JP6768119B2 - 自動テスト設備における異常テスト信号チャネルの検出方法 - Google Patents

自動テスト設備における異常テスト信号チャネルの検出方法 Download PDF

Info

Publication number
JP6768119B2
JP6768119B2 JP2019114484A JP2019114484A JP6768119B2 JP 6768119 B2 JP6768119 B2 JP 6768119B2 JP 2019114484 A JP2019114484 A JP 2019114484A JP 2019114484 A JP2019114484 A JP 2019114484A JP 6768119 B2 JP6768119 B2 JP 6768119B2
Authority
JP
Japan
Prior art keywords
test
data
group
signal channel
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019114484A
Other languages
English (en)
Other versions
JP2020092249A (ja
Inventor
居▲縁▼ ▲莫▼
居▲縁▼ ▲莫▼
Original Assignee
力成科技股▲分▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力成科技股▲分▼有限公司 filed Critical 力成科技股▲分▼有限公司
Publication of JP2020092249A publication Critical patent/JP2020092249A/ja
Application granted granted Critical
Publication of JP6768119B2 publication Critical patent/JP6768119B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2832Specific tests of electronic circuits not provided for elsewhere
    • G01R31/2834Automated test systems [ATE]; using microprocessors or computers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2831Testing of materials or semi-finished products, e.g. semiconductor wafers or substrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31718Logistic aspects, e.g. binning, selection, sorting of devices under test, tester/handler interaction networks, Test management software, e.g. software for test statistics or test evaluation, yield analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3185Reconfiguring for testing, e.g. LSSD, partitioning
    • G01R31/318505Test of Modular systems, e.g. Wafers, MCM's
    • G01R31/318511Wafer Test

Description

本発明は、自動テスト設備のための検出方法に関し、特に自動テスト設備における異常テスト信号チャネルの検出方法に関する。
図7には、ホストコンピュータ61と、このホストコンピュータ61に接続されるプローブカード装置62及びテストプラットフォーム63とを備える自動テスト設備60(Automatic Test Equipment;ATE)が示されている。プローブカード装置62は、コントローラ621と、複数のプローブ623が設けられたプローブカード622とを有する。コントローラ621は、テスト手順を実行するようにプローブカード622を制御する。テストプラットフォーム63の上面には、例えばチップ70である複数の被テストエレメントを有するウェハが載置される。コントローラ621は、複数のテスト信号チャネル(図示せず)を有し、各テスト信号チャネルは、複数のプローブ623のうちの一つに対応する。テストプロセスにおいて、コントローラ621は、プローブカード622のプローブ623を下方へ移動させて対応の被テストエレメントと接触するように制御する。そしてコントローラ621は、テスト信号チャネル及びこれに対応するプローブ623を介して各被テストエレメントにテスト信号を送信する。その後、コントローラ621は、テスト信号チャネル及びこれに対応するプローブ623を介して被テストエレメントから応答信号を受信する。
一般的には、プローブ623の数は被テストエレメントよりも少ないため、全ての被テストエレメントに対するテストを完了するために、コントローラ621はテスト手順を複数回実行させる。ホストコンピュータ61は、全ての被テストエレメントに対応する、原始テストデータとしての応答信号をコントローラ621から受信する。ホストコンピュータ61はさらに、原始テストデータを、複数のカラーブロックを有するテストデータマップに変換する。テストデータマップにおけるカラーブロックは、被テストエレメントと同数であり且つ被テストエレメントと同様に配列されている。これにより、自動テスト設備のオペレータは、図において不良カラーが付されたカラーブロックの位置に基づき、テストの結果が不良である対応の被テストエレメントを特定し、損傷した被テストエレメントを除去することができる。
テスト時間の短縮のため、より多くのプローブが設けられた別のプローブカードを使用することがある。この場合、コントローラは、当該プローブカードのプローブが複数のグループに区分されるようにテスト信号チャネルを再配置し、各グループには複数のプローブが含まれる。同一のグループに含まれるプローブは同一のテスト信号チャネルを共有するため、全ての被テストエレメントのテスト手順に要する時間を効果的に短縮できる。この場合においても、ホストコンピュータが、全ての被テストエレメントに対応する、原始テストデータとしての応答信号を取得し、これら原始テストデータを複数のカラーブロックを有するテストデータマップに変換する。
テストデータマップ内のいずれかのグループに含まれる全てのブロックが同じ不良カラーを示す場合、オペレータは通常、これら不良と示されたカラーブロックに対応する被テストエレメントを不合格と判断する。ところで、テスト信号チャネルが破損しているが、当該テスト信号チャネルに対応する被テストエレメントが正常である場合も考えられる。この場合では、テスト後に得られたテストデータマップにおいて、破損したテスト信号チャネルに対応するグループに含まれる全てのブロックは、不良カラーが付されることになる。このように、実際に破損した被テストエレメントをテストデータマップのみに基づいて特定することができないことがあり、改良の余地が残されていた。
本発明は、従来の自動テスト設備における上記課題に鑑みてなされたものであり、その主たる目的は、自動テスト設備における異常テスト信号チャネルの検出方法を提供することにある。
qつのテスト信号チャネルと、m本(m>q)のプローブが設けられたプローブカードとを備える自動テスト設備に適用される本発明に係る異常テスト信号チャネルの検出方法は、
qつのテスト信号チャネルと、m本(m>q)のプローブが設けられたプローブカードとを備える自動テスト設備における異常テスト信号チャネルの検出方法であって、
マッピングデータを取得するステップ(a)であって、前記m本のプローブは、各々がk本のプローブを含むnつ(q>n又はq=n)のプローブグループに区分され、前記マッピングデータには、各前記プローブグループがqつの前記テスト信号チャネルのうちの1つに対応していることが記録されているステップ(a)と、
ウェハに含まれるxつの被テストエレメントに対する第1原始テストデータを取得するステップ(b)であって、前記第1原始テストデータは、各被テストエレメントのテストデータを含むものであり且つyつのデータグループに区分され、y=x/(j×k)である(jは前記プローブカードによるテストの總回数であり且つj>0である)ステップ(b)と、
各データグループが対応する被テストエレメントの歩留りが第1不良閾値にマッチするか否かを判定するステップ(c)であって、対応する被テストエレメントの歩留りが前記第1不良閾値にマッチするデータグループを第1不良グループに決定するステップ(c)と、
前記ステップ(c)において第1不良グループが決定された場合、前記ウェハの歩留りが第2不良閾値にマッチするか否かを判定するステップ(d)と、
前記ステップ(d)における判定の結果が否定的である場合、前記第1不良グループに対応するテスト信号チャネルが異常であることを記録した不良グループ情報を生成するステップ(e)とを含む。
要約すると、本発明に係る検出方法では、まずマッピングデータに基づいて原始テストデータを複数のデータグループに区分し、同一のデータグループに含まれるテストデータは、同一のプローブグループによるテストで生成されたものである。次に、各データグループの歩留りを推定し、データグループの歩留りが第1不良閾値にマッチする場合には、ウェハの歩留りを更に推定する。ウェハの歩留りが第2不良閾値にマッチしない場合、又は、ウェハの歩留りが正常閾値にマッチする場合、異常であるテスト信号チャネルが決定される。したがって、自動テスト設備の従来のテスト手順に本発明に係る検出方法を適用することにより、オペレータは、テストデータマップ上の不良カラーが付されたブロックは異常なテスト信号チャネルによるものであることを容易に認識することができ、正常である被テストエレメントを損傷したものとして誤判別してしまうことはない。
本発明に係る自動テスト設備の模式図である。 本発明に係る複数の被テストエレメントを有するウェハの平面図であり、図において同一のマークで示された被テストエレメントは同一のプローブグループに対応し、互いに異なるマークで示された被テストエレメントは、異なるプローブグループに対応する。 図2における一組のマークで示された被テストエレメントの拡大模式図であり、(A)〜(D)は、自動テスト設備によるテスト手順の時系列を示す。 図2における他の一組のマークで示された被テストエレメントの拡大模式図であり、(A)〜(D)は、自動テスト設備によるテスト手順の時系列を示す。 図2に示すウェハをテストして得られたテストデータマップである。 図5Aのテストデータマップに含まれるデータグループの拡大模式図である。 図5Aのテストデータマップに含まれる他のデータグループの拡大模式図である。 本発明に係る検出方法の第1実施形態のフローチャートである。 本発明に係る検出方法の第2実施形態のフローチャートである。 従来の自動テスト設備の模式図である。
以下、図面を参照しながら、本発明に係る自動テスト設備における異常テスト信号チャネルの検出方法の幾つかの実施形態を説明する。
図1に示すように、本発明に係る自動テスト設備1は、ホストコンピュータ10、プローブカード装置20及びテストプラットフォーム30を備える。プローブカード装置20は、コントローラ21と、m本のプローブ221が設けられたプローブカード22とを有する。コントローラ21は、テスト手順を実行するようにプローブカード22を制御する。テスト手順が実行される前に、プローブカード22のm本のプローブ221は、図2のように、各々がk本のプローブ221を含むnつのプローブグループ23に区分され、ここで、(k×n)>m又は(k×n)=mである。各プローブグループ23は、qつのテスト信号チャネル211のうちの1つに対応し、ここで、q>n又はq=nである。再び図2を参照すると、テストプラットフォーム30にはxつの被テストエレメント(例えばウェハ40のチップ)が載置され、コントローラ21は、対応の被テストエレメント41と接触してテストを行うようにプローブ221を制御し、各被テストエレメント41のテストデータを取得する。これにより、ホストコンピュータ10は、これらテストデータから構成される第1原始テストデータをコントローラ21から取得することができ、ここで、第1原始テストデータは、MPファイル形態又はCPデータ形態のものであり得る。ホストコンピュータ10は更に、第1原始テストデータを図5Aに示すようなテストデータマップに変換することができる。
一実施形態では、図1及び図2に示すように、自動テスト設備1のプローブカード22は、411本のプローブ(m=411)及び64つのテスト信号チャネル(q=64)を含んでもよく、ここで、これらプローブ221は、51つのプローブグループ(n=m/k=51)に区分されてもよく、各プローブグループ23は、8本のプローブ221(k=8)を含み且つテスト信号チャネル211のうちの1つに対応し、また、ウェハ40は、1520つのチップ(x=1520)を有してもよい。自動テスト設備1を用いて1520つの被テストエレメント41のテストを行う場合、各プローブグループ23は、全ての被テストエレメント41のテストを完了するために、ウェハ40に少なくとも4回(j=4)接触することになり、ここで、jはプローブカード22によるテストの回数である。1回目のテストでは、図3の(A)及図4の(A)に示すように、2つのプローブグループ(73−1〜80−1),(81−1〜88−1)が合計16つの被テストエレメント41に接触する。2回目のテストでは、図3の(B)及び図4の(B)に示すように、2つのプローブグループ(73−2〜80−2),(81−2〜88−2)を移動して他の16つの被テストエレメント41に接触させる。3回目のテストでは、図3の(C)及び図4の(C)に示すように、2つのプローブグループ(73−3〜80−3),(81−3〜88−3)を更に移動して他の16つの被テストエレメント41に接触させる。4回目のテストでは、図3の(D)及び図4の(D)に示すように、2つのプローブグループ(73−4〜80−4),(81−4〜88−4)を更に移動して他の16つの被テストエレメント41に接触させる。図5Aに示すように、ホストコンピュータ10は、第1原始テストデータ50をコントローラから取得する。
図6Aは、本発明に係る検出方法の第1実施形態のフローチャートである。図1、図2及び図5A〜図5Cを併せて参照すると、本実施形態の検出方法は、以下のステップ(a)〜ステップ(e)を含む。
ステップ(a)では、まず、マッピングデータを取得する(S10)。m本のプローブは、各々がk本のプローブを含むnつのプローブグループ23に区分されており、マッピングデータには、各プローブグループがqつのテスト信号チャネルのうちの1つに対応していることが記録されている。ここでq>n又はq=nである。
ステップ(b)では、ウェハ40に含まれるxつの被テストエレメント41に対する第1原始テストデータ50を取得する(S11)。第1原始テストデータ50は、各被テストエレメント41のテストデータを含むものであり、且つyつのデータグループ51に区分される。一実施形態では、第1原始テストデータ50は47つのデータグループ51に区分される(y=x/(j×k)=47,j>0)。図5B又は図5Cに示すように、同一のプローブグループに含まれるk本のプローブを用いて4回のテストを行った結果、一つのデータグループ51a(又は51b)に属する32つのテストデータが得られる(j×k=32)。全ての被テストエレメントのテストデータは、テストデータマップにおける複数ブロックにそれぞれ対応しており、図5Aは、第1原始テストデータとみなすことができる。
ステップ(c)では、データグループ51に含まれるテストデータに基づいて各データグループ51が対応する被テストエレメントの歩留りを推定し、各データグループ51が対応する被テストエレメントの歩留りが第1不良閾値にマッチするか否かを判定する(S12)。第1実施形態において、第1不良閾値は0%である。任意の第1データグループ51に対応する被テストエレメントの歩留りが第1不良閾値に等しい場合(例えば図5Bに示すデータグループ51aの場合)、当該第1データグループ51aを第1不良グループ51aに決定する。一方、図5Cに示すような、対応する被テストエレメントの歩留りが第1不良閾値より大きいデータグループ51bの場合、図5Cのデータグループ51bに対応するテスト信号チャネルは正常である(S15)。
ステップ(d)では、ステップ(c)において第1不良グループがあると判定された場合、第1原始テストデータに基づいてウェハ40の歩留りを推定する。その後、ウェハ40の歩留りを第2不良閾値と比較し、ウェハ40の歩留りが第2不良閾値にマッチするか否かを判定する(S13)。ここでは、ウェハ40の歩留りが第2不良閾値以下であるか否かを判定する。第2不良閾値は例えば40%である。
ステップ(e)では、ステップ(d)における判定の結果が否定的である場合、すなわちウェハ40の歩留りが40%より大きい場合、不良グループ情報が生成される(S14)。当該不良グループ情報は、当該第1不良グループ51aに対応するテスト信号チャネル211が異常であることを記録したものである。第1実施形態では、ウェハ40の歩留りが第2不良閾値より大きいか又は正常閾値以上である場合に、不良グループ情報を生成する。当該正常閾値は、第2不良閾値より大きい且つ変更可能である。例えば、正常閾値は70%である。言い換えれば、ウェハ40の歩留りが第2不良閾値より小さい場合、テスト信号チャネルは正常である(S15)。
図6Bは、本発明に係る検出方法の第2実施形態のフローチャートである。図1、図2及び図5A〜図5Cを併せて参照すると、本実施形態の検出方法は、第1実施形態と同一であるステップ(a)、(c)及び(e)と、第1実施形態と異なるステップ(b)及び(d)とを含む。第2実施形態のステップ(b)では、図2に示すように、第1原始テストデータがデータグループに区分される前に、ウェハ40の周縁部401に位置する被テストエレメントのテストデータは第1原始テストデータから無視される(S11’)。ウェハ40の周縁部401は少なくとも1つのチップを有しており、これらチップのテストデータを無視することにより、第2実施形態のステップ(d)でのウェハ40の歩留りの判定精度を向上させることができる。
第2実施形態のステップ(d)は、第1実施形態のステップ(d)における判定の結果が否定的であってウェハ40の歩留りが第2不良閾値にマッチしない(すなわちウェハ40の歩留りが第2不良閾値より大きい)場合に行われるステップ(d1)、(d2)及び(d3)を更に含む。ステップ(d1)では、次のウェハに含まれる複数の被テストエレメントに対する第2原始テストデータ(S11a)を取得する。第2原始テストデータは、次のウェハにおける各被テストエレメントのテストデータを含むものであり、且つyつのデータグループに区分されている。ステップ(d2)では、ステップ(c)における第1不良グループに対応するステップ(d1)のデータグループが対応する被テストエレメントの歩留りが第1不良閾値(S12a)にマッチするか否かを判定する。ステップ(d3)では、あるデータグループが対応する被テストエレメントの歩留りが第1不良閾値にマッチする場合、当該データグループを第2不良グループに決定する。これは本来であれば、連続する2枚のウェハにおける、同じ位置にある被テストエレメントが不合格であることを意味するが、このような状況が発生する確率は低い。このことから、被テストエレメントではなく、実際には被テストエレメントに対応するテスト信号チャネルが異常であると判定することができる。したがって、引き続きステップ(e)を実行し、これら被テストエレメントに対応するテスト信号チャネルが異常であることを示す不良グループ情報(S14)を生成する。これに対し、ステップ(c)において、あるテスト信号チャネルに対応するデータグループが対応する被テストエレメントの歩留りが第1不良閾値にマッチすると判定されても、ステップ(d3)において、当該テスト信号チャネルに対応するデータグループが対応する被テストエレメントの歩留りが第1不良閾値にマッチしないと判定されれば、当該テスト信号チャネルは正常である。このように、本発明の第2実施形態の検出方法によれば、テスト信号チャネルの異常判定の精度を更に向上させることができる。
なお、ステップ(d1)では、データグループの区分の前に、次のウェハの周縁部に位置する被テストエレメントのテストデータは第2原始テストデータから無視される。第2実施形態では、当該次のウェハの周縁部の幅と、ステップ(b)におけるウェハの周縁部の幅とは同じである。
要約すると、本発明に係る検出方法では、まず原始テストデータを取得し、次いで、マッピングデータに基づいて原始テストデータを複数のデータグループに区分し、同一のデータグループに含まれる複数のテストデータは、同一のプローブグループによるテストで生成されたものである。次に、各データグループが対応する被テストエレメントの歩留りを推定し、いずれかのデータグループが対応する被テストエレメントの歩留りが第1不良閾値にマッチする場合には、ウェハの歩留りを推定して第2不良閾値と比較する。ウェハの歩留りが第2不良閾値にマッチしない場合、又は、ウェハの歩留りが正常閾値にマッチする場合、異常であるテスト信号チャネルが決定される。したがって、自動テスト設備の従来のテスト手順に本発明に係る検出方法を適用することにより、オペレータは、テストデータマップ上の不良カラーが付されたブロックは異常なテスト信号チャネルによるものであることを容易に認識することができる。換言すれば、仮にテストデータマップでは不良カラーが付されたとしても、これに基づいて正常である被テストエレメントを損傷したものとして誤判別してしまうことはない。
本発明を上記実施形態により説明したが、本発明はこれら開示された実施形態に限定されず、当業者であれば、本発明の技術的思想を逸脱することなく、様々な変更および修飾を加えて均等物とすることができる。したがって、上記実施形態に変更、改変および修飾を加えた内容もまた、本発明の技術的思想に含まれるものである。
1 自動テスト設備
10 ホストコンピュータ
20 プローブカード装置
21 コントローラ
22 プローブカード
221 プローブ
23 プローブグループ
30 テストプラットフォーム
40 ウェハ
401 周縁部
41 被テストエレメント
50 第1原始テストデータ
51 データグループ
60 自動テスト設備
61 ホストコンピュータ
62 プローブカード装置
621 コントローラ
622 プローブカード
623 プローブ
63 テストプラットフォーム
70 チップ

Claims (8)

  1. qつのテスト信号チャネルと、m本(m>q)のプローブが設けられたプローブカードとを備える自動テスト設備における異常テスト信号チャネルの検出方法であって、
    マッピングデータを取得するステップ(a)であって、前記m本のプローブは、各々がk本のプローブを含むnつ(q>n又はq=n)のプローブグループに区分され、前記マッピングデータには、各前記プローブグループがqつの前記テスト信号チャネルのうちの1つに対応していることが記録されているステップ(a)と、
    ウェハに含まれるxつの被テストエレメントに対する第1原始テストデータを取得するステップ(b)であって、前記第1原始テストデータは、各前記被テストエレメントのテストデータを含むものであり且つyつのデータグループに区分され、y=x/(j×k)である(jは前記プローブカードによるテストの總回数であり且つj>0である)ステップ(b)と、
    各データグループが対応する被テストエレメントの歩留りが第1不良閾値にマッチするか否かを判定するステップ(c)であって、対応する被テストエレメントの歩留りが前記第1不良閾値にマッチするデータグループを第1不良グループに決定するステップ(c)と、
    前記ステップ(c)において第1不良グループが決定された場合、前記ウェハの歩留りが第2不良閾値にマッチするか否かを判定するステップ(d)と、
    前記ステップ(d)における判定の結果が否定的である場合、前記第1不良グループに対応するテスト信号チャネルが異常であることを記録した不良グループ情報を生成するステップ(e)とを含む、異常テスト信号チャネルの検出方法。
  2. 前記ステップ(e)において、前記不良グループ情報は前記ウェハの歩留りが前記第2不良閾値より大きいか又は正常閾値以上である場合に生成され、
    前記正常閾値は前記第2不良閾値より大きい、請求項1に記載の異常テスト信号チャネルの検出方法。
  3. 前記ステップ(b)において、データグループへの区分の前に、前記ウェハの周縁部に位置する被テストエレメントのテストデータは前記第1原始テストデータから無視される、請求項1に記載の異常テスト信号チャネルの検出方法。
  4. 前記ステップ(b)において、データグループへの区分の前に、前記ウェハの周縁部に位置する被テストエレメントのテストデータは前記第1原始テストデータから無視される、請求項2に記載の異常テスト信号チャネルの検出方法。
  5. 前記ステップ(d)において前記ウェハの歩留りが前記第2不良閾値にマッチしないと判定された場合、前記ステップ(d)は、
    次のウェハに含まれる複数の被テストエレメントに対する第2原始テストデータを取得するステップ(d1)であって、前記第2原始テストデータは、前記次のウェハにおける各被テストエレメントのテストデータを含むものであり、前記第2原始テストデータは、nつのプローブグループに基づいてnつのデータグループに区分されるステップ(d1)と、
    前記ステップ(c)における第1不良グループに対応する前記ステップ(d1)のデータグループが対応する被テストエレメントの歩留りが前記第1不良閾値にマッチするか否かを判定するステップ(d2)と、
    前記ステップ(d2)における判定の結果が肯定的である場合、当該データグループを第2不良グループに決定し且つ前記ステップ(e)に移行するステップ(d3)とを更に含む、請求項1から4のいずれか一項に記載の異常テスト信号チャネルの検出方法。
  6. 前記ステップ(d1)において、データグループへの区分の前に、前記次のウェハの周縁部に位置する被テストエレメントのテストデータを前記第2原始テストデータから無視する、請求項5に記載の異常テスト信号チャネルの検出方法。
  7. 前記ステップ(b)において、前記ウェハの周縁部に少なくとも1つの被テストエレメントが含まれ、
    前記ステップ(c)において、前記第1不良閾値が0%である、請求項1から6のいずれか一項に記載の異常テスト信号チャネルの検出方法。
  8. 前記ステップ(d)において、前記第2不良閾値が40%である、請求項7に記載の異常テスト信号チャネルの検出方法。
JP2019114484A 2018-12-07 2019-06-20 自動テスト設備における異常テスト信号チャネルの検出方法 Active JP6768119B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/213,464 US10802068B2 (en) 2018-12-07 2018-12-07 Method of detecting abnormal test signal channel of automatic test equipment
US16/213,464 2018-12-07

Publications (2)

Publication Number Publication Date
JP2020092249A JP2020092249A (ja) 2020-06-11
JP6768119B2 true JP6768119B2 (ja) 2020-10-14

Family

ID=68542285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019114484A Active JP6768119B2 (ja) 2018-12-07 2019-06-20 自動テスト設備における異常テスト信号チャネルの検出方法

Country Status (4)

Country Link
US (1) US10802068B2 (ja)
JP (1) JP6768119B2 (ja)
KR (1) KR102042936B1 (ja)
TW (1) TWI698644B (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112115013A (zh) * 2019-06-21 2020-12-22 昆山纬绩资通有限公司 测试数据汇总系统与其方法
CN113009311A (zh) * 2019-12-19 2021-06-22 鸿富锦精密电子(天津)有限公司 电路板智能检测方法、装置、系统及存储介质
CN113393422B (zh) * 2021-05-14 2022-03-22 深圳米飞泰克科技股份有限公司 确定探针卡异常的方法、装置、终端设备及存储介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249335A (ja) * 1991-02-05 1992-09-04 Matsushita Electron Corp プローブ検査システム
US8041541B2 (en) * 2001-05-24 2011-10-18 Test Advantage, Inc. Methods and apparatus for data analysis
TW200622275A (en) * 2004-09-06 2006-07-01 Mentor Graphics Corp Integrated circuit yield and quality analysis methods and systems
US7245134B2 (en) * 2005-01-31 2007-07-17 Formfactor, Inc. Probe card assembly including a programmable device to selectively route signals from channels of a test system controller to probes
JP2007235031A (ja) * 2006-03-03 2007-09-13 Advantest Corp 半導体試験装置
JP2008103601A (ja) * 2006-10-20 2008-05-01 Renesas Technology Corp 半導体装置の製造方法
US7682842B2 (en) * 2008-05-30 2010-03-23 International Business Machines Corporation Method of adaptively selecting chips for reducing in-line testing in a semiconductor manufacturing line
US7893700B2 (en) * 2008-07-28 2011-02-22 Formfactor, Inc. Configuration of shared tester channels to avoid electrical connections across die area boundary on a wafer
JP5260172B2 (ja) * 2008-07-31 2013-08-14 東京エレクトロン株式会社 被検査体の検査方法及び被検査体の検査用プログラム
WO2010054669A1 (en) * 2008-11-11 2010-05-20 Verigy (Singapore) Pte.Ltd. Re-configurable test circuit, method for operating an automated test equipment, apparatus, method and computer program for setting up an automated test equipment
KR20100082220A (ko) * 2009-01-08 2010-07-16 삼성전자주식회사 웨이퍼 검사방법
MY166393A (en) * 2010-05-05 2018-06-25 Teradyne Inc System for concurrent test of semiconductor devices
US9632134B2 (en) * 2015-05-15 2017-04-25 Taiwan Semiconductor Manufacturing Company Ltd. Generating probing map including touchdowns free of disabled probing site
JP6815251B2 (ja) * 2017-03-30 2021-01-20 東京エレクトロン株式会社 検査システム、ウエハマップ表示器、ウエハマップ表示方法、およびコンピュータプログラム

Also Published As

Publication number Publication date
US20200182927A1 (en) 2020-06-11
TW202022385A (zh) 2020-06-16
KR102042936B1 (ko) 2019-11-08
TWI698644B (zh) 2020-07-11
JP2020092249A (ja) 2020-06-11
US10802068B2 (en) 2020-10-13

Similar Documents

Publication Publication Date Title
JP6768119B2 (ja) 自動テスト設備における異常テスト信号チャネルの検出方法
JP4562713B2 (ja) 論理回路における多重故障の故障箇所推定システム、故障箇所推定方法および故障箇所推定用プログラム
JP6310782B2 (ja) 半導体装置の製造方法およびプログラム
US8560904B2 (en) Scan chain fault diagnosis
US7596731B1 (en) Test time reduction algorithm
KR102123522B1 (ko) 고장 데이터의 군집에 기반한 고장 진단 방법
US7765444B2 (en) Failure diagnosis for logic circuits
CN114093784A (zh) 晶圆封装方法、装置、电子设备及存储介质
US9400311B1 (en) Method and system of collective failure diagnosis for multiple electronic circuits
JP3888938B2 (ja) チップ品質判定方法、チップ品質判定プログラム及びそれを用いたマーキング機構、並びにウエハの異常発生解析方法
JP2018170418A5 (ja)
US6872582B2 (en) Selective trim and wafer testing of integrated circuits
US20030158679A1 (en) Anomaly detection system
JP3550105B2 (ja) ウエハの故障サイン自動検出、分類方法
JP4462037B2 (ja) 半導体ウェハ間の共通欠陥判別方法
US10948536B2 (en) System for enhancing ATE fault isolation capability using a truth table based on a failure isolation matrix
CN101025746B (zh) 用于推断测试结果之间的关系的方法和设备
JP2808996B2 (ja) 半導体装置の製造方法
KR100901522B1 (ko) 심볼릭 시뮬레이션을 이용한 스캔 체인 고장 진단 방법 및장치
JPH0252446A (ja) 集積回路の試験装置
CN113148946B (zh) 一种晶圆低可靠性失效管芯的标注方法和装置
KR102092379B1 (ko) 반도체 웨이퍼 검사방법, 이의 검사장치 및 기록매체
JP2010044835A (ja) 試験モジュールおよび試験方法
JPH1115518A (ja) 電子回路基板・装置の故障診断方式
JP2006013348A (ja) 半導体ウエーハの電気的特性テスト項目の評価方法およびそのシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200918

R150 Certificate of patent or registration of utility model

Ref document number: 6768119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250