JP6776375B2 - 容量マイクロセンサを有するウエハ処理装置 - Google Patents

容量マイクロセンサを有するウエハ処理装置 Download PDF

Info

Publication number
JP6776375B2
JP6776375B2 JP2018566406A JP2018566406A JP6776375B2 JP 6776375 B2 JP6776375 B2 JP 6776375B2 JP 2018566406 A JP2018566406 A JP 2018566406A JP 2018566406 A JP2018566406 A JP 2018566406A JP 6776375 B2 JP6776375 B2 JP 6776375B2
Authority
JP
Japan
Prior art keywords
wafer
microsensor
capacitive
processing tool
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018566406A
Other languages
English (en)
Other versions
JP2019522900A (ja
Inventor
レナード テデスキ,
レナード テデスキ,
カーティク ラーマスワーミ,
カーティク ラーマスワーミ,
ダニエル トーマス マコーミック,
ダニエル トーマス マコーミック,
ロバート ポール メーグレイ,
ロバート ポール メーグレイ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2019522900A publication Critical patent/JP2019522900A/ja
Application granted granted Critical
Publication of JP6776375B2 publication Critical patent/JP6776375B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/08Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using capacitive means
    • G01B7/085Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using capacitive means for measuring thickness of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/2405Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by varying dielectric
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/227Sensors changing capacitance upon adsorption or absorption of fluid components, e.g. electrolyte-insulator-semiconductor sensors, MOS capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1029Particle size

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Chemical Vapour Deposition (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

関連出願の相互参照
[0001]本出願は、2016年6月20日に出願された米国特許出願第15/187,717号の利益を主張し、その全内容が、参照により本明細書に組み込まれる。
[0002]実施形態は、半導体処理の分野に関し、特に、ウエハ製造プロセスおよび装置を監視および制御するための装置および方法に関する。
[0003]半導体デバイスの製造における1つの主要な関心事は、半導体ウエハのパーティクル汚染である。このような汚染は、通常、半導体デバイスの製造中にウエハ処理ツールによって行われる1つ以上の作業中に発生する。例えば、ウエハ処理ツールは、ロードロックによって相互接続されたいくつかのチャンバなどのいくつかのインターフェースを含むことができ、これらのシステム構成要素のいずれかの作動または動作は、ツール内で半導体ウエハを汚染する可能性がある、アルミニウム、ステンレス鋼、ジルコニウム、または他のパーティクルなどの金属または非金属パーティクルを生成し得る。パーティクルは、インターフェースおよび可動部分以外に、ウエハ処理ツール内の多くの発生源から来る可能性があることを、当業者であれば、理解するであろう。したがって、上記は、例として提供されている。
[0004]パーティクル汚染の源および/または根本原因を特定するために、半導体ウエハは、定期的に、ウエハ処理ツールの1つ以上のチャンバを通って処理され、次いでパーティクル検査作業にかけられる。パーティクル検査作業では、処理されたウエハを、光学検査装置による検査のために順番待ち行列に入れて、パーティクルの位置および一般的なサイズを特定し、次に、走査電子顕微鏡、エネルギー分散型分光法、または他の検査技法による検査のために順番待ち行列に入れて、ウエハ上のパーティクルの存在および/または組成を決定する。パーティクルの存在および組成を検出した後、ウエハ処理ツールによって実行された作業のうちのどの作業が実際にパーティクル汚染をもたらしたかを特定するために、追加のトラブルシューティングが必要とされることがある。
[0005]半導体デバイスの製造は、例えば堆積プロセスまたはエッチングプロセスを使用して、ウエハ処理ツールによって基板上で材料、より具体的には半導体材料を堆積および除去することを含み得る。特定量の半導体材料を正確に堆積または除去するために、膜厚測定技術を使用することができる。例えば、材料堆積速度および材料除去速度は、半導体材料のウエハを所与の時間処理し、次いでエリプソメータを使用して堆積または除去された膜の量を測定することによって、間接的に測定することができる。さらに、ウエハ製造プロセス中の堆積/除去速度を間接的に推定するために、堆積/除去速度と相関する二次因子を測定するためのセンサが使用されてきた。
[0006]実施形態は、ウエハ処理ツール内のパーティクルを検出するためのパーティクル監視装置を含む。一実施形態では、パーティクル監視装置は、ウエハエレクトロニクスおよび支持面を有するウエハ基板と、支持面上のある位置に取り付けられた静電容量型マイクロセンサとを含む。実際、支持面のかなりの部分にわたって、数千個、例えば何千個ものセンサを分布させることができる。静電容量型マイクロセンサは、静電容量を有することができ、静電容量型マイクロセンサ上に材料が堆積されるとき、または静電容量型マイクロセンサから材料が除去されるときに、静電容量が変化し得る。
[0007]パーティクル監視装置は、一対の導体、例えば、第1の細長導体を有する第1の導体と、第1の細長導体と互いに噛み合う第2の細長導体を有する第2の導体とを含むことができる。静電容量型マイクロセンサは、1つ以上の導体の上にコーティングを含むことができる。一実施形態では、コーティングは、静電容量を変化させるように静電容量型マイクロセンサから除去される材料を含む。一実施形態では、コーティングは、表面積増加構造、例えば細孔を含み、その中に材料が、静電容量を変化させるように堆積される。
[0008]パーティクル監視装置は、ウエハフォームファクタおよび積層構造を有するように製造することができる。例えば、バリア層が、静電容量型マイクロセンサとウエハ基板との間にあってもよい。パーティクル監視装置は、バリア層を貫通してウエハエレクトロニクスを静電容量型マイクロセンサに接続する電気的相互接続、例えばシリコン貫通電極を、含むことができる。したがって、静電容量型マイクロセンサは、バリア層の上でプラズマまたは化学プロセスによって剥がされ、ウエハエレクトロニクスは、バリア層の下でプラズマまたは化学プロセスから保護され得る。ウエハエレクトロニクスは、静電容量が変化したときに静電容量型マイクロセンサの位置を記録するように静電容量型マイクロセンサに動作可能に結合されたプロセッサを含むことができ、プロセッサは、パーティクル監視装置の積層構造の最上層と最下層とバリアシールとの間に封入され保護された電源によって電力を供給され得る。
[0009]実施形態は、ウエハ製造プロセス、例えば材料の堆積または除去を監視または制御するための静電容量型マイクロセンサを有するウエハ処理ツールを含む。一実施形態では、ウエハ処理ツールは、チャンバ容積部の周囲のチャンバ壁を含み、静電容量型マイクロセンサは、ウエハ処理ツール上の任意の位置に取り付けることができる。例えば、静電容量型マイクロセンサは、ウエハ処理ツールのチャンバ壁、リフトピン、ロードロック、ガスライン、ロボット、または圧力制御バルブのうちの1つ以上に近接して取り付けられてもよい。静電容量型マイクロセンサの静電容量は、これらのうちの任意の位置でウエハ製造プロセスに応じて変化することができ、ウエハ製造プロセスを監視または制御するため、またはウエハ処理ツールの修理の必要性を知らせるために、静電容量の変化が測定されてもよい。
[0010]静電容量型マイクロセンサを有するウエハ処理ツールは、様々な方法に使用することができる。例えば、ウエハ処理ツールによって実行されるウエハ製造プロセスは、静電容量型マイクロセンサの静電容量の検出された変化に基づいて制御することができる。制御することは、ウエハ製造プロセスを終点決定することを含むことができる。制御することは、ウエハ製造プロセスの速度を保証することを含むことができる。制御することは、ウエハ製造プロセスの均一性を決定することを含むことができる。制御することは、静電容量変化の根本原因を決定することを含むことができる。制御することは、チャンバ壁からある量の材料を除去することを含むことができる。制御することは、ウエハのDCバイアスを測定することを含むことができる。
[0011]上記の要約は、全ての態様の網羅的なリストを含んでいるわけではない。上記に要約された様々な態様、ならびに以下の詳細な説明に開示され、本出願とともに提出される特許請求の範囲に特に指摘された態様の全ての適切な組み合わせから実施できる全てのシステムおよび方法が含まれることが、意図される。そのような組み合わせは、上記の要約に具体的に列挙されていない特定の利点を有する。
一実施形態による、ウエハ処理システムの図である。 一実施形態による、パーティクル監視装置の図である。 一実施形態による、パーティクル監視装置の断面図である。 一実施形態による、ウエハ処理ツールに取り付けられたいくつかの静電容量型マイクロセンサの断面図である。 一実施形態による、パーティクル監視装置またはウエハ処理ツールの電子回路のブロック図である。 一実施形態による、ウエハ処理システムの静電容量型マイクロセンサの斜視図である。 一実施形態による、ウエハ処理システムの静電容量型マイクロセンサの斜視図である。 一実施形態による、ウエハ処理システムの静電容量型マイクロセンサの、図7の線A−Aについての断面図である。 一実施形態による、ウエハ処理システムの静電容量型マイクロセンサの斜視図である。 一実施形態による、ウエハ処理システムの静電容量型マイクロセンサの斜視図である。 一実施形態による、ウエハ処理システムのマイクロ共振器型マイクロセンサの概略図である。 一実施形態による、ウエハ処理システムのトランジスタセンサ型マイクロセンサの概略図である。 一実施形態による、ウエハ処理システムの光センサ型マイクロセンサの概略図である。 一実施形態による、ウエハ製造プロセスを終点決定する方法における工程を表すフローチャートである。 一実施形態による、ウエハ製造プロセスの均一性を決定する方法における工程を表すフローチャートである。 一実施形態による、ウエハ製造プロセスの変化の根本原因を決定する方法における工程を表すフローチャートである。 一実施形態による、静電容量型マイクロセンサの寿命を延ばす方法における工程を表すフローチャートである。 一実施形態による、静電容量型マイクロセンサを組み込んだウエハホルダの断面図である。 一実施形態による、ウエハ製造プロセス中にウエハのDCバイアスを測定する方法における工程を表すフローチャートである。 一実施形態による、ウエハ処理システムの例示的なコンピュータシステムのブロック図を示す。 一実施形態による、ウエハ処理ツール内のパーティクル源を決定する方法における工程を表すフローチャートである。
[0033]パーティクル検出、エッチング/堆積速度の監視、または他の製造もしくはウエハ製造プロセスの制御に使用される装置および方法が、様々な実施形態に従って説明されている。以下の説明では、実施形態の完全な理解を提供するために、多数の具体的な詳細が説明される。実施形態がこれらの具体的な詳細なしで実施され得ることは、当業者に明らかであろう。他の例では、実施形態を不必要に曖昧にしないために、周知の態様は詳細には説明されない。さらに、添付の図面に示されている様々な実施形態は、例示的な表現であり、必ずしも一定の縮尺で描かれているわけではないことを理解されたい。
[0034]半導体ウエハ中のパーティクル汚染の存在、組成、または発生源を特定するための既存の技術は、時間がかかり、高価であり、そして困難である。ウエハ処理ツールと欠陥検査装置との間の距離、および検査装置に対する作業順番待ち行列は、検査プロセスに1時間以上かかり、ウエハ処理ツールを修理するための平均時間を遅らせることを意味する。検査装置はまた高価でもあり、購入するのに数百万ドルの範囲の費用がかかり、そして付加価値のないウエハ検査装置のための製造設備スペースを必要とする。さらに、パーティクル汚染を引き起こした正確な工程を特定するために使用されるトラブルシューティングプロセスは、実行するのが面倒であり、それぞれ100ドルを超える費用がかかる多数のウエハを使用する。
[0035]一態様において、パーティクル監視装置は、全ての圧力状態において、ウエハ処理ツール内のシステムレベルのパーティクル検出を可能にする。パーティクル監視装置は、パーティクル監視装置をウエハ処理ツールのチャンバ間で移動させることができ、半導体ウエハと同じプロセス工程に曝すことができるように、ウエハフォームファクタに組み込まれた多数のマイクロセンサ、例えば静電容量型マイクロセンサを含むことができる。したがって、パーティクル監視装置は、真空状態の下で行われるプロセス工程中を含むウエハ製造プロセス中にパーティクルがこのウエハ状装置に落下する正確な時間(および正確な位置)に関するリアルタイム情報を、収集することができる。したがって、パーティクル汚染の発生源および根本原因を、高価な検査装置または面倒なトラブルシューティングを必要とせずに迅速に決定することができる。そのような迅速な決定は、ウエハ処理ツールを修理するための平均時間を減らすことができ、または生産のためにウエハ処理ツールを認定するための時間を減らすことができる。さらに、パーティクル監視装置は、高価な欠陥検査装置に取って代わることができ、付加価値のあるウエハ処理装置のために製造設備スペースを解放することができる。
[0036]ウエハ製造プロセスの材料堆積または除去を監視するための既存の技術は、ウエハ製造プロセスのリアルタイム測定および制御を提供しないか、または堆積/除去を直接測定するのではなく、二次因子との相関に基づいて材料堆積/除去の推定値を提供する。例えば、エリプソメータを使用して膜厚を測定することができるが、エリプソメータは周期的な監視装置であるため、エリプソメータは、通常の生産工程における堆積/除去速度のリアルタイムの変動またはドリフトを検出することができない。さらに、RF整合位置またはプラズマ中のガス濃度などの二次因子を測定するためにウエハ処理ツールのプロセスチャンバ内に設置されたセンサは、関心のある変数(堆積/除去速度)を直接測定せず、そのような測定は、プラズマがないチャンバでは、より困難になる。
[0037]一態様において、ウエハ処理システムは、ウエハ処理ツール上のある場所に取り付けられたマイクロセンサ、例えば静電容量型マイクロセンサを含み、例えば真空状態およびプラズマレス状態などの全ての圧力状態において材料堆積または材料除去を測定する。プロセスチャンバ上に取り付けられた静電容量型マイクロセンサは、静電容量を含むことができ、静電容量は、材料がセンサ表面、例えばコーティング上に堆積される、またはセンサ表面から除去されるときに、変化し得る。したがって、材料堆積または除去の量または速度のリアルタイム測定、ならびにそのような量または速度の均一性を監視し、ウエハ処理システムによって実行されるウエハ製造プロセスを制御するために使用することができる。
[0038]以下に記載されるウエハ処理システムおよび方法は、任意のフォームファクタまたは材料が基板に堆積もしくは基板から除去されるプロセスにおいて使用され得ることが、理解されるであろう。より具体的には、ウエハ処理システムおよび方法は、集積回路の製造のためのウエハ処理に関して説明されているが、これらの装置および方法は、電子産業におけるディスプレイおよび/またはソーラー産業における光電池などの他の技術における使用にも適合され得る。この装置構成、例えば、ウエハ処理ツール内の様々な場所に取り付けられた静電容量型マイクロセンサを使用して、パーティクルの存在または堆積/除去速度以外のプロセスパラメータを検出することができることも、理解されよう。例えば、以下に説明するように、静電容量型マイクロセンサを使用して、ウエハ処理ツール内のウエハのDCバイアスを検出することができる。したがって、静電容量型マイクロセンサを有するウエハ処理ツールは、ウエハ製造ツールおよびプロセス内で広い用途を見出すことができる。
[0039]図1を参照すると、一実施形態によるウエハ処理システムの図が、示されている。ウエハ処理システム100は、通信リンク106によってコンピュータシステム104に通信可能に結合されたウエハ処理ツール102を含むことができる。通信リンク106は、有線または無線接続とすることができ、すなわち、ウエハ処理ツール102は、コンピュータシステム104と直接または無線で通信することができる。データは、通信リンク106によってウエハ処理ツール102および/またはウエハ処理ツール102内の装置から転送され得るが、いくつかの実施形態では、ウエハ処理ツール102内の装置は、受動性の装置であってもよいことが、理解されよう。すなわち、この装置は、ウエハ処理ツール102によって処理されてもよく、変化を受けてもよく、装置がウエハ処理ツール102から取り出された後に、変化が測定されてもよい。これは、以下に記載されるように、例えばパーティクル検出ツールまたはエッチング/堆積監視ツールの特徴であり得る。
[0040]ウエハ処理ツール102は、1つ以上のロードロック112によってファクトリインターフェース110に物理的に接続されたバッファチャンバ108を含むことができる。さらに、1つ以上のプロセスチャンバ114を、1つ以上のそれぞれのロードロック112によってバッファチャンバ108に物理的に接続することができる。バッファチャンバ108は、プロセスチャンバ114のそれぞれの容積部よりも大きい中間容積部として働くことができ、プロセスチャンバ114内のプロセス圧力より高い圧力ではあるが、低圧のままである。したがって、半導体デバイスの製造中、半導体ウエハ、例えばシリコンウエハを、真空状態の下でウエハ処理ツール102のチャンバ間で移動させることができる。そのような移動は、ウエハ処理ツール102に含まれる様々な装置、例えばロボット、ロボットアーム、シャトルなどによって可能にされ得る。
[0041]様々な製造工程をプロセスチャンバ114内で実行することができる。例えば、少なくとも1つのプロセスチャンバ114が、エッチングチャンバ、堆積チャンバ、半導体リソグラフィツールのチャンバ、または他の任意の半導体プロセスチャンバであってもよい。したがって、プロセスチャンバ114は、真空状態、大気状態、または他の任意の圧力状態の下でウエハ製造プロセスを実行するために使用され得る。
[0042]様々な圧力状態に加えて、プロセスチャンバ114はまた、異なるエネルギー条件を有する製造プロセスを実行するために使用されてもよい。例えば、プロセスチャンバ114は、ラジカル駆動エッチングチャンバまたはプラズマを含まない堆積チャンバであってもよい。すなわち、プロセスチャンバ114は、ウエハ製造プロセス中にプラズマレスであってもよい。
[0043]ウエハ製造プロセス中、半導体ウエハは、ロードロック112を介してバッファチャンバ108からプロセスチャンバ114のうちの1つに移送されてもよい。プロセスチャンバ114は、例えば真空ポンプおよび/またはターボポンプ(図4)を使用して、真空状態まで下げられるチャンバ圧力を有し得る。この説明の文脈では、真空状態は、0.5気圧未満の任意の圧力であり得る。一実施形態では、プロセスチャンバ114が、バッファチャンバ108の圧力よりも低い、例えば100ミリトール未満のチャンバ圧力を有するときに、プロセスチャンバ114内の真空状態が存在する。したがって、プロセスチャンバ114内で行われる製造工程は、真空状態の下で実行することができる。
[0044]1つ以上のパーティクルが、プロセスチャンバ114内で行われる製造工程中に発生する可能性がある。例えば、パーティクルは、特定の動作が行われたとき、例えばロードロック112のバルブが開かれたとき、ロードロックドアがロックされたとき、リフトピンが移動しているとき、または任意の他のツール動作が行われたときに、プロセスチャンバ114内に放出される金属または非金属パーティクルであってもよい。放出されたパーティクルは、半導体ウエハ上に落下し、パーティクルの落下位置および時間は、パーティクル汚染源に対応することがある。例えば、パーティクルは、ロードロック112が閉じられたときに、ロードロック112により近く半導体ウエハ上に落下し得るが、これは、ロードロック112の構成要素および/またはロードロック112の作動がパーティクル源であることを示している。したがって、パーティクルが半導体ウエハ上に落下する位置および時間に関する情報を提供するパーティクル監視が、パーティクル汚染源を決定するのに有用であり得ることが、理解される。
[0045]図2を参照すると、一実施形態によるパーティクル監視装置の図が、示されている。パーティクル監視装置200は、ウエハ処理ツール102のチャンバ間、例えばバッファチャンバ108および/またはプロセスチャンバ114間を移動するように構成することができる。例えば、パーティクル監視装置200は、半導体ウエハのような全体フォームファクタならびに/または半導体ウエハと同じ材料および形状を有するウエハ基板202を含むことができる。すなわち、ウエハ基板202は、半導体材料、例えば結晶シリコン材料から少なくとも部分的に構成されてもよい。さらに、ウエハ基板202は、本質的にディスク形状であり、直径206を有する支持面204を含むウエハフォームファクタを有することができる。支持面204は、ディスクの上面とすることができ、ウエハ基板202の底面(図示せず)は、支持面204から厚さ208だけ離間することができる。一実施形態では、ウエハ基板202のウエハフォームファクタは、95mmから455mmの間の直径206を含み、例えば、直径206は、名目上100mm、300mm、または450mmであり得る。さらに、ウエハ基板202のウエハフォームファクタは、1mm未満、例えば525μm、775μm、または925μmの厚さ208を含み得る。厚さ208は、1mmよりも大きくてもよく、例えば数ミリメートルから10mmまでであってもよい。したがって、パーティクル監視装置200は、容易に入手可能なウエハ材料ならびに典型的なウエハ製造プロセスおよび装置を使用して製造することができ、ウエハ処理ツール102によって処理されるときに本質的に半導体ウエハをシミュレートすることができる。
[0046]パーティクル監視装置200は、支持面204上の所定の位置に取り付けられたいくつかのマイクロセンサを含むことができる。マイクロセンサは、以下に記載されるマイクロセンサのタイプのうちの1つ以上であってもよい。一実施形態では、マイクロセンサは、静電容量型マイクロセンサ210である。例えば、多数の静電容量型マイクロセンサ210、例えば数千から数百万の静電容量型マイクロセンサ210を、支持面204上に作製することができる。各静電容量型マイクロセンサ210は、既知の位置を有することができる。例えば、第1の静電容量型マイクロセンサ212を第1の位置に配置し、第2の静電容量型マイクロセンサ214を第2の位置に配置することができる。第2の位置は、第1の位置に対して、またはパーティクル監視装置200上の他の何らかの基準点に対して既知の位置を有してもよい。
[0047]静電容量型マイクロセンサ210は、支持面204にわたってランダムに分布させてもよく、または所定のパターンで配置してもよい。例えば、図2に示す静電容量型マイクロセンサ210は、それらの絶対位置または相対位置が予め決定され、知られているとしても、支持面204にわたってランダムに分布されているように見える。一実施形態では、静電容量型マイクロセンサ210は、所定のパターン、例えばグリッドパターン、同心円パターン、螺旋パターンなどで配置されている。そのようなパターンは、パーティクル監視装置200の支持面204上の正確な位置に静電容量型マイクロセンサ210を作製するために既知のエッチングプロセスを使用して達成することができる。
[0048]一実施形態では、静電容量型マイクロセンサ210は、支持面204の表面積の大部分にわたって広がっている。例えば、マイクロセンサアレイの最も外側の静電容量型マイクロセンサ210を通って描かれる外側輪郭は、支持面204の表面積の少なくとも半分であるアレイ領域の輪郭を描き得る。一実施形態では、アレイ領域は、支持面204の表面積の少なくとも75%、例えば表面積の90%超である。
[0049]パーティクル監視装置200の静電容量型マイクロセンサ210は、1つ以上の電気コネクタを介して互いにまたは他の回路と相互接続することができる。例えば、静電容量型マイクロセンサ210は、支持面204上を走る電気トレース216によって直列に接続することができる。代替的または追加的に、いくつかの静電容量型マイクロセンサ210は、それぞれの電気トレース216によって並列に電気的に接続されてもよい。このように、電気トレース、導線、ビア、および他の既知のタイプの電気コネクタを使用して、電気的接続が、静電容量型マイクロセンサ210間で行われ得るか、または静電容量型マイクロセンサ210が、ウエハエレクトロニクス、すなわち電子回路218に接続され得る。
[0050]パーティクル監視装置200の各静電容量型マイクロセンサ210は、パーティクルがセンサと相互作用するときに所与のパラメータの変化を感知するように構成されてもよい。より詳細には、静電容量型マイクロセンサ210は、静電容量を有することができ、材料が静電容量型マイクロセンサ210上に堆積されるとき、または静電容量型マイクロセンサ210から除去されるときに、静電容量が変化し得る。したがって、静電容量型マイクロセンサ210が、ウエハ処理ツール102のチャンバ、例えばプロセスチャンバ114内でパーティクルを受け取ると、静電容量は、変化し得る。ここで、「受け取る」という用語は、静電容量に影響を与えるパーティクルと静電容量型マイクロセンサ210との間の相互作用を示す。後述するように、パーティクル監視装置200は、他のマイクロセンサのタイプを含んでもよく、したがって、パーティクルがそのようなマイクロセンサによって受け取られたときに、異なるパラメータが感知されてもよいことが、理解されよう。例えば、以下のように、パラメータは、電圧、電流、またはパーティクルがマイクロセンサ上に落下するとき、マイクロセンサの近くを通るとき、もしくはマイクロセンサを通過するとき、またはマイクロセンサに衝突するときに変化するマイクロセンサの他の物理的もしくは電気的特性であってもよい。この説明を読むとき、他のパーティクル−センサ相互作用が、当業者によって理解されるであろう。
[0051]図3を参照すると、一実施形態によるパーティクル監視装置の断面図が示されている。静電容量型マイクロセンサ210は、典型的な半導体ウエハのローディングおよび処理と同様に、自動的にシステム内にロードされシステム全体にわたって移動され得るウエハ基板202上にパッケージングされ得る。したがって、静電容量型マイクロセンサ210は、生産用半導体ウエハと同じ環境を経験することができる。一実施形態では、いくつかの静電容量型マイクロセンサ210を有するセンサ層302が、ウエハ基板202の少なくとも一部を覆っている。したがって、センサ層302の静電容量型マイクロセンサ210は、ウエハ基板202の支持面204上に取り付けられている。
[0052]一実施形態では、ウエハ基板202は、ウエハ処理ツール102内のプラズマによる攻撃からパーティクル監視装置200の電子回路218を保護するような構造になっている。したがって、ウエハ基板202は、最上層306と最下層308との間に挟まれた電子回路218を含むことができる。例えば、電子回路218は、電源304、例えば薄膜電池を含むことができる。薄膜電池は、シリコンの層306、308の間に封入されてもよく、このようにして、2枚のシリコンウエハによって、頂部または底部からのプラズマ攻撃に対して保護され得る。さらに、電源304は、バリアシール310によって、側面からのプラズマ攻撃に対して保護することができる。バリアシール310は、電源304の周囲で最上層306と最下層308との間に挟まれてもよい。より具体的には、バリアシール310は、電源304の側面を囲む保護壁を形成するために、ウエハ基板202の周囲に延在することができる。このように、電源304は、ウエハ基板202内に封入することができる。
[0053]電源304は、最上層306および/またはセンサ層302内の電子回路218の1つ以上の構成要素に電気的に接続されてもよい。例えば、電子回路218、例えばプロセッサなどの制御エレクトロニクス、メモリ、または通信エレクトロニクスを、ウエハ基板202の最上層306に組み込むことができる。電源304は、パーティクル監視装置200の1つ以上の層を貫通して延びるシリコン貫通電極などの電気的接続によって最上層306内の電子回路218に接続することができる。同様に、電源304および/または最上層306内の電子回路218、例えばプロセッサは、電気トレースまたは電気ビアによってセンサ層302内の静電容量型マイクロセンサ210に電気的に接続されてもよい。したがって、電源304は、電子回路218のプロセッサ、静電容量型マイクロセンサ210、または他の電子回路218に電気的に結合されて、該エレクトロニクスに電力を供給することができる。
[0054]静電容量型マイクロセンサ210は、ウエハ処理ツール102内でプラズマに曝される可能性があり、したがって、センサは、最終的に磨耗する可能性がある。したがって、マイクロセンサがリサイクル可能であるように静電容量型マイクロセンサ210をパッケージングすることが有利であり得る。一実施形態では、静電容量型マイクロセンサ210のパッケージングは、静電容量型マイクロセンサ210と下にある基板との間のバリア層312を含む。例えば、パーティクル監視装置200の場合、バリア層312は、静電容量型マイクロセンサ210とウエハ基板202の支持面204との間に配置されてもよい。静電容量型マイクロセンサ210は、シリコン貫通電極などの既知の相互接続技術を使用して、バリア層312を貫通してウエハエレクトロニクス、すなわち電子回路218に電気的に接続することができる。制御エレクトロニクスとセンサとの間のバリア層312は、リサイクル中に該エレクトロニクスを保護することができる。例えば、静電容量型マイクロセンサ210は、剥離剤によって、すなわちプラズマ、気体または液体エッチャントによって除去可能であり、バリア層312は、同じ剥離剤によって剥離可能ではない場合がある。すなわち、バリア層312は、気相または液体エッチャントなどの剥離剤に対して不浸透性である、導電性または絶縁性の任意の材料とすることができる。したがって、静電容量型マイクロセンサ210が、それらの耐用年数の終わりに達すると、プラズマ450を用いて、ウエハ基板202に組み込まれた電子回路218を劣化させることなく、センサ層302のマイクロセンサをバリア層312から剥がすことができる。同様に、機械的な剥離が、摩耗したセンサを取り除くために使用されてもよい。次に、新しい一組の静電容量型マイクロセンサ210を有する新しいセンサ層302をバリア層312上に形成して、全く新しいパーティクル監視装置200を形成するよりも低いコストで、パーティクル監視装置200を修復することができる。
[0055]パーティクル監視装置200の構成要素は、既知の半導体プロセスおよび技術を用いて形成することができる。例えば、上述のように、センサと電子回路218との間の電気的接続は、シリコン貫通電極を使用して、バリア層312および/またはウエハ基板202を貫通して形成することができる。さらに、構成要素は、既知の技術を使用してパーティクル監視装置200の層に組み込まれてもよい。例えば、静電容量型マイクロセンサ210は、別々に形成されて、次いでリサイクルプロセス中にフリップチップ技術を使用してバリア層312上に取り付けられてもよい。
[0056]パーティクル監視装置200における静電容量型マイクロセンサ210の実装は、パーティクル検出のために静電容量型マイクロセンサ210を使用する実施形態を表す。ウエハ製造処理装置および方法における静電容量型マイクロセンサ210の他の用途が、存在する。例えば、静電容量型マイクロセンサ210は、エッチング/堆積速度を検出または測定するためにウエハ処理ツール102に取り付けられてもよく、そのようなデータが、後述するように、ウエハ製造プロセスを制御するために使用されてもよい。
[0057]図4を参照すると、一実施形態による、ウエハ処理ツールに取り付けられたいくつかの静電容量型マイクロセンサの断面図が、示されている。ウエハ402、例えば半導体材料のウエハ402またはパーティクル監視装置200のウエハ基板202が、ウエハ処理ツール102のプロセスチャンバ114内でウエハ製造プロセスを受けることができる。ウエハ402が、ウエハ処理ツール102を通って移動するとき、ウエハ402は、異なる圧力状態を経験することがある。例えば、半導体ウエハ402は、大気状態でファクトリインターフェース110に挿入され得る。次に、半導体ウエハ402が、ファクトリインターフェース110とバッファチャンバ108との間のロードロック112に入ると、ロードロック112は、120ミリトールの真空状態にされ得る。次に、半導体ウエハ402は、ロードロック112からバッファチャンバ108内へ進むことができ、バッファチャンバ108の圧力は100ミリトールである。
[0058]ウエハ402は、ロードロック112を介してバッファチャンバ108からプロセスチャンバ114のうちの1つに移送され得る。例えば、プロセスチャンバ114は、チャンバ容積部406の周囲にチャンバ壁404を含むことができ、チャンバ容積部406は、ウエハ402を受け取るようにサイズ設定することができる。したがって、半導体材料が、プロセスチャンバ114内でウエハ製造プロセス中にウエハ402上に堆積されるか、またはウエハ402から除去され得る。ウエハ製造プロセス中、プロセスチャンバ114のチャンバ容積部406は、例えば真空ポンプおよび/またはターボポンプなどの真空源408を使用して真空状態まで下げられるチャンバ圧力を有することができる。この説明の文脈では、真空状態は、0.5気圧未満の任意の圧力であり得る。一実施形態では、プロセスチャンバ114が、バッファチャンバ108の圧力よりも低い、例えば100ミリトール未満のチャンバ圧力を有するときに、プロセスチャンバ114内の真空状態が存在する。したがって、プロセスチャンバ114は、ウエハ製造プロセスの製造工程中に真空状態の下にあり得る。さらに、真空状態は、チャンバ容積部406からガス状混合物を低減または排除することができ、したがって、チャンバ容積部406は、ウエハ製造プロセス中にプラズマレスになり得る。
[0059]1つ以上のマイクロセンサ、例えば静電容量型マイクロセンサ210を、ウエハ処理ツール102に取り付けることができる。例えば、静電容量型マイクロセンサ210を、チャンバ容積部406内のプロセスチャンバ114上の1つ以上の位置に取り付けることができる。より具体的には、いくつかの静電容量型マイクロセンサ210を、チャンバ容積部406内のチャンバ壁404上の所定の位置に取り付けることができる。
[0060]一実施形態では、静電容量型マイクロセンサ210は、チャンバ壁404以外のウエハ処理ツール102の部分に取り付けられる。例えば、静電容量型マイクロセンサ210をチャンバ壁404に取り付ける代わりに、またはそれに加えて、1つ以上の静電容量型マイクロセンサ210が、プロセスチャンバ114内のウエハホルダ410に取り付けられてもよい。ウエハホルダ410は、例えば、ウエハ製造プロセス中にウエハ402を静電的に固定させるための電極を有する静電チャックであってもよい。ウエハホルダ410は、その上にウエハ402が固定される保持面412を含むことができる。例えば、保持面412は、ウエハホルダ410上の誘電体材料の層であってもよく、静電容量型マイクロセンサ210が、保持面412上に取り付けられてもよい。より具体的には、静電容量型マイクロセンサ210は、ウエハ製造プロセス中、ウエハ402の近くおよび/またはウエハ402から横方向にずれた領域で保持面412に取り付けられてもよい。例えば、プロセスキットが、保持面412上のウエハ402の周囲にリングを含み、静電容量型マイクロセンサ210が、プロセスキットに取り付けられてもよい。
[0061]静電容量型マイクロセンサ210は、ウエハ402の材料堆積もしくは除去の速度の変化を検出するために、ウエハ402に十分に近接して、プロセスチャンバ114内に配置されてもよく、またはプロセスチャンバ114の消耗部品もしくは非消耗部品、例えばウエハホルダ410に組み込まれてもよい。例えば、ウエハ402は、前向き面、すなわちプラズマ450に向かって保持面412とは反対の方を向く面を有することができ、静電容量型マイクロセンサ210は、材料の堆積/除去を感知できるセンサ表面もまた前向きになるように、保持面412に取り付けることができる。
[0062]静電容量型マイクロセンサ210は、プロセスチャンバ114内の場所以外のウエハ処理ツール102上の場所に取り付けられてもよいことが、理解されよう。例えば、1つ以上の静電容量型マイクロセンサが、ロードロック112上、その中、またはそれに近接して取り付けられてもよい。同様に、静電容量型マイクロセンサ210は、いくつかの例示的な位置を挙げると、ウエハ処理ツール102のガスライン(図示せず)、真空源408への流れを制御するウエハ処理ツール102の圧力制御バルブ414、ウエハ処理ツール102のロボット、またはウエハ処理ツール102のリフトピンの上に、中に、または近接して取り付けられてもよい。静電容量型マイクロセンサ210は、所望の特定のプロセス測定および制御に応じて、ウエハ処理ツール102の他の場所に近接して取り付けられてもよい。ここで、「に近接して」は、相対的な用語として使用されているが、ウエハ処理ツール102の特定の構成要素の近くにおける静電容量型マイクロセンサ210の存在は、その構成要素上に堆積した、またはその構成要素から除去されたパーティクルまたは材料が、その取り付けられたセンサと相互作用する可能性が統計的にあるような距離を表すことを意図している。これらの相互作用の例が、以下に記載される方法に関してさらに説明される。
[0063]本明細書で使用される場合、「マイクロ(micro)」という用語は、実施形態による特定のセンサまたは構造の記述的なサイズを指すことがある。例えば、用語「静電容量型マイクロセンサ」は、数ナノメートルから100μmのスケールの寸法を有する静電容量型センサを指すことができる。すなわち、一実施形態において、以下に説明するような静電容量型マイクロセンサ210は、並列または直列に接続することができる個々のセルに対して0.05μmから100μmの範囲である典型的な寸法を有することができる。したがって、本明細書に記載の静電容量型マイクロセンサ210は、他のセンサタイプ、例えば、百万分の1グラムの単位で正確な重量測定を行うことができる機器であるマイクロ天秤などと容易に区別することができる。すなわち、マイクロ天秤は、マイクロスケールで重量を測定し得るが、本明細書中に記載されるマイクロセンサと同じサイズ範囲内ではない。サイズ範囲の違いは、少なくとも、いくつかの例えば数千個のマイクロセンサがチャンバ容積部406またはウエハ処理ツール102上の他の場所に収まることがあるのに対し、いくつかのマイクロ天秤は半導体ウエハ402を受け入れるようにサイズ設定されたチャンバ容積部406に収まらないことがあるので、有利である。
[0064]本明細書で使用されるとき、用語「マイクロセンサ」はまた、マイクロエレクトロメカニカルシステム(MEMS)に関連する材料および製造プロセスを使用して製造されるセンサを指すこともある。すなわち、本明細書に記載の静電容量型マイクロセンサ210は、堆積プロセス、パターニング、エッチングなどのMEMSプロセスを使用して製造することができる。したがって、静電容量型マイクロセンサ210は、MEMSプロセスを使用して形成されたサイズおよび構造を有するMEMSスケールのセンサであってもよい。しかしながら、実施形態は、必ずしもそのように限定されるわけではなく、実施形態の特定の態様は、より大きな、そしてあるいはより小さなサイズスケールに適用可能であり得ることを、理解されたい。
[0065]わずか1つのマイクロセンサが、ウエハ処理ツール102に取り付けられてもよいが、多数のマイクロセンサ、例えば数百から数百万のマイクロセンサを、チャンバ容積部406に収める、またはウエハ処理ツール102の他の場所に取り付けることができる。すなわち、以下に説明するMEMSスケールサイズのマイクロセンサを考えると、ウエハ製造プロセスパラメータ、例えばプロセスチャンバ114内の半導体材料の堆積/除去をリアルタイムで監視するために、多くのマイクロセンサを、ウエハ処理ツール102に沿って、例えばチャンバ壁404(またはウエハ処理ツール102の他の構成要素)の周りに分布させてもよい。
[0066]各静電容量型マイクロセンサ210は、既知の位置を有することができる。例えば、第1の静電容量型マイクロセンサが、ウエハ処理ツール102上の第1の所定の位置、例えばチャンバ容積部406内の第1の位置に配置され、第2の静電容量型マイクロセンサが、ウエハ処理ツール102上の第2の所定の位置、例えばチャンバ容積部406内の第2の位置に配置されてもよい。静電容量型マイクロセンサ210は、プロセスチャンバ114上にランダムにまたは所定のパターンで分布させることができる。例えば、第2の位置は、第1の位置に対して、またはプロセスチャンバ114上の他の何らかの基準点に対して既知の位置を有してもよい。したがって、材料の堆積/除去の均一性は、第1の静電容量型マイクロセンサおよび第2の静電容量型マイクロセンサからのリアルタイム測定値を比較することによって、以下に記載されるように決定され得る。
[0067]ウエハ処理ツール102は、ウエハ製造プロセスのプロセスパラメータを検出するための他のセンサおよび/または測定機器を含んでもよい。他のセンサおよび/または測定機器は、マイクロセンサでなくてもよい。例えば、後述のMEMSスケールのセンサとは対照的に、ウエハ処理ツール102は、ウエハ製造プロセス中にチャンバ容積部406の発光分光分析(OES)シグネチャを検出するために、プロセスチャンバ114上に取り付けられるか、または他の方法で取り付けられる光学分光計416を含んでもよい。OESシグネチャは、チャンバ容積部406内の元素の種類および量を特定し得る。例えば、OESシグネチャは、どの化学元素がウエハ製造プロセス中にチャンバ容積部406内のプラズマ450中に存在するかを、特定し得る。他のセンサを使用して、チャンバ容積部406内で実行されるウエハ製造プロセスの他のプロセスパラメータを検出することができる。そのような他のセンサは、プロセスチャンバ114またはウエハ402に供給される電力を測定するための電気センサ、ウエハホルダ410の電気的特性を測定するための電気センサなどを含むことができる。そのようなセンサは、半導体材料808の堆積/除去の実際の量または速度を測定しないかもしれないが、それにもかかわらず、以下に説明する理由で、静電容量型マイクロセンサ210によって行われる実際の堆積/除去測定と相関させることができる。
[0068]ウエハ処理ツール102内のパーティクルの存在と相関のある情報を集めるために、他のセンサが使用されてもよい。例えば、1つ以上の測定装置、例えば加速度計(図示せず)が、ウエハ処理ツール102の可動部分に取り付けられてもよい。一実施形態では、ロボットまたはロボットアームは、ロボットの動きを感知するための加速度計を含む。あるいは、ロードロックドアが、加速度計を含む。したがって、ウエハ製造プロセスのプロセスパラメータ、例えばロボットの動きを表すモーションデータが、加速度計によって検出され、静電容量型マイクロセンサ210から収集されたパーティクル感知データと相関されて、パーティクル源を決定することができる。このような他のセンサ、例えば加速度計の用途が、以下にさらに説明される。
[0069]静電容量型マイクロセンサ210および/またはウエハ処理ツール102の測定機器もしくは装置は、1つ以上の電気コネクタを介して互いにまたは他の回路と相互接続することができる。例えば、静電容量型マイクロセンサ210は、チャンバ壁404および/またはウエハホルダ410上を走る電気トレースによって直列に接続されてもよい。代替的または追加的に、いくつかの静電容量型マイクロセンサ210が、それぞれの電気トレース216によって並列に電気的に接続されてもよい。このように、電気トレース、導線、ビア、および他の既知のタイプの電気コネクタを使用して、電気的接続が、静電容量型マイクロセンサ210間で行われ、かつ/または静電容量型マイクロセンサ210が、電子回路218に接続され得る。
[0070]図5を参照すると、一実施形態によるパーティクル監視装置またはウエハ処理ツールの電子回路のブロック図が示されている。パーティクル監視装置200またはウエハ処理ツール102の電子回路218は、ウエハ402またはウエハ処理ツール102の下部構造によって支持されてもよい。例えば、電子回路218は、上述のように、パーティクル監視装置200の最上層306上に取り付けられてもよい。電子回路218は、ハウジング内に入れられていてもよい。電子回路218のハウジングおよび/または電子部品は、ウエハ402の一部分であってもよく、例えば、ハウジングは、電子回路218を封入するウエハ基板の層であってもよい。あるいは、ハウジングは、ウエハ処理ツール102上、例えばチャンバ壁404またはウエハホルダ410上に取り付けられてもよい。同様に、ハウジングは、ウエハ処理ツール102の他の部分、例えばチャンバ容積部406の外側の外面に取り付けられてもよい。したがって、電子回路218は、静電容量型マイクロセンサ210に対して同じ場所に配置されてもよく、または離れて配置されてもよい。それにもかかわらず、電子回路218は、静電容量型マイクロセンサ210に対して離れて取り付けられているときでも、1つ以上の入力/出力(I/O)接続部502、例えば電気トレース、導線、またはビアを介して、静電容量型マイクロセンサ210と電気的に接続することができる。
[0071]ウエハ処理ツール102の電子回路218は、クロック504を含むことができる。クロック504は、当技術分野で知られているように、正確な周波数を有する電気信号を出力する電子発振器、例えば水晶振動子を有する電子回路であってもよい。したがって、クロック504は、I/O接続部502を介して受信した電気信号に対応する時間値を出力するように構成することができる。時間値は、他の動作とは無関係の絶対時間値であってもよいし、または時間値は、ウエハ処理ツール102内の他のクロックと同期されてもよい。例えば、クロック504は、クロック504によって出力される時間値が、システム時間値および/またはシステムクロックによって出力または制御されるシステム動作に対応するように、ウエハ処理ツール102のシステムクロック、またはウエハ処理ツール102にリンクされた製造設備のホストコンピュータのシステムクロックに同期されてもよい。クロック504は、特定の処理動作が発生したときに時間値の出力を開始するように構成されてもよい。ウエハ処理ツール102の電子回路218は、ウエハ処理ツール102とホストコンピュータとの間の通信を送受信するためのネットワークインターフェース装置506を含むことができる。
[0072]ウエハ処理ツール102の電子回路218は、プロセッサ508を含むことができる。プロセッサ508は、クロック504に動作可能に結合されてもよく、例えばバス510および/またはトレースによって電気的に接続されてもよい。プロセッサ508は、マイクロプロセッサ、中央処理装置などの1つ以上の汎用処理装置を表す。より具体的には、プロセッサ508は、複合命令セットコンピューティング(CISC)マイクロプロセッサ、縮小命令セットコンピューティング(RISC)マイクロプロセッサ、超長命令語(VLIW)マイクロプロセッサ、他の命令セットを実装するプロセッサ、または命令セットの組み合わせを実装するプロセッサであってもよい。プロセッサ508は、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、デジタル信号プロセッサ(DSP)、ネットワークプロセッサなどの1つ以上の専用処理装置であってもよい。
[0073]プロセッサ508は、本明細書に記載の動作を実行するための処理ロジックを実行するように構成される。例えば、プロセッサ508は、パーティクル監視装置200またはウエハ処理ツール102上の異なる所定の位置に配置されたいくつかの静電容量型マイクロセンサ210からの入力信号を受信し分析するように構成されてもよい。したがって、プロセッサ508は、それが動作可能に接続されている静電容量型マイクロセンサ210に関連するデータを決定し記録することができる。例えば、プロセッサ508は、静電容量型マイクロセンサの静電容量が変化したときに、静電容量型マイクロセンサ210の位置を記録することができる。プロセッサ508はまた、受信した各入力信号に対応するクロック504からの時間値出力を受信し、その時間値出力をタイムスタンプとしてメモリに記録することができる。したがって、プロセッサ508は、例えば、所与の時間におけるウエハ製造プロセスの均一性を決定するために、いくつかの静電容量型マイクロセンサ210からの入力信号を比較することができる。プロセッサ508は、静電容量型マイクロセンサ210から受信した信号に基づいて他の種類の情報を決定するように構成されてもよい。例えば、1つ以上の静電容量型マイクロセンサ210から受信した入力信号を使用して、以下に説明するように、ウエハ製造プロセスを終点指定するか、またはウエハ製造プロセスの変化の根本原因を決定することができる。
[0074]本明細書に記載のように、他の機能がプロセッサ508によって提供されてもよい。例えば、プロセッサ508は、信号処理機能を含むことができ、例えば、静電容量型マイクロセンサ210からのアナログ信号をデジタル信号に変換することができる。もちろん、専用のデジタル−アナログ変換器が、そのような目的に使用されてもよい。同様に、他の電子装置が、変位電流をフィルタリングすること、データに対して論理的決定を行うためのタスクを実行すること、例えば、ルックアップテーブルを参照すること、補正係数を適用することなどの、記載された処理機能のいずれかに使用されてもよい。また、そのような処理は、知られているように、ローカルまたは分散方式で実行されてもよいことも理解されよう。したがって、そのような電子装置および処理技術は、簡潔さのために、ここでは詳細に説明しない。
[0075]静電容量型マイクロセンサ210の監視は、プロセッサ508によって個別ベースまたはグループベースで実行され得る。すなわち、プロセッサ508は、各静電容量型マイクロセンサ210について個々のデータを監視し記録することができる。したがって、各静電容量型マイクロセンサ210は、例えば位置または他のセンサ固有のデータに関連付けられた固有のセンサ識別番号によって、個々に識別可能であってもよい。一実施形態において、静電容量型マイクロセンサ210は、グループで監視されてもよい。例えば、プロセッサ508は、1つ以上の静電容量型マイクロセンサ210のグループに対するバンクデータを監視し記録することができる。これらのグループは、センサブロックと呼ばれることがあり、各センサブロックは、対応する電源とプロセッサを有することがある。すなわち、センサブロックは、互いに独立して機能し、別々に監視または制御され得る。したがって、静電容量型マイクロセンサ210のグループは、全体としてのセンサのグループに対応する位置または他のグループ固有のデータと関連付けることができる。
[0076]ウエハ処理ツール102の電子回路218は、例えばウエハ基板202またはチャンバ壁404に取り付けられたメモリ512を含むことができる。メモリ512は、メインメモリ(例えば、読み出し専用メモリ(ROM)、フラッシュメモリ、シンクロナスDRAM(SDRAM)またはラムバスDRAM(RDRAM)などのダイナミックランダムアクセスメモリ(DRAM)など)、スタティックメモリ(例えば、フラッシュメモリ、スタティックランダムアクセスメモリ(SRAM)など)、または二次メモリ(例えば、データ記憶装置)のうちの1つ以上を含むことができる。プロセッサ508は、バス510または他の電気的接続を介してメモリ512と通信することができる。したがって、プロセッサ508は、トリガされた静電容量型マイクロセンサ210の所定の位置およびクロック504によって出力された時間値をメモリ512に記録するために、メモリ512に動作可能に結合され得る。すなわち、メモリ512は、パーティクルまたは材料が静電容量型マイクロセンサ210上に堆積されたかまたは静電容量型マイクロセンサ210から除去された時間、および材料が静電容量型マイクロセンサ210上にまたは静電容量型マイクロセンサ210から落下したときに影響を受けたマイクロセンサが取り付けられていた位置を、記録することができる。
[0077]ウエハ処理ツール102の電子回路218は、上述のように電源304を含むことができる。電源304は、電池、コンデンサバンク、または他の既知の電力供給装置を含むことができる。電源304は、バス510を介して電子回路218の1つ以上の構成要素、例えば、静電容量型マイクロセンサ210、クロック504、プロセッサ508、またはメモリ512に電気的に接続され、それらに電力を供給することができる。
[0078]ウエハ処理ツール102の電子回路218は、追加の構成要素を含むことができる。例えば、電子回路218は、例えばウエハ処理ツール102の特定のプロセスチャンバ114にロードされた後に、パーティクル監視装置200が移動を停止したときに、時間値の出力を開始するようにクロック504をトリガする加速度計514を含むことができる。したがって、時間値は、パーティクル監視装置200がいつウエハ処理ツール102の特定の処理ステーションにロードされたかについての情報を提供することができる。電子回路218は、周波数源516、例えば広周波数源516、または検出器518を含んでもよい。周波数源516および検出器518は、ウエハ処理ツール102の静電容量型マイクロセンサ210の特定の実施形態に関して特定の用途を有し得る。例えば、周波数源516および検出器518は、以下に記載されるように、マイクロ共振器型マイクロセンサを駆動および監視するために使用され得る。
[0079]上述の電子回路218の構成要素は、使用され得るセンサの範囲を例示するものであり、限定的なものではない。例えば、温度センサ520などの追加のセンサが、ウエハ処理ツール102の製造に統合されてもよい。温度センサ520は、ウエハ処理ツール102の1つ以上の構成要素、例えばチャンバ容積部406の温度を監視することができる。静電容量型マイクロセンサ210の様々な実施形態が、ここで説明される。静電容量型マイクロセンサ210の構成および図は、本質的に例示であり、多くの追加の構成が、この説明に基づいて当業者によって企図され得ることが、最初に述べられる。
[0080]図6を参照すると、一実施形態によるウエハ処理システムの静電容量型マイクロセンサの斜視図が示されている。静電容量型マイクロセンサ210は、静電容量を有してもよく、静電容量型マイクロセンサ210の静電容量は、ウエハ処理ツール102によって実行されるウエハ製造プロセスに応じて変化してもよい。静電容量型マイクロセンサ210は、測定回路に接続された2つ以上の電極を用いてもよい。例えば、静電容量型マイクロセンサ210は、誘電体間隙によって第2の導体604から分離された第1の導体602を含む一対の導体を有することができる。第1の導体602および/または第2の導体604は、帯電していてもよい。例えば、電極のうちの1つ以上が、電子回路218の測定回路からの信号を駆動および感知するために直接結び付けられてもよい。一実施形態では、電極の1つが、接地電位に接続されている。
[0081]第1の導体602および第2の導体604は、導電性材料、例えば、ポリシリコン、アルミニウム、タングステンなどから形成することができる。これらの導体は、基板606上に形成されてもよいし、または他の方法で取り付けられてもよい。基板606は、パーティクル監視装置200のウエハ基板202の一部であってもよい。あるいは、基板606は、ウエハ処理ツール102上に取り付けられてもよい。基板606は、シリコンウエハ基板、有機材料、ブランケットガラス基板、または他の固体誘電体基板、例えばアルミナ、石英、シリカなどであってもよい。
[0082]各導体は、導電性パッド608からそれぞれの平面に沿って延びるいくつかの指状導体を含み得る。例えば、第1の導体602は、いくつかの第1の細長導体610を含み、第2の細長導体612は、いくつかの第2の細長導体612を含むことができる。一実施形態では、第1の細長導体610と第2の細長導体612とは、互いに噛み合っている。より具体的には、細長導体は、指状構造の間に静電容量を形成するために、同じ平面内で互いに組み合うまたは互いに噛み合うことができる。信号は、導電性パッド608を介して細長導体に出入りすることができる。したがって、静電容量型マイクロセンサ210は、平面構成を有するコンデンサを含み得る。
[0083]静電容量型マイクロセンサ210は、感度を最大にするように設計されてもよい。例えば、静電容量型マイクロセンサ210の電極は、小さなサイズで形成され、小さな空間によって分離されていてもよい。このサイズスケーリングは、センサを個々に、そして全体として、より小さなパーティクルに対して感度をよくし、より離散的にパーティクルを検出できるようにすることによって、高い感度および活性領域密度を達成することができる。例として、各細長導体は、3ミクロン未満の誘電体間隙距離によって分離されていてもよい。いくつかの実施形態では、誘電体間隙距離は、50〜100nmの範囲であってもよい。したがって、静電容量型マイクロセンサ210は、電極間の誘電特性における小さな摂動を検出することができる。監視制御電子回路218の設計が、感度を調整するように操作されてもよい。したがって、静電容量型マイクロセンサ210の典型的な検出範囲は、低フェムトファラッドから数十ピコファラッドの範囲であり得、検出の分解能は、アトファラッド程度であり得る。
[0084]図7を参照すると、一実施形態によるウエハ処理システムの静電容量型マイクロセンサの斜視図が示されている。静電容量型マイクロセンサ210は、第1の導体602または第2の導体604のうちの1つ以上の上にコーティング702を含むことができる。例えば、コーティング702は、平面くし形コンデンサにパターニングされた導体の領域上に塗布されてもよい。コーティング702は、有機材料または誘電体材料であり得る。より具体的には、コーティング702は、ウエハ製造プロセスに反応するように選択された材料を含むことができる。例えば、コーティング702は、エッチングプロセスのターゲット材料を含んでもよい。一実施形態において、コーティング702は、酸化シリコンまたは窒化シリコンなどの誘電体材料を含む。したがって、エッチングプロセスが、ウエハ処理ツール102によって行われるとき、ある量のコーティング702が、除去され得る。
[0085]図8を参照すると、一実施形態による、ウエハ処理システムの静電容量型マイクロセンサの、図7の線A−Aについての断面図が示されている。静電容量型マイクロセンサ210は、基板606上に一対の導体802を含む。一対の導体802は、例えば、第1の導体602の第1の細長導体610と、第2の導体604の第2の細長導体612とを含むことができる。上述のように、一対の導体802は、少なくとも部分的にコーティング702によって覆われてもよい。コーティング702は、図7に示すようにブランケットコーティングであってもよい。より具体的には、コーティング702は、互いに噛み合った導体と導体との横方向での間にある、すなわち誘電体間隙を埋めるフィラー部分804と、導体の上面の上に積層されたオーバーコート部分806とを含むことができる。コーティング702は、積層構造を有することができ、例えば、フィラー804は、硬質の誘電体、例えば、酸化物または窒化物などの第1の材料から形成された第1の層とすることができ、オーバーコート806は、有機材料などの第2の材料から形成された第2の層とすることができる。コーティング702のいずれの部分も任意選択であるということが、理解されよう。例えば、一実施形態において、コーティング702は、横方向の導体間にフィラー804を含むが、コーティング702は、導体の上面が露出するように、オーバーコート806を含まない。あるいは、コーティング702は、導体の上にオーバーコート806を含むが、コーティング702は、フィラー804を含まず、横方向の導体間の誘電体間隙に空所が存在してもよい。コーティング702の他の実施形態が、使用されてもよい。例えば、コーティング702は、コンフォーマルであってもよく、例えば2ナノメートル厚の薄いコンフォーマルコーティングが、導体および基板606の上面および側面を覆って積層されてもよい。細長導体は、コンフォーマルコーティング702の厚さよりも大きい幅または高さ、例えば3ミクロンを有することができ、したがって、コーティング702は、静電容量型マイクロセンサ210の表面全体を覆うことができるが、一対の導体802間の誘電体間隙の少なくとも一部分は、埋められないかもしれない。
[0086]静電容量型マイクロセンサ210の任意の部分への材料808の堆積は、静電容量型マイクロセンサ210の静電容量の変化をもたらし得る。例えば、図6に示されている互いに噛み合う指状構造または図7に示されているコーティング702上への材料808の堆積は、一対の導体802間の電界を変えることによって静電容量を変化させ得る。
[0087]一実施形態では、静電容量型マイクロセンサ210上に堆積された材料808は、ガスである。したがって、静電容量型マイクロセンサ210は、いくつかの表面積増加構造を含み得る。例えば、表面積増加構造は、ガスを閉じ込めるかまたは吸収するように設計された繊維または細孔810を含むことができる。例えば、コーティング702は、プロセスチャンバ114内でスポンジのようにガスを吸収するための所定の多孔度を有する材料、例えば多孔性酸窒化物を含んでもよい。ガスが細孔810によって吸収されると、ガスは、例えば、空気で満たされた細孔810と比較してバルク材料の誘電率を増加させることによって、コーティング702の誘電率を変えることができ、静電容量が変化し得る。
[0088]静電容量型マイクロセンサ210からの材料の除去は、静電容量型マイクロセンサ210の静電容量の変化をもたらし得る。例えば、互いに噛み合う指状構造またはコーティング702からの材料808の除去は、電界を変えることによって静電容量を変え得る。
[0089]材料808の堆積または除去によって生じる静電容量の変化を感知して、堆積量または堆積速度を決定することができる。例えば、静電容量の変化は、追加または除去された材料808の量に直接相関し得る。さらに、静電容量をリアルタイムで監視することができることを考えると、例えば毎分オングストロームでのエッチング速度を計算することができる。予備データは、静電容量型マイクロセンサ210の静電容量の変化を測定して静電容量型マイクロセンサ210上のパーティクルの存在を検出できることを示している。さらに、比較的大きなパーティクルを検出するために、いくつかの静電容量型マイクロセンサ210を多重化することができる。同様に、静電容量型マイクロセンサ210を組み合わせて、パーティクルサイズを決定することができる。
[0090]導体602、604、基板606、およびコーティング702の材料選択は、静電容量型マイクロセンサ210が監視または制御のために使用されるプロセスに基づいて行われ得る。例えば、1つ以上の構造が、監視されているエッチングプロセスに対して耐性であってもよい。例えば、コーティング702は、エッチングプロセスによって除去されるように設計され、基板606は、エッチングプロセスに対して耐性であるように設計されてもよい。同様に、コーティング702が、プロセスによって除去可能であり、細長導体が、プロセスによって除去可能でなくてもよい。
[0091]静電容量型マイクロセンサ210の構造の幾何学的形状もまた、監視または制御されているプロセスに対応するように設計されてもよい。例えば、プロセスが材料堆積を含む場合、指状構造は、材料808が導体上または導体間に堆積されたときに検出可能な静電容量の変化が生じることを確実にするために、互いにできるだけ近くに置かれ得る。導体の厚さも変えることができる。例えば、互いに噛み合う細長導体を厚くして、構造を、平面構造とは対照的に、平行板構造のようにすることができる。
[0092]図9を参照すると、一実施形態によるウエハ処理システムの静電容量型マイクロセンサの斜視図が示されている。静電容量型マイクロセンサ210は、積層構造を含むことができる。例えば、第2の導体604は、第1の導体602の上に積み重ねられてもよい。細長導体、すなわち第1の細長導体610および第2の細長導体612は、同じ垂直面に沿って配置されてもよく、または細長導体は、横方向にずれていてもよく、すなわち互いに噛み合っていてもよい。いずれの場合も、コーティング702が、第1の導体602と第2の導体604との間にあって、したがって導体間の誘電体間隙を埋めていてもよい。一実施形態では、第1の導体602および第2の導体604は、指状構造ではなくグリッドまたはメッシュ構造(図示せず)を含む。積層センサ(または記載されたセンサ構造のいずれも)は、異なる材料の導体を有してもよい。例えば、第1の導体602は、金属を含み、第2の導体604は、ドープされたポリシリコンを含むことができる。
[0093]図10を参照すると、一実施形態によるウエハ処理システムの静電容量型マイクロセンサの斜視図が示されている。静電容量型マイクロセンサ210は、平行板構造を含むことができる。例えば、第1の導体602が、第1の板層であり、第2の導体604が、第2の板層であってもよい。コーティング702は、板間の誘電体間隙を埋めることができる。一実施形態では、板構造は、穿孔されている。例えば、1つ以上の穿孔1002が、第1の導体602および/または第2の導体604を貫通して垂直に延びることができる。平行板および/または有孔平行板構造は、等方性エッチングプロファイルを感知するのに特に有用であり得る。このような場合、導体間のコーティング702は、静電容量型マイクロセンサ210を、材料808の除去に対して特に感度よくするために、アルミナ(誘電率が9)を含むことができる。
[0094]上述の静電容量型マイクロセンサ210の実施形態は、例示的であり、限定的ではない。より具体的には、当業者は、材料がセンサ構造に対して堆積、除去、または変更されたときに静電容量の変化を経験する他の静電容量型マイクロセンサ構造を思い付くことができる。静電容量型マイクロセンサ210は、本明細書に記載の用途に使用することができる1つのタイプのマイクロセンサを表す。しかしながら、他のマイクロセンサが、静電容量型マイクロセンサ210と組み合わせて、または単独で使用されてもよい。いくつかのそのようなマイクロセンサのタイプが、以下に一般的に記載される。
[0095]図11を参照すると、一実施形態による、ウエハ処理システムのマイクロ共振器型のマイクロセンサの概略図が示されている。一実施形態において、ウエハ処理ツール102の1つ以上のマイクロセンサは、マイクロ共振器センサ1100を含む。マイクロ共振器センサ1100は、水晶振動子マイクロ天秤(QCM)、表面弾性波(SAW)、または圧電薄膜共振器(FBAR)などの適切な共振質量センサであってもよく、これらは全て、それらの表面に堆積した浮遊パーティクルの累積質量1102を定量する。簡潔さおよび理解の容易さのために単純化された説明の方を選び、マイクロ共振器センサ1100の複雑さおよび多様性の説明は、ここでは記載されない。マイクロ共振器センサ(単数または複数)1100は、パーティクル監視装置200またはウエハ処理ツール102上の所定の位置に配置され得る。各マイクロ共振器センサ1100は、当技術分野で知られているように、特性振動数、例えば共振振動数を有することができる。例えば、詳細には説明しないが、マイクロ共振器センサ1100は、単純な質量−ばねシステムによって表すことができる。マイクロ共振器センサ1100の特性振動数は、マイクロ共振器システムの質量1102に反比例し得る。例えば、特性振動数は、マイクロ共振器センサ1100のsqrt(k/M)に比例してもよく、ここで、「M」は質量1102に対応し、「k」はマイクロ共振器センサ1100の比例定数に対応する。したがって、マイクロ共振器センサ1100が、例えばウエハ製造プロセス中に材料808を受け取るまたは放出するときに、特性振動数がシフトすることが、認識されるであろう。例えば、材料808、例えば半導体材料が、ウエハ処理ツール102のプロセスチャンバ114内のマイクロ共振器センサ1100のセンサ表面上に堆積されるか、またはそこから除去されると、マイクロ共振器センサ1100の質量1102が変化し、したがって特性振動数がシフトする。
[0096]一実施形態において、センサ表面は、材料808を含む。より具体的には、センサ表面は、ウエハ製造プロセス中にウエハ402上に堆積される、またはウエハ402から除去される材料808と同じ半導体材料808から形成されてもよい。例えば、ウエハ製造プロセスが、シリコンウエハ402上にシリコンを堆積させる堆積プロセスである場合、センサ表面は、堆積された材料808がウエハ402との相互作用と同様にセンサ表面と相互作用することを確実にするために、シリコンを含み得る。同様に、ウエハ製造プロセスが、シリコンウエハ402からシリコンを除去するエッチングプロセスである場合、センサ表面は、シリコンウエハ402からのシリコンの除去速度と同様の速度で材料808がセンサ表面からエッチングされることを確実にするために、シリコンを含み得る。したがって、センサ表面は、ウエハ製造プロセス中にウエハ402に対して同時に発生している実際の堆積速度または除去速度を測定するために、ウエハ402の表面をシミュレートすることができる。
[0097]図12を参照すると、一実施形態による、ウエハ処理システムのトランジスタセンサ型のマイクロセンサの概略図が示されている。一実施形態において、ウエハ処理ツール102の1つ以上のマイクロセンサは、トランジスタセンサ1200を含む。トランジスタセンサ1200は、1つ以上のトランジスタ、例えばMOSFET1202を含み得る。MOSFET1202は、ソース1204、ドレイン1206、およびゲート1208を含み得る。トランジスタセンサ1200は、ウエハ製造プロセス中に材料808を受け取るまたは放出するためのコレクタ1210を、さらに含み得る。コレクタ1210は、MOSFET1202から物理的に分離することができるが、これらの下位構成要素は、互いに電気的に接続することができる。例えば、コレクタ1210は、電気トレース1212を介してMOSFET1202のゲート1208に電気的に接続されてもよい。したがって、コレクタ1210が、MOSFET1202から離れた所定の位置に配置されている場合でも、MOSFET1202は、材料808がコレクタ1210に落下した、またはコレクタ1210から蒸発したことを検出するように構成され得る。
[0098]コレクタ1210は、材料808を受け取るようにサイズ設定され構成され得る。例えば、材料808パーティクルの典型的なサイズは、45ナノメートルから1ミクロンの範囲であり得、したがって、コレクタ1210は、少なくとも1ミクロンの直径を有する外縁を有する外形を含み得る。下方向に見たときの外縁の形状は、円形、長方形、または他の任意の形状であってよい。さらに、コレクタ1210は、平坦であってもよく、すなわち平面のセンサ表面を有してもよく、またはコレクタ1210は、円錐形のセンサ表面を有してもよい。一実施形態において、コレクタ1210は、MOSFET1202とは別の構造ではなく、MOSFET1202に組み込まれている。例えば、コレクタ1210は、MOSFET1202のゲート1208上の収集領域であってもよい。
[0099]上述のマイクロ共振器センサ1100と同様に、トランジスタセンサ1200のコレクタ1210は、ウエハ402の表面をシミュレートするように構成されたセンサ表面を含み得る。例えば、トランジスタセンサ1200は、例えば保持面412上のウエハ402の近くに配置されてもよく、センサ表面は、ウエハ面が向いている方向と平行な前方方向を向くように配向されてもよい。コレクタ1210は、例えば、同じ材料または異なる材料のベース層とトップ層とを有する多層構造を含み得る。
[00100]一実施形態において、トランジスタセンサ1200のパラメータは、MOSFET1202に対応する。より具体的には、トランジスタセンサ1200のパラメータは、ゲート1208で測定されたMOSFET1202の閾値電圧であってもよい。閾値電圧は、コレクタ1210上の材料808の有無に直接対応し得る。例えば、閾値電圧は、第1の量の材料808がコレクタ1210上にあるときに第1の値を有することができ、閾値電圧は、第2の量の材料808がコレクタ1210上にあるときに第2の値(第1の値とは異なる)を有することができる。したがって、コレクタ1210のセンサ表面に収集されたまたはセンサ表面から放出された材料808は、トランジスタセンサ1200の閾値電圧に基づいて決定され得る。プロセッサ508は、閾値電圧の変化を検出するように構成されてもよく、したがって、閾値電圧の変化が検出されると、ウエハ処理ツール102は、その変化を、パーティクル検出またはある量の材料808の堆積もしくは除去として認めることができる。閾値電圧をある時間にわたって記録して、ウエハ402上またはウエハ402からの材料808の実際の堆積速度または除去速度を決定することができる。
[00101]図13を参照すると、一実施形態による、ウエハ処理システムの光センサ型のマイクロセンサの概略図が示されている。一実施形態において、ウエハ処理ツール102の1つ以上のマイクロセンサは、光センサ1300を含む。光センサ1300は、当技術分野で知られているように、マイクロオプトエレクトロメカニカルシステム(MOEMS)とすることができ、既知の半導体処理工程を使用して、基板上に直接形成することができる。簡潔さおよび理解の容易さのために単純化された説明の方を選び、MOEMSの複雑さおよび多様性の説明は、ここでは記載されない。光センサ1300は、基板のセンサ表面(図示せず)にわたって分布したいくつかのマイクロミラーまたはレンズを含み得る。詳細には説明しないが、光センサ1300は、光源1304から発する光路1302を含み得る。光路1302は、光源1304と光検出器1306との間にあり得る。一実施形態において、光センサ1300のパラメータは、光源1304からの光が光検出器1306で受け取られるかどうかに対応する。例えば、パラメータは、材料808が光路1302を乱すことに応じて、変化し得る。すなわち、材料808のパーティクルが、光路1302を通過するかまたはその中で静止し、光源1304と光検出器1306との間の光を遮断するとき、パラメータは変化し得る。一実施形態において、パーティクルが光学センサ1300を通過すると、光源1304からの光は、異なる光路1302に沿って別の光検出器1306に向かって反射される。他の光検出器1306による反射光の検出は、光学センサ1300のパラメータへの変化をもたらし得る。パラメータは、例えば、光検出に対応する光センサ1300の出力電圧であってもよい。プロセッサ508は、出力電圧の変化を検出するように構成されてもよく、したがって、出力電圧の変化および/または光路1302の乱れが検出されると、ウエハ処理ツール102は、その変化を、基板上のセンサ表面からの材料808の堆積または除去として認めることができ、したがって、堆積/除去の量および/または速度をリアルタイムで測定および監視することができる。
[00102]上述のマイクロセンサのタイプは、外部圧力とは無関係の電気的パラメータに基づいて動作するので、静電容量型マイクロセンサ210、マイクロ共振器センサ1100、トランジスタセンサ1200、または光センサ1300などの1つ以上のマイクロセンサを有するパーティクル監視装置200またはウエハ処理ツール102は、真空状態を含む任意の圧力状態で動作することができることが、理解されよう。同様に、マイクロセンサは、プラズマレス状態を含んで、チャンバ容積部406のガス濃度に関係なく、動作することができる。
[00103]パーティクル監視装置200またはウエハ処理ツール102は、上述のセンサの任意の組み合わせを含み得る。例えば、静電容量型マイクロセンサ210は、下にある基板上に数千単位でグループ化することができる。より具体的には、静電容量型マイクロセンサ210は、バンクから異なる数のコンデンサを選択することによってベース静電容量を選択することができるように、結び付けられてバンクをなすことができる。そのような選択は、プロセッサ508によって制御され得る。一実施形態において、プロセッサ508は、異なるタイプのセンサを監視する。例えば、材料堆積を検出するように構成された静電容量型マイクロセンサ210と、材料エッチングを検出するように構成された静電容量型マイクロセンサ210とを同時に監視するか、またはウエハ製造プロセスの異なる段階で監視して、追加のデータを収集し多目的センサを形成することができる。同様に、アナログ−デジタル静電容量測定回路が、追加の情報を集めるために種々の周波数で静電容量型マイクロセンサ210を監視するために、使用されてもよい。例えば、測定回路は、追加の情報を収集するために、低周波数、高周波数で、または広範囲の周波数を掃引することによって、1つ以上の静電容量型マイクロセンサ210をプローブすることができる。
[00104]例えばプロセスチャンバ114上に取り付けられたマイクロセンサを有するウエハ処理ツール102が、ウエハ製造プロセスを監視または制御するために使用されてもよい。限定的ではないが、そのような監視および制御を実行するいくつかの方法を以下に説明する。簡潔にするために、以下に説明する方法における工程は、静電容量型マイクロセンサ210の監視を指すことがあるが、それらの方法は、上述のマイクロセンサのタイプなどの他のマイクロセンサのタイプを組み込むように適合させることができる。
[00105]図14を参照すると、一実施形態による、ウエハ製造プロセスを終点決定する方法における工程を表すフローチャートの図が示されている。場合によっては、ウエハ製造プロセスの終点が、プロセスのパラメータ、例えば、プロセスチャンバ114内のプラズマ450中に見出される特定の元素の濃度を測定することによって検出され、プロセス工程がプロセス目標を達成したか、そして停止する必要があるかどうかを、決定することができる。しかしながら、チャンバ容積部406がプラズマレスである場合、そのような検出は、従来のセンサまたは測定機器を使用すると困難または不可能であり得る。しかしながら、静電容量型マイクロセンサ210を使用して終点を決定する以下に説明される方法は、プラズマレス状態で使用され得る。
[00106]工程1402において、ウエハ402が、ウエハ処理ツール102のプロセスチャンバ114内にロードされる。ウエハ402は、半導体材料から形成されてもよく、ウエハ処理ツール102の第1のチャンバ、例えばバッファチャンバ108からウエハ処理ツール102の第2のチャンバ、例えばプロセスチャンバ114へ移動されてもよい。したがって、ウエハ402は、プロセスチャンバ114のチャンバ容積部406内で、例えば堆積またはエッチングなどのウエハ製造プロセスを受けることができる。
[00107]工程1404において、ウエハ製造プロセスが、プロセスチャンバ114内で開始され得る。例えば、第2のチャンバ、例えばプロセスチャンバ114のチャンバ圧力を、真空状態まで低下させることができる。より具体的には、チャンバ圧力は、0.5気圧未満に下げることができる。上述のように、ウエハ処理ツール102は、全ての圧力状態で材料の堆積/除去を検出することができ、したがって、ウエハ処理ツール102内の半導体ウエハ402によって通常見られる条件下での堆積/除去量および/または速度のリアルタイム監視に使用され得る。したがって、ウエハ製造プロセス中に、半導体材料808が、ウエハ402上に堆積され、またはウエハ402から除去され得る。同時に、半導体材料808が、静電容量型マイクロセンサ210上に堆積され、またはそこから除去され得る。
[00108]工程1406において、静電容量型マイクロセンサ210の静電容量の変化が検出される。より具体的には、材料808が、第2のチャンバ、例えばプロセスチャンバ114内の静電容量型マイクロセンサ210上に堆積されるかまたはそこから除去されるときに、静電容量の変化が、検出され得る。静電容量型マイクロセンサ210が、静電容量の変化を検出すると、対応する信号が、電子回路218に供給される。
[00109]一実施形態において、ウエハ製造プロセスは、静電容量型マイクロセンサ210の静電容量の検出された変化に基づいて制御される。例えば、工程1408において、静電容量の変化に対応する入力信号を使用して、ウエハ製造プロセスの終点を決定することができる。例えば、静電容量の変化は、堆積プロセス中の静電容量型マイクロセンサ210上への材料808の堆積に対応し得る。同様に、ウエハ製造プロセスがエッチングプロセスである場合、静電容量型マイクロセンサ210からの材料808の除去が、検出され得る。追加または除去される材料808の量は、ウエハ処理ツール102の全てのプロセスランに対して同一であり得る。しかしながら、量または速度が、突然、より多くまたはより少なくなった場合、ウエハ処理ツール102は、ウエハ製造プロセスまたはプロセスチャンバ114のハードウェアにシフトが生じたと決定し得る。
[00110]上述のように、パーティクル監視装置200またはウエハ処理ツール102の電子回路218は、ウエハ処理ツール102とホストコンピュータとの間の通信を送受信するためのネットワークインターフェース装置506を含むことができる。ネットワークインターフェース装置506は、有線または無線接続502によって機能することができる。一実施形態において、信号が、マイクロセンサとネットワークインターフェース装置506との間で無線で送信されてもよい。より具体的には、無線送信機が静電容量型マイクロセンサ210などのマイクロセンサに電気的に接続され、無線受信機が電子回路218の他の回路に電気的に接続されるように、電子回路218が、配置されてもよい。より具体的には、無線受信機および無線送信機が両方とも、ウエハ処理ツール102内に配置されてもよい。例えば、無線送信機が、静電容量型マイクロセンサ210を支持するウエハ基板202上に取り付けられ、無線受信機が、チャンバ壁404上に取り付けられてもよい。静電容量型マイクロセンサ210の静電容量などのデータは、ウエハ処理ツール102内の送信機と受信機との間で通信され得る。データを受信した後、無線受信機は、受信した信号をプロセッサ508または他の電子回路218に送信することができる。さらに、信号は、電子回路218と外部コンピュータシステム104との間の有線接続502を通って進むことができる。無線受信機と外部コンピュータとの間の通信は、有線接続502とすることができ、例えばデータケーブルをプロセスチャンバ114のチャンバ壁404に通して、電子回路218からホストコンピュータにデータを通信することができる。このように、ウエハ製造プロセスの進行を、リアルタイムで測定することができる。したがって、コンピュータシステム104は、所望の量の材料808が静電容量型マイクロセンサ210に追加または除去されたときにプロセスの終点を検出するように構成され得る。
[00111]工程1410において、終点の決定に応じて、ウエハ製造プロセスを停止することができる。例えば、静電容量型マイクロセンサ210からの入力信号が、ウエハ製造プロセスが所望のプロセス結果(例えば、ウエハ402の質量の所定の値または変化)に達したことを示すと、電子回路218またはコンピュータシステム104は、ウエハ製造プロセスの終点に到達したと決定し、入力信号に基づいて堆積またはエッチングプロセスを停止することができる。
[00112]図15を参照すると、一実施形態による、ウエハ製造プロセスの均一性を決定する方法における工程を表すフローチャートの図が示されている。ウエハ製造プロセスは、例えば、プロセスの均一性を検出し制御するために、静電容量型マイクロセンサ210からのフィードバックを使用して制御することができる。プロセスチャンバ114内にいくつかの静電容量型マイクロセンサ210を配置することによって、瞬間的な均一性、および経時的な均一性を検出することができる。より具体的には、プロセスチャンバ114内の異なる位置での堆積またはエッチング速度の変化を感知して、それらの位置間で堆積またはエッチングプロセスが異なるかどうかを決定することができる。
[00113]工程1502および1504は、図14に関して上述した工程1402および1404と同様であり得る。すなわち、ウエハ402が、ウエハ処理ツール102のプロセスチャンバ114内にロードされ、ウエハ製造プロセスが開始され得る。しかしながら、工程1504において、半導体材料808が、ウエハ製造プロセス中にウエハ402およびいくつかの静電容量型マイクロセンサ210上に堆積されるかまたはそこから除去され得る。すなわち、材料808の堆積または除去が、プロセスチャンバ114内の複数の静電容量型マイクロセンサ210に適用され得る。例えば、第1の静電容量型マイクロセンサが、ウエハ処理ツール102上の、例えばチャンバ容積部406内の第1の所定の位置に取り付けられ、第2の静電容量型マイクロセンサが、ウエハ処理ツール102上の、例えば同様にチャンバ容積部406内の第2の所定の位置に取り付けられてもよい。材料808は、第1および第2の静電容量型マイクロセンサ210の両方の上に堆積させる、またはそこから除去することができる。
[00114]工程1506において、各静電容量型マイクロセンサ210の静電容量のそれぞれの変化を検出することができる。例えば、第1の静電容量型マイクロセンサのコーティング702、細長導体、または基板606上に半導体材料808を堆積させる、またはそこから半導体材料808を除去することに応じて、第1のマイクロセンサの静電容量の変化が、検出され得る。同様に、第2の静電容量型マイクロセンサのコーティング702、細長導体、または基板606上に半導体材料808を堆積させる、またはそこから半導体材料808を除去することに応じて、第2の静電容量型マイクロセンサの静電容量の変化が、検出され得る。したがって、所与の時点で、第1の静電容量型マイクロセンサおよび第2の静電容量型マイクロセンサの静電容量を測定することができる。
[00115]工程1508において、第1および第2の静電容量型マイクロセンサ210の静電容量の変化に基づいて、ウエハ製造プロセスの均一性を決定することができる。例えば、いくつかの静電容量型マイクロセンサ210の静電容量の変化を測定し、その変化を比較して、均一性を検出することができる。より具体的には、静電容量の変化が、所定のばらつき度の範囲内、例えば5%の差以内で同一または類似である場合、ウエハ製造プロセスは、均一であると決定されてもよい。しかしながら、静電容量の変化が、所定量だけ異なる場合、ウエハ製造プロセスは、不均一であると決定されてもよい。不均一性の決定は、ある事象を引き起こしてもよい。例えば、プロセスチャンバ114内の静電容量型マイクロセンサ210間の標準的な偏差についての所定の閾値を設定することができ、閾値を超えた場合、アラームがトリガされてもよく、および/またはウエハ処理ツール102が、次のウエハの処理を停止されてもよい。マイクロセンサから収集されたデータは、将来の再調査のために、例えば根本原因分析に役立つように、ログファイルにローカルにまたはリモートサーバに保存することもできる。したがって、いくつかの位置に静電容量型マイクロセンサ210を有するウエハ処理ツール102を使用して、プロセス安定性を測定および制御することができる。
[00116]図16を参照すると、一実施形態による、ウエハ製造プロセスの変化の根本原因を決定する方法における工程を表すフローチャートの図が示されている。ウエハ処理ツール102上の、例えばプロセスチャンバ114内の静電容量型マイクロセンサ210を使用して、パーティクル検出または堆積もしくは除去速度の変化の根本原因を決定することができる。例えば、静電容量型マイクロセンサ210を他の機械センサと相関させて、堆積速度または除去速度の変化の考えられる原因を特定することができる。一実施形態において、静電容量型マイクロセンサ210は、測定機器、例えば光学分光計416と相関している。あるいは、静電容量型マイクロセンサ210は、温度、プロセスチャンバ114に供給される電力、ガス濃度、またはプロセスチャンバ114のイオン密度を検出するために使用されるセンサなどの他の機械センサと相関させることができる。
[00117]工程1602から1606までは、図14に関して上述した工程1402から1406までと同様であり得る。すなわち、ウエハ402が、ウエハ処理ツール102のプロセスチャンバ114内にロードされ、ウエハ製造プロセスが開始され得る。さらに、静電容量型マイクロセンサ210の静電容量の変化を検出することができる。
[00118]工程1608において、ウエハ製造プロセスのプロセスパラメータが、測定機器または装置によって検出および/または測定され得る。例えば、測定機器は、図4に関して上述した光学分光計416を含み得る。したがって、プロセスパラメータは、光学分光計416によって測定されたチャンバ容積部406のOESシグネチャであってもよい。
[00119]工程1610において、静電容量型マイクロセンサ210の静電容量の変化の根本原因が、検出されたプロセスパラメータに基づいて決定され得る。例えば、静電容量の変化は、測定機器によって測定されたプロセスパラメータの変化と同時にまたは時間的に近くで起こり得る。プロセスパラメータは、特定のガスの濃度であってもよく、プロセスパラメータの変化は、濃度の増加を示していてもよい。したがって、同時の変化は、ガス濃度の増加が、静電容量型マイクロセンサ210の静電容量の変化の根本原因、例えばパーティクル検出の根本原因または静電容量型マイクロセンサ210上のもしくは静電容量型マイクロセンサ210からの材料808の堆積速度もしくは除去速度の変化の根本原因であることを示し得る。その後、ウエハ処理ツール102は、パーティクル源を修正するため、またはガス濃度および堆積/除去速度を所望の範囲内に維持するために、調整または修理されてもよい。したがって、例えばプロセスチャンバ114上の1つ以上の位置に取り付けられた静電容量型マイクロセンサ210を有するウエハ処理ツール102を、トラブルシューティングツールとして使用することができる。
[00120]後述するように、静電容量型マイクロセンサ210の静電容量の変化および検出されたプロセスパラメータを使用して、ウエハ製造プロセス内の事象の他の根本原因を決定することができる。
[00121]ウエハ処理ツール102は、腐食性材料をプロセスチャンバ114に出入りさせるガスラインを含むことができる。ガスラインは真空下に置くことができ、したがってガスラインの腐食は、通常最小限に抑えることができる。しかしながら、ガスラインを適切にパージすることなく、保守を実行するためにプロセスチャンバ114が開かれると、湿気および/またはハロゲンが、ガスラインに導入される可能性がある。ガスラインが、湿気および/またはハロゲンに曝されると、腐食が、非常に急速に発生する可能性がある。そのような腐食は、パーティクルを生成する可能性がある。したがって、一実施形態において、静電容量型マイクロセンサ210は、ガスラインから下流の位置で、またはガスラインがプロセスチャンバ114に到達する前の位置で、ウエハ処理ツール102に取り付けられる。静電容量型マイクロセンサ210を使用して、保守のためにプロセスチャンバ114を開く前にガスラインが適切にパージされているかどうかを検出することができる。静電容量型マイクロセンサ210はまた、腐食を検出するためにガスライン内のパーティクルの運動を検出することができる。より具体的には、ガスまたは腐食パーティクルが、静電容量型マイクロセンサ210の静電容量の変化を引き起こす可能性があり、その変化を使用して、ガスまたは腐食パーティクルがガスラインに存在すると決定し得る。ガスまたは腐食パーティクルが検出された場合、適切な保守または修理をウエハ処理ツール102に行うことができる。
[00122]ウエハ製造プロセス、例えばエッチングまたは堆積プロセスの後に、ハロゲンまたは他の副生成物が、ウエハ402からガスを放出することがある。副生成物を削減するための技術は存在するが、その削減がどの程度効率的であるか、およびウエハ402が完全にガス放出されているかどうかを定量化することは困難である。完全にはガス放出されていないウエハ402は、待ち時間の問題または凝縮粒子による汚染を引き起こす可能性がある。一実施形態において、静電容量型マイクロセンサ210は、ロードロック112内でウエハ処理ツール102に取り付けられている。したがって、静電容量型マイクロセンサ210は、ロードロック112の容積部内に含まれているハロゲンまたは副生成物の量を測定する。したがって、静電容量型マイクロセンサ210を使用して、ウエハ402が完全にガス放出されている期間および/または時間を決定することができる。さらに、静電容量型マイクロセンサ210を使用して、偏位を検出し、またはロードロック112内で検出されたハロゲンまたは副生成物の量に基づいてプロセスを終点決定することさえできる。例として、静電容量型マイクロセンサ210は、どのガスに曝されるかに応じてその電気的特性が変化する材料を含むコーティング702を含み得る。より具体的には、コーティング702は、空気とは異なる誘電率を有するロードロック112内のガスを吸収することができ、したがって、静電容量型マイクロセンサ210の静電容量は、そのガスに曝されると変化し得る。ガスが検出されると、適切な修理またはプロセス工程が、実行され得る。
[00123]ウエハ処理ツール102内の任意の可動部分が、パーティクルの発生源となり得る。リフトピンが、ウエハ製造プロセス中に、ウエハ402をチャックまたはペデスタル上に移動させ、チャックまたはペデスタルから離す。より具体的には、リフトピンは、ウエハ402をチャックからロボットへ、またはその逆に移動させることができる。ピンがウエハ402に接触するため、およびピンがリフトピンガイドと擦れるために、リフトピンは、パーティクル源となる可能性がある。すなわち、リフトピン動作によって、パーティクルが発生する可能性がある。一実施形態において、静電容量型マイクロセンサ210は、ウエハ処理ツール102のリフトピン上またはリフトピンに近接して取り付けることができる。したがって、リフトピンによって生成されたパーティクルは、例えば、静電容量型マイクロセンサ210の静電容量の変化を測定することによって、静電容量型マイクロセンサ210によって検出することができる。パーティクルが検出されると、適切な修理またはプロセス工程が、実行され得る。
[00124]メインフレームまたはファクトリインターフェース110において、ロボットは不意に故障する。故障が発生した場合、それは、長い休止時間と生産中断をもたらし得る。そのような中断は費用がかかる。したがって、ロボットが実際に故障するずっと前にいつ故障するかを予測できると、有利である。一実施形態において、加速度計が、ロボットに取り付けられて、ロボットの振動を測定する。振動の増加は、ロボットの故障を示しているか、または早期の予測因子になり得る。振動データの偏位が、履歴値またはロボット群との比較によって識別されて、特定のロボットからの振動データが異常値であるかどうかを決定することができる。さらに、ロボットによって生成されたパーティクルを検出するために、静電容量型マイクロセンサ210が、ロボットにまたはロボットに近接して取り付けられてもよい。例えば、パーティクルが、静電容量型マイクロセンサ210によって、例えば静電容量型マイクロセンサ210の静電容量の変化によって検出されるとき、パーティクルは、ロボットの特定の部分、例えば関節、スライド、潤滑剤、等から来ていると、推論することができる。加速度計514のデータを静電容量型マイクロセンサ210のデータと比較することによって、センサの偏位が相関して、ロボットが保守または修理を必要としているという結論を導き出すことを可能にし得る。上述のように、静電容量型マイクロセンサ210からのデータとウエハ処理ツール102の他の測定装置からのデータとの間の比較は、多くの異なる部分の相関および根本原因の分析を可能にし得る。例えば、ロボットは一例として役立つけれども、リフトピン、ゲートロックドアなどの他の可動部分が、同様のセンサ比較を使用して監視されてもよい。
[00125]ウエハ処理ツール102の真空源408は、1つ以上の真空ポンプを含み得る。例えば、粗引きポンプおよびターボポンプなどの多くのポンプを接続して、プロセスチャンバ114内に必要な真空レベルを達成することができる。例えば、1つの真空ポンプが故障したときなどの、特定の条件下で、一方のポンプから他方のポンプへパーティクルを運ぶのに十分な動的な力が存在し得る。より具体的には、パーティクルは、故障した粗引きポンプからターボポンプおよび/またはチャンバ容積部406へ運ばれ得る。このような逆流は、プロセスチャンバ114に悪影響を及ぼす可能性がある。さらに、多くの場合、特に、この事象が発生したときにプロセスマノメータの結果が記録されていない場合、逆流は検出されない。一実施形態において、静電容量型マイクロセンサ210が、逆流によって引き起こされたパーティクルを検出するために、圧力制御バルブ414にまたはそれに近接して取り付けられる。例えば静電容量型マイクロセンサ210の静電容量の変化を検出することによってパーティクルが検出されると、アラームがトリガされてもよく、またはその事象が記録されてもよい。したがって、逆流事象に対処し、ウエハ汚染を回避するために、ウエハ製造プロセスを停止することができる。
[00126]一実施形態において、静電容量型マイクロセンサ210は、多数のプロセスランにわたって使用され、したがって、静電容量型マイクロセンサ210は、コーティング702、細長導体、または基板606への材料808の堆積またはそこからの除去に対して調整するために自己較正することができる。例えば、電子回路218またはコンピュータシステム104は、各プロセスラン後に静電容量型マイクロセンサ210を較正するように構成されてもよい。材料808が、ウエハ製造プロセス中に静電容量型マイクロセンサ210上に堆積されるか、または静電容量型マイクロセンサ210から除去されると、静電容量型マイクロセンサ210の静電容量は、増加または減少し得る。例えば、静電容量型マイクロセンサ210の質量は、堆積プロセス後に増加する可能性があり、したがって、静電容量は、第1の値から第2の値へと変化する可能性がある。後続の堆積プロセスを開始する前に、電子回路218またはコンピュータシステム104は、次のプロセスランにおける初期値として第2の値を設定してもよい。したがって、次のプロセスラン中の静電容量の変化を正確に測定することができる。
[00127]図17を参照すると、一実施形態による、静電容量型マイクロセンサの寿命を延ばす方法における工程を表すフローチャートの図が示されている。ウエハ製造プロセスを監視または制御するために使用されるマイクロセンサは、理想的には、少なくとも1回の予防的メンテナンスサイクルを通って持続する。ウエハ製造プロセス中に、副生成物が、マイクロセンサおよびチャンバ壁404上に堆積する可能性がある。装置が各プロセスランの開始時に本質的に同じになるように、副生成物を除去して、チャンバ壁404およびマイクロセンサをベースラインにリセットするために、ランとランの間に洗浄プロセスが使用されてもよい。定期的なチャンバ洗浄が、過度な洗浄であるかどうかを理解することが、有用であり得る。より具体的には、装置が適切にリセットされることを確実にするために、洗浄プロセス中にチャンバ壁404からどれだけの副生成物が除去されたかを検出することが、有用であり得る。さらに、過度な洗浄またはセンサ材料808を過剰に除去することなく副生成物がセンサから効果的に除去されているかどうかを理解することは、センサ寿命を延ばすのに役立ち得る。すなわち、ウエハ製造プロセス中にマイクロセンサに追加された材料808の量を理解することによって、インシトゥのプラズマおよび化学洗浄を使用して、センサをそのベースラインにリセットすることができる。
[00128]工程1702から1706までは、図14に関して上述した工程1402から1406までと同様であり得る。すなわち、ウエハ402が、ウエハ処理ツール102のプロセスチャンバ114内にロードされ、ウエハ製造プロセスが開始され得る。さらに、静電容量型マイクロセンサ210の静電容量の変化を検出することができる。
[00129]工程1708において、静電容量型マイクロセンサ210上に堆積された材料808の量が、静電容量型マイクロセンサ210の静電容量の変化に基づいて決定され得る。すなわち、その量が、チャンバ容積部406内の静電容量型マイクロセンサ210上に堆積されており、静電容量の変化が、堆積量に直接相関し得る。
[00130]工程1710において、静電容量型マイクロセンサ210上に堆積されていると決定された量の材料を、チャンバ壁404および/または静電容量型マイクロセンサ210から除去することができる。材料をチャンバ壁404から除去して、プロセスチャンバ114を洗浄することができる。静電容量型マイクロセンサ210の感度および信頼性が損なわれないようにするために、静電容量型マイクロセンサ210は、定期的に洗浄または交換されてもよい。例えば、静電容量型マイクロセンサ210が、堆積プロセスを監視する場合、静電容量型マイクロセンサ210の定期的な洗浄を実行して、時間とともに堆積した材料808を除去することができる。したがって、チャンバ壁404および/または静電容量型マイクロセンサ210を、ベースラインの清浄度に定期的にリセットすることができる。
[00131]静電容量型マイクロセンサ210の寿命を延ばすために、静電容量型マイクロセンサ210を、プロセスチャンバ114を開くことなく、インシトゥで洗浄することができる。例えば、プラズマ450またはラジカルをプロセスチャンバ114内に導入して、静電容量型マイクロセンサ210から材料808を除去することができる。すなわち、材料808がシリコンの場合、フッ素ラジカルを導入して、シリコンをセンサ表面から除去することができる。一実施形態において、静電容量型マイクロセンサ210を加熱して、チャンバ壁404を過度に洗浄することなくセンサコーティング702のエッチング速度を速めることができる。すなわち、静電容量型マイクロセンサ210をベースラインにリセットさせながら、静電容量型マイクロセンサ210の除去速度が、チャンバ壁404よりも速くなり、それにより静電容量型マイクロセンサ210は、チャンバ壁404よりも多くの副生成物および/または元の材料を除去することができる。
[00132]静電容量型マイクロセンサ210は、所定の周期で交換することができる。例えば、静電容量型マイクロセンサ210が、エッチングプロセスを監視するために使用されるとき、コーティング702は、時間とともに消費され得る。したがって、所定量の材料808、例えばオーバーコート806がマイクロセンサから除去されたときに、静電容量型マイクロセンサ210が、交換されてもよい。
[00133]静電容量型マイクロセンサ210は、ウエハ製造プロセス中にパーティクルまたは堆積/エッチング速度を検出すること以外の用途を有することができる。例えば、静電容量型マイクロセンサ210を使用して、ウエハ製造プロセス中にウエハ402のDCバイアスを正確に測定し、そのような測定に基づいてウエハ製造プロセスを制御することができる。
[00134]プラズマチャンバでは、より軽い電子と反発し、電子がウエハ402に衝突するのを防ぐために、負のDCバイアス、すなわち、接地に対して負のDC電圧が、ウエハ402に印加される。DCバイアスは、プラズマ450の準中性を維持するという重要な機能を果たす。DCバイアスは、Vdcとも呼ばれ、ウエハ402を固定させるためにウエハホルダ410に印加するのに適切なチャッキング電圧を決定する際に役割を果たす。DCバイアスは、もしわかれば、負に帯電したウエハ402に衝突するイオンエネルギーを推定するのに使用することもできる。したがって、Vdcの正確な測定は、ウエハ製造プロセスを監視および制御するのに役立ち得る。
[00135]現在、Vdcは、RFインピーダンスチューニング整合の出力に配置された電圧および電流センサからの測定値に基づいて推定されている。しかしながら、そのような測定値は、測定された平面から離れたところで取得され、それ故、固有の測定誤差を含む。この誤差は、例えば13MHzを超えるようなより高いRF周波数で、または追加の周波数が使用されるときに、悪化する。さらに、測定は、ウエハ402上のDC情報を推定するためにAC信号処理を使用して行われ、そのような処理は、誤差を生じやすい。したがって、ウエハ製造プロセス制御は、現行の技術の誤差なしにVdcを明確に測定する方法から利益を得るであろう。
[00136]一実施形態において、DCバイアスは、ウエハ402に接触することなく直接測定される。非接触Vdcセンサが、測定のためにDC信号をAC信号に変換するために、ウエハ402の近くに配置された静電容量型マイクロセンサ210を組み込むことができる。図18を参照すると、一実施形態による、静電容量型マイクロセンサを組み込んだウエハホルダの断面図が示されている。ウエハ402への直接アクセスは、例えばウエハホルダ410を通って、ウエハ402の裏面にアクセスすることによって得られる。より具体的には、現行のカソードシステムのリフトピン1802が、ウエハ製造プロセスの特定の工程中にウエハ402を持ち上げるために、リフトピン孔1804を有するそれぞれのリフトピンガイドに沿って移動する。したがって、静電容量型マイクロセンサ210は、リフトピン1802内に統合されて、および/またはウエハ402の裏面にアクセスするためにリフトピン孔1804を通って進められてもよい。すなわち、静電容量型マイクロセンサ210は、リフトピン1802に取り付けられてもよく、またはリフトピン1802から離れており、リフトピン1802に対してリフトピン孔1804を通って移動することが可能であってもよい。こうして、静電容量型マイクロセンサ210は、ウエハ400のDCバイアスされた表面に隣接する位置に移動することができる。
[00137]図19を参照すると、一実施形態による、ウエハ製造プロセス中にウエハのDCバイアスを測定する方法における工程を表すフローチャートの図が示されている。工程1902および1904において、ウエハ402が、ウエハ処理ツール102のプロセスチャンバ114内にロードされ、ウエハ製造プロセスが開始され得る。ウエハ製造プロセスは、ウエハ402にDCバイアスを印加することを含み得る。
[00138]工程1906において、静電容量型マイクロセンサ210が、リフトピン孔1804を通ってチャンバ容積部406内のある位置まで挿入され得る、または進められ得る。より具体的には、静電容量型マイクロセンサ210は、ウエハ402の近くおよび/またはウエハ402の下に配置することができる。
[00139]工程1908において、静電容量の変化が、誘導され得る。静電容量は、ウエハ402と静電容量型マイクロセンサ210との間で物理的または電気的に変化させることができる。例えば、静電容量は、電荷を静電容量型マイクロセンサ210に印加しながら、静電容量型マイクロセンサ210をウエハ402の表面付近で上下に動かすことによって、物理的に変化させることができる。静電容量は、静電容量型マイクロセンサ210に印加される電荷を変化させることによって、電気的に変化させることができる。静電容量型マイクロセンサ210の静電容量は、ウエハ402と静電容量型マイクロセンサ210との間のDC電界に対応する電荷に比例し得る。従って、静電容量の変化は、電荷の変化をもたらし、それは、誘導される静電容量の変化が周期的であるならば、周期的な信号を引き起こす。より具体的には、AC電流が、変化した静電容量に関連して生成され得る。一実施形態において、信号の振幅は、負のDCバイアスを有するウエハ402に蓄積された電荷に比例する。
[00140]工程1910において、DCバイアスが、変化した静電容量に基づいて検出または測定され得る。より具体的には、変化した静電容量に対応するAC電流が、電子回路218によって測定され得る。AC電流がウエハ402において直接生成されると仮定すると、AC電流の測定は、ウエハ402のDC電位、すなわちDCバイアスの明確な測定値を提供し得る。したがって、DCバイアスの正確な測定値を得ることができる。測定の精度は、RF場を除去し、DCバイアスにのみ関連する電流を生成するためにフィルタを使用して、電子回路218によって向上させることができる。より具体的には、ウエハ402に、主RF信号からの変位電流が生じることがあり、電子回路218は、変位電流を除去することができる。
[00141]DCバイアス測定値は、ウエハ処理ツール102の制御システムにおけるフィードバックとして使用することができる。例えば、DCバイアス測定値は、ウエハホルダ410のチャッキング電圧を制御するために使用されてもよい。
[00142]図20を参照すると、一実施形態による、ウエハ処理システムの例示的なコンピュータシステムのブロック図が示されている。図示のコンピュータシステム104の1つ以上の構成要素が、ウエハ処理ツール102の電子回路218で使用され得る。したがって、図5に関して先に論じた電子回路218は、コンピュータシステム104のサブセットであってもよい。あるいは、電子回路218は、パーティクル監視装置200またはウエハ処理ツール102に局所的であってもよく、コンピュータシステム104は、電子回路218および/またはウエハ処理ツール102のコンピュータとインターフェース接続されている製造設備ホストコンピュータであってもよい。一実施形態において、コンピュータシステム104は、ロボット、ロードロック112、プロセスチャンバ114、およびウエハ処理ツール102の他の構成要素に結合され、それらを制御する。コンピュータシステム104はまた、上述のように静電容量型マイクロセンサ210によって提供されたパーティクル検出または材料堆積/除去情報を受信して分析することができる。
[00143]コンピュータシステム104は、ローカルエリアネットワーク(LAN)、イントラネット、エクストラネット、またはインターネット内の他のマシンに接続(例えば、ネットワーク接続)されてもよい。コンピュータシステム104は、クライアント−サーバネットワーク環境におけるサーバもしくはクライアントマシンのキャパシティ内で、またはピアツーピア(もしくは分散型)ネットワーク環境におけるピアマシンとして動作することができる。コンピュータシステム104は、パーソナルコンピュータ(PC)、タブレットPC、セットトップボックス(STB)、パーソナルデジタルアシスタント(PDA)、携帯電話、ウェブアプライアンス、サーバ、ネットワークルータ、スイッチもしくはブリッジ、またはそのマシンによって実行されるべきアクションを指定する1組の命令(シーケンシャルまたはその他)を実行できる任意のマシンであってよい。さらに、コンピュータシステム104には単一のマシンしか示されていないが、「マシン」という用語は、本明細書に記載の方法のうちの任意の1つ以上の方法を実施する1組(または複数の組)の命令を個別にまたは共同で実行する任意のマシンの集まり(例えば、コンピュータ)も含むものとする。
[00144]コンピュータシステム104は、実施形態によるプロセスを実行するようにコンピュータシステム104(または他の電子デバイス)をプログラムするために使用され得る命令を格納した非一過性のマシン可読媒体を有するコンピュータプログラム製品、すなわちソフトウェア2002を含んでもよい。マシン可読媒体は、マシン(例えばコンピュータ)によって可読な形で情報を格納または送信するための任意の機構を含む。例えば、マシン可読(例えば、コンピュータ可読)媒体は、マシン(例えば、コンピュータ)可読記憶媒体(例えば、読み出し専用メモリ(「ROM」)、ランダムアクセスメモリ(「RAM」)、磁気ディスク記憶媒体、光学記憶媒体、フラッシュメモリデバイスなど)、マシン(例えば、コンピュータ)可読伝送媒体(電気的、光学的、音響的または他の形態の伝搬信号(例えば、赤外線信号、デジタル信号など))などを含む。
[00145]一実施形態において、コンピュータシステム104は、システムプロセッサ2004、メインメモリ2006(例えば、読み出し専用メモリ(ROM)、フラッシュメモリ、シンクロナスDRAM(SDRAM)またはラムバスDRAM(RDRAM)などのダイナミックランダムアクセスメモリ(DRAM)等)、スタティックメモリ2008(例えば、フラッシュメモリ、スタティックランダムアクセスメモリ(SRAM)等)、および二次メモリ(例えば、データ記憶装置2024)を含み、これらはバス2009を介して互いに通信する。
[00146]システムプロセッサ2004は、マイクロシステムプロセッサ、中央処理装置などの1つ以上の汎用処理装置を表す。より具体的には、システムプロセッサ2004は、複合命令セットコンピューティング(CISC)マイクロシステムプロセッサ、縮小命令セットコンピューティング(RISC)マイクロシステムプロセッサ、超長命令語(VLIW)マイクロシステムプロセッサ、他の命令セットを実装するシステムプロセッサ、または命令セットの組み合わせを実装するシステムプロセッサであってもよい。システムプロセッサ2004はまた、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、デジタル信号システムプロセッサ(DSP)、ネットワークシステムプロセッサなどの1つ以上の専用処理装置であってもよい。システムプロセッサ2004は、本明細書に記載の動作を実行するための処理ロジック2010を実行するように構成される。
[00147]コンピュータシステム104は、ネットワーク2014を介して他の装置またはマシン、例えば、ウエハ処理ツール102と通信するためのシステムネットワークインターフェース装置2012をさらに含んでもよい。コンピュータシステム104はまた、ビデオディスプレイユニット2016(例えば、液晶ディスプレイ(LCD)、発光ダイオードディスプレイ(LED)、またはブラウン管(CRT))、英数字入力装置2018(例えば、キーボード)、カーソル制御装置2020(例えば、マウス)、および信号発生装置2022(例えば、スピーカー)を含んでもよい。
[00148]二次メモリは、本明細書に記載の任意の1つ以上の方法または機能を具現化する1組以上の命令(例えば、ソフトウェア2002)が格納されているマシンアクセス可能記憶媒体2026(またはより具体的にはコンピュータ可読記憶媒体)を有するデータ記憶装置2024を含むことができる。ソフトウェア2002はまた、完全にまたは少なくとも部分的に、コンピュータシステム104による実行中にメインメモリ2006内および/またはシステムプロセッサ2004内に存在してもよく、メインメモリ2006およびシステムプロセッサ2004もまた、マシン可読記憶媒体を構成する。ソフトウェア2002はさらに、システムネットワークインターフェース装置2012を経由してネットワーク2014を介して送信または受信することができる。
[00149]マシンアクセス可能記憶媒体2026は、例示的な実施形態において単一の媒体として示されているが、「マシン可読記憶媒体」という用語は、1組以上の命令を格納する単一の媒体または複数の媒体(例えば、集中型もしくは分散型データベース、ならびに/または関連するキャッシュおよびサーバ)を含むと解釈されるべきである。「マシン可読記憶媒体」という用語はまた、マシンによって実行され、マシンに任意の1つ以上の方法を実行させる1組の命令を格納または符号化することができる任意の媒体を含むものと解釈される。したがって、「マシン可読記憶媒体」という用語は、限定しないが、固体メモリ、ならびに光および磁気媒体を含むと解釈されるべきである。
[00150]ウエハ製造プロセスを監視および/または制御するために静電容量型マイクロセンサ210を使用する上述の方法は、例示的なものであり、網羅的なものではない。より具体的には、静電容量型マイクロセンサ210を使用して、ウエハ処理ツール102によって実行されるウエハ製造プロセスの態様を測定および制御する他の方法が、パーティクル、堆積/エッチング速度などの検出を組み込んでもよい。図21を参照すると、例として、一実施形態による、ウエハ処理ツール102内のパーティクル源を決定する方法における工程を表すフローチャートの図が示されている。工程2102において、パーティクル監視装置200が、ウエハ処理ツール102の第1のチャンバ、例えばバッファチャンバ108からウエハ処理ツール102の第2のチャンバ、例えばプロセスチャンバ114へ移動される。パーティクル監視装置200は、上述の構造および構成要素を有することができ、例えば、静電容量型マイクロセンサ210を支持面204上の所定の位置に取り付けることができ、クロック504を基板606上に取り付けることができる。静電容量型マイクロセンサ210は、静電容量を有することができ、クロック504は、時間値を出力するように構成することができる。
[00151]工程2104において、第2のチャンバ、例えばプロセスチャンバ114のチャンバ圧力が、真空状態に下げられる。より具体的には、チャンバ圧力は、0.5気圧未満に下げることができる。上述のように、パーティクル監視装置200は、全ての圧力状況下でパーティクルを検出することができ、したがって、ウエハ処理ツール102内で半導体ウエハ402が通常遭遇する条件下でのリアルタイムパーティクル監視に使用することができる。
[00152]工程2106において、静電容量型マイクロセンサ210の静電容量の変化が検出される。より具体的には、静電容量型マイクロセンサ210が、第2のチャンバ、例えばプロセスチャンバ114内でパーティクルを受け取ると、静電容量の変化が検出され得る。静電容量型マイクロセンサ210(または静電容量型マイクロセンサ210に接続された電子回路218)が、静電容量の変化を検出すると、対応する信号が供給される。
[00153]工程2108において、対応する信号が、静電容量の変化の検出に応じて該パーティクル事象についての情報を記録するために、プロセッサ508によって使用される。例えば、プロセッサ508は、支持面204上のマイクロセンサの該所定の位置を記録することができる。したがって、パーティクルがパーティクル監視装置200と相互作用する正確な位置を記録することができる。プロセッサ508は、クロック504によって出力された時間値を記録することができる。したがって、パーティクルがパーティクル監視装置200と相互作用する正確な時間を記録することができる。
[00154]工程2110において、記録された情報が、パーティクルの発生源を決定するために使用され得る。例えば、パーティクルを受け取った静電容量型マイクロセンサ210の記録された所定の位置および/または該パーティクル事象に対応する記録された時間値が、パーティクル汚染を招いた構成要素および/またはウエハ処理ツール102によって行われた処理動作を決定するために使用され得る。
[00155]一実施形態において、記録された時間値は、ウエハ処理ツール102のログファイルと同期させることができるタイムスタンプとして機能する。例えば、ウエハ処理ツール102は、各処理動作が開始および/または終了した時間を示すログファイルを維持することができる。したがって、クロック504によって出力された(パーティクルが静電容量型マイクロセンサ210によって検出された)時間値をログファイルと比較することによって、該パーティクル事象と同時に行われた処理動作を決定することができる。例として、時間値の出力が、該パーティクル事象がウエハ製造プロセスの開始5分後に発生したことを示し、システムログファイルが、ロードロック112のスリットバルブドアが5分の印のところで開かれたことを示すならば、スリットバルブドア、および/またはロードロック112を開く動作が、パーティクル監視装置200に向かってパーティクルが放出されたことに寄与する原因であると、合理的に結論付けられ得る。
[00156]タイムスタンプ情報と同様に、パーティクル接触位置に関する情報を使用して、パーティクル源を決定することができる。例えば、スリットバルブドアが閉じるときにリフトピン1802が上昇するなど、いくつかの処理動作が同時に起こる場合、パーティクル位置と動作中の構成要素との間の相対的な距離を用いて、どの構成要素がパーティクルの発生源であるかを推測することができる。すなわち、記録された位置が、スリットバルブドアよりもリフトピン1802に近い場合、リフトピン1802がパーティクルの発生源であると推測することができる。
[00157]パーティクル汚染についての情報は、ウエハ製造プロセス中に連続的に記録されてもよく、したがって、情報は、リアルタイムまたはほぼリアルタイムで分析に利用可能にされ得る。すなわち、パーティクル監視装置200が、無線ネットワークインターフェース装置506を使用してネットワーク2014内の他のマシンに無線で接続されて、パーティクル監視装置200から離れた場所にあるコンピュータシステムを用いてリアルタイムでパーティクル汚染データを監視し分析することができる。あるいは、パーティクル監視装置200が、ウエハ処理ツール102のウエハ製造プロセスを完了するとすぐに、パーティクル監視装置200が、データ転送ケーブルを介して他のマシンに接続されて、格納された情報をほぼリアルタイムで分析することができる。同様に、ウエハ製造プロセス後にパーティクル監視装置200がウエハ処理ツール102から出て来たときに、電子回路218および/または静電容量型マイクロセンサ210に接続された接点部を手動でプローブして、プロセス制御用のデータを受信および記録することができる。こうして、ウエハ製造プロセス中またはウエハ製造プロセスの完了後に、パーティクル汚染源を迅速に特定することができ、適切な修理を行うことができる。パーティクル監視装置200は、ウエハ処理ツール102のウエハ製造プロセスを通して半導体ウエハ402のバッチを処理する前のプロセス認定作業として使用されてもよい。あるいは、パーティクル監視装置200は、パーティクル汚染が半導体ウエハ402のバッチ内で確認されたときに、ウエハ処理ツール102の適時の修理を容易にするためのプロセストラブルシューティングツールとして使用されてもよい。したがって、パーティクル監視装置200は、ウエハ処理ツール102内のパーティクル汚染源を特定し除去するための速くて、安価で、簡単な方法を提供する。
[00158]前述の明細書において、特定の例示的な実施形態が説明された。以下の特許請求の範囲から逸脱することなく、様々な修正を加えることができることは明らかであろう。したがって、明細書および図面は、限定的な意味ではなく例示的な意味で考えられるべきである。

Claims (12)

  1. ウエハ処理ツールであって、当該ウエハ処理ツールは、
    チャンバ容積部の周囲にチャンバ壁を有するプロセスチャンバと、
    ある位置で前記ウエハ処理ツールに取り付けられた静電容量型マイクロセンサであって、前記静電容量型マイクロセンサの静電容量が、前記ウエハ処理ツールによって実行されるウエハ製造プロセスに応じて変化する、静電容量型マイクロセンサと
    を備え、前記静電容量型マイクロセンサが、前記ウエハ処理ツールのロードロック、ガスライン、ロボット、又は圧力制御弁のうち1つ以上に取り付けられている、ウエハ処理ツール。
  2. 前記静電容量型マイクロセンサが、基板上に取り付けられた第1の導体と第2の導体とを有する一対の導体を含み、前記第1の導体が、複数の第1の細長導体を含み、前記第2の導体が、前記複数の第1の細長導体と互いに噛み合う複数の第2の細長導体を含む、請求項1に記載のウエハ処理ツール。
  3. 前記静電容量型マイクロセンサが、前記第1の導体と前記第2の導体のうちの一方または両方の上にコーティングを含み、前記コーティングが、材料を含み、前記材料が、前記ウエハ製造プロセス中に前記コーティングから除去されたときに、前記静電容量型マイクロセンサの静電容量が変化する、請求項2に記載のウエハ処理ツール。
  4. 前記静電容量型マイクロセンサが、前記第1の導体と前記第2の導体のうちの一方または両方の上にコーティングを含み、前記コーティングが、複数の細孔を含み、材料が、前記ウエハ製造プロセス中に前記細孔内に堆積されたときに、前記静電容量型マイクロセンサの静電容量が変化する、請求項2に記載のウエハ処理ツール。
  5. 前記静電容量が変化したときに前記位置を記録するように、前記静電容量型マイクロセンサに動作可能に結合されたプロセッサをさらに備える、請求項に記載のウエハ処理ツール。
  6. 前記静電容量型マイクロセンサが、センサバンクをなすように結び付けられた複数の静電容量型マイクロセンサのうちの1つであり、前記プロセッサが、前記ウエハ処理ツールのためのベース静電容量を選択するように、前記センサバンクに動作可能に結合されている、請求項に記載のウエハ処理ツール。
  7. ウエハ処理ツールのプロセスチャンバであって、チャンバ容積部の周囲にチャンバ壁を含むプロセスチャンバ内に、半導体材料のウエハをロードすることと、ここで前記ウエハは、DCバイアスを含むものであり、
    ウエハ製造プロセスであって、材料が、前記ウエハ製造プロセス中に前記ウエハ上に堆積される、または前記ウエハから除去される、ウエハ製造プロセスを、前記プロセスチャンバ内で開始することと、
    ある位置で前記ウエハ処理ツールに取り付けられた静電容量型マイクロセンサの静電容量の変化を、前記ウエハ製造プロセスに応じて検出することと
    検出された前記変化に基づいて前記ウエハ製造プロセスを制御することと、
    前記静電容量型マイクロセンサを、リフトピン孔を通って前記チャンバ容積部内の位置まで挿入することと、
    前記ウエハと前記静電容量型マイクロセンサとの間の静電容量を変化させることと、
    変化した前記静電容量に基づいて前記DCバイアスを測定することと
    を含む方法。
  8. 前記材料が、前記ウエハ製造プロセス中に前記静電容量型マイクロセンサ上に堆積された、または前記静電容量型マイクロセンサから除去されたときに、前記静電容量が変化し、前記位置が、前記ウエハ処理ツールの前記チャンバ壁、リフトピン、ロードロック、ガスライン、ロボット、および圧力制御バルブのうちの1つ以上に近接している、請求項に記載の方法。
  9. 前記静電容量の変化に基づいて前記ウエハ製造プロセスの終点を決定することと、
    前記終点を決定することに応じて、前記ウエハ製造プロセスを停止することと
    をさらに含む、請求項に記載の方法。
  10. 前記ウエハ処理ツールが、第2の位置で前記ウエハ処理ツールに取り付けられた第2の静電容量型マイクロセンサを含み、前記方法が、
    前記ウエハ製造プロセスに応じて、前記第2の静電容量型マイクロセンサの第2の静電容量の変化を検出することと、
    前記静電容量型マイクロセンサの静電容量の変化および前記第2の静電容量型マイクロセンサの第2の静電容量の変化に基づいて、前記ウエハ製造プロセスの均一性を決定することと
    をさらに含む、請求項に記載の方法。
  11. 測定装置によって、前記ウエハ製造プロセスのプロセスパラメータを検出することと、
    検出された前記プロセスパラメータに基づいて、前記静電容量型マイクロセンサの静電容量の変化の根本原因を決定することと
    をさらに含む、請求項に記載の方法。
  12. 前記ウエハ製造プロセス中に前記チャンバ容積部内の前記静電容量型マイクロセンサに堆積した前記材料の量を、前記静電容量型マイクロセンサの静電容量の変化に基づいて、決定することと、
    決定された前記量に基づいて、前記チャンバ壁から前記量の前記材料を除去して、前記プロセスチャンバを洗浄することと、
    をさらに含む、請求項に記載の方法。
JP2018566406A 2016-06-20 2017-06-13 容量マイクロセンサを有するウエハ処理装置 Active JP6776375B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/187,717 US10083883B2 (en) 2016-06-20 2016-06-20 Wafer processing equipment having capacitive micro sensors
US15/187,717 2016-06-20
PCT/US2017/037322 WO2017222876A1 (en) 2016-06-20 2017-06-13 Wafer processing equipment having capacitive micro sensors

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020168835A Division JP7022805B2 (ja) 2016-06-20 2020-10-06 容量マイクロセンサを有するウエハ処理装置

Publications (2)

Publication Number Publication Date
JP2019522900A JP2019522900A (ja) 2019-08-15
JP6776375B2 true JP6776375B2 (ja) 2020-10-28

Family

ID=60660364

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018566406A Active JP6776375B2 (ja) 2016-06-20 2017-06-13 容量マイクロセンサを有するウエハ処理装置
JP2020168835A Active JP7022805B2 (ja) 2016-06-20 2020-10-06 容量マイクロセンサを有するウエハ処理装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020168835A Active JP7022805B2 (ja) 2016-06-20 2020-10-06 容量マイクロセンサを有するウエハ処理装置

Country Status (6)

Country Link
US (2) US10083883B2 (ja)
JP (2) JP6776375B2 (ja)
KR (2) KR102439729B1 (ja)
CN (1) CN109417039B (ja)
TW (2) TWI795013B (ja)
WO (1) WO2017222876A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210033557A1 (en) * 2019-07-30 2021-02-04 Applied Materials, Inc. Differential capacitive sensors for in-situ film thickness and dielectric constant measurement

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017196540A1 (en) * 2016-05-13 2017-11-16 Applied Materials, Inc. Sensor based auto-calibration wafer
US9725302B1 (en) * 2016-08-25 2017-08-08 Applied Materials, Inc. Wafer processing equipment having exposable sensing layers
CN109643671B (zh) * 2016-08-26 2023-06-06 应用材料公司 自我修复式半导体晶片处理
EP3499310A1 (en) * 2017-12-14 2019-06-19 IMEC vzw A method for producing a pattern of features by lithography and etching
JP2021524919A (ja) * 2018-05-23 2021-09-16 テクノロギアン トゥトキムスケスクス ヴェーテーテー オイTeknologian Tutkimuskeskus Vtt Oy 粒子センサ
US11456203B2 (en) * 2018-07-13 2022-09-27 Taiwan Semiconductor Manufacturing Co., Ltd Wafer release mechanism
TWI677774B (zh) * 2018-12-03 2019-11-21 鴻勁精密股份有限公司 電子元件移料機構及其應用之作業設備
KR102640172B1 (ko) 2019-07-03 2024-02-23 삼성전자주식회사 기판 처리 장치 및 이의 구동 방법
US20210013005A1 (en) * 2019-07-09 2021-01-14 Tokyo Electron Limited Process control enabled vdc sensor for plasma process
WO2021149842A1 (ko) * 2020-01-20 2021-07-29 (주)제이디 정전용량 방식의 상태 측정 장치
US11650144B2 (en) * 2020-02-11 2023-05-16 Colorado State University Research Foundation Interdigitated capacitive sensor for real-time monitoring of sub-micron and nanoscale particulate matters
US20210280399A1 (en) * 2020-03-06 2021-09-09 Applied Materials, Inc. Capacitive sensors and capacitive sensing locations for plasma chamber condition monitoring
US11581206B2 (en) * 2020-03-06 2023-02-14 Applied Materials, Inc. Capacitive sensor for chamber condition monitoring
US11545346B2 (en) * 2020-03-06 2023-01-03 Applied Materials, Inc. Capacitive sensing data integration for plasma chamber condition monitoring
US11415538B2 (en) 2020-03-06 2022-08-16 Applied Materials, Inc. Capacitive sensor housing for chamber condition monitoring
US11901875B2 (en) 2020-10-12 2024-02-13 Applied Materials, Inc. Surface acoustic wave sensor assembly
US11920994B2 (en) 2020-10-12 2024-03-05 Applied Materials, Inc. Surface acoustic wave sensor assembly
KR20220135290A (ko) 2021-03-29 2022-10-07 삼성전자주식회사 측정용 캐리어 및 이를 포함하는 웨이퍼 이송 시스템
US11948780B2 (en) * 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US20220362902A1 (en) * 2021-05-14 2022-11-17 Taiwan Semiconductor Manufacturing Company Ltd. Method and system for slurry quality monitoring
KR102477434B1 (ko) * 2022-07-08 2022-12-15 (주)에스티글로벌 고정형 파티클 감지유닛을 포함하는 웨이퍼 가공장치의 파티클 검출시스템
CN115683963B (zh) * 2022-09-19 2023-10-27 兰州空间技术物理研究所 一种用于月尘沉积均匀性测试装置及方法
WO2024075377A1 (ja) * 2022-10-05 2024-04-11 キヤノントッキ株式会社 成膜装置、検知装置および成膜装置の制御方法

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4661196A (en) * 1984-10-22 1987-04-28 Texas Instruments Incorporated Plasma etch movable substrate
JP2563589B2 (ja) * 1989-06-28 1996-12-11 松下電子工業株式会社 異物検査装置
US5293216A (en) * 1990-12-31 1994-03-08 Texas Instruments Incorporated Sensor for semiconductor device manufacturing process control
US5270222A (en) * 1990-12-31 1993-12-14 Texas Instruments Incorporated Method and apparatus for semiconductor device fabrication diagnosis and prognosis
US5446616A (en) * 1994-03-28 1995-08-29 Litton Systems, Inc. Electrode structure and method for anodically-bonded capacitive sensors
US5563798A (en) * 1994-04-05 1996-10-08 Applied Materials, Inc. Wafer positioning system
JPH07283148A (ja) * 1994-04-15 1995-10-27 Ryoden Semiconductor Syst Eng Kk 半導体製造用の薄膜成膜装置
US6156578A (en) * 1998-06-01 2000-12-05 Advanced Technology Materials, Inc. Quartz crystal microbalance system for detecting concentration of a selected gas component in a multicomponent gas stream
US6144037A (en) * 1998-06-18 2000-11-07 International Business Machines Corporation Capacitor charging sensor
AU5215099A (en) * 1998-07-07 2000-01-24 Goodyear Tire And Rubber Company, The Method of fabricating silicon capacitive sensor
KR100674624B1 (ko) * 1999-05-07 2007-01-25 동경 엘렉트론 주식회사 센서기판, 기판처리방법 및 기판처리장치
JP3556549B2 (ja) * 1999-12-10 2004-08-18 シャープ株式会社 シート抵抗測定器および電子部品製造方法
CN1319130C (zh) * 1999-12-24 2007-05-30 株式会社荏原制作所<Del/> 半导体基片处理装置及处理方法
US20010015171A1 (en) * 2000-02-22 2001-08-23 Kazuhiko Ooshima Treatment apparatus
JP2001345263A (ja) * 2000-03-31 2001-12-14 Nikon Corp 露光装置及び露光方法、並びにデバイス製造方法
JP4067307B2 (ja) * 2000-04-27 2008-03-26 株式会社荏原製作所 回転保持装置
KR100412262B1 (ko) * 2001-01-31 2003-12-31 삼성전자주식회사 베이크 장치
US7960670B2 (en) * 2005-05-03 2011-06-14 Kla-Tencor Corporation Methods of and apparatuses for measuring electrical parameters of a plasma process
EP1262767B1 (en) * 2001-05-31 2011-02-16 Ngk Spark Plug Co., Ltd Humidity sensor
JP2002367970A (ja) * 2001-06-13 2002-12-20 Hitachi Ltd ドライエッチングのエッチング量制御方法及びドライエッチング装置
US6830650B2 (en) * 2002-07-12 2004-12-14 Advanced Energy Industries, Inc. Wafer probe for measuring plasma and surface characteristics in plasma processing environments
US7296458B2 (en) * 2002-10-17 2007-11-20 Advanced Technology Materials, Inc Nickel-coated free-standing silicon carbide structure for sensing fluoro or halogen species in semiconductor processing systems, and processes of making and using same
US7080545B2 (en) * 2002-10-17 2006-07-25 Advanced Technology Materials, Inc. Apparatus and process for sensing fluoro species in semiconductor processing systems
JP2004241706A (ja) * 2003-02-07 2004-08-26 Tokyo Electron Ltd 半導体製造装置
EP1649076B1 (en) * 2003-06-27 2010-05-19 Sundew Technologies, LLC Apparatus and method for chemical source vapor pressure control
US20100129548A1 (en) * 2003-06-27 2010-05-27 Sundew Technologies, Llc Ald apparatus and method
US6902646B2 (en) * 2003-08-14 2005-06-07 Advanced Energy Industries, Inc. Sensor array for measuring plasma characteristics in plasma processing environments
KR100506315B1 (ko) * 2003-08-22 2005-08-05 삼성전자주식회사 웨이퍼 베이크 시스템 및 그 동작 방법
US20050095859A1 (en) * 2003-11-03 2005-05-05 Applied Materials, Inc. Precursor delivery system with rate control
US7437944B2 (en) * 2003-12-04 2008-10-21 Applied Materials, Inc. Method and apparatus for pressure and mix ratio control
US20050120805A1 (en) * 2003-12-04 2005-06-09 John Lane Method and apparatus for substrate temperature control
US7110110B2 (en) * 2003-12-29 2006-09-19 Tokyo Electron Limited Sensing component used to monitor material buildup and material erosion of consumables by optical emission
US7464581B2 (en) * 2004-03-29 2008-12-16 Tokyo Electron Limited Vacuum apparatus including a particle monitoring unit, particle monitoring method and program, and window member for use in the particle monitoring
CN102854229A (zh) * 2004-04-02 2013-01-02 硅实验室公司 集成电子传感器
US20050284570A1 (en) * 2004-06-24 2005-12-29 Doran Daniel B Diagnostic plasma measurement device having patterned sensors and features
US7334477B1 (en) * 2004-12-22 2008-02-26 Lam Research Corporation Apparatus and methods for the detection of an arc in a plasma processing system
US20060171848A1 (en) * 2005-01-31 2006-08-03 Advanced Energy Industries, Inc. Diagnostic plasma sensors for endpoint and end-of-life detection
US20060234398A1 (en) * 2005-04-15 2006-10-19 International Business Machines Corporation Single ic-chip design on wafer with an embedded sensor utilizing rf capabilities to enable real-time data transmission
JP2007123056A (ja) * 2005-10-28 2007-05-17 Matsushita Electric Ind Co Ltd イオン注入装置とそのイオン注入制御方法
JP4878188B2 (ja) * 2006-03-20 2012-02-15 東京エレクトロン株式会社 基板処理装置、堆積物モニタ装置、及び堆積物モニタ方法
JP2007291506A (ja) * 2006-03-31 2007-11-08 Canon Inc 成膜方法
US8823933B2 (en) * 2006-09-29 2014-09-02 Cyberoptics Corporation Substrate-like particle sensor
US20080081130A1 (en) * 2006-09-29 2008-04-03 Applied Materials, Inc. Treatment of effluent in the deposition of carbon-doped silicon
JP2008103384A (ja) * 2006-10-17 2008-05-01 Elpida Memory Inc レジストパターンの形成方法およびレジスト塗布現像装置
US7986146B2 (en) * 2006-11-29 2011-07-26 Globalfoundries Inc. Method and system for detecting existence of an undesirable particle during semiconductor fabrication
JP2008186506A (ja) * 2007-01-29 2008-08-14 Hitachi Global Storage Technologies Netherlands Bv 薄膜磁気ヘッド及びその製造方法
JP2010519768A (ja) * 2007-02-23 2010-06-03 ケーエルエー−テンカー・コーポレーション プロセス条件測定デバイス
US8669497B2 (en) 2007-03-30 2014-03-11 Tokyo Electron Limited Apparatus and method for predictive temperature correction during thermal processing
US8195418B2 (en) * 2007-04-25 2012-06-05 Brooks Automation, Inc. Pressure measurement instrument and method
US8610690B2 (en) * 2007-07-27 2013-12-17 Tpk Touch Solutions Inc. Capacitive sensor and method for manufacturing same
US8224607B2 (en) * 2007-08-30 2012-07-17 Applied Materials, Inc. Method and apparatus for robot calibrations with a calibrating device
JP2009059879A (ja) * 2007-08-31 2009-03-19 Oki Electric Ind Co Ltd 紫外光モニタリングシステム
US9074285B2 (en) * 2007-12-13 2015-07-07 Lam Research Corporation Systems for detecting unconfined-plasma events
US8158017B2 (en) * 2008-05-12 2012-04-17 Lam Research Corporation Detection of arcing events in wafer plasma processing through monitoring of trace gas concentrations
DE102008049774B4 (de) * 2008-09-30 2017-07-27 Advanced Micro Devices, Inc. Prozessanlage und Verfahren zur prozessinternen Überwachung der Metallkontamination während der Bearbeitung von Mikrostrukturen
US8293016B2 (en) * 2008-10-07 2012-10-23 Applied Materials, Inc. Apparatus for efficient removal of halogen residues from etched substrates
CN101859719B (zh) * 2009-04-10 2012-03-14 奇景光电股份有限公司 微粒检测方法及其装置
US8241927B2 (en) * 2009-10-14 2012-08-14 Global Foundries, Inc. Methods relating to capacitive monitoring of layer characteristics during back end-of the-line processing
US8889021B2 (en) * 2010-01-21 2014-11-18 Kla-Tencor Corporation Process condition sensing device and method for plasma chamber
US8520744B2 (en) 2010-03-19 2013-08-27 Netlogic Microsystems, Inc. Multi-value logic signaling in multi-functional circuits
DE102010016471A1 (de) * 2010-04-16 2011-10-20 Aixtron Ag Vorrichtung und Verfahren zum gleichzeitigen Abscheiden mehrerer Halbleiterschichten in mehreren Prozesskammern
US8310021B2 (en) * 2010-07-13 2012-11-13 Honeywell International Inc. Neutron detector with wafer-to-wafer bonding
US9341588B2 (en) * 2010-09-30 2016-05-17 3M Innovative Properties Company Sensor element, method of making the same, and sensor device including the same
US20150179486A1 (en) * 2010-10-21 2015-06-25 Applied Materials, Inc. Load lock chamber, substrate processing system and method for venting
JP2012109489A (ja) * 2010-11-19 2012-06-07 Sumitomo Electric Ind Ltd 化合物半導体光素子の製造方法
EP2492239B1 (en) * 2011-02-22 2020-08-26 Sciosense B.V. Integrated circuit with sensor and method of manufacturing such an integrated circuit
US9245786B2 (en) * 2011-06-02 2016-01-26 Applied Materials, Inc. Apparatus and methods for positioning a substrate using capacitive sensors
CN102593103B (zh) * 2012-03-01 2016-05-11 上海华虹宏力半导体制造有限公司 纳米晶沉积密度的工艺控制监测方法、模块及其制作方法
KR102073802B1 (ko) * 2012-04-25 2020-02-05 어플라이드 머티어리얼스, 인코포레이티드 웨이퍼 에지 측정 및 제어
KR102107105B1 (ko) * 2012-12-13 2020-05-07 삼성디스플레이 주식회사 증착율 측정센서의 교체 기구가 개선된 증착 장치 및 그것을 이용한 증착율 측정센서의 교체 방법
WO2014158410A1 (en) * 2013-03-13 2014-10-02 Applied Materials, Inc Acoustically-monitored semiconductor substrate processing systems and methods
US10312120B2 (en) 2013-03-15 2019-06-04 Applied Materials, Inc. Position and temperature monitoring of ALD platen susceptor
US9638344B2 (en) * 2013-11-19 2017-05-02 Dresser, Inc. System and method to monitor characteristics of an operating fluid in a process line
US10161896B2 (en) * 2014-02-27 2018-12-25 3M Innovative Properties Company Sub-ambient temperature vapor sensor and method of use
KR101570171B1 (ko) * 2014-07-25 2015-11-20 세메스 주식회사 플라즈마 발생 유닛 및 그를 포함하는 기판 처리 장치
US20160049340A1 (en) * 2014-08-15 2016-02-18 Qualcomm Incorporated Stress sensor for a semiconductor device
KR101591935B1 (ko) 2014-09-05 2016-02-18 플러스기술주식회사 공유 단말 관리 방법 및 그 장치
KR101594935B1 (ko) * 2014-12-19 2016-02-18 피에스케이 주식회사 기판 처리 장치 및 전력 공급 방법
DE202016104588U1 (de) * 2015-09-03 2016-11-30 Veeco Instruments Inc. Mehrkammersystem für chemische Gasphasenabscheidung
US9725302B1 (en) * 2016-08-25 2017-08-08 Applied Materials, Inc. Wafer processing equipment having exposable sensing layers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210033557A1 (en) * 2019-07-30 2021-02-04 Applied Materials, Inc. Differential capacitive sensors for in-situ film thickness and dielectric constant measurement
US11781214B2 (en) * 2019-07-30 2023-10-10 Applied Materials, Inc. Differential capacitive sensors for in-situ film thickness and dielectric constant measurement

Also Published As

Publication number Publication date
TWI744342B (zh) 2021-11-01
CN109417039B (zh) 2024-02-23
TW201810481A (zh) 2018-03-16
KR20190011316A (ko) 2019-02-01
US20180374764A1 (en) 2018-12-27
TWI795013B (zh) 2023-03-01
US10083883B2 (en) 2018-09-25
JP7022805B2 (ja) 2022-02-18
KR102439729B1 (ko) 2022-09-02
WO2017222876A1 (en) 2017-12-28
US20170365531A1 (en) 2017-12-21
US10923405B2 (en) 2021-02-16
KR102627872B1 (ko) 2024-01-23
TW202205471A (zh) 2022-02-01
KR20220125367A (ko) 2022-09-14
JP2021022740A (ja) 2021-02-18
JP2019522900A (ja) 2019-08-15
CN109417039A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
JP7022805B2 (ja) 容量マイクロセンサを有するウエハ処理装置
JP7284219B2 (ja) 露出可能なセンシング層を有するウエハ処理機器
JP7288493B2 (ja) マイクロセンサを有するウエハ処理ツール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201007

R150 Certificate of patent or registration of utility model

Ref document number: 6776375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250