JP6768269B2 - 光電気化学反応装置 - Google Patents

光電気化学反応装置 Download PDF

Info

Publication number
JP6768269B2
JP6768269B2 JP2015152262A JP2015152262A JP6768269B2 JP 6768269 B2 JP6768269 B2 JP 6768269B2 JP 2015152262 A JP2015152262 A JP 2015152262A JP 2015152262 A JP2015152262 A JP 2015152262A JP 6768269 B2 JP6768269 B2 JP 6768269B2
Authority
JP
Japan
Prior art keywords
electrolytic solution
accommodating portion
flow path
layer
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015152262A
Other languages
English (en)
Other versions
JP2017031467A (ja
Inventor
昭彦 小野
昭彦 小野
御子柴 智
智 御子柴
田村 淳
淳 田村
良太 北川
良太 北川
由紀 工藤
由紀 工藤
栄史 堤
栄史 堤
正和 山際
正和 山際
義経 菅野
義経 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015152262A priority Critical patent/JP6768269B2/ja
Priority to US15/220,872 priority patent/US20170029963A1/en
Publication of JP2017031467A publication Critical patent/JP2017031467A/ja
Priority to US16/286,837 priority patent/US10544513B2/en
Application granted granted Critical
Publication of JP6768269B2 publication Critical patent/JP6768269B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)

Description

実施形態の発明は、電気化学反応装置に関する。
近年、エネルギー問題や環境問題の観点から、植物の光合成を模倣して太陽光を電気化学的に化学物質に変換する人工光合成技術の開発が進められている。太陽光を化学物質に変換してボンベやタンクに貯蔵する場合、太陽光を電気に変換して蓄電池に貯蔵する場合に比べて、エネルギーの貯蔵コストを低減することができ、また貯蔵ロスも少ないという利点がある。
太陽光を電気化学的に化学物質へ変換する光電気化学反応装置としては、例えば二酸化炭素(CO)を還元する還元触媒を有する電極と、水(HO)を酸化する酸化触媒を有する電極とを備え、これら電極を二酸化炭素が溶解した水中に浸漬させる二電極方式の装置が知られている。このとき各電極は電線等を介して電気的に接続される。酸化触媒を有する電極においては、光エネルギーによりHOを酸化して酸素(1/2O)を得ると共に、電位を得る。還元触媒を有する電極においては、酸化反応を生起する電極から電位を得ることによって、二酸化炭素を還元して蟻酸(HCOOH)等を生成する。このように、二電極方式の装置においては、二酸化炭素の還元電位を2段励起により得ているため、太陽光から化学エネルギーへの変換効率が低い。
また、一対の電極で光電変換層を挟持した積層体(シリコン太陽電池等)を用いた光電気化学反応装置も検討されている。光照射側の電極では、光エネルギーにより水(2HO)を酸化して酸素(O)と水素イオン(4H)を得る。反対側の電極では、光照射側電極で生成した水素イオン(4H)と光電変換層に生じた電位(e)とを用いて、化学物質として水素(2H)等を得る。また、シリコン太陽電池を積層させた電気化学反応装置も知られている。上記光電気化学反応装置では、高い変換効率を有することが好ましい。
特開2012−505310号公報 特開2012−177150号公報
実施形態の発明が解決しようとする課題は、光から化学物質への変換効率を高めることである。
実施形態の電気化学反応装置は、第1の収容部と第2の収容部とを有する第1の電解液槽と、第3の収容部と第4の収容部とを有する第2の電解液槽と、第1の収容部に設けられた第1の還元電極と、第2の収容部に設けられた第1の酸化電極と、第3の収容部に設けられた第2の還元電極と、第4の収容部に設けられた第2の酸化電極と、第1の還元電極に電気的に接続された第1の面と、第1の酸化電極に電気的に接続された第2の面と、を有する第1の光電変換体と、第2の還元電極に電気的に接続された第3の面と、第2の酸化電極に電気的に接続された第4の面と、を有する第2の光電変換体と、第1の収容部と第4の収容部との間を接続する第1の流路と、第2の収容部と第3の収容部との間を接続する第2の流路と、を具備する。
光電気化学反応装置の構成例を示す模式図である。 光電気化学反応装置の動作例を示す模式図である。 光電気化学反応装置の他の構成例を示す模式図である。 光電気化学反応装置の他の構成例を示す模式図である。 光電気化学反応装置の他の構成例を示す模式図である。 光電気化学反応装置の他の構成例を示す模式図である。 光電気化学反応装置の他の構成例を示す模式図である。 光電変換セルの構成例を示す模式図である。 光電気化学反応装置の他の構成例を示す模式図である。 光電気化学反応装置の他の構成例を示す模式図である。 光電気化学反応装置の他の構成例の一部を示す模式図である。
以下、実施形態について、図面を参照して説明する。なお、図面は模式的であり、例えば各構成要素の厚さ、幅等の寸法は実際の構成要素の寸法と異なる場合がある。また、実施形態において、実質的に同一の構成要素には同一の符号を付け、説明を省略する場合がある。本明細書において「接続する」は、直接接続する場合に限定されず、間接的に接続する場合を含んでいてもよい。
(第1の実施形態)
図1は光電気化学反応装置の構成例を示す模式図である。図1に示す光電気化学反応装置は、電解液槽1aと、電解液槽1bと、還元電極層31aと、還元電極層31bと、酸化電極層32aと、酸化電極層32bと、光電変換層33aと、光電変換層33bと、流路51と、流路52と、を具備する。
一つの電解液槽、一つの還元電極層、一つの酸化電極層、および一つの光電変換層を有する一つのユニットを一つの光電気化学反応ユニットとみなすことができる。例えば、図1に示す光電気化学反応装置は、電解液槽1aと還元電極層31aと酸化電極層32aと光電変換層33aとを有する光電気化学反応ユニット10aと、電解液槽1bと還元電極層31bと酸化電極層32bと光電変換層33bとを有する光電気化学反応ユニット10bと、を具備する。
一つの還元電極層、一つの酸化電極層、および一つの光電変換層を有する構造体を一つの光電変換セルとみなすことができる。例えば、図1に示す光電気化学反応装置は、還元電極層31aと酸化電極層32aと光電変換層33aとを有する光電変換セル3aと、還元電極層31bと酸化電極層32bと光電変換層33bとを有する光電変換セル3bと、を具備する。
電解液槽1aは、電解液21aを収容する収容部11aと、電解液22aを収容する収容部12aとを有する。電解液槽1bは、電解液21bを収容する収容部11bと、電解液22bを収容する収容部12bとを有する。電解液槽1aおよび電解液槽1bの形状は、収容部となる空洞を有する立体形状であれば特に限定されない。
収容部11aおよび収容部12aは、例えばイオン交換膜4aにより互いに区切られている。収容部11bおよび収容部12bは、例えばイオン交換膜4bにより互いに区切られている。イオン交換膜4aおよびイオン交換膜4bとしては、例えばアストム社のネオセプタ(登録商標)や旭硝子社のセレミオン(登録商標)、Aciplex(登録商標)、Fumatech社のFumasep(登録商標)、fumapem(登録商標)、デュポン社のテトラフルオロエチレンをスルホン化して重合したフッ素樹脂であるナフィオン(登録商標)、LANXESS社のlewabrane(登録商標)、IONTECH社のIONSEP(登録商標)、PALL社のムスタング(登録商標)、mega社のralex(登録商標)、ゴアテックス社のゴアテックス(登録商標)等を用いることができる。また、炭化水素を基本骨格とした膜や、アニオン交換ではアミン基を有する膜を用いてイオン交換膜4aおよびイオン交換膜4bが構成されていてもよい。
電解液21aおよび電解液21bは少なくとも被還元物質を含む。被還元物質は還元反応により還元される物質である。被還元物質としては、例えば二酸化炭素が挙げられる。電解液21aおよび電解液21bに含まれる水の量や電解液成分を変えることで化学物質の生成割合を変えることができる。
電解液22aおよび電解液22bは少なくとも被酸化物質を含む。被酸化物質は酸化反応により酸化される物質である。被酸化物質としては、例えば水が挙げられる。電解液21a、電解液21b、電解液22a、および電解液22bは、同じ物質を含む電解液であってもよい。この場合、電解液21a、電解液22a、電解液21b、および電解液22bを1つの電解液とみなしてもよい。そのほかの被酸化物としてはアルコールやアミンなどの有機物が挙げられる。
電解液22aのpHは、電解液21aのpHよりも高いことが好ましい。電解液22bのpHは、電解液21bのpHよりも高いことが好ましい。これにより、水素イオンや水酸化物イオン等が移動し易くなる。また、pHの差による液間電位差により酸化還元反応を効果的に進行させることができる。
還元電極層31aは、電解液21aに浸漬される。還元電極層31bは、電解液21bに浸漬される。還元電極層31aおよび還元電極層31bは、例えば被還元物質の還元触媒を含む。還元反応により生成される化合物は、還元触媒の種類等によって異なる。還元反応により生成される化合物としては、例えば一酸化炭素(CO)、蟻酸(HCOOH)、メタン(CH)、メタノール(CHOH)、エタン(C)、エチレン(C)、エタノール(COH)、ホルムアルデヒド(HCHO、)エチレングリコールの炭素化合物、または水素が挙げられる。還元反応により生成される化合物は、例えば回収経路を介して回収される。このとき、回収経路は、例えば収容部11aおよび収容部11bに接続される。
還元電極層31aおよび還元電極層31bは、例えば薄膜状、格子状、粒子状、ワイヤー状の構造を有してもよい。必ずしも還元電極層31aおよび還元電極層31bに還元触媒を設けなくてもよい。還元電極層31a以外に設けられた還元触媒層を還元電極層31aに電気的に接続してもよい。還元電極層31b以外に設けられた還元触媒層を還元電極層31bに電気的に接続していてもよい。
酸化電極層32aは、電解液22aに浸漬される。酸化電極層32bは、電解液22bに浸漬される。酸化電極層32aおよび酸化電極層32bは、例えば被酸化物質の酸化触媒を含む。酸化反応により生成される化合物は、酸化触媒の種類等によって変化する。酸化反応により生成される化合物としては、例えば水素イオンが挙げられる。酸化反応により生成される化合物は、例えば回収経路を介して回収される。このとき、回収経路は、例えば収容部12aおよび収容部12bに接続される。
酸化電極層32aおよび酸化電極層32bは、例えば薄膜状、格子状、粒子状、ワイヤー状の構造を有してもよい。必ずしも酸化電極層32aおよび酸化電極層32bに酸化触媒を設けなくてもよい。酸化電極層32a以外に設けられた酸化触媒層を酸化電極層32aに電気的に接続してもよい。酸化電極層32b以外に設けられた酸化触媒層を酸化電極層32bに電気的に接続してもよい。
酸化電極層32aと光電変換層33aが積層され、かつ電解液に浸漬され、酸化電極層32bと光電変換層33bが積層され、かつ電解液に浸漬される場合であって、酸化電極層32aを介して光電変換層33aに光を照射し、酸化電極層32bを介して光電変換層33bに光を照射して酸化還元反応を行う場合、酸化電極層32aおよび酸化電極層32bは、透光性を有する必要がある。酸化電極層32aの光の透過率は、例えば酸化電極層32aに照射される光の照射量の少なくとも10%以上、より好ましくは30%以上であることが好ましい。酸化電極層32bの光の透過率は、例えば酸化電極層32bに照射される光の照射量の少なくとも10%以上、より好ましくは30%以上であることが好ましい。これに限定されず、例えば還元電極層31aを介して光電変換層33aに光を照射し、還元電極層31bを介して光電変換層33bに光を照射してもよい。
光電変換層33aは、還元電極層31aに電気的に接続された面331aと、酸化電極層32aに電気的に接続された面332aと、を有する。光電変換層33bは、還元電極層31bに電気的に接続された面331bと、酸化電極層32bに電気的に接続された面332bと、を有する。面331aと還元電極層31aとの間、面331bと還元電極層31bとの間、面332aと酸化電極層32aとの間、および面332aと酸化電極層32aとの間は例えば伝熱性を有する配線で接続されることが好ましい。配線等により光電変換層と還元電極層または酸化電極層とを接続する場合、機能ごとに構成要素が分離されているため、システム的に有利である。光電変換層33aは電解液槽1aの外部に設けられてもよく、光電変換層33bは電解液槽1bの外部に設けられてもよい。
光電変換層33aおよび光電変換層33bは、照射された太陽光等の光のエネルギーにより電荷分離を行う機能を有する。電荷分離により発生した電子は還元電極層側に移動し、正孔は酸化電極層側に移動する。これにより、光電変換層33aおよび光電変換層33は、起電力を発生することができる。光電変換層33aおよび光電変換層33bとしては、例えばpn接合型またはpin接合型の光電変換層を用いることができる。光電変換層33aは例えば電解液槽1aに固定され、光電変換層33bは例えば電解液槽1bに固定されていてもよい。なお、複数の光電変換層を積層することにより光電変換層33aおよび光電変換層33bが形成されてもよい。
還元電極層31a、酸化電極層32a、および光電変換層33aのサイズは、互いに異なってもよい。還元電極層31b、酸化電極層32b、および光電変換層33bのサイズは、互いに異なってもよい。
流路51は、収容部12aと収容部11bとの間を接続する。電解液22aおよび電解液21bに含まれるイオンその他の物質は、流路51を介して収容部12aと収容部11bとの間を移動することができる。
流路52は、収容部11aと収容部12bとの間を接続する。電解液21aおよび電解液22bに含まれるイオンその他の物質は、流路52を介して収容部11aと収容部12bとの間を移動することができる。流路52の長さは、流路51の長さと異なってもよく、同じでもよい。流路52は、流路51と交差してもよい。
本実施形態の光電気化学反応装置は、流路51および流路52の少なくとも一つの流路を具備する。流路51および流路52の形状は、配管等の電解液を流すことができる空洞を有する形状であれば特に限定されない。循環ポンプを設け、流路51および流路52の少なくとも一つの流路の電解液が循環されてもよい。
収容部11a、収容部11b、収容部12a、収容部12b、流路51、および流路52として、例えば光を透過する材料を用いてもよい。
光電気化学反応装置の動作例について図2を参照して説明する。図2は、光電気化学反応装置の動作例を説明するための模式図である。図2は、電解液21を収容する収容部11と電解液22を収容する収容部12とを有する電解液槽1と、電解液21に浸漬された還元電極層31と、電解液22に浸漬された酸化電極層32と、収容部11と収容部12とを区切るイオン交換膜4とを示している。なお、還元電極層31は、図示しない光電変換層の第1の面に電気的に接続され、酸化電極層32は光電変換層の第2の面に電気的に接続される。
電解液槽1の説明は、電解液槽1aおよび電解液槽1bの説明を適宜援用することができる。収容部11の説明は、収容部11aおよび収容部11bの説明を適宜援用することができる。収容部12の説明は、収容部12aおよび収容部12bの説明を適宜援用することができる。電解液21の説明は、電解液21aおよび電解液21bの説明を適宜援用することができる。電解液22の説明は、電解液22aおよび電解液22bの説明を適宜援用することができる。還元電極層31の説明は、還元電極層31aおよび還元電極層31bの説明を適宜援用することができる。酸化電極層32の説明は、酸化電極層32aおよび酸化電極層32bの説明を適宜援用することができる。光電変換層の説明は、光電変換層33aおよび光電変換層33bの説明を適宜援用することができ、第1の面は、面331aおよび面331bの説明を適宜援用することができ、第2の面は、面332aおよび面332bの説明を適宜援用することができる。
光電変換層に光が入射すると、光電変換層は、光励起電子および正孔を生成する。このとき、還元電極層31には光励起電子が集まり、酸化電極層32には正孔が集まる。これにより、光電変換層に起電力が発生する。光としては、太陽光が好ましいが、発光ダイオードや有機EL等の光を光電変換層に入射させてもよい。
電解液21および電解液22として水および二酸化炭素を含む電解液を用い、メタノールを生成する場合について説明する。酸化電極層32周辺では、下記式(1)のように水の酸化反応が起こり、電子を失い、酸素と水素イオンが生成される。生成された水素イオンの少なくとも一つは、イオン交換膜4を介して収容部11に移動する。
2HO → 4H+O+4e ・・・(1)
還元電極層31周辺では、下記式(2)のように二酸化炭素の還元反応が起こり、電子を受け取りつつ水素イオンが二酸化炭素と反応し、メタノールと水が生成される。メタノールは任意の割合で電解液21に溶解する。また、メタノールとは別に下記式(3)のように水素イオンが電子を受け取ることにより、水素が生成される。このとき、水素はメタノールと同時に生成されてもよい。
CO+6H+4e → CHOH+HO ・・・(2)
2H+2e → H・・・(3)
光電変換層33は、酸化反応の標準酸化還元電位と還元反応の標準酸化還元電位との電位差以上の開放電圧を有する必要がある。例えば、式(1)における酸化反応の標準酸化還元電位は1.23[V]である。式(2)における還元反応の標準酸化還元電位は0.03[V]である。式(3)における酸化反応の標準酸化還元電位は0Vである。このとき、式(1)と式(2)との反応では開放電圧を1.26[V]以上にする必要がある。
光電変換層33の開放電圧は、酸化反応の標準酸化還元電位と還元反応の標準酸化還元電位との電位差よりも過電圧の値以上高くすることが好ましい。例えば、式(1)における酸化反応および式(2)における還元反応の過電圧がそれぞれ0.2[V]である。式(1)と式(2)との反応では、開放電圧を1.66[V]以上にすることが好ましい。同様に式(1)と式(3)との反応では、開放電圧を1.43V以上にすることが好ましい。
二酸化炭素の還元反応は、水素イオンを消費する反応である。このため、水素イオンの量が少ない場合、還元反応の効率が悪くなる。よって、電解液21と電解液22との間で水素イオンの濃度を異ならせ、濃度差により水素イオンを移動させやすくしておくことが好ましい。陰イオン(例えば水酸化物イオン等)の濃度を電解液21と電解液22との間で異ならせてもよい。
本実施形態の光電気化学反応装置は、複数の電解液槽を具備する。複数の電解液槽のそれぞれでは、還元電極層および酸化電極層により電解液の酸化還元反応が行われる。複数の電解液槽において、上記酸化還元反応が起こるため、反応量が増大する。よって、光から化学物質への変換効率を高めることができる。
酸化還元反応により還元電極層側の電解液(第1の電解液)のpHは低下する。酸化電極層側の電解液(第2の電解液)のpHは上昇する。pHの差が1大きくなるにつれて60mVの液間電位が生じる。よって、酸化還元反応が進行するほど電解液の電位が小さくなり、反応しにくくなる。
複数の電解液槽において、例えば第1の収容部同士を直列に接続し、第2の収容部同士を直列に接続する。このとき、第1の電解液槽の第1の電解液は第2の電解液槽の第1の収容部に供給され、第1の電解液槽の第2の電解液は第2の電解液槽の第2の収容部に供給される。
第2の電解液槽の第1の電解液のpHは、第1の電解液槽の第1の電解液よりも高い。第2の電解液槽の第2の電解液のpHは、第1の電解液槽の第1の電解液よりも低い。よって、第2の電解液槽での還元反応の反応量は、第1の電解液槽での還元反応よりも少ない。第2の電解液槽での酸化反応の反応量は、第1の電解液槽での酸化反応よりも少ない。
複数の電解液槽間における反応量のばらつきを抑制するためには、複数の電解液槽を並列に接続することが挙げられる。しかしながら、流路全体が長くなり、装置面積および製造コストが上昇する場合がある。
複数の電解液槽を並列に接続すると、電解液槽毎に供給される電解液の流量の差が生じる場合がある。例えば、電解液槽毎に流路の圧力損失が異なると、電解液の流量にばらつきが生じる。発生したガスと電解液とを同じ流路を介して供給する場合、流路内で気液二相流等の多相流が生じ、圧力損失が大きくなる。反応量が多い部分では、圧力損失が大きい。よって、供給される電解液量は少ない。反応量が少ない部分では、ガスの発生量が少なく、圧力損失が小さい。よって、供給される電解液量は多い。
従って、大量の電解液が必要な部分では供給される電解液量が少なく、少量の電解液が必要な部分では供給される電解液量が多い。酸化還元反応によって生じた気泡や、濃度の変化による電解液の粘度の変化、入射光量の変化による反応量の変化によっても電解液の供給量にばらつきが生じる。電気化学反応ユニット毎に均等に電解液が供給されることが好ましい。また、電気化学反応ユニット毎の反応量に応じて電解液が供給されることが好ましい。
本実施形態の光電気化学反応装置は、第1の電解液槽における第1の収容部と第2の電解液槽における第2の収容部とを直列に接続する流路、および第1の電解液槽における第2の収容部と第2の電解液槽における第1の収容部とを直列に接続する流路の少なくとも一つの流路を具備する。これにより、高いpHを有する電解液と低いpHを有する電解液とを混合し、複数の電解液槽において第1の電解液同士のpHの差および第2の電解液同士のpHの差を低減することができる。よって、例えば光から化学物質への変換効率を高めることができる。このように、酸化反応が生じる電解液槽と還元反応が生じる電解液槽とを流路によって接続し、電解液槽間の電解液の移動を可能にすることでpHや電解液成分の変化などの影響が抑制される。よって、装置全体の変換効率を高めることができる。
本実施形態の光電気化学反応装置は、図1に示す構成に限定されない。図3に示す光電気化学反応装置は、図1に示す光電気化学反応装置と比較して面331aが還元電極層31aに接し、面332aが還元電極層31aに接し、面331bが還元電極層31bに接し、面332bが酸化電極層32bに接している構成が少なくとも異なる。
光電変換層33aは、電解液21aおよび電解液22aの少なくとも一つに含浸され、光電変換層33bは、電解液21bおよび電解液22bの少なくとも一つに含浸される。これにより、還元電極層と、酸化電極層と、光電変換層とを一体化し、部品数が低減され、簡略化されたシステムとなる。よって、例えば製造、設置、およびメンテナンスの少なくとも一つが容易になる。さらに、光電変換層と還元電極層および酸化電極層とを接続する配線等が不要となるため、光透過率を高め、受光面積を大きくすることができる。
図3に示す構成の場合、光電変換層が電解液に接触するために腐食し、腐食生成物が電解液に溶解することで電解液の劣化が生じる場合がある。腐食を防ぐためには、保護層を設けることが挙げられる。しかし、保護層成分が電解液に溶解する場合がある。そこで、流路や電解液槽内に金属イオンフィルターなどのフィルターを設けることで電解液の劣化が抑制される。
図4に示す光電気化学反応装置は、図1に示す光電気化学反応装置と比較して、収容部11aに接続された流路53aと、収容部11bに接続された流路53bと、収容部12aに接続された流路54aと、収容部12bに接続された流路54bと、をさらに具備する構成が少なくとも異なる。
流路53aを介して例えば電解液21aと同じ物質を含む電解液を補充することができる。流路53bを介して例えば電解液21bと同じ物質を含む電解液を補充することができる。流路54aを介して例えば電解液22aと同じ物質を含む電解液を補充することができる。流路54bを介して例えば電解液22bと同じ物質を含む電解液を補充することができる。電解液を補充するタイミングは、例えばセンサと制御回路とを用いて制御することができる。センサは、例えばpH等の電解液のデータを取得する機能を有する。制御回路はセンサにより取得したデータに基づいて電解液の補充動作を実行するか否かを制御する。
図5に示す光電気化学反応装置は、図1に示す光電気化学反応装置と比較して、収容部11aと収容部12aとを接続する流路61a、収容部11bと収容部12bとを接続する流路61bをさらに具備する構成が少なくとも異なる。
天候等によって光電変換層毎に入射する光の量が異なる場合がある。このとき、電解液槽1aと電解液槽1bとの間で反応量の差が生じる。よって、pHの差により触媒からの金属イオンの溶出や電解液槽や流路等の部材の劣化、効率の低下を招くことがある。
電解液槽1aと電解液槽1bとの間で電解液を循環させる場合、光電変換層33bよりも光電変換層33aに入射する光の量が多いと電解液21aのpHは低下し、電解液22aのpHは上昇する。電解液21aを電解液22bに供給し、電解液22aを電解液21bに供給すると、電解液槽1aでは反応効率は低下し、電解液槽1bでは、入射する光の量が少ないため反応効率が低くなる場合がある。よって、全体としての効率が低下する場合がある。
これに対し、流路61aおよび流路61bを設けることにより、電解液21aと電解液22aとを循環させ、電解液21bと電解液22bとを循環させる。よって、反応量の差を小さくすることができる。腐食や環境性の観点から電解液21a、電解液21b、電解液22a、および電解液22bのpHは、例えば3以上11以下の範囲に調整されることが好ましい。また、電解液21a、電解液21b、電解液22a、および電解液22bのpHは、7ではないことが好ましい。
図5に示す光電気化学反応装置は、流路61aまたは流路61bに流れる電解液の温度、流量、および圧力の少なくとも一つの状態を示すデータを取得するセンサと、当該データに応じて当該電解液の状態を調節する調節器と、を具備してもよい。
図6に示す光電気化学反応装置は、図1に示す光電気化学反応装置と比較して、電解液23を収容する収容部62aを有する混合槽62をさらに具備する構成が少なくとも異なる。
混合槽62は、流路51と流路52とを接続する。電解液23は、電解液21a、電解液22a、電解液21b、および電解液22bの少なくとも一つの電解液成分を含む。混合槽62は、例えば収容部62aとなる空洞を有する立体形状を有する。
混合槽62に電極を設けてもよい。電極を設けることにより、例えば電解液濃度、pH、温度、電解液の劣化を検知することができる。よって、例えば電解液交換時期、触媒層交換時期等を予測することができる。また、電極を用いて触媒層からの金属イオンの溶出物や光電変換層からの金属イオンの溶出物を捕捉することができる。
図6に示す光電気化学反応装置は、電解液23のpH、温度、流量、および圧力の少なくとも一つの状態を示すデータを取得するセンサと、当該データに応じて当該電解液の状態を調節する調節器と、を具備してもよい。例えば電解液23のpHが基準値の範囲外のときに収容部11a、収容部11a、収容部11b、および収容部12bの少なくとも一つに流路を介して電解液が補充されてもよい。
図7に示す光電気化学反応装置は、図1に示す光電気化学反応装置と比較して、二酸化炭素供給部63を介して電解液21bに二酸化炭素を供給する構成が少なくとも異なる。図7に限定されず、二酸化炭素供給部63を介して電解液21aに二酸化炭素を供給してもよい。
二酸化炭素供給部63を介して電解液21bに二酸化炭素を吹き込むと、二酸化炭素が電解液21bに溶解する。これにより、電解液21bのpHは低下する。例えば、電解液21a、電解液22a、電解液21b、および電解液22bとして0.5M水酸化カリウム水溶液を用いる。0.5M水酸化カリウム水溶液の電解液21bに二酸化炭素を吹き込むと、飽和状態になるまで二酸化炭素が水酸化カリウム水溶液に溶解し、0.5M炭酸水素カリウム水溶液(KHCO)が生成される。0.5M炭酸水素カリウム水溶液のpHは約7であり、0.5M水酸化カリウム水溶液のpHは約14である。よって、7以上のpH差により液間電位として例えば7×60mV=420mVの電位差が生じる。これにより、反応効率が向上する。
二酸化炭素を電解液21bに吹き込んだ後であっても酸化還元反応を継続すると電解液21aと電解液21bとのpHの差が小さくなり、反応効率が低下する。これに対し、流路51および流路52を設け、電解液槽1bにおいて二酸化炭素の還元を行い、電解液槽1aにおいて水の酸化と水素イオンの還元とを行う。電解液槽1aでの水素の生成により、電解液槽1bでの二酸化炭素の還元による電解液21aのpHの変化を抑制することができる。よって、継続的に効率の良い反応を生じさせることが可能となる。
一般的に二酸化炭素の還元反応では、水素の生成反応よりも過電圧が高くなる。よって、二酸化炭素の還元は水素イオンの還元よりも困難である。よって、電解液21aおよび電解液21bのpHを二酸化炭素の還元に好適な値に設定することにより、水素イオンの還元を可能としつつ二酸化炭素を還元しやすくすることができる。
電解液槽1aおよび電解液槽1bの両方の還元反応を、二酸化炭素の還元と水素イオンの還元との間で切り替えてもよい。このとき、二酸化炭素の還元による生成物としては、一酸化炭素、メタン、エチレンなどのガス状物質が好適である。ガス状物質は、他の生成物と分離しやすい。ギ酸、メタノール、エタノール、アセトアルデヒド、酢酸などは、酸化電極層より再酸化されやすい。これにより、反応効率が低下する場合がある。このため、生成物分離装置を設けてもよい。生成物分離装置は、例えば電解液槽1aや流路51、52、混合槽62に設けられる。酸化電極層32aに反応選択性を付与してもよい。これにより、還元生成物の再酸化を抑制することができる。
ここで、図1ないし図7に示す光電気化学反応装置における各構成要素の構造例についてさらに説明する。
電解液に適用可能な水を含む電解液としては、例えば任意の電解質を含む水溶液を用いることができる。この溶液は水の酸化反応を促進する水溶液であることが好ましい。電解質を含む水溶液としては、例えばリン酸イオン(PO 2−)、ホウ酸イオン(BO 3−)、ナトリウムイオン(Na)、カリウムイオン(K)、カルシウムイオン(Ca2+)、リチウムイオン(Li)、セシウムイオン(Cs)、マグネシウムイオン(Mg2+)、塩化物イオン(Cl)、炭酸水素イオン(HCO )等を含む水溶液が挙げられる。
電解液に適用可能な二酸化炭素を含む電解液としては、例えばLiHCO、NaHCO、KHCO、CsHCO3、リン酸、ホウ酸等を含む水溶液が挙げられる。二酸化炭素を含む電解液は、メタノール、エタノール、アセトン等のアルコール類を含んでもよい。水を含む電解液は、二酸化炭素を含む電解液と同じであってもよい。しかしながら、二酸化炭素を含む電解液における二酸化炭素の吸収量は高いことが好ましい。よって、二酸化炭素を含む電解液として水を含む電解液と異なる溶液を用いてもよい。二酸化炭素を含む電解液は、二酸化炭素の還元電位を低下させ、イオン伝導性が高く、二酸化炭素を吸収する二酸化炭素吸収剤を含む電解液であることが好ましい。
上述した電解液としては、例えばイミダゾリウムイオンやピリジニウムイオン等の陽イオンと、BF やPF 等の陰イオンとの塩からなり、幅広い温度範囲で液体状態であるイオン液体もしくはその水溶液を用いることができる。さらに、他の電解液としては、エタノールアミン、イミダゾール、ピリジン等のアミン溶液もしくはその水溶液が挙げられる。アミンとしては、一級アミン、二級アミン、三級アミン等が挙げられる。これらの電解液が、イオン伝導性が高く、二酸化炭素を吸収する性質を有し、還元エネルギーを低下させる特性を有していてもよい。
一級アミンとしては、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン等が挙げられる。アミンの炭化水素は、アルコールやハロゲン等が置換していてもよい。アミンの炭化水素が置換されたものとしては、メタノールアミン、エタノールアミン、クロロメチルアミン等が挙げられる。また、不飽和結合が存在していてもかまわない。これら炭化水素は、二級アミン、三級アミンも同様である。
二級アミンとしては、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジメタノールアミン、ジエタノールアミン、ジプロパノールアミン等が挙げられる。置換した炭化水素は、異なってもよい。これは三級アミンでも同様である。例えば、炭化水素が異なるものとしては、メチルエチルアミン、メチルプロピルアミン等が挙げられる。
三級アミンとしては、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリヘキシルアミン、トリメタノールアミン、トリエタノールアミン、トリプロパノールアミン、トリブタノールアミン、トリプロパノールアミン、トリエキサノールアミン、メチルジエチルアミン、メチルジプロピルアミン等が挙げられる。
イオン液体の陽イオンとしては、1−エチル−3−メチルイミダゾリウムイオン、1−メチル−3−プロピルイミダゾリウムイオン、1−ブチル−3−メチルイミダゾールイオン、1−メチル−3−ペンチルイミダゾリウムイオン、1−ヘキシル−3−メチルイミダゾリウムイオン等が挙げられる。
なお、イミダゾリウムイオンの2位が置換されていてもよい。イミダゾリウムイオンの2位が置換された陽イオンとしては、1−エチル−2,3−ジメチルイミダゾリウムイオン、1,2−ジメチル−3−プロピルイミダゾリウムイオン、1−ブチル−2,3−ジメチルイミダゾリウムイオン、1,2−ジメチル−3−ペンチルイミダゾリウムイオン、1−ヘキシル−2,3−ジメチルイミダゾリウムイオン等が挙げられる。
ピリジニウムイオンとしては、メチルピリジニウム、エチルピリジニウム、プロピルピリジニウム、ブチルピリジニウム、ペンチルピリジニウム、ヘキシルピリジニウム等が挙げられる。イミダゾリウムイオンおよびピリジニウムイオンは共に、アルキル基が置換されてもよく、不飽和結合が存在してもよい。
アニオンとしては、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、BF 、PF 、CFCOO、CFSO 、NO 、SCN、(CFSO、ビス(トリフルオロメトキシスルホニル)イミド、ビス(トリフルオロメトキシスルホニル)イミド、ビス(パーフルオロエチルスルホニル)イミド等が挙げられる。イオン液体のカチオンとアニオンとを炭化水素で接続した双生イオンでもよい。なお、リン酸カリウム溶液等の緩衝溶液を収容部11、12に供給してもよい。
図8は、光電変換セルの構造例を示す断面模式図である。図8に示す光電変換セル3は、導電性基板30と、還元電極層31と、酸化電極層32と、光電変換層33と、光反射層34と、金属酸化物層35と、金属酸化物層36と、を備える。光電変換セル3の説明は、光電変換セル3aおよび光電変換セル3bに適宜援用することができる。還元電極層31の説明は、還元電極層31aおよび還元電極層31bに適宜援用することができる。酸化電極層32の説明は、酸化電極層32aおよび酸化電極層32bに適宜援用することができる。光電変換層33の説明は、光電変換層33aおよび光電変換層33bに適宜援用することができる。
導電性基板30は、還元電極層31に接するように設けられる。なお、導電性基板30を還元電極層の一部とみなしてもよい。導電性基板30としては、例えばCu、Al、Ti、Ni、Fe、およびAgの少なくとも1つまたは複数を含む基板が挙げられる。例えば、SUS等のステンレス鋼を含むステンレス基板を用いてもよい。これに限定されず、導電性樹脂を用いて導電性基板30を構成してもよい。また、SiまたはGe等の半導体基板を用いて導電性基板30を構成してもよい。さらに、樹脂フィルム等を導電性基板30として用いてもよい。例えば、イオン交換膜4aおよびイオン交換膜4bに適用可能な膜を導電性基板30として用いてもよい。
導電性基板30は、支持体としての機能を有する。収容部11と収容部12とを分離するように導電性基板30を設けてもよい。導電性基板30を設けることにより光電変換セル3の機械的強度を向上させることができる。また、導電性基板30を還元電極層31の一部とみなしてもよい。さらに、必ずしも導電性基板30を設けなくてもよい。
還元電極層31は、還元触媒を含むことが好ましい。なお、還元電極層31は、導電材料および還元触媒の両方を含んでいてもよい。還元触媒としては、二酸化炭素を還元するための活性化エネルギーを減少させる材料が挙げられる。言い換えると、二酸化炭素の還元反応により炭素化合物を生成する際の過電圧を低下させる材料が挙げられる。例えば、金属材料または炭素材料を用いることができる。金属材料としては、例えば金、アルミニウム、銅、銀、白金、パラジウム、もしくはニッケル等の金属、または当該金属を含む合金を用いることができる。炭素材料としては、例えばグラフェン、カーボンナノチューブ(Carbon Nanotube:CNT)、フラーレン、またはケッチェンブラック等を用いることができる。なお、これに限定されず、還元触媒として例えばRu錯体またはRe錯体等の金属錯体、イミダゾール骨格やピリジン骨格を有する有機分子を用いてもよい。また、複数の材料を混合してもよい。
酸化電極層32は、酸化触媒を含むことが好ましい。酸化電極層32は、導電材料および還元触媒の両方を含んでいてもよい。酸化触媒としては、水を酸化するための活性化エネルギーを減少させる材料が挙げられる。言い換えると、水の酸化反応により酸素と水素イオンを生成する際の過電圧を低下させる材料が挙げられる。例えば、イリジウム、白金、コバルト、またはマンガン等が挙げられる。また、酸化触媒としては、二元系金属酸化物、三元系金属酸化物、または四元系金属酸化物などを用いることができる。二元系金属酸化物としては、例えば酸化マンガン(Mn−O)、酸化イリジウム(Ir−O)、酸化ニッケル(Ni−O)、酸化コバルト(Co−O)、酸化鉄(Fe−O)、酸化スズ(Sn−O)、酸化インジウム(In−O)、または酸化ルテニウム(Ru−O)等が挙げられる。三元系金属酸化物としては、例えばNi−Co−O、La−Co−O、Ni−La−O、Sr−Fe−O等が挙げられる。四元系金属酸化物としては、例えばPb−Ru−Ir−O、La−Sr−Co−O等が挙げられる。なお、これに限定されず、酸化触媒としてRu錯体またはFe錯体等の金属錯体を用いることもできる。また、複数の材料を混合してもよい。
還元電極層31および酸化電極層32の少なくとも一方は、多孔質構造を有していてもよい。多孔質構造を有する電極層に適用可能な材料としては、上記材料に加え、例えばケッチェンブラックやバルカンXC−72等のカーボンブラック、活性炭、金属微粉末等が挙げられる。多孔質構造を有することにより、酸化還元反応に寄与する活性面の面積を大きくすることができるため、変換効率を高めることができる。
比較的低い光の照射エネルギーを用いて低電流密度の電極反応を行う場合、触媒材料の選択肢が広い。よって、例えばユビキタス金属等を用いて反応を行うことが容易であり、反応の選択性を得ることも比較的容易である。一方、電解液槽1に光電変換層33を設けず、配線等により光電変換層33と還元電極層31および酸化電極層32の少なくとも一方とを電気的に接続する場合、電解液槽を小型化する等の理由により一般的に電極面積は小さくなり、高電流密度で反応を行う場合がある。この場合、触媒として貴金属を用いることが好ましい。
光電変換層33は、光電変換層33xと、光電変換層33yと、光電変換層33zとを有する積層構造を備える。なお、光電変換層の積層数は、図8に限定されない。
光電変換層33xは、例えばn型のアモルファスシリコンを含むn型半導体層331nと、真性(intrinsic)のアモルファスシリコンゲルマニウムを含むi型半導体層331iと、p型の微結晶シリコンを含むp型半導体層331pと、を有する。i型半導体層331iは、例えば400nmを含む短波長領域の光を吸収する層である。よって、光電変換層33xでは、短波長領域の光エネルギーによって、電荷分離が生じる。
光電変換層33yは、例えばn型のアモルファスシリコンを含むn型半導体層332nと、真性のアモルファスシリコンゲルマニウムを含むi型半導体層332iと、p型の微結晶シリコンを含むp型半導体層332pと、を有する。i型半導体層332iは、例えば600nmを含む中間波長領域の光を吸収する層である。よって、光電変換層33yでは、中間波長領域の光エネルギーによって、電荷分離が生じる。
光電変換層33zは、例えばn型のアモルファスシリコンを含むn型半導体層333nと、真性のアモルファスシリコンを含むi型半導体層333iと、p型の微結晶シリコンを含むp型半導体層333pと、を有する。i型半導体層333iは、例えば700nmを含む長波長領域の光を吸収する層である。よって、光電変換層33zでは、長波長領域の光エネルギーによって、電荷分離が生じる。
p型半導体層またはn型半導体層は、例えば半導体材料にドナーまたはアクセプタとなる元素を添加することにより形成することができる。なお、光電変換層では、半導体層としてシリコン、ゲルマニウム等を含む半導体層を用いているが、これに限定されず、例えば化合物半導体層等を用いることができる。化合物半導体層としては、例えばGaAs、GaInP、AlGaInP、CdTe、CuInGaSe等を含む半導体層を用いることができる。また、光電変換が可能であればTiOやWOのような材料を含む層を用いてもよい。さらに、各半導体層は、単結晶、多結晶、またはアモルファスであってもよい。また、光電変換層に酸化亜鉛層を設けてもよい。
光反射層34は、導電性基板30と光電変換層33との間に設けられる。光反射層34としては、例えば金属層または半導体層の積層からなる分布型ブラッグ反射層が挙げられる。光反射層34を設けることにより、光電変換層33で吸収できなかった光を反射させて光電変換層33xないし光電変換層33zのいずれかに入射することができるため、光から化学物質への変換効率を高めることができる。光反射層34としては、例えばAg、Au、Al、Cu等の金属、それら金属の少なくとも1つを含む合金等の層を用いることができる。
金属酸化物層35は、光反射層34と光電変換層33との間に設けられる。金属酸化物層35は、例えば光学的距離を調整して光反射性を高める機能を有する。金属酸化物層35としては、n型半導体層331nとオーミック接触が可能な材料を用いることが好ましい。金属酸化物層35としては、例えばインジウム錫酸化物(Indium Tin Oxide:ITO)、酸化亜鉛(ZnO)、フッ素を含む酸化錫(Fluorine−doped Tin Oxide:FTO)、アルミニウムを含む酸化亜鉛(Aluminum−doped Zinc Oxide:AZO)、アンチモンを含む酸化錫(Antimony−doped Tin Oxide:ATO)等の透光性金属酸化物の層を用いることができる。
金属酸化物層36は、酸化電極層32と光電変換層33との間に設けられる。金属酸化物層36を光電変換層33の表面に設けてもよい。金属酸化物層36は、酸化反応による光電変換セル3の破壊を抑制する保護層としての機能を有する。金属酸化物層36を設けることにより、光電変換層33の腐食を抑制し、光電変換セル3の寿命を長くすることができる。なお、必ずしも金属酸化物層36を設けなくてもよい。
金属酸化物層36としては、例えばTiO、ZrO、Al、SiO、またはHfO等の誘電体薄膜を用いることができる。金属酸化物層36の厚さは、10nm以下、さらには5nm以下であることが好ましい。トンネル効果により導電性を得るためである。金属酸化物層36として、例えばインジウム錫酸化物(ITO)、酸化亜鉛(ZnO)、フッ素を含む酸化錫(FTO)、アルミニウムを含む酸化亜鉛(AZO)、アンチモンを含む酸化錫(ATO)等の透光性を有する金属酸化物の層を用いてもよい。
金属酸化物層36は、例えば金属と透明導電性酸化物とを積層させた構造、金属とその他導電性材料とを複合させた構造、または透明導電性酸化物とその他導電性材料とを複合させた構造を有してもよい。上記構造にすることにより、部品点数が減り、軽量かつ製造が容易になりコストも低くすることができる。金属酸化物層36は、保護層、導電層、および触媒層としての機能を有していてもよい。
図8に示す光電変換セル3では、n型半導体層331nのi型半導体層331iとの接触面の反対面が光電変換層33の第1の面となり、p型半導体層333pのi型半導体層333iとの接触面の反対面が第2の面となる。以上のように、図8に示す光電変換セル3は、光電変換層33xないし光電変換層33zを積層することで、太陽光の幅広い波長の光を吸収することができ、太陽光エネルギーをより効率良く利用することができる。このとき、各光電変換層が直列に接続されているため高い電圧を得ることができる。
図8では、光電変換層33上に電極層が積層されているため、電荷分離した電子と正孔とをそのまま酸化還元反応に利用することができる。また、配線等により光電変換層33と電極層を電気的に接続する必要がない。よって、高効率で酸化還元反応を行うことができる。
並列接続で複数の光電変換層を電気的に接続してもよい。2接合型、単層型の光電変換層を用いてもよい。2層または4層以上の光電変換層の積層を有していてもよい。複数の光電変換層の積層に代えて、単層の光電変換層を用いてもよい。
(第2の実施形態)
図9は光電気化学反応装置の構成例を示す模式図である。図9に示す光電気化学反応装置は、複数の光電気化学反応ユニット10と、流路51ないし流路56と、を具備する。
複数の光電気化学反応ユニット10のそれぞれは、電解液槽1と、還元電極層31と酸化電極層32と光電変換層33とを有する光電変換セル3と、を具備する。電解液槽1は、収容部11と収容部12とを有する。収容部11は、電解液21を収容する。収容部12は、電解液22を収容する。還元電極層31は、電解液21に浸漬される。酸化電極層32は、電解液22に浸漬される。光電変換層33は、面331と面332とを有する。面331は、還元電極層31に電気的に接続される。面332は、酸化電極層32に電気的に接続される。
光電変換セル3の説明は、光電変換セル3aおよび光電変換セル3bに適宜援用することができる。還元電極層31の説明は、還元電極層31aおよび還元電極層31bに適宜援用することができる。酸化電極層32の説明は、酸化電極層32aおよび酸化電極層32bに適宜援用することができる。光電変換層33の説明は、光電変換層33aおよび光電変換層33bに適宜援用することができる。
複数の光電気化学反応ユニット10は、2以上の電解液槽1毎に複数のグループに分けられている。図9では、グループG1と、グループG2と、およびグループG3の3つのグループに分けられているが、グループの数は特に限定されない。電解液槽1の数はグループ毎に異なってもよい。
同じグループの電解液槽1は、互いに直列に接続されている。各グループの互いに直列に接続された電解液槽1は、互いに並列に接続されている。
流路51は、複数の電解液槽1の一つの収容部11と該複数の電解液槽1の一つに直列に接続された複数の電解液槽1の他の一つの収容部12とを接続する。流路52は、上記複数の電解液槽1の一つの収容部12と上記複数の電解液槽1の他の一つの収容部11とを接続する。流路51および流路52の少なくとも一つが光電気化学反応装置に設けられればよい。図9では、同じグループの各電解液槽1の間に流路51および流路52が設けられている。その他流路51および流路52の説明として、第1の実施形態における流路51および流路52の説明を適宜援用することができる。流路52は、流路51と交差している。これにより、流路51および流路52の設置面積を小さくすることができる。
図10に示すように、複数の流路51の少なくとも一つが複数の電解液槽1の一つの収容部11と該複数の電解液槽1の一つに直列に接続された複数の電解液槽1の他の一つの収容部11とを接続するように設けられてもよい。複数の流路52の少なくとも一つが複数の電解液槽1の一つの収容部12と該複数の電解液槽1の一つに直列に接続された複数の電解液槽1の他の一つの収容部12とを接続するように設けられてもよい。
流路53は、各グループの一端に接続された電解液槽1の収容部11に接続される。流路53を介して被還元物質を含む電解液が上記一端に接続された電解液槽1の収容部11に供給される。流路54は、上記一端に接続された電解液槽1の収容部12に接続される。流路54を介して被酸化物質を含む電解液が上記一端に接続された電解液槽1の収容部12に供給される。
流路55は、各グループの他端に接続された電解液槽1の収容部11に接続される。上記他端に接続された電解液槽1の収容部11から流路55を介して電解液21の少なくとも一部が排出される。流路56は、上記他端に接続された電解液槽1の収容部12に接続される。上記他端に接続された電解液槽1の収容部12から流路56を介して電解液22の少なくとも一部が排出される。
本実施形態の光電気化学反応装置では、直列に接続された2以上の光電気化学反応ユニットを有する複数のグループを並列に接続することにより、流路を短くすることができる。よって、製造コストを低減することができる。
本実施形態の光電気化学反応装置は、図9に示す構成に限定されない。図11は、光電気化学反応装置の他の例の一部を示す模式図である。図11に示す光電気化学反応装置は、図9に示す光電気化学反応装置と比較して流路に流れる電解液の状態を示すデータを取得するセンサ71a、71bと、当該データに応じて当該電解液の状態を調節する調節器72a、72bとを具備する構成が少なくとも異なる。
センサ71aは、例えば流路56に流れる電解液の温度を示す温度データを取得する機能を有する。センサ71aは、例えばグループ毎に設けられる。
調節器72aは、温度データに応じて流路56に流れる電解液の温度を調節する機能を有する。調節器72aとしては、例えばヒータが挙げられる。例えば、制御回路により温度データに応じてヒータの設定温度、または動作時間等を設定する制御信号を生成する。ヒータは、制御信号に応じた設定温度または動作時間で電解液を加熱して電解液の温度を調節する。調節器72aがセンサ71aを有してもよい。
センサ71aは流路55に流れる電解液の温度を調節してもよい。このとき、調節器72aは、温度データに応じて流路55に流れる電解液の温度を調節する機能を有する。
センサ71bは、流路56に流れる電解液の流量を示す流量データを取得する機能を有する。センサ71bは、例えばグループ毎に設けられる。
調節器72bは、流量データに応じて流路56に流れる電解液の流量を調節する機能を有する。調節器72bとしては、例えば流量調節器が挙げられる。例えば、制御回路により流量データに応じて流量調節器の制御信号を生成する。流量調節器は、制御信号に応じて電解液の流量を調節する。調節器72bがセンサ71bを有してもよい。
センサ71bは流路55に流れる電解液の流量を調節してもよい。このとき、調節器72bは、流量データに応じて流路55に流れる電解液の流量を調節する機能を有する。
光電気化学反応装置は、流路55または流路56に流れる電解液に加えられる圧力を示す圧力データを取得する圧力センサと、圧力データに応じて流路55または流路56に流れる電解液に加えられる圧力を調節する調節器と、を具備してもよい。
図11に示す光電気化学反応装置では、グループ毎にセンサおよび調節器を具備する。よって、光電気化学反応ユニット毎にセンサおよび調節器を設ける場合と比較してセンサおよび調節器の数を減らすことができる。よって、製造コストを低減することができる。
図9ないし図11に示す光電気化学反応装置に図3ないし図7に示す構成が適用されてもよい。例えば、光電気化学反応装置は、複数の電解液槽1の少なくとも一つの収容部11と複数の電解液槽1の少なくとも一つの収容部12とを接続する流路をさらに具備してもよい。上記流路に流れる電解液の温度、流量、および圧力の少なくとも一つの状態を示すデータを取得するセンサと、当該データに応じて上記流路に流れる電解液の状態を調節する調節器と、をさらに具備してもよい。センサおよび調節器等の配置場所は特に限定されず、例えば流路のいずれかに接して設けられていてもよい。センサは例えば最下流部(流路55および流路56に接続する側)に備えられていることが好ましい。これによりグループ全体の反応を見積りやすくすることができる。また、センサは複数あってもよい。
光電気化学反応装置は、複数の電解液槽1の少なくとも一つの収容部11に収容される電解液21に二酸化炭素を供給する二酸化炭素供給部をさらに具備してもよい。光電気化学反応装置は、流路51と流路52とを接続し、電解液を収容する混合槽をさらに具備してもよい。混合槽に収容される電解液のpH、温度、流量、および圧力の少なくとも一つの状態を示すデータを取得するセンサと、上記データに応じて混合槽に収容される電解液の状態を調節する調節器と、をさらに具備してもよい。
第2の実施形態の光電気化学反応装置のセンサおよび調節器の説明は、第1の実施形態の光電気化学反応装置のセンサおよび調節器の説明として適宜援用することができる。
(実施例1)
本実施例では、光電気化学反応ユニットを具備する光電気化学反応装置を作製した。
構造体を準備した。構造体は、厚さ500nmの三接合型光電変換層と、三接合型の光電変換層の第1の面上に設けられた厚さ300nmのZnO層と、ZnO層上に設けられた厚さ200nmのAg層と、Ag層上に設けられた厚さ1.5mmのSUS基板と、三接合型光電変換層の第2の面上に設けられた厚さ100nmのITO層と、を有する。
三接合型光電変換層は、短波長領域の光を吸収する第1の光電変換層と、中波長領域の光を吸収する第2の光電変換層と、長波長領域の光を吸収する第3の光電変換層と、を有する。第1の光電変換層は、p型微結晶シリコン層と、i型アモルファスシリコン層と、n型アモルファスシリコン層と、を有する。第2の光電変換層は、p型微結晶シリコン層と、i型アモルファスシリコンゲルマニウム層と、n型アモルファスシリコン層と、を有する。第3の光電変換層は、p型微結晶シリコンゲルマニウム層と、i型アモルファスシリコン層と、n型アモルファスシリコン層と、を有する。
ソーラーシミュレータ(AM1.5、1000W/m)を用いて上記構造体に光を照射したときの開放電圧を測定した。開放電圧は2.1Vであった。
硝酸ニッケルを用いた電着法により上記三接合型光電変換層の構造体上のITO層上に酸化触媒として厚さ200nmのNi(OH)層を形成した。スパッタリングによりSUS基板上に還元触媒として厚さ500nmのPt層を形成した。
上記構造体を正方形状に切り出して、エッジ部分を熱硬化性エポキシ樹脂で封止した。構造体の周囲をイオン交換膜(ナフィオン(登録商標))で囲むことにより一枚のシート状にした。このイオン交換膜と複数枚のセルを組み合わせて10cm角のユニットを作製し、それを縦横10個並べて100cm四方の光電気化学反応ユニットを作製した。例えば、複数の穴を有する1枚のイオン交換膜の複数の穴に光電変換セルを埋め込んでシート状としてもよい。1つの穴を有するイオン交換膜の穴に光電変換セルを埋め込んだ構造体を複数並べてシート状としてもよい。穴を有する光電変換セルの穴にイオン交換膜を埋め込んでもよい。
このシート状の光電気化学反応ユニットを縦100cm×横100cmの中空部を有する厚さ3cmの一対の枠で挟み込み、一対の枠の間にシリコーン樹脂層を形成した。一対の枠の一方の中空部を覆うように無反射の太陽電池用ガラスからなる窓を作製した。一対の枠の他方の中空部を覆うようにアクリル樹脂板を形成した。これにより光電気化学反応ユニットを封止した封止体を作製した。光電気化学反応ユニットのNi(OH)層側とPt層側にそれぞれ電解液流路を設けた。電解液としてはCOガスを飽和させた0.5Mリン酸水素カリウム水溶液を用いた。電解液槽の一部に発生ガスを捕集するためのガス回収流路を設けた。以上により光電気化学反応モジュールを作製した。混合槽として内容積30cm×3cm×3cmのアクリル製の容器をモジュールのPt層側に接続した。
このモジュールを2つ並べ、それぞれのモジュールの流路と混合槽とを塩化ビニル樹脂によって接続し、混合槽内に羽根車式電解液ポンプ、pHセンサ、温度センサを設け、混合槽外へシリコーン樹脂によりシールされた導線によって信号線を取り出した。窓を介してソーラーシミュレータ(AM1.5、1000W/m)を用いて上記構造体に光を照射し、反応させた。電極反応の電流密度は2.5mA/cmであった。反応時間は6時間であった。反応前の酸化電極側の電解液および還元電極側の電解液のpHは7であった。これに対し、反応後の酸化電極側の電解液のpHは8であり、還元電極側の電解液のpHは5であった。
(比較例1)
導線を介して電源に接続された厚さ1.5mmのSUS基板とSUS基板上の厚さ100nmの白金膜とを有する複合基板(4cm角)と、白金箔(4cm角)と、を準備した。電源は、太陽電池の模擬装置である。5cm角、厚さ1cmのアクリル製の枠の酸化電極側および還元電極側のそれぞれに電解液流路とガス流路とを形成した。枠に複合基板と白金箔とを内包し、複合基板と白金箔との間にイオン交換膜(Nafion117、6cm角)を設け、複合基板の外側と白金箔の外側の両方にシリコンゴムシートとアクリル板(縦7cm×横7cm×厚さ3mm)で挟んだモジュールを作製した。モジュール内にpH7のリン酸カリウム緩衝溶液を供給した。複合基板を還元電極とし、白金箔を酸化電極とした。酸化電極側の電解液および還元電極側の電解液として0.5M炭酸水素カリウム水溶液を用いた。
上記モジュールにおいて、10mA/cmの電流密度で電流を流して1.5時間反応させた。反応前の酸化電極側の電解液および還元電極側の電解液のpHは7であった。これに対し、反応後の酸化電極側の電解液のpHは11.12であった。還元電極側の電解液のpHは3.85であった。
(実施例2)
比較例1のモジュールからなる第1のモジュールと比較例1のモジュールからなる第2のモジュールとを並べ、第1のモジュールの酸化電極側の電解液流路と第2のモジュールの還元電極側の電解液流路とを第1のシリコンチューブで接続した。第1のモジュールの還元電極側の電解液流路と第2のモジュールの酸化電極側の電解液流路とを第2のシリコンゴムチューブで接続した。それぞれの電解液流路にチューブポンプを接続し、0.3cc/分で電解液を循環させた。10mA/cmの電流密度で電流を流して1.5時間反応させた。第1のモジュールにおいて、酸化電極側電解液のpHは7.00であり、還元電極側の電解液のpHは6.79であった。第2のモジュールにおいて、酸化電極側の電解液のpHは6.99であり、還元電極側の電解液のpHは6.55であった。
このことから、実施例1および実施例2では、比較例1と比較して還元電極側の電解液のpHと酸化電極側の電解液のpHとの差が小さいことがわかる。このように、第1のモジュールおよび第2のモジュールの一方の酸化電極側の電解液と、第1のモジュールおよび第2のモジュールの他方の還元電極側の電解液とを接続する流路を設けることで酸化電極側の電解液および還元電極側の電解液のpHの変化が抑えられる。よって、装置全体の出力低下を防ぐことができる。
上記実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。上記実施形態は、その他の様々な形態で実施し得るものであり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。上記実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1…電解液槽、1a…電解液槽、1b…電解液槽、2…電解液槽、3…光電変換セル、3a…光電変換セル、3b…光電変換セル、4…イオン交換膜、4a…イオン交換膜、4b…イオン交換膜、10…光電気化学反応ユニット、10a…光電気化学反応ユニット、10b…光電気化学反応ユニット、11…収容部、11a…収容部、11b…収容部、12…収容部、12…収容部、12a…収容部、12b…収容部、21…電解液、21a…電解液、21b…電解液、22…電解液、22a…電解液、22b…電解液、23…電解液、30…導電性基板、31…還元電極層、31a…還元電極層、31b…還元電極層、32…酸化電極層、32…酸化電極層、32a…酸化電極層、32b…酸化電極層、33…光電変換層、33a…光電変換層、33b…光電変換層、33x…光電変換層、33y…光電変換層、33z…光電変換層、34…光反射層、35…金属酸化物層、36…金属酸化物層、51…流路、52…流路、53…流路、53a…流路、53b…流路、53c…流路、53d…流路、54…流路、54a…流路、54b…流路、55…流路、56…流路、61a…流路、61b…流路、62…二酸化炭素供給部、63…混合槽、63a…収容部、71a…センサ、71b…センサ、72a…調節器、72b…調節器。

Claims (15)

  1. 第1の収容部と第2の収容部とを有する第1の電解液槽と、
    第3の収容部と第4の収容部とを有する第2の電解液槽と、
    前記第1の収容部に設けられた第1の還元電極と、
    前記第2の収容部に設けられた第1の酸化電極と、
    前記第3の収容部に設けられた第2の還元電極と、
    前記第4の収容部に設けられた第2の酸化電極と、
    前記第1の還元電極に電気的に接続された第1の面と、前記第1の酸化電極に電気的に接続された第2の面と、を有する第1の光電変換体と、
    前記第2の還元電極に電気的に接続された第3の面と、前記第2の酸化電極に電気的に接続された第4の面と、を有する第2の光電変換体と、
    前記第1の収容部と前記第4の収容部との間を接続する第1の流路と、
    記第2の収容部と前記第3の収容部との間を接続する第2の流路と、を具備する、電気化学反応装置。
  2. 記第1の面は、前記第1の還元電極に接し、
    前記第2の面は、前記第1の酸化電極に接し、
    前記第3の面は、前記第2の還元電極に接し、
    前記第4の面は、前記第2の酸化電極に接する、請求項1に記載の電気化学反応装置。
  3. 前記第1の収容部と前記第2の収容部とを接続する第5の流路、および前記第3の収容部と前記第4の収容部とを接続する第6の流路の少なくとも一つの流路と、をさらに具備する、請求項1または請求項2に記載の電気化学反応装置。
  4. 前記第5の流路または前記第6の流路に流れる電解液の温度、流量、および圧力の少なくとも一つの状態を示す第1のデータを取得する第1のセンサと、
    前記第1のデータに応じて前記第5の流路または前記第6の流路に流れる電解液の前記状態を調節する第1の調節器と、をさらに具備する、請求項3に記載の電気化学反応装置。
  5. 前記第1の収容部は、第1の電解液を収容するために設けられ、
    前記第2の収容部は、第2の電解液を収容するために設けられ、
    前記第3の収容部は、第3の電解液を収容するために設けられ、
    前記第4の収容部は、第4の電解液を収容するために設けられ、
    前記第3の電解液に二酸化炭素を供給する二酸化炭素供給部をさらに具備し、
    前記第1の電解液および前記第3の電解液は、二酸化炭素を含み、
    前記第2の電解液および前記第4の電解液は、水を含む、請求項1ないし請求項4のいずれか一項に記載の電気化学反応装置。
  6. 前記第1の流路と前記第2の流路とを接続し、第5の電解液を収容するための第5の収容部を有する混合槽をさらに具備する、請求項1ないし請求項5のいずれか一項に記載の電気化学反応装置。
  7. 前記第5の電解液のpH、温度、流量、および圧力の少なくとも一つの状態を示す第2のデータを取得する第2のセンサと、
    前記第2のデータに応じて前記第5の電解液の前記状態を調節する調節器と、をさらに具備する、請求項6に記載の電気化学反応装置。
  8. 複数の電気化学反応ユニットと、
    複数の第1の流路と、
    複数の第2の流路と、
    複数の第3の流路と、
    複数の第4の流路と、
    を具備し、
    前記複数の電気化学反応ユニットのそれぞれは、
    第1の収容部と第2の収容部とを有する電解液槽と、
    前記第1の収容部に設けられた還元電極と、
    前記第2の収容部に設けられた酸化電極と、
    前記還元電極に電気的に接続された第1の面と、前記酸化電極に電気的に接続された第2の面と、を有する光電変換体と、を備え、
    前記複数の電気化学反応ユニットは、2以上の前記電解液槽毎に複数のグループに分けられ、同じグループの前記電解液槽が前記複数の第1の流路を介して互いに直列に接続されるとともに前記複数の第2の流路を介して互いに直列に接続され、各グループの直列に接続された前記電解液槽が前記複数の第3の流路を介して互いに並列に接続されるとともに前記複数の第4の流路を介して互いに並列に接続されており、
    前記複数の第1の流路の一つは、複数の前記電解液槽の一つの前記第1の収容部と複数の前記電解液槽の他の一つの前記第2の収容部を接続し、
    前記複数の第2の流路の一つは、前記複数の電解液槽の一つの前記第2の収容部と前記複数の電解液槽の他の一つの前記第1の収容部とを接続し、
    前記複数の第3の流路の一つは、各グループの一端に接続された前記電解液槽の前記第1の収容部に接続され、
    前記複数の第3の流路の他の一つは、各グループの他端に接続された前記電解液槽の前記第1の収容部に接続され、
    前記複数の第4の流路の一つは、前記一端に接続された前記電解液槽の前記第2の収容部に接続され、
    前記複数の第4の流路の他の一つは、前記他端に接続された前記電解液槽の前記第2の収容部に接続されている、電気化学反応装置。
  9. 前記複数の電気化学反応ユニットのそれぞれにおいて、
    前記第1の面は、前記還元電極に接し、
    前記第2の面は、前記酸化電極に接する、請求項8に記載の電気化学反応装置。
  10. 前記複数の電解液槽の少なくとも一つの前記第1の収容部と前記複数の電解液槽の少なくとも一つの前記第2の収容部とを接続する第5の流路をさらに具備する、請求項8または請求項9に記載の電気化学反応装置。
  11. 前記第5の流路に流れる電解液の温度、流量、および圧力の少なくとも一つの状態を示す第1のデータを取得する第1のセンサと、
    前記第1のデータに応じて前記第5の流路に流れる電解液の前記状態を調節する第1の調節器と、をさらに具備する、請求項10に記載の電気化学反応装置。
  12. 前記第1の収容部は、第1の電解液を収容するために設けられ、
    前記第2の収容部は、第2の電解液を収容するために設けられ、
    前記第1の電解液に二酸化炭素を供給するための二酸化炭素供給部をさらに具備し、
    前記第1の電解液は、二酸化炭素を含み、
    前記第2の電解液は、水を含む、請求項8ないし請求項11のいずれか一項に記載の電気化学反応装置。
  13. 前記複数の第1の流路の一つと前記複数の第2の流路の一つとを接続し、第3の電解液を収容するための混合槽をさらに具備する、請求項8ないし請求項12のいずれか一項に記載の電気化学反応装置。
  14. 前記第3の電解液のpH、温度、流量、および圧力の少なくとも一つの状態を示す第2のデータを取得する第2のセンサと、
    前記第2のデータに応じて前記第3の電解液の前記状態を調節する第2の調節器と、をさらに具備する、請求項13に記載の電気化学反応装置。
  15. 前記複数の第3の流路の他の一つまたは前記第4の流路の他の一つに流れる電解液の温度、流量、および圧力の少なくとも一つの状態を示す第3のデータを取得する第3のセンサと、
    前記第3のデータに応じて前記複数の第3の流路の他の一つまたは前記第4の流路の他の一つに流れる電解液の前記状態を調節する第3の調節器と、をさらに具備する、請求項8ないし請求項14のいずれか一項に記載の電気化学反応装置。
JP2015152262A 2015-07-31 2015-07-31 光電気化学反応装置 Active JP6768269B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015152262A JP6768269B2 (ja) 2015-07-31 2015-07-31 光電気化学反応装置
US15/220,872 US20170029963A1 (en) 2015-07-31 2016-07-27 Electrochemical reaction device
US16/286,837 US10544513B2 (en) 2015-07-31 2019-02-27 Electrochemical reaction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015152262A JP6768269B2 (ja) 2015-07-31 2015-07-31 光電気化学反応装置

Publications (2)

Publication Number Publication Date
JP2017031467A JP2017031467A (ja) 2017-02-09
JP6768269B2 true JP6768269B2 (ja) 2020-10-14

Family

ID=57885859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015152262A Active JP6768269B2 (ja) 2015-07-31 2015-07-31 光電気化学反応装置

Country Status (2)

Country Link
US (2) US20170029963A1 (ja)
JP (1) JP6768269B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101780154B1 (ko) 2016-07-27 2017-09-20 대모 엔지니어링 주식회사 유압식 타격 기기 및 이를 포함하는 건설 장비
KR101840592B1 (ko) * 2017-03-10 2018-03-21 한양대학교 산학협력단 하이브리드 전기분해 장치 및 이를 이용한 전기분해 방법
JP7204620B2 (ja) 2019-09-17 2023-01-16 株式会社東芝 電気化学反応装置
JP7434828B2 (ja) * 2019-11-21 2024-02-21 中国電力株式会社 水素含有水生成装置、及び電極交換時期の予測方法
JP7203875B2 (ja) * 2021-03-04 2023-01-13 本田技研工業株式会社 電気化学反応装置、二酸化炭素の還元方法、及び炭素化合物の製造方法
JP7145264B1 (ja) * 2021-03-23 2022-09-30 本田技研工業株式会社 二酸化炭素処理装置、二酸化炭素処理方法及び炭素化合物の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB794490A (en) * 1944-09-14 1958-05-07 Atomic Energy Authority Uk Improved process for separating uranium
US3827964A (en) 1970-11-26 1974-08-06 K Okubo Apparatus for removal of contaminants from wastes
JPH10121281A (ja) 1996-10-09 1998-05-12 Permelec Electrode Ltd アルカリ性過酸化水素水溶液の濃度調節方法及び装置
JP2001225075A (ja) 2000-02-16 2001-08-21 Shin Meiwa Ind Co Ltd 電解槽
JP2001262386A (ja) * 2000-03-14 2001-09-26 Honda Motor Co Ltd 水電解装置
JP2006265697A (ja) * 2005-03-25 2006-10-05 Sharp Corp 水分解用半導体光電極
JP4924179B2 (ja) * 2007-04-25 2012-04-25 トヨタ自動車株式会社 倒立車輪型移動体、及びその制御方法
US8486251B2 (en) * 2008-08-05 2013-07-16 Exxonmobil Research And Engineering Company Process for regenerating alkali metal hydroxides by electrochemical means
BRPI0920386A2 (pt) 2008-10-08 2016-03-22 Massachusetts Inst Technology materiais catalíticos, fotoanodos, e células foto-eletroquímicas para eletrólise de água e outras técnicas eletroquímicas
JP5657427B2 (ja) 2011-02-25 2015-01-21 株式会社大和化成研究所 表面処理金属
JP6034151B2 (ja) * 2012-11-20 2016-11-30 株式会社東芝 光化学反応装置
JP6246538B2 (ja) * 2013-09-17 2017-12-13 株式会社東芝 化学反応装置

Also Published As

Publication number Publication date
US10544513B2 (en) 2020-01-28
US20170029963A1 (en) 2017-02-02
JP2017031467A (ja) 2017-02-09
US20190194815A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6768273B2 (ja) 光電気化学反応装置
JP6768269B2 (ja) 光電気化学反応装置
JP6622232B2 (ja) 電気化学反応装置
JP6951310B2 (ja) 電気化学反応装置
US10612146B2 (en) Electrochemical reaction device
JP6744242B2 (ja) 化学反応システム
JP6246538B2 (ja) 化学反応装置
JP6230451B2 (ja) 光化学反応装置および化学反応装置
CN117947432A (zh) 电化学反应装置
US10458024B2 (en) Electrochemical reaction device
US10443136B2 (en) Electrochemical reaction device
US10233549B2 (en) Photo-electrochemical reaction device
US10483047B2 (en) Electrochemical reaction device
JP2017155336A (ja) 電気化学反応装置および電気化学反応方法
JP7176073B2 (ja) 電気化学反応装置
JP6640686B2 (ja) 電気化学反応装置
JP2017155337A (ja) 電気化学反応装置
JP6453974B2 (ja) 化学反応システム
JP7504849B2 (ja) 二酸化炭素電解装置、二酸化炭素電解方法、及び有価物製造システム
JP2020012201A (ja) 化学反応装置の動作方法
JP2017218679A (ja) 化学反応装置およびその動作方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200615

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200615

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200623

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200923

R151 Written notification of patent or utility model registration

Ref document number: 6768269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151