JP6764231B2 - 半導体ナノ粒子の製造方法、および、半導体ナノ粒子 - Google Patents

半導体ナノ粒子の製造方法、および、半導体ナノ粒子 Download PDF

Info

Publication number
JP6764231B2
JP6764231B2 JP2016006061A JP2016006061A JP6764231B2 JP 6764231 B2 JP6764231 B2 JP 6764231B2 JP 2016006061 A JP2016006061 A JP 2016006061A JP 2016006061 A JP2016006061 A JP 2016006061A JP 6764231 B2 JP6764231 B2 JP 6764231B2
Authority
JP
Japan
Prior art keywords
semiconductor
layer
seed particles
seed
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016006061A
Other languages
English (en)
Other versions
JP2016148028A (ja
Inventor
拓也 風間
拓也 風間
渉 田村
渉 田村
康之 三宅
康之 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Publication of JP2016148028A publication Critical patent/JP2016148028A/ja
Application granted granted Critical
Publication of JP6764231B2 publication Critical patent/JP6764231B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Description

本発明は、半導体ナノ粒子の製造方法および半導体ナノ粒子に関する。
数nm〜十数nm程度にまで小さく(細く,薄く)された物質は、バルク状態とは異なる物性を示すようになる。このような現象・効果は、(3次元〜1次元)キャリア閉じ込め効果や量子サイズ効果などと呼ばれ、また、このような効果が発現する物質は、量子ドット(量子ワイヤ,量子ウェル)と呼ばれる。
たとえば、特許文献1には、発光性を有するコアおよび当該コアを被覆するシェル層を有し、窒化物系半導体を含む半導体ナノ粒子(量子ドット)が開示されている。このような半導体ナノ粒子は、サイズ(全体的な大きさ)を変化させることで、そのバンドギャップ(光吸収波長や発光波長)を調整することができる。なお、このような半導体ナノ粒子は、たとえば液相成長法により、製造することができる(特許文献1〜3)。
特許第4318710号公報 特許第4502758号公報 特許第4936338号公報
本発明の主な目的は、効率的に半導体ナノ粒子を製造する方法を提供することにある。
本発明の主な観点によれば、工程a)溶媒中に、所定の結晶面が露出するシード粒子を分散させる工程と、工程b)溶媒中において、前記シード粒子の結晶面に、平板状の第1の半導体層、該シード粒子と同じ部材により構成される平板状のシード層、および平板状の第2の半導体層、を順次エピタキシャル成長する工程と、工程c)前記シード粒子および前記シード層をエッチング処理により除去して、前記第1および第2の半導体層を相互に分離する工程と、を有する半導体ナノ粒子の製造方法、が提供される。
本発明のさらに他の観点によれば、ZnOSを含むシード粒子であって、粒径が20nm以下であり、所定の結晶面が露出するシード粒子と、前記シード粒子の結晶面上にエピタキシャル成長し、窒化物半導体を含む平板状の第1の半導体層と、前記第1の半導体層上にエピタキシャル成長し、前記シード粒子と同じ部材により構成される平板状のシード層と、前記シード層上にエピタキシャル成長し、窒化物半導体を含む平板状の第2の半導体層と、を含む半導体ナノ粒子、が提供される。
より効率的に半導体ナノ粒子を製造することができる。
図1は、シード粒子を作製する様子を示す模式図である。 図2Aは、シード粒子に選択的光エッチング処理を施す様子を示す模式図であり、図2Bは、選択的光エッチング処理が施されたシード粒子を示す概略斜視図である。 図3Aは、シード粒子の露出した結晶面に、第1発光層を成長する様子を示す模式図であり、図3Bは、シード粒子の結晶面に成長した第1発光層を示す断面図である。 図4Aは、第1発光層の主面に成長したシード層を示す断面図であり、図4Bは、シード層の主面に成長した第2発光層を示す断面図である。 図5Aは、シード粒子およびシード層を除去した後に残される第1および第2発光層を示す断面図であり、図5Bは、第1および第2発光層の各々を被覆するシェル層を示す断面図である。
以下、図面を参照して、実施例による半導体ナノ粒子の製造方法および基本構造について説明する。実施例による半導体ナノ粒子は、複数のシード粒子を作製する工程(図1)と、シード粒子の粒径を揃えるとともに、特定の結晶面を露出する工程(図2)と、溶媒中において、シード粒子の特定の結晶面に第1発光層を成長する工程(図3)と、第1発光層の主面にシード層および第2発光層を順次積層する工程(図4)と、シード粒子およびシード層を除去して第1および第2発光層を残し、さらに、第1および第2発光層の各々を、シェル層により被覆する工程(図5)と、を経て製造される。
図1に、シード粒子を作製する様子を示す。実施例において、シード粒子は、ウルツ鉱型のZnOS(より具体的にはZnO0.720.28)から構成され、また、ホットインジェクション法により作製される。なお、シード粒子を構成するZnOSは、ウルツ鉱型の結晶構造に限らず、閃亜鉛鉱型の結晶構造であってもかまわない。また、シード粒子は、ホットインジェクション法に限らず、たとえば、ソルボサーマル法を用いて作製してもかまわないし、また、バルク状態のシード部材を、超音波の印加などにより、微粒子状(ナノサイズ)に粉砕して作製してもかまわない。
まず、石英製の反応容器(フラスコ)81を用意する。反応容器81には、たとえば3つの開口ポート82a〜82cが設けられている。
ポート82aには、反応容器81内の収容物の温度を測定することができる温度センサ(熱電対)83が挿入される。他のポート82bには、反応容器81内の雰囲気をたとえば不活性ガス(Arガス)に置換することができる雰囲気置換装置が接続される。また、さらに他のポート82cからは、シード粒子の作製(ないし後工程の光エッチング処理等)に必要な原料(試薬)などが注入される。
また、反応容器81には、収容物を加熱することができるヒータ84が取り付けられている。ヒータ84と併せて、たとえばポート82bに、還流装置(冷却器)が取り付けられていてもよい。
反応容器81内に、反応溶媒11を注入する。反応溶媒11は、たとえば、トリ−n−オクチルホスフィンオキシド(TOPO,8g)およびヘキサデシルアミン(HDA,4g)を混合したものである。続いて、不活性(Ar)ガス雰囲気下において、反応溶媒11を約300℃まで加熱する。なお、このとき、反応溶媒11に加熱ムラが生じないように、反応溶媒11を撹拌しながら加熱することが好ましい。
次に、不活性(Ar)ガス雰囲気下において、反応溶媒11に、反応前駆体として、ジエチル亜鉛(4.0mmol)、オクチルアミン(2.8mmol)およびビス(トリメチルシリル)スルフィド(1.2mmol)を添加する。なお、オクチルアミンについては、予め2分程度、酸素によるバブリング処理を施しておく。これにより、溶媒11中において、ウルツ鉱型のZnO0.720.28の結晶核が生成する。
反応前駆体を注入した直後に、溶媒11を約200℃まで急冷する。これにより、新たな結晶核が生成されなくなり、結晶核のサイズが均一化される。
続いて、溶媒11を約240℃まで加熱し、その温度を約4時間保持する。これにより、溶媒中においてZnO0.720.28が粒径10nm程度にまで成長する。なお、以降では、ここまでの一連の処理を、ZnOS成長処理と呼ぶこととする。
続いて、溶媒11を約100℃まで自然冷却し、その温度を約1時間保持する。これにより、ZnO0.720.28粒子の表面状態が安定化される。以降、このような処理を、表面安定化処理と呼ぶこととする。
その後、溶媒11を室温程度に戻し、そこにブタノールを添加して約10時間撹拌する。これにより、ZnO0.720.28粒子相互間の凝集を防ぐことができる。以降、このような処理を、凝集防止処理と呼ぶこととする。
次に、一般的な遠心分離装置(セパレータ)により、溶媒11に、脱水メタノールとトルエンとを交互に用いた遠心分離処理(4000rpmで10分間)を繰り返し施す。これにより、ZnO0.720.28粒子から不要な物質・材料などが概ね除去される。以降、このような処理を、精製処理と呼ぶこととする。最終的に、ZnO0.720.28粒子がメタノール中に分散する状態とする(粒子分散溶液12,図2A参照)。
以上により、ZnO0.720.28からなるシード粒子が作製される。
図2Aおよび図2Bに、シード粒子の粒径を均一化するとともに、特定の結晶面を露出する様子を示す。実施例では、シード粒子に、選択的光エッチング処理を施す。
光エッチング処理とは、光吸収によってシード粒子に生成された正孔を酸素と反応させて、シード粒子自体を溶解(エッチング)する処理をいう。光エッチング処理により、溶媒中に分散するシード粒子を、照射光の波長に対応する粒径に均一化することができる。なお、適当なエッチング液を用いることにより、シード粒子の特定の結晶面を選択的にエッチングすることも可能である。
まず、メタノール中にZnO0.720.28粒子が分散する粒子分散溶液12に、エッチング液13を添加する。エッチング液13は、たとえば超純水および硝酸(濃度:61容量%)を容量比600:1で混合したものである。その後、粒子分散溶液12およびエッチング液13が混合した溶液を25℃に保持し、当該溶液に酸素によるバブリング処理を5分間施す。
図2Aに示すように、次に、粒子分散溶液12およびエッチング液13が混合した溶液を密閉容器85に収容して光照射する。たとえば水銀ランプと分光器とを含む光源86から、波長405nm(半値幅6nm)の光を出射させ、その光を粒子分散溶液12およびエッチング液13が混合した溶液に20時間程度照射する。
次に、分散媒(メタノールおよびエッチング液)を水に置換して、シード粒子を洗浄(水洗)する。その後、凍結乾燥により、シード粒子を抽出する。以降、このような処理を、抽出処理と呼ぶこととする。
図2Bに示すように、選択的光エッチング処理を施した後、シード粒子(ウルツ鉱型ZnO0.720.28粒子)21は、たとえば、c面(結晶面21C)が露出した粒状の形状を有する。なお、シード粒子(ウルツ鉱型ZnO0.720.28粒子)において露出させる結晶面はc面に限らず、いずれの結晶面であってもよい。たとえば、選択的光エッチング処理に用いるエッチング液を王水にすることにより、ウルツ鉱型ZnO0.720.28粒子のm面を露出させることができる。
シード粒子21の粒径ないし露出する結晶面21C内における最長の幅は、20nm以下であることが好ましい。実施例において、シード粒子21の粒径ないし露出する結晶面21C内における最長の幅は、7nm程度である。
図3Aおよび図3Bに、溶媒中に分散するシード粒子21のc面に、第1発光層22を積層する様子を示す。実施例において、第1発光層22は、シード粒子21(ZnO0.720.28)と格子整合し、相対的にバンドギャップが狭い(小さい)In0.60Ga0.40N層を含む。なお、ZnO0.720.28ないしIn0.60Ga0.40Nの格子定数(a軸方向)は、およそ3.4Åである。
図3Aに示すように、まず、反応容器91を用意する。反応容器91は、外側がステンレス、内側がハステロイにより構成される。反応容器91には、少なくとも2つの給気口92a,92bと、排気口92cと、が設けられている。
給気口92a,92bには、それぞれバルブを介して、たとえばArガス供給源およびNガス供給源に接続されており、給気口92a,92bから反応容器91内に、ArガスおよびNガスを供給することができる。また、排気口92cには、バルブを介して、排気ポンプが接続されており、反応容器91内の雰囲気(ガス)を排気することができる。各バルブの調整により、反応容器91内における各種ガスの分圧、特にNガスの分圧を、精確に制御することができる。
また、反応容器91には、温度センサ93,ヒータ94,撹拌機構95等が取り付けられている。温度センサ93は、反応容器91内の収容物の温度を測定することができる。ヒータ94は、当該収容物を加熱することができる。撹拌機構95(回転羽根)は、当該収容物を撹拌することができる。
先に作製したシード粒子(c面が露出したウルツ鉱型ZnO0.720.28粒子)をジフェニルエーテルに分散させ、そのジフェニルエーテル(20ml)を反応容器91内に注入する。続いて、ヨウ化ガリウム(0.24mmol),ヨウ化インジウム(0.36mmol),ナトリウムアミド(12.8mmol)およびキャッピング剤(ヘキサデカンチオール1.0mmolおよびステアリン酸亜鉛0.6mol)を注入する(混合溶液14)。その後、反応容器91内の窒素分圧を1500Torrとして、混合溶液14を225℃まで加熱し、その温度を約80分間保持する。以降、このような処理を、InGaN成長処理と呼ぶこととする。なお、キャッピング剤であるステアリン酸亜鉛から亜鉛がInGaNに混入することがあるが、それも含めてInGaNと呼ぶ。
図3Bに示すように、このような処理により、溶媒中に分散するシード粒子21の露出面(c面)に、In0.60Ga0.40N層(第1発光層)22がエピタキシャル成長する。第1発光層22は、シード粒子21のc面に成長するため、第1発光層22の主面(露出面)もc面(結晶面22C)を構成する。なお、シード粒子21の結晶面21C内における最長の幅は、20nm以下であることが好ましいから、第1発光層22の平面サイズ(面内方向における最大幅)も、20nm以下であることが好ましい。
実施例において、第1発光層22の厚みは、4nm程度である。第1発光層22の厚みは、混合溶液14の加熱時間を調整することにより、制御することができる。
その後、第1発光層が積層したシード粒子に、表面安定化処理,凝集防止処理および精製処理を順次施す。最終的に、第1発光層を含むシード粒子がメタノール中に分散する状態とする。
なお、発光層22は、たとえばIn0.67Al0.33N層22a/In0.60Ga0.40N層22bの積層構造としてもよい。In0.67Al0.33N層22aを設けることにより、後工程で形成されるシェル層(In0.67Al0.33N層)の厚みを、より均一にすることができる。このような発光層22は、以下のように形成される。
先に作製したシード粒子(c面が露出したウルツ鉱型ZnO0.720.28粒子)をジフェニルエーテルに分散させ、そのジフェニルエーテル(20ml)を反応容器91内に注入する。続いて、反応容器91内に、ヨウ化アルミニウム(0.20mmol),ヨウ化インジウム(0.40mmol),ナトリウムアミド(12.8mmol)およびキャッピング剤(ヘキサデカンチオール1.0mmolおよびステアリン酸亜鉛0.6mol)を注入する。その後、反応容器91内の窒素分圧を1500Torrとして、当該混合溶液を225℃まで加熱し、その温度を約40分間保持する。これにより、溶媒中に分散するシード粒子21の露出面(c面)に、層厚が約2nm程度であるIn0.67Al0.33N層22aがエピタキシャル成長する。以降、このような処理を、InAlN成長処理と呼ぶこととする。なお、キャッピング剤であるステアリン酸亜鉛から亜鉛がInAlNに混入することがあるが、それも含めてInAlNと呼ぶ。
その後、In0.67Al0.33N層22aが積層したシード粒子21に、表面安定化処理,凝集防止処理および精製処理を順次施す。そして、さらにInGaN成長処理を施して、In0.67Al0.33N層22aの主面に、In0.60Ga0.40N層22bを成長させる。これにより、In0.67Al0.33N層22aおよびIn0.60Ga0.40N層22bが積層する発光層22が形成される。
図4Aおよび図4Bに、溶媒中において第1発光層22の主面にシード層23および第2発光層24を順次積層する様子を示す。シード層23は、シード粒子と同じZnO0.720.28から構成され、第2発光層24は、第1発光層22と同じIn0.60Ga0.40Nから構成される。なお、シード層23は、シード粒子21を作製した設備・装置(図1)を用いて成長させることができる。また、第2発光層層24は、第1発光層22を作製した設備・装置(図3A)を用いて成長させることができる。
メタノール中に分散する、第1発光層22を含むシード粒子21に、ZnOS成長処理を施す。すなわち、第1発光層22を含むシード粒子21が分散するメタノールに、反応前駆体(ジエチル亜鉛,オクチルアミンおよびビス(トリメチルシリル)スルフィド)を添加した後、200℃に急冷して、再度240℃に加熱し、その温度を約20分間保持する。
図4Aに示すように、このような処理により、第1発光層22の主面(c面)に、ZnO0.720.28層(シード層)23がエピタキシャル成長する。シード層23の厚みは、2nm程度である。その後、第1発光層/シード層の積層体を含むシード粒子21に、表面安定化処理,凝集防止処理,精製処理および抽出処理を施す。
図4Bに示すように、さらにInGaN成長処理を施して、シード層23の主面に、In0.60Ga0.40N層(第2発光層)24を成長させる。以上の処理により、第1発光層22の主面に、シード層23および第2発光層24が積層される。なお、第2発光層24は、第1発光層22と同様に、In0.67Al0.33N層24a/In0.60Ga0.40N層24bの積層構造としてもよい。
第1発光層/シード層/第2発光層の積層体を含むシード粒子に、表面安定化処理,凝集防止処理および精製処理を順次施す。最終的に、当該シード粒子がメタノール中に分散する状態とする。
図5Aに、シード粒子21およびシード層23を除去し、第1および第2発光層22,24を残す様子を示す。同じ部材で構成されるシード粒子21およびシード層23は、たとえばエッチング処理により、同時に除去される。
第1発光層/シード層/第2発光層の積層体を含むシード粒子が分散するメタノールに、エッチング液を添加する。エッチング液は、たとえば純水および塩酸(濃度:36容量%)を容量比100:1で混合したもの(希塩酸)を用いる。これにより、ZnO0.720.28により構成されるシード粒子21およびシード層23が除去され、第1発光層22と第2発光層24とが相互に分離して残される。その後、第1および第2発光層22,24各々の単層体に、表面安定化処理,凝集防止処理,精製処理および抽出処理を施す。以降、第1および第2発光層を、単に発光層ないしコア層と呼ぶこととする。
図5Bに、発光層22,24の単層体を、シェル層25により被覆する様子を示す。実施例において、シェル層25は、発光層(In0.60Ga0.40N)と格子整合し、相対的にバンドギャップが広い(大きい)In0.67Al0.33N層を含む。
発光層22,24の単層体に、InAlN成長処理を施す。すなわち、発光層22,24の単層体をジフェニルエーテルに分散させ、そのジフェニルエーテルに、ヨウ化アルミニウム,ヨウ化インジウム,ナトリウムアミドおよびキャッピング剤を添加する。そして、当該混合溶液を225℃まで加熱し、その温度を約100分間保持する。
このような処理により、発光層(コア層)22,24を覆うように、In0.67Al0.33N層(シェル層)25がエピタキシャル成長する。シェル層25の厚みは、5nm程度である。以上により、コア層(発光層)、および、当該コア層を被覆するシェル層、を含む半導体ナノ粒子20が作製される。その後、半導体ナノ粒子(コア/シェル構造体)20に、表面安定化処理,凝集防止処理,精製処理および抽出処理を施す。
なお、半導体ナノ粒子は、以下のような参考例による製造方法でも作製することができる。すなわち、シード粒子を作製し(図1)、当該シード粒子の所定の結晶面を露出し(図2)、当該結晶面に発光層を成長した(図3)後に、シード粒子を除去して、残された発光層にシェル層を被覆する(図5)ことでも作製することができる。
1つのシード粒子に設けられる発光層の層数は、実施例による製造方法では2層であり、参考例による製造方法では1層である。同じシード粒子に設けられる発光層の平面サイズはほぼ等しいと考えられる。このため、発光層(コア層)の平面サイズの総合的なバラつきは、実施例による製造方法の方が参考例による製造方法よりも少ないと考えられる。
また、実施例および参考例による製造方法において、シード粒子の所定の結晶面を露出する工程(図2,シード粒子加工工程)に、特に時間・手間がかかる。このため、一度のシード粒子加工工程の実施で、より多くの発光層を得ることができる実施例による製造方法の方が、参考例よる製造方法よりも生産的ないし効率的である。
以上、本発明を実施するための形態について説明したが、本発明はこれらに制限されるものではない。たとえば、発光層を3層以上、また、シード層を2層以上含む半導体ナノ粒子を作製してもかまわない。また、シード粒子およびシード層,発光層(コア層)ならびにシェル層に用いられる部材は、製造環境・条件や半導体ナノ粒子の用途などに応じて、適宜変更してもかまわないであろう。たとえば、シード粒子の材料として硫黄を含む材料ビス(トリメチルシリル)スルフィドの一部もしくは全部を、セレンを含む材料トリ−n−オクチルホスフィンセレニドに換えれば、同様の手順でZnOSSeもしくはZnOSeを作製できるであろう。その他、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
11〜14…溶媒、20…半導体ナノ粒子、21…シード粒子、22…第1発光層(コア層)、23…シード層、24…第2発光層、25…シェル層(障壁層)、81…反応容器(フラスコ)、82…ポート、83…温度センサ(熱電対)、84…ヒータ、85…密閉容器、86…光源、91…反応容器、92…給気口/排気口、93…温度センサ(熱電対)、94…ヒータ、95…撹拌機構(回転羽根)。

Claims (9)

  1. 工程a)溶媒中に、所定の結晶面が露出するシード粒子を分散させる工程と、
    工程b)溶媒中において、前記シード粒子の結晶面に、平板状の第1の半導体層、該シード粒子と同じ部材により構成される平板状のシード層、および平板状の第2の半導体層、を順次エピタキシャル成長する工程と、
    工程c)前記シード粒子および前記シード層をエッチング処理により除去して、前記第1および第2の半導体層を相互に分離する工程と、
    を有する半導体ナノ粒子の製造方法。
  2. 前記第1および第2の半導体層の面内方向における最大幅は、20nm以下である請求項1記載の半導体ナノ粒子の製造方法。
  3. 前記シード粒子および前記シード層は、ZnOSを含み、
    前記第1および第2の半導体層各々は、窒化物半導体を含む、請求項1または2記載の半導体ナノ粒子の製造方法。
  4. 前記第1および第2の半導体層各々は、InGaNを含む請求項3記載の半導体ナノ粒子の製造方法。
  5. 前記第1および第2の半導体層各々は、さらにInAlNを含む請求項4記載の半導体ナノ粒子の製造方法。
  6. 前記工程a)において、選択的光エッチング処理により、前記シード粒子の所定の結晶面を露出する請求項1〜5いずれか1項記載の半導体ナノ粒子の製造方法。
  7. さらに、工程d)溶媒中において、相互に分離した前記第1および第2の半導体層各々を、第3の半導体層により被覆する工程と、を有する請求項1〜6いずれか1項記載の半導体ナノ粒子の製造方法。
  8. 前記第3の半導体層は、InAlNを含む請求項7記載の半導体ナノ粒子の製造方法。
  9. ZnOSを含むシード粒子であって、粒径が20nm以下であり、所定の結晶面が露出するシード粒子と、
    前記シード粒子の結晶面上にエピタキシャル成長し、窒化物半導体を含む平板状の第1の半導体層と、
    前記第1の半導体層上にエピタキシャル成長し、前記シード粒子と同じ部材により構成される平板状のシード層と、
    前記シード層上にエピタキシャル成長し、窒化物半導体を含む平板状の第2の半導体層と、
    を含む半導体ナノ粒子。
JP2016006061A 2015-02-06 2016-01-15 半導体ナノ粒子の製造方法、および、半導体ナノ粒子 Active JP6764231B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015021936 2015-02-06
JP2015021936 2015-02-06

Publications (2)

Publication Number Publication Date
JP2016148028A JP2016148028A (ja) 2016-08-18
JP6764231B2 true JP6764231B2 (ja) 2020-09-30

Family

ID=56687720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016006061A Active JP6764231B2 (ja) 2015-02-06 2016-01-15 半導体ナノ粒子の製造方法、および、半導体ナノ粒子

Country Status (1)

Country Link
JP (1) JP6764231B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3837485B2 (ja) * 2001-09-27 2006-10-25 独立行政法人産業技術総合研究所 励起子を用いた量子論理素子
US20070037365A1 (en) * 2005-08-15 2007-02-15 Ranganath Tirumala R Semiconductor nanostructures and fabricating the same
KR20110034689A (ko) * 2008-08-29 2011-04-05 가부시끼가이샤 도시바 반도체 장치
JP2013239690A (ja) * 2012-04-16 2013-11-28 Sharp Corp 超格子構造、前記超格子構造を備えた半導体装置および半導体発光装置、ならびに前記超格子構造の製造方法

Also Published As

Publication number Publication date
JP2016148028A (ja) 2016-08-18

Similar Documents

Publication Publication Date Title
WO2016125435A1 (ja) 量子ドットの製造方法および量子ドット
Watson Metal organic vapour phase epitaxy of AlN, GaN, InN and their alloys: A key chemical technology for advanced device applications
JP2016135863A (ja) コアシェル構造を有する量子ドットとその製造方法
Green Semiconductor quantum dots: organometallic and inorganic synthesis
JP2005336052A (ja) 多重波長で発光する硫化カドミウムナノ結晶の製造方法、それにより製造された硫化カドミウムナノ結晶、およびこれを用いた白色発光ダイオード素子
TWI757361B (zh) 量子點之製造方法
Li et al. Dependence of N-polar GaN rod morphology on growth parameters during selective area growth by MOVPE
JP6836133B2 (ja) 量子ドット
JP6764230B2 (ja) 半導体ナノ粒子の製造方法
JP6664969B2 (ja) 量子ドットの製造方法と量子ドット
JP6764231B2 (ja) 半導体ナノ粒子の製造方法、および、半導体ナノ粒子
KR20090093096A (ko) 균일한 크기와 고품질 광발광 특성을 가지는 산화아연양자점 및 그 제조방법
JP2018070423A (ja) ウルツ鉱構造のZnOS混晶粒子の製造方法
Li et al. The growth behaviors and high controllability of GaN nanostructures on stripe-patterned sapphire substrates
US20220154071A1 (en) Iii-v-based quantum dot and method of manufacturing same
JP7072170B2 (ja) 窒化物ナノ粒子及びその製造方法
Krylsky et al. Synthesis, composition, photoluminescence, and stability of properties of colloidal InSb-based quantum dots
Nagaraju et al. Surfactant assisted hydrothermal synthesis of CdSe nanostructural materials
JP6815602B2 (ja) 量子ドット
Rajani et al. Structure, Morphology & Infrared Spectroscopic Characterization of Ga (2x N Fe2 (49-X) O3 Ferrite Synthesized Using Sol Gel Technique
KR20160059546A (ko) 합금-쉘 양자점 제조 방법, 합금-쉘 양자점 및 이를 포함하는 백라이트 유닛
JP7072171B2 (ja) 半導体ナノ粒子および光源装置
Sofer et al. Rapid thermal synthesis of GaN nanocrystals and nanodisks
Liu et al. Controlled synthesis of CdS nanowires using diamines
JP7072169B2 (ja) ナノ粒子集合体とその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200911

R150 Certificate of patent or registration of utility model

Ref document number: 6764231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250