反射率會不充分高。而且,是因為若超過2 μm,則會出現Rh所花費的費用的問題。為了提高藉由後述的熱處理步驟使第一金屬層81擴散後的反射電極的反射率,第二金屬層82的厚度更佳為設為30 nm以上,為了抑制費用,更佳為設為100 nm以下。第二步驟亦與第一步驟同樣地可藉由真空蒸鍍法及濺鍍法等一般性方法來形成第二金屬層。第二金屬層82的厚度可使用晶體振子的膜厚計來進行測定。
<第三步驟> 於第三步驟中,對第一金屬層81及第二金屬層82進行300℃以上且600℃以下的加熱處理,獲得反射電極80。如本步驟般,作為於形成p側電極後進行用以獲得歐姆接觸的加熱處理時使用的環境氣體,一般是使用氮等惰性氣體。於本步驟中亦可僅使用惰性氣體作為環境氣體。但是於本步驟中,更佳為於環境氣體中包含氧。作為環境氣體中的氧的比例,較佳為以流量比計設為超過0%且為50%以下。
如此獲得的反射電極80為包括Ni與Rh的電極。伴隨第三步驟的加熱處理,作為第一金屬層81的Ni自與p型接觸層70相接的界面向第二金屬層82的Rh側擴散。然後,藉由Ni的擴散,p型接觸層70與反射電極80的界面處的Rh的比例增加,所以相較於熱處理前,該界面處的反射率上升。熱處理後的反射電極80中,Ni未保持層狀而擴散,所以難以正確地測定熱處理後(即,擴散後)的Ni量。因此,只要於熱處理後的反射電極的剖面(垂直剖面)的SEM-EDS分析中同時觀察到Ni及Rh各自的峰值,便判斷為設置有包括Ni與Rh的反射電極80。並且,於反射電極80中,Rh以體積比(相當於反射電極的剖面的SEM-EDS分析的映射圖(mapping)中的面積比)計為50%以上,較佳為75%以上。藉由將反射電極80中的Rh的體積比設為75%以上,可將加熱處理後的反射電極80對波長300 nm的反射率設為60%以上。 而且,於所述反射電極(熱處理步驟後)的反射率測定中,Rh單體對波長300 nm的反射率為70%~73%,Ni與Au的合金的反射率不足40%,所以本發明的包括Ni與Rh的反射電極80藉由將第一金屬層81的厚度設為3 nm~20 nm,並將第二金屬層82的厚度設為20 nm~2 μm範圍,而可將對波長300 nm的反射率設為40%以上且不足67%的範圍,藉由將第一金屬層81的厚度設為3 nm~10 nm,並將第二金屬層82的厚度設為30 nm~100 nm的範圍,而可將對波長300 nm的反射率設為60%以上且不足70%。另外,Ni即便與Rh合金化,亦不會大幅降低Rh單體的反射率。而且,反射電極80中,作為除Ni及Rh以外可含有的不會大幅降低反射率的雜質,考慮有釕(Ru)、金(Au)、鉑(Pt)、鈀(pd)、鈦(Ti),其雜質含量為40質量%以下,較佳為10質量%以下。
藉由將依照以上說明的本實施方式的深紫外發光元件用的反射電極80用於深紫外發光元件,可兼顧高的發光輸出與優異的可靠性。
參照圖1B。作為所述實施方式的另一實施方式,亦較佳為於第二步驟之後,更包括於所述第二金屬層上形成Ni層作為第三金屬層83的步驟、及於第三金屬層83上形成Rh層作為第四金屬層84的步驟。此步驟可於第二步驟與第三步驟之間進行,亦可於第三步驟之後進行,於作業效率的方面,較佳為於第二步驟與第三步驟之間第二步驟之後進行。作為第三金屬層83,Ni層可形成1 nm~20 nm的厚度。而且,作為第四金屬層84,Rh層可形成5 nm以上且2 μm以下的厚度。進而,亦可反覆於第四金屬層84上再次形成對應於第三金屬層及第四金屬層的Ni層及Rh層,將反射電極製成以Ni層與Rh層的順序反覆積層多次而成的積層體。
於第二金屬層82上存在Au的狀態下,當經由第三步驟等的加熱而使Au在反射電極中擴散時存在發生猝死的可能性,但藉由將包括Ni與Rh的反射電極製成將Ni及Rh的積層順序反覆多次的積層結構,可抑制猝死。因此,只要將Ni層與Rh層積層多次,便可製成不依賴於使積層後的Rh層上接觸其他金屬(金等)以形成與外部的電連接的安裝步驟或與外部的連接方法(包括焊料等需要加熱的情況)而能夠更切實地避免猝死的可能性的電極,所以較佳。就此觀點而言,構成反射電極的金屬元素尤佳為僅包括Ni及Rh。
(深紫外發光元件) 其次,對具有藉由本發明而獲得的反射電極80的深紫外發光元件100進行說明。依照本發明的一實施方式的深紫外發光元件100為如圖2所示,於基板10上依次具有n型半導體層30、發光層40、p型電子阻擋層60及p型接觸層70、以及所述p側的反射電極80的深紫外發光元件。並且,反射電極80設置於p型接觸層的最表面的第二層72上。p型接觸層70具有交替積層第一層71與第二層72而成的超晶格結構,所述第一層71包括具有Al組成比x的Alx Ga1-x N,所述第二層72包括具有Al組成比y的Aly Ga1-y N。而且,第二層72的Al組成比y為0.15以上(y≧0.15)。
尤其是,於將發光層40中放出深紫外光的層的Al組成比設為w0 時,第一層71的Al組成比x高於Al組成比w0 ,第二層72的Al組成比y低於Al組成比x,Al組成比w0 、Al組成比x、Al組成比y及p型接觸層70的厚度平均Al組成比z滿足下述式[1]、式[2]: 0.030<z-w0 <0.20 ・・・[1] 0.050≦x-y≦0.47   ・・・[2]。
另外,深紫外發光元件100的較佳的形態為:如圖2所示,於基板10與n型半導體層30之間設置緩衝層20,並於p型接觸層70的正上方設置p側的反射電極80,於n型半導體層30的露出面設置n側電極90。
以下,為了便於說明,將p型接觸層70的超晶格結構中的第一層71及第二層72的各層的Al組成比及厚度設為固定來進行說明。該情況下,p型接觸層70的厚度平均Al組成比z如下定義。首先,將超晶格結構中的第一層71的層數設為N,將第一層71的各層的厚度表示為ta 。同樣地,將第二層72的層數設為M,將第二層72的各層的厚度表示為tb 。此時,p型接觸層70的厚度平均Al組成比z依照下述式[3]。 [數1]
Figure 02_image001
・・・[3]
另外,p型接觸層70的超晶格結構中的第一層71及第二層72的各層Al組成比及厚度不必固定。若此超晶格結構中的第一層71及第二層72的各層Al組成比及厚度存在變動,則厚度平均Al組成比z使用第一層71及第二層72的各自的厚度及Al組成比的加權平均值(權重平均值)即可,第一層71及第二層72各自的Al組成比x、Al組成比y是指厚度的加權平均值。
繼續參照圖2來對深紫外發光元件100中的基板10、n型半導體層30、發光層40、p型電子阻擋層60及p型接觸層70的各構成的細節首先進行說明。
<基板> 作為基板10,較佳為使用可透過發光層40的發光的基板,例如可使用藍寶石基板或單晶AlN基板等。另外,作為基板10,亦可使用於藍寶石基板的表面上使無摻雜的AlN層磊晶成長的AlN模板基板。
<n型半導體層> n型半導體層30視需要經由緩衝層20而設於基板10上。亦可將n型半導體層30直接設於基板10上。對n型半導體層30摻雜n型的摻雜劑。作為n型摻雜劑的具體例,可列舉:矽(Si)、鍺(Ge)、錫(Sn)、硫磺(S)、氧(O)、鈦(Ti)、鋯(Zr)等。n型摻雜劑的摻雜劑濃度只要為n型半導體層30可作為n型發揮功能的摻雜劑濃度,則並無特別限定,例如可設為1.0×1018 atoms/cm3 ~1.0×1020 atoms/cm3 。而且,n型半導體層30的帶隙較佳為較發光層40(量子阱結構時為阱層41)的帶隙寬,並相對於發光的深紫外光而具有透過性。而且,除將n型半導體層30構成為單層結構或包括多層的結構之外,亦可將其構成為包括使Ⅲ族元素的組成比沿結晶成長方向組成傾斜的組成傾斜層或超晶格結構。n型半導體層30不僅形成與n側電極的接觸部,亦兼具提高自基板至發光層的結晶性的功能。
<發光層> 發光層40設於n型半導體層30上,放射深紫外光。發光層40可包括AlGaN,其Al組成比能夠以使放射光的波長為深紫外光的200 nm~350 nm,或者中心發光波長為265 nm以上且317 nm以下的方式進行設定。此種Al組成比例如可設為0.25~0.60的範圍內。
發光層40可為Al組成比固定的單層結構,亦較佳為以反覆形成有Al組成比不同的包括AlGaN的阱層41與障壁層42的多重量子阱(Multiple Quantum Well,MQW)結構。於發光層40為Al組成比固定的單層結構的情況下,發光層40中放出深紫外光的層的Al組成比w0 即為發光層40的Al組成比。而且,於發光層40具有多重量子阱結構的情況下,阱層41相當於發光層40中放出深紫外光的層,所以方便起見,將阱層41的Al組成比w視為相當於所述Al組成比w0 。另外,較佳為將放出深紫外光的層的Al組成比w0 (或阱層的Al組成比w)設為0.25~0.60,以使放射光的波長為深紫外光的200 nm~350 nm,或者中心發光波長為265 nm以上且317 nm以下。
而且,將障壁層42的Al組成比b設為高於阱層41的Al組成比w(即,b>w)。關於Al組成比b,於b>w的條件下,可將障壁層42的Al組成比b例如設為0.40~0.95。而且,阱層41及障壁層42的反覆次數並無特別限制,例如可設為1次~10次。較佳為將發光層40的厚度方向的兩端側(即最初與最後)設為障壁層,若將阱層41及障壁層42的反覆次數設為n,則該情況下,表述為「n.5組阱層及障壁層」。而且,可將阱層41的厚度設為0.5 nm~5 nm、障壁層42的厚度設為3 nm~30 nm。
<引導層> 於發光層40具有所述量子阱結構的情況下,較佳為於發光層40的最接近p型電子阻擋層60的阱層41與後述p型電子阻擋層60之間,設置Al組成比相較於障壁層42及p型電子阻擋層60中的任一者的Al組成比都高的引導層。藉此,可提高深紫外發光元件100的發光輸出。該情況下,若將引導層的Al組成比表述為bg ,並使用後述p型電子阻擋層60的Al組成比α,則各Al組成比的關係如下。 w(阱層)<b(障壁層)<α(p型電子阻擋層)<bg (引導層)
而且,亦較佳為:將發光層40設為自障壁層42開始的n組的阱層41及障壁層42,將與發光層40及p型電子阻擋層60這兩者相接的層設為所述引導層,並使所述引導層的厚度較其他障壁層薄。例如,亦較佳為:引導層包括AlN(該情況下,特別稱為AlN引導層),並將其厚度設為0.7 nm~1.7 nm。
<p型電子阻擋層> p型電子阻擋層60設置於發光層40上。p型電子阻擋層60作為用以阻斷電子且將電子注入至發光層40(於MQW結構的情況下為阱層41)內來提高電子的注入效率的層而使用。為了所述目的,雖亦依存於放出深紫外光的層的Al組成比w0 (於量子阱結構的情況下,相當於阱層41的Al組成比w),但較佳為將p型電子阻擋層60的Al組成比α設為0.35≦α≦0.95。另外,若Al組成比α為0.35以上,則p型電子阻擋層60亦可包含相對於作為III族元素的Al與Ga而言為5%以內的量的In。此處,較佳為:Al組成比α滿足所述條件,且較p型接觸層70的厚度平均Al組成比z高。即,較佳為α>z。而且,更佳為:關於p型電子阻擋層60的Al組成比α及障壁層42的Al組成比b這兩者,滿足0<α-b≦0.55。藉此如此操作,可確實地提高p型電子阻擋層60帶來的向阱層41注入電子的效率。
p型電子阻擋層60的厚度並無特別限制,但較佳為設為例如10 nm~80 nm。若p型電子阻擋層60的厚度為所述範圍,則可確實地獲得高的發光輸出。另外,p型電子阻擋層60的厚度較佳為較障壁層42的厚度厚。而且,作為於p型電子阻擋層60中摻雜的p型摻雜劑,可例示鎂(Mg)、鋅(Zn)、鈣(Ca)、鈹(Be)、錳(Mn)等,通常使用Mg。只要p型電子阻擋層60的摻雜劑濃度為可作為p型層發揮功能的摻雜劑濃度,則並無特別限定,例如可設為1.0×1018 atoms/cm3 ~5.0×1021 atoms/cm3
<p型接觸層> p型接觸層70設置於p型電子阻擋層60上。p型接觸層70是用以減少設於其正上方的p側的反射電極80與p型電子阻擋層60之間的接觸電阻的層。因此,p型接觸層70與p側的反射電極80之間不存在製造上不可避免的雜質以外的所需的構成。即,於超晶格結構的p型接觸層70上相接有p側的反射電極80。
且說,如前所述,p型接觸層70具有交替積層包括Alx Ga1-x N的第一層71與包括Aly Ga1-y N的第二層72而成的超晶格結構。此處,第一層71的Al組成比x較佳為高於發光層40中放出深紫外光的層的Al組成比w0 (x>w0 ),提高對深紫外光的透過率。若發光層40為單層結構,則使Al組成比x高於發光層40的Al組成比即可,若發光層40具有量子阱結構,則使Al組成比x高於阱層41的Al組成比w即可。
並且,如前所述,Al組成比w0 、Al組成比x、Al組成比y及p型接觸層的厚度平均Al組成比z較佳為滿足下述式[1]、式[2]: 0.030<z-w0 <0.20 ・・・[1] 0.050≦x-y≦0.47   ・・・[2]
於先前技術中,作為深紫外發光元件的p型接觸層,通常使用容易提高電洞濃度的p型GaN層。然而,p型GaN層因其帶隙而吸收波長360 nm以下的光。因此,幾乎無法期待自發光層放射的深紫外光中,自p型接觸層一側的光取出或利用p側電極的反射的光取出效果。另一方面,若將p型接觸層設為加大了Al組成比的AlGaN,則與GaN相比電洞濃度一定程度上可能減少,但自發光層放射的深紫外光可透過p型接觸層,所以深紫外發光元件整體的光取出效率高,結果可提高深紫外發光元件的發光輸出。然而,若p型接觸層的Al組成比過高,則可能成為可靠性不充分的深紫外發光元件,這一情況藉由本發明者們的實驗已明確。另一方面,若為藉由所述Al組成比而形成的超晶格結構的p型接觸層70,則厚度平均Al組成比z較發光層40中放出深紫外光的層的Al組成比w0 高(z>w0 ),所以深紫外光可透過p型接觸層70,結果可獲得高的發光輸出,所以較佳。
此處,為了使深紫外光更切實地透過p型接觸層70,較佳為如所述式[1]般,使厚度平均Al組成比z與放出深紫外光的層的Al組成比w之差高於0.030(即,z-w0 >0.030)。為了所述目的,更佳為使Al組成比z與Al組成比w之差高於0.040(即,z-w0 >0.040),進而佳為高於0.050(即,z-w0 >0.050),尤佳為高於0.06(即,z-w0 >0.060)。
而且,為了於p型接觸層70與p側的反射電極80之間取得良好的歐姆接觸而使可靠性充分,較佳為設置厚度平均Al組成比的上限。因此,較佳為如所述式[1]般,使厚度平均Al組成比z與放出深紫外光的層的Al組成比w之差的上限為0.20(即,z-w0 <0.20),為了所述目的,更佳為使Al組成比z與Al組成比w之差的上限為0.19(即,z-w0 <0.19),進而佳為使上限為0.18(即,z-w0 <0.18)。
進而,較佳為如所述式[2],第一層71的Al組成比x與第二層72的Al組成比y之差以絕對值計設為0.050以上(x-y≧0.050)。這是為了使p型接觸層70作為超晶格結構而切實地發揮功能。而且,為了減小超晶格結構整體的應變並且以低Al組成比與p側的反射電極80接觸,Al組成比x與Al組成比y之差以絕對值計較佳為0.1以上(x-y≧0.10),更佳為0.15以上(x-y≧0.15)。另一方面,若Al組成比x與Al組成比y之差過大,則第一層與第二層間的晶格常數變大,所以應變增加,而存在難以獲得結晶性良好的超晶格層的可能性。因此,為了更切實地獲得本發明效果,較佳為設為x-y≦0.47,更佳為設為x-y≦0.45。
另外,若使超晶格結構中的低Al組成比的層即第二層72的Al組成比y為0.20以上,則可更切實地提高來自發光層40的深紫外光的透過率,因此較佳。為了所述目的,更佳為使Al組成比y為0.21以上,進而佳為0.25以上。另一方面,若使Al組成比y為0.55以下,則可更切實地維持高的可靠性,所以較佳,為了所述目的,進而佳為將Al組成比y設為0.51以下,尤佳為設為0.40以下。另外,只要厚度平均Al組成比z高於發光層40中放出深紫外光的層的Al組成比w0 ,則Al組成比y高於低於Al組成比w0 均可。而且,Al組成比x只要滿足所述式[1]、式[2],則可適當設定,Al組成比x的上限及下限並無限制。於滿足式[1]、式[2]的基礎上,只要將Al組成比x設定為大致0.40~0.85的範圍內即可。
而且,第一層71及第二層72的各自的厚度ta 、tb 只要形成超晶格結構且滿足厚度平均Al組成z的相對於發光層40的Al組成比的條件,則並無特別限制。例如,可將第一層71的厚度ta 設為1.0 nm以上且10.0 nm以下,並且可將第二層72的厚度tb 設為1.0 nm以上且10.0 nm以下。厚度ta 、厚度tb 的大小關係並無限制,哪一者大均可,兩者的厚度相同亦可。而且,較佳為以使p型接觸層70的整體的厚度成為20 nm以上且100 nm以下,較佳為70 nm以下的範圍內的方式,將第一層71及第二層72的反覆次數適當設定為例如3次~15次的範圍。
並且,所述p型電子阻擋層60的厚度與p型接觸層70的厚度的合計即p型層的合計厚度較佳為65 nm以上且100 nm以下,更佳為設為70 nm以上且95 nm以下。藉由設為此範圍內,可更切實地獲得高的發光輸出。
此處,較佳為:p型接觸層70的厚度方向上的接近p型電子阻擋層60的末端的層為第一層71。換言之,當於p型接觸層70與p型電子阻擋層60之間不存在其他層,兩者相接觸時,較佳為於p型電子阻擋層60的正上方設置第一層71。第一層71的Al組成比x高於第二層72的Al組成比y,Al組成比x接近p型電子阻擋層60的Al組成比α,所以,可更切實地抑制p型電子阻擋層60與p型接觸層70之間的應變導致的缺陷產生。
另一方面,p型接觸層70的厚度方向上遠離p型電子阻擋層60的末端的層較佳為第二層72。換言之,與p側的反射電極80相接的層較佳為第二層72。這是由於若對第一層71的Al組成比x與第二層72的Al組成比y進行比較,則Al組成比y更低,所以容易獲取與p側的反射電極80的歐姆接觸。
另外,於p型接觸層70的厚度方向上的接近p型電子阻擋層60的末端的層為第一層71,且遠離p型電子阻擋層60的末端的層為第二層72的情況下,第一層71的層數與第二層72的層數一致。但是,於本實施方式中,兩者的層數不必一致。本實施方式中,包括p型接觸層70的厚度方向上的末端的兩層為第二層的情況(該情況下,第二層72的層數較第一層71的層數多一層)。
而且,作為依照本發明的一實施方式,目前為止對反覆積層有第一層71與第二層72這兩層的超晶格結構進行了說明,但作為依照本發明的另一實施方式,亦可應用使所述第一層與第二層的關係相同,並且將具有第一層與第二層之間的Al組成比的第3層配置於第一層與第二層之間的三層結構的超晶格結構。該情況下亦可獲得與所述本發明效果相同的效果。
此處,p型接觸層70較佳為於與p側的反射電極80相接的一側具有Mg濃度為3×1020 atoms/cm3 以上的高濃度區域,更佳為此高濃度區域的Mg濃度為5×1020 atoms/cm3 以上。提高p型接觸層70的電洞濃度可降低深紫外發光元件100的順向電壓Vf。另外,雖不意圖限定上限,但若考慮產業性的生產性,則於本實施方式中,可將高濃度區域的Mg濃度的上限設為1×1021 atoms/cm3 。該情況下,p型接觸層70的p型電子阻擋層60側的區域的Mg濃度可設為一般的範圍,通常為5×1019 atoms/cm3 以上且不足3×1020 atoms/cm3 。另外,p型接觸層中的Mg濃度為藉由SIMS測定的各區域下的平均濃度。為了保持p型接觸層70的結晶性,高濃度區域的厚度通常為15 nm以下,可將與p側的反射電極80相接側的幾層左右設為高濃度區域。
進而,p型接觸層70亦較佳為於與p側的反射電極80相接的一側具有Si濃度為5×1016 atoms/cm3 以上且1×1020 atoms/cm3 以下的Si摻雜區域。更佳為將該區域中的Si濃度設為2×1019 atoms/cm3 以上且5×1019 atoms/cm3 以下。藉由如此操作,可進一步提高深紫外發光元件100的發光輸出。另外,只要Si摻雜區域的厚度為1 nm~5 nm左右,便可切實地獲得所述效果。亦較佳為:將Si摻雜區域設為p型接觸層的超晶格結構的最後的第二層。亦可設為於所述Mg濃度為3×1020 atoms/cm3 以上的高濃度區域進而摻雜有Si的共摻(codoping)區域。而且,亦可於Si摻雜區域僅摻雜Si(即,亦可不摻雜Mg)。
另外,當於p型接觸層70的與p側的反射電極80相接的一側設有僅摻雜有Si的Si摻雜區域,並且未摻雜Mg時,該區域的導電型亦可認為是n型。然而,於為所述厚度範圍(1 nm~5 nm)的情況下,即便不摻雜Mg,只要作為p型接觸層70的最上層而與p型電極相接,亦不會成為閘流體(thyristor)。因此,於此種情況下,亦將Si摻雜區域視為p型接觸層70的一部分。
以上所說明的依照本實施方式的深紫外發光元件100可兼具高的發光輸出與優異的可靠性。
以下,對能夠應用於本實施方式的深紫外發光元件100具體的形態進行敘述,但本實施方式並不限定於以下的形態。
<緩衝層> 亦較佳為:如圖2所示,於基板10與n型半導體層30之間設置用以緩和兩者的晶格不一致的緩衝層20。作為緩衝層20,可使用無摻雜的Ⅲ族氮化物半導體層,亦較佳為將緩衝層20設為超晶格結構。
<n側電極> 而且,可設置於n型半導體層30的露出面上的n側電極90例如可設為具有含Ti膜以及形成於所述含Ti膜上的含Al膜的金屬複合膜。n側電極90的厚度、形狀及尺寸可根據發光元件的形狀及尺寸適宜選擇。n側電極90並不限定於如圖2所示般形成於n型半導體層30的露出面上,只要與n型半導體層電性連接即可。
<其他構成> 另外,雖未於圖2中圖示,但亦可於發光層40與p型電子阻擋層60之間設置Al組成比高於p型電子阻擋層60的Al組成比α的包含AlGaN的引導層。藉由設置引導層,可促進對發光層40的電洞的注入。
<P型覆蓋(clad)層> 而且,圖2中雖未圖示,但亦可將包括AlGaN的p型覆蓋層設於p型電子阻擋層60與p型接觸層70之間。p型覆蓋層是指具有高於發光層40中的放出深紫外光的層的Al組成比(量子阱結構的情況下為Al組成比w)及p型接觸層70的厚度平均Al組成比z,另一方面低於p型電子阻擋層60的Al組成比α的Al組成比的層。即,p型電子阻擋層60與p型覆蓋層均為具有較放出深紫外光的層的Al組成比高的Al組成比的層,且為實質上透過自發光層40發出的深紫外光的層。其中,較佳為不設置p型覆蓋層。其原因如日本專利特開2016-111370號公報所記載,其揭示內容整體藉由參照而併入本說明書中。另外,於設置p型覆蓋層的情況下,若將p型覆蓋層的Al組成比設為β,則α>β且β>y。
另外,依照本實施方式的深紫外發光元件100中,藉由反射電極材料來形成p側的反射電極80以反射深紫外光,藉此可將基板側或基板水平方向作為主要的光取出方向。而且,可將深紫外發光元件100設為所謂的被稱為倒裝晶片(flip chip)的形態。
(深紫外發光元件的製造方法) 其次,使用圖3對用以獲得所述深紫外發光元件100的製造方法的一實施方式進行說明。依照本發明的深紫外發光元件100的製造方法的一實施方式包括:於基板10上(參照圖3步驟3A)形成n型半導體層30的步驟;於n型半導體層30上形成發光層40的步驟;於發光層40上形成p型電子阻擋層60的步驟(參照圖3步驟3B);於所述p型電子阻擋層上形成p型接觸層的步驟(參照圖3步驟3C);以及於所述p型接觸層上形成反射電極的步驟(參照圖3步驟3D)。並且,形成所述p型接觸層的步驟是交替反覆進行形成第一層的第一步驟與形成第二層的第二步驟來形成具有超晶格結構的所述p型接觸層,所述第一層包括具有Al組成比x的Alx Ga1-x N,所述第二層包括具有較所述Al組成比x低的Al組成比y的Aly Ga1-y N,且所述第二層的Al組成比y為0.15以上。並且,如反射電極80的實施方式所述般,形成反射電極的步驟包括(參照圖1A):第一步驟,於具有超晶格結構的p型接觸層70上,將Ni形成3 nm~20 nm的厚度作為第一金屬層81;第二步驟,於第一金屬層81上將Rh形成20 nm以上且2 μm以下的厚度作為第二金屬層82;以及第三步驟,對所述第一金屬層及所述第二金屬層進行300℃以上且600℃以下的加熱處理。而且,形成p型接觸層70的步驟(參照步驟3C)是交替反覆進行形成第一層71的第一步驟與形成第二層72的第二步驟來形成具有超晶格結構的p型接觸層70的步驟,所述第一層71包括具有Al組成比x的Alx Ga1-x N,所述第二層72包括具有較Al組成比x低的Al組成比y的Aly Ga1-y N,且第二層72的Al組成比y為0.15以上(y≧0.15)。
進而,於將發光層40中放出深紫外光的層的Al組成比設為w0 時,第一層71的Al組成比x高於Al組成比w0 ,第二層72的Al組成比y低於Al組成比x,Al組成比w0 、Al組成比x、Al組成比y及p型接觸層70的厚度平均Al組成比z滿足下述式[1]、式[2]: 0.030<z-w0 <0.20 ・・・[1] 0.050≦x-y≦0.47   ・・・[2]。
參照圖3的流程圖繼續進行說明。其中,省略與所述實施方式重覆的說明。
首先,如圖3中的步驟3A、步驟3B所示,於基板10上依次形成n型半導體層30、發光層40及p型電子阻擋層60。於該些各步驟中,可藉由有機金屬氣相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法或分子束磊晶(MBE:Molecular Beam Epitaxy)法、濺鍍法等公知的磊晶成長技術而形成各層。
於形成n型半導體層30、發光層40、引導層及p型電子阻擋層60的各層時,關於用以磊晶成長的成長溫度、成長壓力、成長時間,可設為對應於各層的Al組成比及厚度的一般的條件。作為用以磊晶成長的載氣,只要使用氫氣或氮氣、或兩者的混合氣體等供給至腔室內即可。進而,關於使所述各層成長的原料氣體,作為III族元素的原料氣體,可使用三甲基鋁(trimethyl aluminium,TMA)、三甲基鎵(Trimethyl gallium,TMG)等,作為V族元素氣體,可使用NH3 氣體。關於以NH3 氣體等V族元素氣體與TMA氣體等III族元素氣體的成長氣體流量為基礎計算出的V族元素相對於III族元素的莫耳比(以後記載為V/III比),只要設為一般的條件即可。進而,作為摻雜劑源的氣體,只要關於p型摻雜劑,適宜選擇作為Mg源的環戊二烯基鎂氣體(CP2 Mg)等,關於n型摻雜劑,適宜選擇例如作為Si源的單矽烷氣體(SiH4 ),作為Zn源的氯化鋅氣體(ZnCl2 )等,並以規定的流量供給至腔室內即可。
其次,於圖3中的步驟C所示的p型接觸層形成步驟中,於p型電子阻擋層60上形成對所述第一層71與第二層72進行反覆而成的超晶格結構的p型接觸層70。關於p型接觸層70的厚度範圍及Al組成比的條件為如上所述。p型接觸層70亦藉由利用MOCVD法等的磊晶成長進行結晶成長即可。
另外,為了將p型接觸層70中與p側的反射電極80相接的一側的高濃度區域72的Mg濃度設為3×1020 atoms/cm3 以上,只要於p型接觸層形成步驟中進行以下的處理即可。即,於p型接觸層形成步驟中,藉由供給Ⅲ族原料氣體、Ⅴ族原料氣體及Mg原料氣體而使所述超晶格結構進行結晶成長,結晶成長結束後,緊接著,使Ⅲ族原料氣體的流量下降至結晶成長時的流量的1/4以下,並且繼續供給Ⅴ族原料氣體及Mg原料氣體1分鐘以上且20分鐘以下即可。
而且,為了於p型接觸層70中與p側的反射電極80相接的一側摻雜Mg及Si這兩者,只要作為Mg源而將CP2 Mg氣體供給至腔室並且作為Si源而流動單矽烷氣體(SiH4 )等即可。若只摻雜Si,只要停止將CP2 Mg氣體作為Mg源供給至腔室,並且作為Si源而流動單矽烷氣體(SiH4 )即可。另外,如上所述,於對p型接觸層70的與p側的反射電極80相接的一側摻雜Si的情況下,所述Mg的高濃度區域的形成是任意的。
而且,可如圖3的步驟D所示,藉由蝕刻等去除發光層40、p型電子阻擋層60及p型接觸層70的一部分,於露出的n型半導體層30上形成n側電極90。另外,n側電極90可藉由濺鍍法或真空蒸鍍法等來進行成膜。而且,亦較佳為將緩衝層20形成於基板10的表面10A上。 [實施例]
以下,使用實施例對本發明進行更詳細地說明,但本發明並不受以下實施例的任何限定。
(實施例1) 依照圖1A及圖3所示的步驟圖,製作發明例1的深紫外發光元件。首先,準備藍寶石基板(直徑2吋、厚度:430 μm、面方位:(0001))。其後,藉由MOCVD法而於所述藍寶石基板上使中心膜厚0.60 μm的AlN層成長,而製成AlN模板基板。此時,AlN層的成長溫度為1300℃,腔室內的成長壓力為10 Torr,並以V/III比成為163的方式設定氨氣與TMA氣體的成長氣體流量。另外,關於AlN層的膜厚,使用光干涉式膜厚測定機(娜恩派(nanospec)M6100A;耐諾(Nanometrics)公司製造)對包含晶圓內的中心的、等間隔分散的共計25個部位的膜厚進行測定。
其後,於將所述AlN模板基板導入至熱處理爐中,並將爐內設為氮氣環境後,對爐內的溫度進行升溫而對AlN模板基板實施熱處理。此時,將加熱溫度設為1650℃、加熱時間設為4小時。
接著,藉由MOCVD法形成無摻雜的包括Al0.55 Ga0.45 N的厚度1 μm的緩衝層。其次,於所述緩衝層上形成包括Al0.45 Ga0.55 N、進行了Si摻雜的厚度2 μm的n型半導體層。另外,SIMS分析的結果為n型半導體層的Si濃度為1.0×1019 atoms/cm3
進而,於n型半導體層上形成如下發光層,所述發光層交替反覆積層有3組包括Al0.29 Ga0.71 N的厚度3 nm的阱層與包括Al0.51 Ga0.49 N的厚度7 nm的障壁層。阱層的Al組成比w為0.29。繼而,於發光層上形成包含AlN的厚度1 nm的引導層。另外,形成障壁層時摻雜Si,形成阱層及引導層時無摻雜。
其後,於引導層上,將氫氣作為載氣,形成包括Al0.58 Ga0.42 N的厚度40 nm的p型電子阻擋層。於形成p型電子阻擋層時,將作為Mg源的CP2 Mg氣體供給至腔室而摻雜Mg。另外,SIMS分析的結果為p型電子阻擋層的Mg濃度為5.0×1018 atoms/cm3
接著,於p型電子阻擋層的正上方形成Al0.47 Ga0.53 N作為第一層,繼而形成Al0.31 Ga0.69 N作為第二層,針對兩者的形成反覆進行7組,而形成合計14層的超晶格結構的p型接觸層。另外,將第一層的厚度設為5.0 nm,將第二層的厚度設為2.5 nm,p型接觸層的厚度的合計為52.5 nm,使厚度平均的Al組成為0.42。而且,於形成p型接觸層時,將作為Mg源的CP2 Mg氣體與III族源的TMA氣體、TMG氣體及V族源的氨氣一起供給至腔室而使摻雜有Mg的p型接觸層進行結晶成長。之後,僅停止供給III族源氣體,並僅供給Mg源氣體及V族源氣體10.5分鐘,於p型接觸層的表面側形成高濃度區域。
另外,於確定所述p型接觸層的Al組成時,根據藉由光致發光測定而分析的p型接觸層的發光波長(帶隙能量)決定p型接觸層的Al組成比。
SIMS分析的結果為於p型接觸層中,p型電子阻擋層側的Mg濃度為1×1020 atoms/cm3 ,使與p型電子阻擋層相反的形成p側的反射電極80的表面側的Mg為高濃度的一側(高濃度區域)的Mg濃度為3×1020 atom/cm3
將實施例1的層結構示於表1。
[表1]
  Al組成比 摻雜劑 厚度
p型接觸層 0.31 Mg 2.5 nm
0.47 5.0 nm
0.31 2.5 nm
0.47 5.0 nm
0.31 2.5 nm
0.47 5.0 nm
0.31 2.5 nm
0.47 5.0 nm
0.31 2.5 nm
0.47 5.0 nm
0.31 2.5 nm
0.47 5.0 nm
0.31 2.5 nm
0.47 5.0 nm
p型電子阻擋層 0.58 Mg 40 nm
引導層 1.0 - 1 nm
發光層 0.29 - 3 nm
0.51 Si 7 nm
0.29 - 3 nm
0.51 Si 7 nm
0.29 - 3 nm
0.51 Si 7 nm
n型半導體層 0.45 Si 2 μm
無摻雜層 0.55 - 1 μm
AlN層 1 - 0.6 μm
藍寶石基板 - - 430 μm
於p型接觸層之上形成遮罩並藉由乾式蝕刻進行平台蝕刻,使n型半導體層露出。其次,於p型接觸層的最表面的第二層(Al0.31 Ga0.69 N)上使用電子束蒸鍍法依次形成厚度7 nm的Ni層(第一金屬層)與Ni層上的厚度50 nm的Rh層(第二金屬層)。Ni層與Rh層是使用晶體振子的膜厚計(CRTM-9000G;愛發科(ulvac)公司製造)來進行厚度測定。振子中使用鍍金、固有頻率4.5 MHz~5.0 MHz。晶體振子的標準曲線(校正)中,藉由將目標金屬的單膜成膜為100 nm以上的膜厚,使用觸針式階差計(科磊(Tencor)公司製造 P-6)測量成膜有無間的階差來進行。 而且,於露出的n型半導體層上形成包括Ti/Al的n側電極。Ti的厚度為20 nm,Al的厚度為150 nm。 最後,使用快速熱退火(Rapid Thermal Annealing,RTA)裝置(艾德旺斯理工(advance-riko)製造;紅外線燈退火加熱裝置)在最高到達溫度550℃下保持10分鐘,進行用於歐姆接觸的熱處理,形成包括Ni與Rh的反射電極。另外,RTA裝置內的熱處理環境設為N2 與O2 的混合氣體,並將混合氣體中的N2 流量設為1.0 slm,將O2 流量設為0.5 slm。對藍寶石基板進行激光劃刻(Laser Scribe),單片化為晶片尺寸1000 μm×1000 μm,製作實施例1的深紫外發光元件。
於藍寶石基板上進行厚度7 nm的Ni層(第一金屬層)與厚度50 nm的Rh層(第二金屬層)的成膜,於所述熱處理步驟後自透明的藍寶石基板側朝反射電極使用紫外可見分光光度計(日本分光製造;V-650)測定對波長的反射率,結果對波長300 nm的反射率為62%。
(實施例2) 將RTA裝置內的熱處理環境設為N2 氣體(N2 流量1.5 slm)代替實施例1中的混合氣體環境,除此以外,與實施例1同樣地製作實施例2的深紫外發光元件,並進行評價。
(實施例3) 將第一層的Al組成比x設為0.43,將第二層的Al組成y設為0.27,除此以外,與實施例1同樣地製作實施例3的深紫外發光元件,並進行評價。
(比較例1) 將實施例1中的反射電極的Ni的厚度變更為2 nm,除此以外,與實施例1同樣地製作比較例1的深紫外發光元件,並進行評價。
於藍寶石基板上進行厚度2 nm的Ni層(第一金屬層)與厚度50 nm的Rh層(第二金屬層)的成膜,於所述熱處理步驟後自透明的藍寶石基板側朝反射電極使用紫外可見分光光度計(日本分光製造;V-650)測定對波長的反射率,結果對波長300 nm的反射率為67%。
(比較例2) 除了不設置實施例1中的反射電極的Ni以外,與實施例1同樣地製作比較例2的深紫外發光元件,並進行評價。
(比較例3) 將實施例1中的超晶格結構的p型接觸層(合計厚度52.5 nm)變更為Al0.42 Ga0.58 N層的厚度50 nm的單層結構,除此以外,與實施例1同樣地製作比較例3的深紫外發光元件,並進行評價。
(比較例4) 將實施例1中的包括Ni與Rh的反射電極變更為依次形成有厚度10 nm的Ni層與Ni層上的厚度20 nm的Au層者,除此以外,與實施例1同樣地製作比較例4的深紫外發光元件,並對發光輸出進行評價。
(比較例5) 將實施例1中的包括Ni與Rh的反射電極變更為依次形成有厚度10 nm的Ni層與Ni層上的厚度20 nm的Au層者,並將第一層的Al組成比x設為0.43,將第二層的Al組成y設為0.27,除此以外,與實施例1同樣地對比較例5的深紫外發光元件的發光輸出進行評價。
(比較例11~比較例13) 將實施例1中的超晶格結構的p型接觸層替換為AlGaN層的單層結構,將其Al組成比及厚度設為表3中記載般,並且於反射電極中未使用Ni。而且,將晶片尺寸設為560 μm×780 μm,除此以外,與實施例1同樣地製作比較例11~比較例13的深紫外發光元件,並進行評價。
(評價1:Po、Vf評價) 利用倒裝晶片方式使用球狀Au凸塊將實施例1~實施例3及比較例1~比較例5中所獲得的發光元件(晶片尺寸 1000 μm)安裝於AlN製子基板(尺寸20 mm×15 mm、厚度0.8 mm)。進而,於AlN製子基板上連接有Al製散熱器的狀態下,使用定電流電源裝置進行350 mA的通電,測定此時的順向電壓,並且藉由配置於藍寶石基板側的受光部利用光檢器進行發光輸出的測定。將結果示於表2。另外,藉由析譜儀進行發光波長的測定,結果發光中心波長均為310 nm。值為測定個數10個的平均值。
(評價2:可靠性評價其一) 對實施例及比較例1~比較例5進行所述評價1的測定後,以350 mA連續通電160小時。於連續通電後對輸出進行再次測定並與初期輸出進行比較,於未點亮或者存在輸出自初期的發光輸出驟減至減半以下的情況下判定為存在猝死。將測定個數10個中猝死的晶片的比率示於表2。
(評價3:可靠性評價其二) 針對比較例11~比較例13,於p型接觸層之上形成遮罩,藉由乾式蝕刻進行平台蝕刻,使n型半導體層露出,針對露出的n型半導體層與p型接觸層,使用Au凸塊將尺寸560 μm×780 μm的小型晶片安裝於AlN製子基板(尺寸:1.5 mm×1.1 mm厚度:0.2 mm),以20 mA進行通電,測定此時的發光輸出與順向電壓。值為測定個數10個的平均值。進而,對於自晶圓內10個部位提取的晶片,以電流20 mA進行通電來確認初期的發光輸出,繼而以20 mA的電流連續通電250小時,將通電後成為自初期的發光輸出減半以下的輸出(即,猝死)的晶片的比率示於表3。另外,於測定發光輸出時,使用了配置於藍寶石基板面側的光檢器。 [表2]
  製作條件 評價
p型接觸層 反射電極 RTA 熱處理 環境 發光輸出 Po [mW] 順向 電壓 Vf [V] 猝死發生率 [%]
第一層 Al組成比 x 第二層 Al組成比 y 厚度平均 Al組成比 z Ni層 反射層 氧氣的有無
實施例1 0.47 0.31 0.42 7 nm Rh: 50 nm 123 6.1 0
實施例2 0.47 0.31 0.42 7 nm Rh: 50 nm 123 6.5 0
實施例3 0.43 0.27 0.38 7 nm Rh: 50 nm 115 6.0 0
比較例1 0.47 0.31 0.42 2 nm Rh: 50 nm 121 7.0 20
比較例2 0.47 0.31 0.42 Rh: 40 nm 101 7.9 100
比較例3 0.42(單層) 0.42 7 nm Rh: 50 nm 120 6.1 100
比較例4 0.47 0.31 0.42 10 nm Au: 20 nm 80 5.9 0
比較例5 0.43 0.27 0.38 10 nm Au: 20 nm 79 5.7 0
[表3]
  製作條件 評價
p型接觸層 電極
Al組成 厚度 [nm] Po [mW] 猝死 [%]
比較例11 0.31 50 Rh: 40 nm 6.6 100
比較例12 0.46 50 Rh: 40 nm 10 100
比較例13 0.51 50 Rh: 40 nm 11 100
另外,第一層的厚度為5.0 nm,第二層的厚度為2.5 nm,所以p型接觸層的厚度平均Al組成比z作為[z=(2/3)x+(1/3)y]而計算出。於實施例1及實施例2中,z-w0 =0.42-0.29=0.13,x-y=0.47-0.31=0.16。 由此,同時滿足下述[1]與[2]式的條件。 0.030<z-w0 <0.20 ・・・[1] 0.050≦x-y≦0.47   ・・・[2]
(評價結果的考察) 之所以於比較例1~比較例3中發生猝死認為是由於p型接觸層與p側的反射電極界面處發生了接觸不良。另一方面,推定於實施例1~實施例3中,由於p型接觸層具有超晶格結構且Ni層具有充分的厚度,所以未發生接觸不良。而且,藉由比較例4、比較例5與實施例1~實施例3的比較可知包括Ni與Rh的反射電極於發光輸出的增大方面具有效果而不會大幅改變順向電壓。
根據以上結果可確認:藉由將滿足本發明條件的p側的反射電極形成於超晶格結構的p型接觸層上,可獲得高的發光輸出並且可兼顧可靠性。
(實施例4) 於實施例1~實施例3中發光中心波長為310 nm,此處代替其而藉由發光中心波長為280 nm的深紫外發光元件進行試驗。將實施例1中的各半導體層的Al組成比變更為下述表4中記載般,除此以外,與實施例1同樣地製作實施例4的深紫外發光元件。另外,AlN模板基板上的無摻雜的AlGaN層是藉由使Al組成比自0.85起至0.65為止沿結晶成長方向組成傾斜而形成。
[表4]
  Al組成比 摻雜劑 厚度
p型接觸層 0.35 Mg 2.5 nm
0.71 5.0 nm
0.35 2.5 nm
0.71 5.0 nm
0.35 2.5 nm
0.71 5.0 nm
0.35 2.5 nm
0.71 5.0 nm
0.35 2.5 nm
0.71 5.0 nm
0.35 2.5 nm
0.71 5.0 nm
0.35 2.5 nm
0.71 5.0 nm
p型電子阻擋層 0.68 Mg 40 nm
引導層 1.0 - 1 nm
發光層 0.45 - 3 nm
0.64 Si 7 nm
0.45 - 3 nm
0.64 Si 7 nm
0.45 - 3 nm
0.64 Si 7 nm
n型半導體層 0.65 Si 2 μm
無摻雜層 0.65 | 0.85 - 200 nm
AlN層 1 - 0.6 μm
藍寶石基板 - - 430 μm
(比較例6) 將實施例4中的包括Ni與Rh的反射電極變更為依次形成有厚度10 nm的Ni層與Ni層上的厚度20 nm的Au層者,除此以外,與實施例4同樣地製作比較例6的深紫外發光元件,並對發光輸出進行評價。
(比較例7) 將實施例4中的超晶格結構的p型接觸層(合計厚度52.5 nm)變更為Al0.59 Ga0.41 N層的厚度50 nm的單層結構,除此以外,與實施例1同樣地製作比較例3的深紫外發光元件,並進行評價。
(評價4) 對實施例4及比較例6、比較例7(均與實施例1同樣,晶片尺寸1000 μm×1000 μm),與所述評價1同樣地測定評價發光輸出Po及順向電壓Vf。將結果示於表5。繼而,進行此測定後,以350 mA連續通電20小時。於連續通電後對輸出進行再次測定,並與初期輸出進行比較,於未點亮或者存在輸出自初期的發光輸出驟減至減半以下的情況下判定為存在猝死。將測定個數10個中猝死的晶片的比率一併示於表5。
[表5]
  製作條件 評價
p型接觸層 反射電極 RTA 熱處理 環境 發光輸出 Po [mW] 順向 電壓 Vf [V] 猝死發生率 [%]
第一層 Al組成比 x 第二層 Al組成比 y 厚度平均 Al組成比 z Ni層 反射層 氧氣的有無
實施例4 0.71 0.35 0.59 7 nm Rh: 50 nm 100 7.1 0
比較例6 0.71 0.35 0.59 10 nm Au: 20 nm 75 7.0 0
比較例7 0.59(單層) 0.59 7 nm Rh: 50 nm 105 8.1 100
於實施例4中,z-w0 =0.59-0.45=0.14,x-y=0.71-0.35=0.36。由此,同時滿足下述[1]與[2]式的條件。 0.030<z-w0 <0.20 ・・・[1] 0.050≦x-y≦0.47   ・・・[2]
(評價結果的考察) 之所以於比較例7中發生猝死認為與比較例3同樣地是由於p型接觸層與p側的反射電極界面處發生了接觸不良。另一方面,推定於實施例4中,由於p型接觸層具有超晶格結構且Ni層具有充分的厚度,所以未發生接觸不良。而且,藉由對實施例4與比較例6的比較可知包括Ni與Rh的反射電極於發光輸出的增大方面具有效果而不會大幅改變順向電壓。
(實施例5) 與實施例4同樣地形成各半導體層,繼而使用電子束蒸鍍法依次形成厚度7 nm的Ni層(第一金屬層)與Ni層上的厚度50 nm的Rh層(第二金屬層)。繼而,於所述Rh層(第二金屬層)上形成厚度3 nm的Ni層作為第三金屬層,繼而依次形成厚度20 nm的Rh層作為第四金屬層。其後,與實施例4同樣地,進行用於歐姆接觸的熱處理。其他製作條件與實施例4相同。如此,製作了實施例5的深紫外發光元件。另外,p型電子阻擋層及p型接觸層的p型層的合計厚度為92.5 nm。
(比較例8) 於實施例5中是於Rh層(第二金屬層)之上形成厚度3 nm的Ni層作為第三金屬層,繼而依次形成厚度20 nm的Rh層作為第四金屬層,此處於Rh層(第二金屬層)之上形成厚度20 nm的Au層,除此以外,與實施例5同樣地製作比較例8的深紫外發光元件。
(比較例9) 於實施例5中是於Rh層(第二金屬層)之上形成厚度3 nm的Ni層作為第三金屬層,繼而依次形成厚度20 nm的Rh層作為第四金屬層,此處於Rh層(第二金屬層)之上依次形成厚度3 nm的Ni層作為第三金屬層,厚度20 nm的Au層作為第四金屬層,除此以外,與實施例5同樣地製作比較例9的深紫外發光元件。
(評價5) 於評價4中是將連續通電時間設為20小時,此處將其延長為168小時及1000小時來連續通電,除此以外,與評價4同樣地確認所述實施例與比較例有無猝死。將評價5的評價結果示於表6。
[表6] 表6
  製作條件 評價
p型接觸層 反射電極 RTA 熱處理 環境 猝死發生率 [%]
第一層 Al組成比 x 第二層 Al組成比 y 厚度平均 Al組成比 z Ni層 (第一層) 反射層 第三層 第四層 氧氣的有無 168h後 1000h後
實施例5 0.71 0.35 0.59 7 nm Rh: 50 nm Ni: 3 nm Rh: 20 nm 0 0
比較例8 0.71 0.35 0.59 7 nm Rh: 50 nm Au: 20 nm - 100 -
比較例9 0.71 0.35 0.59 7 nm Rh: 50 nm Ni: 3 nm Au: 20 nm 80 -
根據表6可知:即便藉由依照本發明的超晶格結構的p型接觸層、與Ni及Rh的反射電極的組合抑制了猝死發生,於Rh層(第二金屬層)上存在Au的狀態下,當經由第三步驟等的加熱使Au在反射電極中擴散時,仍存在發生猝死的可能性。並且可知藉由將Ni與Rh的反射電極製成將Ni與Rh的層序反覆多次的積層結構,可長時間抑制猝死發生率。
(實施例6) 除了將p型電子阻擋層的厚度自40 nm變更為33 nm以外,與實施例5同樣地製作實施例6的深紫外發光元件,並進行評價。p型電子阻擋層及p型接觸層的p型層的合計厚度為85.5 nm。
(實施例7) 除了將p型接觸層的第一層的厚度自5 nm減薄至2.5 nm,並將厚度平均Al組成比z設為0.53以外,與實施例5同樣地製作實施例7的深紫外發光元件,並進行評價。所述p阻擋層及所述p型接觸層的p型的合計厚度為75 nm。
針對實施例6、實施例7,與所述評價5同樣地確認有無猝死。將所述實施例6、實施例7的製作條件及評價結果與為了比較而先說明的實施例5、實施例6一併示於下述表7。
[表7] 表7
  製作條件 評價
p型電子阻擋層的厚度 [nm] p型接觸層 p型層的 合計厚度 [nm] 反射電極 發光輸出 Po [mW] 順向 電壓 Vf [V] 猝死發生率 [%]
第一層 Al組成比 x 第一層 厚度 [nm] 第二層 Al組成比 y 第二層 厚度 [nm] 厚度平均 Al組成比 z 168h後 1000h後
實施例5 40 0.71 5.0 0.35 2.5 0.59 92.5 Ni/Rh/Ni/Rh 79 7.5 0 0
實施例6 33 0.71 5.0 0.35 2.5 0.59 85.5 Ni/Rh/Ni/Rh 83 6.8 0 0
實施例7 40 0.71 2.5 0.35 2.5 0.53 75.0 Ni/Rh/Ni/Rh 79 7.0 0 0
比較例6 40 0.71 5.0 0.35 2.5 0.59 92.5 Ni/Au 75 7.0 0 40
根據表7可知藉由調整p型電子阻擋層60的厚度與p型接觸層70的厚度的合計(p型層的合計厚度),可進一步提高發光輸出。p型層的合計厚度較佳為65 nm以上且100 nm以下,更佳為設為70 nm以上且95 nm以下。並且,得以獲得相較於使用了Ni與Au的電極,發光輸出變高,且可靠性高的電極。 [產業上之可利用性]
根據本發明,可提供提供一種可兼顧高的發光輸出與優異的可靠性的深紫外發光元件用的反射電極的製造方法。進而,本發明可提供一種使用該反射電極的深紫外發光元件的製造方法及藉此而獲得的深紫外發光元件。
10:基板 10A:表面 20:緩衝層 30:n型半導體層 40:發光層 41:阱層 42:障壁層 60:p型電子阻擋層 70:p型接觸層 71:第一層 72:第二層 80:反射電極 81:第一金屬層 82:第二金屬層 83:第三金屬層 84:第四金屬層 90:n側電極 100:深紫外發光元件
圖1A是用以說明依照本發明的一實施方式的深紫外發光元件用的反射電極的製造方法的、基於示意剖面圖的步驟圖。 圖1B是用以說明依照本發明的另一實施方式的深紫外發光元件用的反射電極的製造方法的、基於示意剖面圖的步驟圖。 圖2是對依照本發明的一實施方式的深紫外發光元件進行說明的示意剖面圖。 圖3是用以說明依照本發明的一實施方式的深紫外發光元件的製造方法的、基於示意剖面圖的步驟圖。
70:p型接觸層
80:反射電極
81:第一金屬層
82:第二金屬層

Claims (13)

  1. 一種深紫外發光元件用的反射電極的製造方法,其特徵在於,包括: 第一步驟,於具有超晶格結構的p型接觸層上,將Ni形成3 nm~20 nm的厚度作為第一金屬層; 第二步驟,於所述第一金屬層上將Rh形成20 nm以上且2 μm以下的厚度作為第二金屬層;以及 第三步驟,對所述第一金屬層及所述第二金屬層進行300℃以上且600℃以下的加熱處理。
  2. 如請求項1所述的深紫外發光元件用的反射電極的製造方法,其中進行所述第三步驟中的加熱處理時的環境氣體包含氧。
  3. 如請求項1或請求項2所述的深紫外發光元件用的反射電極的製造方法,其中於所述第二步驟之後,更包括於所述第二金屬層上形成Ni層作為第三金屬層的步驟、及於所述第三金屬層上形成Rh層作為第四金屬層的步驟。
  4. 一種深紫外發光元件的製造方法,包括: 於基板上形成n型半導體層的步驟; 於所述n型半導體層上形成發光層的步驟; 於所述發光層上形成p型電子阻擋層的步驟; 於所述p型電子阻擋層上形成p型接觸層的步驟;以及 於所述p型接觸層上形成反射電極的步驟,並且所述深紫外發光元件的製造方法的特徵在於, 形成所述p型接觸層的步驟是交替反覆進行形成第一層的第一步驟與形成第二層的第二步驟來形成具有超晶格結構的所述p型接觸層,所述第一層包括具有Al組成比x的Alx Ga1-x N,所述第二層包括具有較所述Al組成比x低的Al組成比y的Aly Ga1-y N,且所述第二層的Al組成比y為0.15以上, 形成所述反射電極的步驟包括: 第一步驟,於所述p型接觸層的最表面的所述第二層上,將Ni形成3 nm~20 nm的厚度作為第一金屬層; 第二步驟,於所述第一金屬層上將Rh形成20 nm以上且2 μm以下的厚度作為第二金屬層;以及 第三步驟,對所述第一金屬層及所述第二金屬層進行300℃~600℃的加熱處理。
  5. 如請求項4所述的深紫外發光元件的製造方法,其中於所述p型接觸層的超晶格結構中, 將所述發光層中放出深紫外光的層的Al組成比設為w0 時, 所述第一層的所述Al組成比x高於所述Al組成比w0 , 所述第二層的所述Al組成比y低於所述Al組成比x, 所述Al組成比w0 、所述Al組成比x、所述Al組成比y及所述p型接觸層的厚度平均Al組成比z滿足下述式[1]、式[2]: 0.030<z-w0 <0.20 ・・・[1] 0.050≦x-y≦0.47   ・・・[2]。
  6. 如請求項5所述的深紫外發光元件的製造方法,其中於所述發光層中的最接近所述p型電子阻擋層的阱層、與所述p型電子阻擋層之間,更具有Al組成比相較於所述發光層的障壁層及所述p型電子阻擋層中的任一者的Al組成比都高的引導層。
  7. 如請求項6所述的深紫外發光元件的製造方法,其中所述引導層包含AlN。
  8. 如請求項5至請求項7中任一項所述的深紫外發光元件的製造方法,其中所述Al組成比w0 為0.25以上且0.60以下。
  9. 如請求項4或請求項5所述的深紫外發光元件的製造方法,其中所述p型電子阻擋層與所述p型接觸層的p型層的合計厚度為65 nm~100 nm。
  10. 如請求項4或請求項5所述的深紫外發光元件的製造方法,其中於所述第二步驟之後,更包括於所述第二金屬層上形成Ni層作為第三金屬層的步驟、及於所述第三金屬層上形成Rh層作為第四金屬層的步驟。
  11. 一種深紫外發光元件,其特徵在於,於基板上依次具有n型半導體層、發光層、p型電子阻擋層及p型接觸層, 所述p型接觸層具有交替積層第一層與第二層而成的超晶格結構,所述第一層包括具有Al組成比x的Alx Ga1-x N,所述第二層包括具有Al組成比y的Aly Ga1-y N,且所述第二層的所述Al組成比y為0.15以上, 於所述p型接觸層的最表面的所述第二層上具有包括Ni與Rh的反射電極。
  12. 如請求項11所述的深紫外發光元件,其中於所述p型接觸層的超晶格結構中, 將所述發光層中放出深紫外光的層的Al組成比設為w0 時, 所述第一層的所述Al組成比x高於所述Al組成比w0 , 所述第二層的所述Al組成比y低於所述Al組成比x, 所述Al組成比w0 、所述Al組成比x、所述Al組成比y及所述p型接觸層的厚度平均Al組成比z滿足下述式[1]、式[2]: 0.030<z-w0 <0.20 ・・・[1] 0.050≦x-y≦0.47   ・・・[2]。
  13. 如請求項11或請求項12所述的深紫外發光元件,其中所述p型電子阻擋層與所述p型接觸層的p型層的合計厚度為65 nm~100 nm。
TW109102621A 2019-01-22 2020-01-22 深紫外發光元件用的反射電極的製造方法、深紫外發光元件的製造方法及深紫外發光元件 TWI722784B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-008785 2019-01-22
JP2019008785 2019-01-22
JP2020006377A JP6793863B2 (ja) 2019-01-22 2020-01-17 深紫外発光素子用の反射電極の製造方法、深紫外発光素子の製造方法および深紫外発光素子
JP2020-006377 2020-01-17

Publications (2)

Publication Number Publication Date
TW202029523A true TW202029523A (zh) 2020-08-01
TWI722784B TWI722784B (zh) 2021-03-21

Family

ID=71891254

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109102621A TWI722784B (zh) 2019-01-22 2020-01-22 深紫外發光元件用的反射電極的製造方法、深紫外發光元件的製造方法及深紫外發光元件

Country Status (3)

Country Link
JP (2) JP6793863B2 (zh)
CN (1) CN113330586A (zh)
TW (1) TWI722784B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091173A1 (ja) * 2020-10-26 2022-05-05 創光科学株式会社 窒化物半導体紫外線発光素子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3631157B2 (ja) * 2001-03-21 2005-03-23 日本電信電話株式会社 紫外発光ダイオード
US7501295B2 (en) * 2006-05-25 2009-03-10 Philips Lumileds Lighting Company, Llc Method of fabricating a reflective electrode for a semiconductor light emitting device
KR101055090B1 (ko) * 2009-03-02 2011-08-08 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
JP4940363B1 (ja) * 2011-02-28 2012-05-30 株式会社東芝 半導体発光素子及び半導体発光装置
JP5601281B2 (ja) * 2011-05-30 2014-10-08 豊田合成株式会社 Iii族窒化物半導体発光素子の製造方法
TWI467807B (zh) * 2011-10-28 2015-01-01 Rgb Consulting Co Ltd 覆晶式之發光二極體
JP6092961B2 (ja) * 2015-07-30 2017-03-08 Dowaエレクトロニクス株式会社 Iii族窒化物半導体発光素子およびその製造方法
CN110462851B (zh) * 2017-03-27 2022-07-19 同和电子科技有限公司 Iii族氮化物半导体发光元件及其制造方法

Also Published As

Publication number Publication date
CN113330586A (zh) 2021-08-31
JP2020129697A (ja) 2020-08-27
JP6793863B2 (ja) 2020-12-02
TWI722784B (zh) 2021-03-21
JP2020120114A (ja) 2020-08-06

Similar Documents

Publication Publication Date Title
TWI742265B (zh) Iii族氮化物半導體發光元件及其製造方法
TWI773836B (zh) 深紫外線發光元件及其製造方法
JP6092961B2 (ja) Iii族窒化物半導体発光素子およびその製造方法
JP5415756B2 (ja) 開いたピット中に延びる能動層を有する発光デバイス及びその製造方法
US20080048194A1 (en) Nitride Semiconductor Light-Emitting Device
TWI299915B (en) Group iii nitride semiconductor light-emitting device
TWI722718B (zh) Iii族氮化物半導體發光元件及其製造方法
CN107004744B (zh) 第iii族氮化物半导体发光器件的制造方法和第iii族氮化物半导体发光器件
WO2020153308A1 (ja) 深紫外発光素子用の反射電極の製造方法、深紫外発光素子の製造方法および深紫外発光素子
JP2019192908A (ja) 深紫外発光素子
TWI722784B (zh) 深紫外發光元件用的反射電極的製造方法、深紫外發光元件的製造方法及深紫外發光元件
CN109564959B (zh) 氮化物半导体紫外线发光元件及其制造方法
TWI585993B (zh) Nitride light emitting device and manufacturing method thereof
WO2020122137A1 (ja) Iii族窒化物半導体発光素子及びその製造方法
TWI311818B (en) Transparent electrode
JP2006019713A (ja) Iii族窒化物半導体発光素子およびそれを用いたled
TW201946297A (zh) 深紫外發光元件