JP6760107B2 - 光書き込み装置及び画像形成装置 - Google Patents

光書き込み装置及び画像形成装置 Download PDF

Info

Publication number
JP6760107B2
JP6760107B2 JP2017012652A JP2017012652A JP6760107B2 JP 6760107 B2 JP6760107 B2 JP 6760107B2 JP 2017012652 A JP2017012652 A JP 2017012652A JP 2017012652 A JP2017012652 A JP 2017012652A JP 6760107 B2 JP6760107 B2 JP 6760107B2
Authority
JP
Japan
Prior art keywords
noise component
luminance signal
oled
noise
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017012652A
Other languages
English (en)
Other versions
JP2018118481A (ja
Inventor
壯 矢野
壯 矢野
義和 渡邊
義和 渡邊
壮太郎 横田
壮太郎 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2017012652A priority Critical patent/JP6760107B2/ja
Priority to US15/879,559 priority patent/US10482357B2/en
Priority to CN201810077158.7A priority patent/CN108363280A/zh
Priority to EP18153777.0A priority patent/EP3355125B1/en
Publication of JP2018118481A publication Critical patent/JP2018118481A/ja
Application granted granted Critical
Publication of JP6760107B2 publication Critical patent/JP6760107B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/12Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers
    • G06K15/1238Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers simultaneously exposing more than one point
    • G06K15/1242Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers simultaneously exposing more than one point on one main scanning line
    • G06K15/1247Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers simultaneously exposing more than one point on one main scanning line using an array of light sources, e.g. a linear array
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/04036Details of illuminating systems, e.g. lamps, reflectors
    • G03G15/04045Details of illuminating systems, e.g. lamps, reflectors for exposing image information provided otherwise than by directly projecting the original image onto the photoconductive recording material, e.g. digital copiers
    • G03G15/04054Details of illuminating systems, e.g. lamps, reflectors for exposing image information provided otherwise than by directly projecting the original image onto the photoconductive recording material, e.g. digital copiers by LED arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/45Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using light-emitting diode [LED] or laser arrays
    • B41J2/451Special optical means therefor, e.g. lenses, mirrors, focusing means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/04036Details of illuminating systems, e.g. lamps, reflectors
    • G03G15/04045Details of illuminating systems, e.g. lamps, reflectors for exposing image information provided otherwise than by directly projecting the original image onto the photoconductive recording material, e.g. digital copiers
    • G03G15/04063Details of illuminating systems, e.g. lamps, reflectors for exposing image information provided otherwise than by directly projecting the original image onto the photoconductive recording material, e.g. digital copiers by EL-bars
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/043Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material with means for controlling illumination or exposure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/02815Means for illuminating the original, not specific to a particular type of pick-up head

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Facsimile Heads (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は、光書き込み装置及び画像形成装置に関し、特に、高周波ノイズに起因する濃度むらを抑制する技術に関する。
近年、画像形成装置に対する小型化の要求が一層強まっている。このため、光書き込み装置(PH: Print Head)においては、従来のレーザーダイオード(LD: Laser Diode)を発光源とした光走査型から微小ドットの発光素子をライン状に配置したライン光学型に切替わりつつある。ライン光学型の光書き込み装置としては、発光部に発光ダイオード(LED: Light Emitting Diode)を用いた光書き込み装置(LPH: LED PH)が開発されている。
LPHでは、発光部(LEDアレイ)と各発光素子を制御するための駆動IC(Integrated Circuit)等を含む駆動回路部を、製造上の理由から、LEDを実装した光源基板と別基板にせざるを得ない。このため、部品コスト並び製造コストが高くなる。
そこで、低コスト化が可能なライン光学型の光書き込み装置として、発光部に有機LED(OLED: Organic LED)を用いたOLED−PHが提案されている。OLED−PHでは、発光部と薄膜トランジスタ(TFT: Thin Film Transistor)を同一基板上に形成することができるので、駆動回路部を発光部と同一基板上に形成して低コスト化を図ることができる。
しかしながら、図26に示すように、光書き込み装置2600の露光対象である感光体ドラム2601の直近には、感光体ドラム2601の外周面に沿って順に帯電装置2602、光書き込み装置2600、現像装置2603、一次転写ローラー2604及びクリーニング装置2605が配置されている。これらの中には高周波ノイズを発生させる帯電装置2602や現像装置2603といったノイズ源があり、また、ライン光学型の光書き込み装置2600もまた感光体ドラムの直近に設置されるため、ノイズの影響を受け易い。
LPHは、多層化の容易なガラスエポキシ基板を使用しているため、LEDの発光量を指示する輝度信号の書き込みを行うための信号線を安定した電源層で挟むことによって、信号線にノイズが乗るのを防止し、画像品質を安定させることができる。
一方、OLED−PHは、多層化が難しいガラス基板を使用しており、高々2層までしか多層化することができない。このため、OLEDの発光量を指示する輝度信号を入力するための信号線をノイズから保護する構造をとることができない(図27)。帯電装置等が発生させる高周波ノイズは周期的なノイズであるため、信号線にノイズ(図28(a)))が乗ると副走査方向に周期的な濃度むらが発生する(図28(b))。このように、耐ノイズ性ではOLED−PHはLPHに劣っている。
OLED−PHのこのような問題に対して、例えば、発光素子ごとにADC(Analogue to Digital Converter)を設置してノイズを検出し、検出結果に応じて輝度信号を補正する対策1が考えられる。また、アンテナを設置してノイズを検出し、輝度信号を補正する対策2も考えられる。輝度信号を適切に補正することができれば、ノイズに起因する濃度むらを解消して、高い画像品質を得ることができる。
特開2013−195285号公報 特開2015−135408号公報 特開2016−12052号公報
しかしながら、OLED−PHでは、例えば、15,000個など多数のOLEDを使用するため、対策1のようにOLEDと同数のADCを搭載するとOLED−PHのパネル幅を副走査方向に拡大せざるを得ず、高コストになる。
また、OLED−PHでは、輝度信号をDAC(Digital to Analogue Converter)からサンプルホールド回路に入力して、サンプルホール回路に保持されている輝度信号に応じた駆動電流をOLEDに供給することによって、OLEDの発光量を調整する。この輝度信号をDACからサンプルホールド回路に書き込み時間に余裕がないのに、ADCと配線とをサンプルホールド回路に接続すると配線容量が増大するので、輝度信号の書き込み時間内に書き込みが完了しなくなってしまう、という問題がある。
また、対策2では、DACからサンプルホールド回路へ延設されたDAC配線やサンプルホールド回路そのものから直接ノイズを検出するわけではないので、ノイズの検出精度が低い。このため、輝度信号を精度よく補正することができないので、画像品質を改善する上で限界がある。
本発明は、上述のような問題に鑑みて為されたものであって、サンプルホールド回路への書き込み電圧の精度と、高周波ノイズの検出精度とを低コストで確保することができる光書き込み装置及び画像形成装置を提供することを目的とする。
上記目的を達成するため、本発明に係る光書き込み装置は、ライン状に配列された複数の発光素子と、前記複数の発光素子に1対1に対応して設けられ、対応する発光素子を発光させる複数の駆動手段と、画像データに応じて前記発光素子の発光量を前記駆動手段に指示する輝度信号を出力する設定手段と、を有し、前記発光素子の出射光によって感光体表面を1ラインずつ露光する光書き込み装置であって、前記設定手段が輝度信号を出力している状態で、前記設定手段から前記駆動手段に至る前記輝度信号の伝達回路上で、前記輝度信号に重畳するノイズ成分を検出する検出手段と、前記検出手段がノイズ成分を検出したラインに後続するラインについて、前記設定手段が出力する輝度信号を、前記検出手段が検出したノイズ成分に応じて補正する補正手段と、を備えることを特徴とする。
このようにすれば、輝度信号に重畳するノイズ成分を検出し、検出されたノイズ成分に応じて、後続するラインの輝度信号を補正するので、高周波ノイズに起因する濃度むらを抑制することができる。
この場合において、前記駆動手段は、薄膜トランジスターであって、ソース端子に定電圧を印加され、ゲート−ソース電圧Vgsに応じたドレイン電流を供給して前記発光素子を発光させ、前記検出手段は、前記駆動手段のゲート電圧に含まれるノイズ成分を検出するのが望ましい。
また、前記設定手段から前記駆動手段に至る前記輝度信号の伝達回路上に設けられ、前記輝度信号の伝達先となる前記駆動手段を切り替える切り替え手段と、を備え、前記検出手段は、前記設定手段から前記切り替え手段に至る前記輝度信号の伝達回路上で前記ノイズ成分を検出してもよい。
また、前記切り替え手段配下の発光素子の点灯状態が、当該発光素子が露光する画像領域において、所定画素数以上連続して同一であるか否かを前記画像データから判定する判定手段と、前記判定手段による判定が否定的である場合に、前記検出手段による検出を禁止する禁止手段と、を備えてもよい。
また、前記検出手段は、前記設定手段が出力する輝度信号と、前記伝達回路上で検出された信号との差分を求めることによって、前記ノイズ成分を検出してもよい。
また、前記補正手段は、前記検出手段が前記ノイズ成分を検出したときの当該ノイズ成分の位相と、次に輝度信号を出力するときに当該輝度信号に重畳するノイズ成分の位相との差に応じて前記輝度信号を補正してもよい。
また、前記伝達回路は複数設けられており、前記検出手段は、前記複数の伝達回路のうちの一部の伝達回路についてのみ前記ノイズ成分を検出し、前記補正手段は、前記検出手段が検出したノイズ成分を用いて、前記検出手段が前記ノイズ成分を検出しない伝達回路によって伝達される輝度信号を補正してもよい。
また、前記伝達回路から前記検出手段に至る配線は、前記伝達回路を構成する配線よりも配線インピーダンスが低いのが望ましい。
本発明に係る画像形成装置は、本発明に係る光書き込み装置を備えることを特徴とする。
本発明の実施の形態に係る画像形成装置の主要な構成を示す図である。 光書き込み装置100の主要な構成を示す図である。 OLEDパネル200の概略平面図、B−B´断面図及びC−C´断面図である。 TFT基板300の回路構成の概略を示すブロック図である。 TFT基板300の回路構成の詳細を示すブロック図である。 TFT基板300の動作を説明するタイミングチャートである。 ASIC306の主要な機能構成を示すブロック図である。 n番目のDAC配下の画像領域に着目して画像データを例示する図である。 TFTのVsd−Id特性を説明する図である。 経年劣化等に対する輝度信号の補正動作を説明するフローチャートである。 Id補正係数テーブル723のデータ構造を説明する表である。 Id初期データテーブル722のデータ構造を説明する表である。 Vsd検出データテーブル724のデータ構造を説明する表である。 Vsd−Id特性テーブル721のデータ構造を説明するグラフである。 (a)は、算出した駆動電流Idと検出したソース−ドレイン間電圧Vsdとの組み合わせに対応するゲート−ソース間電圧Vgsとして電圧Vbが見つかった場合を例示するグラフであり、(b)は、Vsd−Id特性テーブル721に対応するゲート−ソース間電圧Vgsがない場合を例示するグラフである。 高周波ノイズに対する輝度信号の補正動作を説明するフローチャートである。 DC成分及びゲイン成分テーブル725のデータ構造を説明する表である。 高周波ノイズデータテーブル726のデータ構造を説明する表である。 ノイズ成分Axを例示するグラフである。 ノイズ成分Axを検出するための回路構成を説明する図である。 (a)は期間#3において位相誤差Bの範囲が位相90度を含む位相Pa−から位相Pa+までの範囲に亘る場合を例示するグラフであり、(b)は位相誤差Bの範囲が位相270度を含む位相Pa−から位相Pa+までの範囲に亘る場合を例示するグラフである。 本発明の変形例に係るTFT基板300の回路構成の詳細を示すブロック図である。 複数のDAC配下の画像領域に着目して画像データを例示する図である。 本発明の変形例に係る高周波ノイズデータテーブル726のデータ構造を説明する表である。 本発明の変形例に係るTFT基板300の回路構成の詳細を示すブロック図である。 従来技術に係る作像部の主要な構成を例示する図である。 LPHとOLED−PHとの特徴を整理した表である。 (a)は印刷画像に影響を与える高周波ノイズの強度を例示するグラフであり、(b)は高周波ノイズによって生じた濃度むらを例示する図である。
以下、本発明に係る光書き込み装置及び画像形成装置の実施の形態について、図面を参照しながら説明する。
[1]画像形成装置
まず、本実施の形態に係る画像形成装置の主要な構成について説明する。
図1に示されるように、画像形成装置1は、所謂タンデム型のカラープリンターである。画像形成装置1が備える作像部110Y、110M、110C及び110Kは、制御部101の制御の下、Y(イエロー)、M(マゼンタ)、C(シアン)、K(ブラック)各色のトナー像を形成する。
例えば、作像部110Yにおいては、感光体ドラム111Yの外周面に沿って順に帯電装置112Y、光書き込み装置100Y、現像装置113Y、1時転写ローラー114Y及びクリーニング装置115Yが配置されている。作像部110Yは感光体ドラム111Yを回転駆動しながら、帯電装置112Yに感光体ドラム111Yの外周面を一様に帯電させる。
光書き込み装置100Yは、感光体ドラム111Yの外周面を露光して、静電潜像を形成する。現像装置113Yは、感光体ドラム111Yの外周面にトナーを供給して、静電潜像を現像(顕像化)してY色のトナー像を形成する。1次転写ローラー114Yは、感光体ドラム111Yの外周面上から中間転写ベルト102の外周面上へトナー像を静電転写(1次転写)する。1次転写後に感光体ドラム111Yの外周面上に残留するトナーはクリーニング装置115Yによって廃棄され、残留電荷は除電される。
中間転写ベルト102は、2次転写ローラー対103と従動ローラー104に張架されており、トナー像を担持した状態で矢印A方向に回転走行する。
同様にして、作像部110M、110C及び110Kが形成したMCK各色のトナー像が、Y色のトナー像に重なるようにタイミングを合わせて中間転写ベルト102の外周面上に1次転写され、カラートナー像が形成される。中間転写ベルト102はカラートナー像を2次転写ローラー対103まで搬送する。
給紙カセット120には記録シートSの束が収容されており、ピックアップローラー121は、記録シートSを1枚ずつ送り出す。記録シートSは、タイミングローラー122に達すると搬送が一旦停止された後、中間転写ベルト102によるカラートナー像の搬送にタイミングを合せて、2次転写ローラー対103まで搬送される。
2次転写ローラー対103は、中間転写ベルト102上のトナー像を記録シートS上に静電転写(2次転写)する。トナー像を転写された記録シートSは、定着装置105でトナー像を熱定着された後、排紙ローラー106によって排紙トレイ107上に排出される。
なお、制御部101には不図示の操作パネルが接続されており、画像形成装置1のユーザーに対する情報提示を行ったり、ユーザーから指示入力を受け付けたりする。
以下においては、YMCK各色の作像部110Y、110M、110C及び110Kに共通する構成について説明するので、YMCKの文字を省略する。
[2]光書き込み装置100
次に、光書き込み装置100について説明する。
(2−1)光書き込み装置100の構成
図2に示されるように、光書き込み装置100は、OLEDパネル200とレンズアレイ202をホルダー203にて保持した構成を備えており、主走査方向(図2における紙面垂直方向)に長尺になっている。OLEDパネル200においては、多数のOLED201が1列又は千鳥配置された複数列で主走査方向に沿ってライン状に配設されている。
OLED201が出射した光ビームLは、レンズアレイ202によって感光体ドラム111Yの外周面上に集光される。レンズアレイ202は、多数のレンズ(本実施の形態においてはロッドレンズ)を集積した光学素子である。レンズアレイ202としては、SLA(Selfoc Lens Array。Selfocは日本板硝子株式会社の登録商標。)を用いてもよいし、MLA(Micro Lens Array)を用いてもよい。
レンズアレイ202を構成する個々のレンズと個々のOLED201と位置関係はさまざまであり、OLED201毎の結像効率が一定しない。このため、すべてのOLED201を同一の発光量で発光させると、感光体ドラム111Yの外周面上でのOLED201毎の露光量にムラが生じる。本実施の形態においては、初期状態(工場出荷時)において露光量にムラを発生させない光量(以下、「設定光量」という)がOLED201毎に設定される。
光書き込み装置100は、画像形成装置1内の他の装置との接続するためのケーブル等、図示していないが必要な構成要素を備えている。
(2−2)OLEDパネル200の構成
図3は、OLEDパネル200の概略平面図であり、併せてB−B´線における断面図とC−C´線における断面図が示されている。また、概略平面図には、OLEDパネル200が後述する封止板304を取り外した状態で示されている。
図3に示されるように、OLEDパネル200は、TFT(TFT: Thin Film Transistor)基板300、駆動IC(Integrated Circuit)302等を備えている。TFT基板300は、ガラス基板301上に形成されており、15,000個のOLED201が搭載されている。これらのOLED201は、感光体ドラム111Yの外周面上で集光点が21.2μmピッチ(1200dpi)になるように配列されている。
ガラス基板301のTFT基板300が形成されている主面には、スペーサー枠体305を挟んで封止板304が取着されている。これによって、TFT基板300上に実装されたOLED201等が、外気に触れないように乾燥窒素等を封入した状態で封止される。なお、吸湿剤を併せて封入してもよい。また、封止板304は、封止ガラスであってもよいし、ガラス以外の材料からなっていてもよい。
ガラス基板301の封止領域外には駆動IC302が実装されている。制御部101はASIC(Application Specific Integrated Circuit)306を内蔵しており、ASIC306は並列多芯電線(FFC: Flexible Flat Cable)310を介して駆動IC302に画像データを入力する。駆動IC302は画像データから輝度信号を生成する。OLED201は、輝度信号に応じた駆動電流の供給を受けて、輝度信号に応じた発光量で発光する。輝度信号は、電流信号であってもよいし電圧信号であってもよい。
駆動IC302には、温度センサー303が内蔵されている。温度センサー303は、OLED201の環境温度を検出する。
(2−3)TFT基板300の構成
次に、TFT基板300の構成について説明する。
図4は、TFT基板300の回路構成の概略を示すブロック図である。
図4に示されるように、TFT基板300においては、15,000個のOLED201が100個ずつ、150個の発光ブロック402に組分けされている。150個の発光ブロック402は主走査方向に沿って列設されている。個々の発光ブロック402に1対1に対応して、駆動IC302には150個のDAC400が内蔵されている。制御部101は、駆動IC302に内蔵されている温度センサー303の検出温度を参照することができる。
制御部101が駆動IC302に画像データを入力すると、駆動IC302は画像データを1走査期間毎に100画素分ずつ各DAC400に入力する。DAC400は、100画素分の画像データを順次輝度信号に変換して選択回路401に入力する。選択回路401は、輝度信号に応じて発光ブロック402の各OLED201を発光させる。
TFT基板300の回路構成について更に詳細に説明する。なお、以下においては、駆動用TFT522がpチャンネルである場合を例にとって説明しているが、言うまでもなくnチャンネルの駆動用TFT522を用いてもよい。
(2−3−1)OLED201を発光させるための回路構成
TFT基板300は、画像データに応じた駆動電流をOLED201に供給することによって、OLED201を所望の光量で発光させる。
(2−3−1−1)発光ブロック402
図5に示すように、TFT基板300には、15,000個の発光画素回路520が実装されており、100個の発光画素回路520を1組として150個の発光ブロック402に区分されている。各発光ブロック402に1対1に対応して選択回路401が設けられている。選択回路401はOLED選択用シフトレジスター511と100個のOLED選択用TFT512とを備えている。
OLED選択用TFT512は発光画素回路520に1対1に対応している。OLED選択用シフトレジスター511が、主走査期間毎にOLED選択用TFT512を順次選択すると、選択されたOLED選択用TFT512に対応する発光画素回路520に駆動IC302のDAC400からの画素信号を入力される。発光ブロック402と1対1対応して150個のDAC400が、駆動IC302に内蔵されている。このように、100個の発光画素回路520が1つのDAC400を時間共有している。
(2−3−1−2)発光画素回路520
発光画素回路520は、OLED201を発光させるための回路である。
15,000個の発光画素回路520は、いずれも同様の構成を備えており、OLED201とOLED駆動用TFT522が直列接続されている。OLED駆動用TFT522のソース端子は、電源配線532を介して定電圧源Vpwrに接続されるととともに、キャパシター521の一方の端子にも接続されている。OLED駆動用TFT522のゲート端子はOLED選択用TFT512のドレイン端子並びにキャパシター521の他方の端子に接続されている。
OLED駆動用TFT522のドレイン端子は、OLED201のアノード端子並びにVsd検出用TFT523のソース端子に接続されている。このように接続すれば、OLED駆動用TFT522が、キャパシター521の保持電圧に応じたドレイン電流を駆動電流としてOLED201に供給する。定電圧源Vpwrは、OLED201に供給される駆動電流の供給源となっている。
駆動用TFT522は、キャパシター521の保持電圧、言い換えると駆動用TFT522のゲート−ソース電圧Vgsに応じたドレイン電流を駆動電流としてOLED201に供給する。言うまでもなく、ゲート−ソース電圧Vgsが高いほど、駆動用TFT522は多くの駆動電流を供給し、OLED201の発光量が増大する。
例えば、キャパシター521にHiに相当する輝度信号が書き込まれると、駆動用TFT522がオンして、駆動電流に応じた光量でOLED201が発光する。また、キャパシター521にLowに相当する輝度信号が書き込まれると、駆動用TFT522はオフして、OLED201は発光しない。このように、DAC400が出力する輝度信号を変更することによって、OLED201の発光量を制御することができる。
OLED選択用TFT512のソース端子は、当該OLED選択用TFT512が属する発光ブロック402に対応するDAC400に接続されている。OLED選択用TFT512のゲート端子は、OLED選択用シフトレジスター511に接続されている。OLED選択用TFT512のドレイン端子はキャパシター521の一方の端子に接続されている。
このように接続すれば、OLED選択用シフトレジスター511がOLED選択用TFT512をオンすると、DAC400の出力信号に応じた電圧がキャパシター521に印加される。キャパシター521は、印加された電圧をホールド期間中保持し続ける。
OLED201のアノード端子は、OLED駆動用TFT522のドレイン端子に接続されている。OLED201のカソード端子は、電源配線533を介して定電圧源Voledに接続されている。OLED201は電流駆動型の発光素子であり、OLED駆動用TFT522から供給される駆動電流の電流量に応じた光量で発光し又は消灯する。上述のように、駆動電流量はキャパシター521の保持電圧に対応し、キャパシター521の保持電圧はDAC400の出力信号に対応するので、OLED201はDAC400の出力信号に対応する光量で発光することになる。
Vsd検出用TFT523のソース端子は、OLED駆動用TFT522のドレイン端子並びにOLED201のアノード端子に接続されている。Vsd検出用TFT523のゲート端子は、Vsd検出用シフトレジスター550に接続されている。Vsd検出用TFT523のドレイン端子は、駆動IC302のVsd検出用ADC(Analogue to Digital Converter)501に接続されている。Vsd検出用シフトレジスター550がVsd検出用TFT523をオンすると、当該発光ブロック402のOLED駆動用TFT522のドレイン電圧VdがVsd検出用ADC501に入力される。
発光画素回路520は、OLED選択用シフトレジスター511がOLED選択用TFT512を1つずつ順番にオンすることによって、DAC400から画素信号を受け付ける。1主走査期間内において、DAC400から画素信号を受け付ける期間をサンプル期間といい、受け付けた画像信号をキャパシター521にて保持する期間をホールド期間という。
OLED選択用シフトレジスター511の選択動作によって、1つの発光ブロック402に属する100個の発光画素回路520は1主走査期間内において互いにサンプル期間がずれて、ローリング駆動が実行される。
(2−3−1−3)リセット回路540
リセット回路540は、150個のDAC400に1対1に対応する150個のリセット用TFT541を備えている。リセット用TFT541のソース端子はリセット電源Vrstに接続されている。リセット用TFT541のゲート端子にはリセット信号RSTが入力されている。また、リセット用TFT541のドレイン端子は、対応するDAC400からOLED選択用TFT512のソース端子に至る配線に接続されている。
リセット用TFT541がリセット信号RSTによってオンされると、対応するDAC400からOLED選択用TFT512のソース端子に至る配線がリセット電圧Vrstに初期化される。リセット電圧Vrstは定電圧源Vpwrと同電位でもよいし、定電圧源Voledと同電位でもよい。また、これらの中間電位Vrefであってもよい。リセット回路540は駆動IC302に内蔵されていてもよい。
また、リセット回路540を設ける代わりに、DAC400の出力電圧の極性を切り替えることによってリセットを行ってもよい。
以上のように、光書き込み装置100は、DAC400から発光画素回路520に画素信号を入力することによって、OLED駆動用TFT522の制御電圧であるゲート−ソース間電圧Vgsを制御し、延いてはOLED201の光量を制御する。
(2−3−2)ソース−ドレイン間電圧Vsdの検出するための回路構成
次に、OLED駆動用TFT522の出力電圧であるソース−ドレイン間電圧Vsdを検出するための回路構成について説明する。
Vsd検出用シフトレジスター550は、スタート信号STARTとしてパルス信号が入力されると、クロック信号CLK並びに画像データと同期してシフトレジスト動作を行い、OLED201を発光させている発光画素回路520毎のVsd検出用TFT523を1つずつ順次オンする。これによって、Vsd検出用TFT523をオンされた発光画素回路520におけるOLED201の発光時のOLED駆動用TFT522のドレイン電圧VdがVsd検出用ADC501によって入力され、デジタル値に変換される。
なお、OLED201の経時劣化による発光効率の低下速度は、OLED201を10時間連続して発光させても光量補正が不要である程度であり、ベタ画像を形成した場合に光量変化による濃度むらが視認できない程度である。従って、Vsd検出用シフトレジスター550によって15,000個のOLED201すべてについて各ソース−ドレイン間電圧Vsdを検出している間におけるOLED201の発光効率の低下は無視できる程度であるので、本実施の形態においてはVsd検出用ADC501を1つだけドライバーICに設けている。
しかしながら、累積発光時間の増大に伴うOLED201の発光効率の低下が無視できない場合や、高い精度でソース−ドレイン間電圧Vsdを検出する必要がある場合には、Vsd検出用ADC501を複数設けて、各Vsd検出用ADC501の配下のOLED201数を減少させてもよい。また、OLED駆動用TFT522からVsd検出用ADC501までの配線長や配線インピーダンスを考慮してVsd検出用ADC501の個数を決定してもよい。
ラッチ回路502は、クロック信号CLK並びに画像データと同期して、Vsd検出用ADC501が出力したドレイン電圧Vdのデジタル値をソース−ドレイン間電圧Vsdとして保持する。このようにすれば、OLED201が発光しているタイミングでソース−ドレイン間電圧Vsdを確実にラッチすることができる。なお、後述のように、ラッチ回路502はノイズ検出用ADC500の出力もラッチする。
主走査期間中のサンプル期間においてはDAC400からキャパシター521へ画像信号を書き込む途中であり、OLED駆動用TFT522のソース−ドレイン間電圧Vsdが安定しない。このため、ソース−ドレイン間電圧Vsdを検出するための期間として不適切であり、ソース−ドレイン間電圧Vsdはホールド期間に検出するのが望ましい。
また、各発光ブロック402内では、発光画素回路520毎にホールド期間の開始時点が異なっているので、ホールド期間にソース−ドレイン間電圧Vsdを検出することができるように、ラッチ回路502にサンプル期間中、ラッチせずに待つための遅延回路等を設けてもよい。このようにすれば、確実にホールド期間中にソース−ドレイン間電圧Vsdをラッチすることができる。ラッチしたゲート−ソース間電圧Vgsは制御部101のASIC310に記憶される。
また別法として、Vsd検出用ADC501に対し、発光中のOLEDに駆動電流を供給しているOLED駆動用TFT522のドレイン電圧Vdに加えて、電源電圧Vpwrをデジタル化した値をVsd検出用ADC501に入力することによって、Vsd検出用ADC501にソース−ドレイン間電圧Vsdを算出させてもよい。
また、検出用シフトレジスター420は、クロック信号CLKと画像データに同期してシフトレジスト動作を行っており、画像データを参照するのはソース−ドレイン間電圧Vsdの検出対象となるOLED駆動用TFT522がOLED201を発光させるためにOLED201に駆動電流を供給しているか否かを判断して、駆動電流の供給中にソース−ドレイン間電圧Vsdを検出するためである。
OLED201を発光させるか否かは画像データに依存するため、主走査を何回繰り返しても当該OLED201が発光しない場合には、当該OLED201に係るOLED駆動用TFT522のソース−ドレイン間電圧Vsdを検出できないのみならず、他のOLED駆動用TFT522のソース−ドレイン間電圧Vsdも検出することができなくなる。
このため、1つの画素について画像データを参照してOLED201を発光させないと連続して判定された回数が所定回数に達したら、その画素に係るソース−ドレイン間電圧Vsdの検出をスキップして、次の画素に係るソース−ドレイン間電圧Vsdの検出を行ってもよい。このようにすれば、長期間に亘ってソース−ドレイン間電圧Vsdが検出できなくなるという問題を防止することができる。
(2−3−3)ノイズ成分を検出するための回路構成
次に、高周波ノイズによって輝度信号に重畳したノイズ成分を検出するための回路構成について説明する。
本実施の形態においては、150個あるDAC400のうちn番目のDAC400に対応して書き込み配線530に重畳するノイズ成分を検出する。このため、n番目のDAC400からは書き込み配線530が引き出されている。n番目の選択回路401に属する100個の選択用TFT512は、それぞれ分岐配線によって、ソース端子が書き込み配線530に接続されている。
n番目のDAC400に最も近い分岐配線と書き込み配線530との接続点530pには、引き出し配線531も接続されている。引き出し配線531の先にはノイズ検出用ADC500が接続されている。ノイズ検出用ADC500は、DAC400が実際にサンプルホールド回路(キャパシター521)に書き込んでいる輝度信号を検出してデジタル値に変換する。
ラッチ回路502は、クロック信号CLK並びに画像データと同期して、連続画像領域におけるノイズ検出用ADC500の出力電圧を保持する。
ノイズの検出感度を高めるために、引き出し配線531は書き込み配線530よりも配線インピーダンスが低くなるように設計されている。例えば、配線パターンの幅を広くすれば配線インピーダンスを低くすることができる。引き出し配線531の配線インピーダンスを低くすれば、高周波ノイズによって誘導電流が発生しても、誘導電流に起因する電圧降下(ノイズ電圧)を小さくすることができる。また、引き出し配線531の引き出し点が接続点530pに限定されないのは言うまでもなく、これに代えて、接続点530p以外の個所で引き出し配線531を書き込み配線530に接続してもよい。
なお、複数のDAC400と1対1に対応して、複数のノイズ検出用ADC500を設けてもよい。
[3]OLEDパネル200の動作
OLEDパネル200は、発光ブロック402毎に100個のOLED201がDAC400を共有し、選択回路401によって発光画素回路520を順次切り替えながらDACから輝度信号をキャパシター521に書き込むアクティブ駆動方式を採用している。キャパシター521に書き込まれた輝度信号は、主走査期間(1H期間)経過後の次の書き込みが実施されるまで保持される。OLED201は、輝度信号に応じた発光量で約1H期間発光し続ける。
詳述すると、図6に示されるように、シフトレジスター511が、まず1番目の選択用TFT512をオンすると、当該オン期間をチャージ期間として、DAC400からの輝度信号が1番目のキャパシター521に入力される。
次に、シフトレジスター511が1番目の選択用TFT512をオフすると、1番目のキャパシター521が保持している電圧に応じた駆動電流が1番目のOLED201に供給され、OLED201が点灯する(ホールド期間)。
1番目の選択用TFT512のオフと共に、2番目の選択用TFT512がオンされ、2番目のキャパシター521に輝度信号が入力される。このような動作を100番目の選択用TFT512まで実行すると、また、1番目の選択用TFT512に戻って上記の動作を繰り返す。
このようなアクティブ駆動方式を採用すれば、OLEDパネル200の回路規模を削減することができる。
[4]ASIC306
次に、画像形成装置1の制御部101が内蔵するASIC306について説明する。図7に示すように、ASIC306はドットカウント部700、画像検出部710及び駆動電流補正部720を備えている。
(3−1)ドットカウント部700
ドットカウント部700は、15,000個のOLED201に1対1に対応するドットカウンター701を備えている。ドットカウンター701のカウント値は、対応するOLED201が1回発光するごとに1ずつ増加する。
(3−2)画像検出部710
画像検出部710は、ノイズ検出用ADC500に対応するDAC400の配下の発光ブロック402が担う画像領域において、点灯又は消灯の何れか一方の画像データが主走査方向に所定画素数以上連続する領域(以下、単に「連続領域」という。)を検出する。この所定画素数は、DAC400が当該画素数分の輝度信号を書き込むのに必要となる時間、言い換えると、当該画素数をサンプル期間に乗算した時間が、ノイズ検出用ADC500が輝度信号をAD(Analogue to Digital)変換するために要する時間よりも長くなっているような画素数である。
ノイズ検出用ADC500がAD変換を完了する前に、DAC400が画像データのオンオフを切り替えると、ノイズ検出用ADC500に入力される輝度信号(バイアス成分)が変動するので、AD変換値からバイアス成分を除いてノイズ成分を抽出することができなくなる。これに対して、画像検出部710が検出した領域でノイズ検出用ADC500が入力電圧をAD変換すれば、バイアス成分の変動を回避することができる。
図8は画像データを例示する図であって、点灯画素が黒色で、消灯画素が白色で表されている。n番目のDAC400に対応してノイズ検出用ADC500が設けられており、且つ上述の所定画素数が100画素(1発光ブロック402分)である場合、画像検出部710は、画像領域801は点灯画素が連続している連続領域と判定し、画像領域802は消灯画素が連続している連続領域と判定する。また、画像領域803については点灯画素も消灯画素も連続していないので非連続領域と判定する。
また、ノイズ検出用ADC500がAD変換を完了するのに要する時間が10画素分である場合には、画像検出部710は、画像領域801では1画素目から10画素目までを参照するだけで連続領域と判定することができる。また、画像領域803についても領域内の何処かに10画素連続して点灯又は消灯している領域があれば、画像検出部710は当該領域を連続領域として検出する。
ノイズ検出用ADC500は、画像検出部710が検出した連続領域を露光するOLED201の輝度信号をDAC400が出力する期間中に輝度信号をAD変換する。
(3−3)駆動電流補正部720
OLED201は、OLED201そのものが経時劣化したり、高周波ノイズの影響によって輝度信号が変動したりすると発光量が変動する。駆動電流補正部720は、OLED201に供給する駆動電流量を補正することによって発光量の変動を抑制する。このため、駆動電流補正部720は、駆動用TFT512毎のVsd−Id特性テーブル721、OLED201毎の設定光量に対応した初期の駆動電流量を記憶するId初期データテーブル722、OLED201の環境温度、累積発光時間及び設定光量をパラメータとしたId補正係数テーブル723及びVsd検出データテーブル724を記憶している。
[4]経時劣化などに起因する光量変動の補正
次に、OLED201の経時劣化に起因する発光量の変動を抑制するために、OLED201の駆動電流量Idを補正する処理について説明する。
OLED201は、累積発光時間が長いほど劣化し、高い輝度で発光させるほど(発光量が多いほど)速く劣化する。また、OLED201は環境温度が高いほど速く劣化する。このため、累積発光時間、設定光量及び環境温度に応じて駆動電流Idを調整すれば、OLED201の発光量の変動を調整することができる。
しかしながら、OLED201に駆動電流Idを供給すると、OLED201のアノード端子とカソード端子との間で電圧降下(順方向電圧Vel)が発生する。順方向電圧Velの大きさは供給される駆動電流Idに応じて変化する。一方、電源電圧Vpwr、Voledは変化しないので、駆動用TFT512のドレイン端子にOLED201のアノード端子を接続した直列回路の両端電圧は一定である。このため、駆動電流Idの変動によってOLED201の順方向電圧Velが変動すると、駆動用TFT512のソース−ドレイン間電圧Vsdが変動する。
TFTは、図9に例示するように、飽和領域においても、ソースードレイン間電圧Vsdに応じてドレイン電流Idが変化するVsd−Id特性を有している。このため、OLED201に供給する駆動電流Idを調整することによって順方向電圧Velが変動し、駆動用TFT512のソースードレイン間電圧Vsdが変動すると、ドレイン電流(駆動電流)Idが変動するので、所望の発光量を得ることができなくなる。
このような問題に対して、本実施の形態においては、駆動用TFT512毎にVsd−Id特性テーブル721を参照して、ゲート−ソース電圧Vgsを決定する。
具体的には、図10に示すように、まず、温度センサー303にてOLED201の環境温度を検出する(S1001)。次に、15,000個すべてのOLED201についてステップS1002からS1009までのループ処理を実行する。
このループ処理においては、個々のOLED201毎に、まず当該OLED201に対応するドットカウンター701を参照して、当該OLED201の累積発光時間を取得し(S1003)、更に、Id補正係数テーブル723を参照して、環境温度、累積発光時間及び設定光量に対応するId補正係数を取得する(S1004)。
図11に示すように、Id補正係数テーブル723は摂氏0度から摂氏80度までの範囲内の環境温度、累積発光時間及びLaからLdまでの設定光量の組み合わせ毎にId補正係数を記憶するテーブルである。環境温度は温度センサー303にて取得され、累積発光時間はドットカウンター701から取得される。
OLED201の設定光量は、当該OLED201とロッドレンズアレイ230との位置関係や、画像形成速度に応じて設定される。例えば、画像形成に供される記録シートSの紙種が普通紙であるか厚紙であるかによって、当該記録シートSにトナー像の熱定着に要する時間が異なるため、画像形成速度が切り替えられる。画像形成速度が高速である場合には露光時間が短いためOLED201の設定光量を多くし、画像形成速度が低速である場合には設定光量を少なくするといった設定がなされる。
次に、Id初期データテーブル722を参照して、当該OLED201の初期の駆動電流量Id(以下、「初期Id」という。)を取得する(S1005)。図12に示すように、Id初期データテーブル722は15,000個のOLED201のそれぞれについてLaからLdまでの設定光量と初期Idとを対応付けるテーブルである。初期Idを用いて、次式(1)のように駆動電流量Idを算出する(S1006)。
(駆動電流量Id)=(Id補正係数)×(初期Id) …(1)
このようにすれば、設定光量でOLED201を発光させるための駆動電流Idを得ることができる。
次に、Vsd検出データテーブル724を参照して、ソース−ドレイン間電圧Vsdの検出データを取得する(S1007)。図13に示すように、Vsd検出データテーブル724は、ラッチ回路502がラッチしたソース−ドレイン間電圧Vsdのデジタル値をOLED駆動用TFT522毎に保存するテーブルである。Vsd検出データテーブル724は、ラッチ回路502がソース−ドレイン間電圧Vsdのデジタル値をラッチするたびに最新のデータに書き換えられる。
更に、当該OLED201に駆動電流Idを供給するOLED駆動用TFT522のVsd−Id特性テーブル721を参照して、式(1)を用いて算出した駆動電流Idと最新のソース−ドレイン間電圧Vsdの検出データとの組み合わせに対応するゲート−ソース間電圧Vgsを決定する(S1008)。
図14に示すように、Vsd−Id特性テーブル721は、OLED駆動用TFT522毎のVsd−Id特性として、ゲート−ソース間電圧Vgs毎にソース−ドレイン間電圧Vsdとドレイン電流Idとの関係を記憶する。
当該OLED駆動用TFT522のVsd−Id特性テーブル721を参照して、図15(a)に例示するように、算出した駆動電流Idと検出したソース−ドレイン間電圧Vsdとの組み合わせに対応するゲート−ソース間電圧Vgsとして電圧Vbが見つかった場合には、当該電圧Vbをゲート−ソース間電圧Vgsとして採用する。
また、Vsd−Id特性テーブル721に対応するゲート−ソース間電圧Vgsがない場合には、直近のゲート−ソース間電圧Vgsを用いて線形補間してもよい。図15(b)の例では、直近のゲート−ソース間電圧VgsがVa、Vbである場合に、ソース−ゲート間電圧Va、Vbとソース−ドレイン間電圧Vsdとの組み合わせにそれぞれ対応するドレイン電流Ida、Idbを用いて、線形補間によりゲート−ソース間電圧Vgsを設定する。具体的には、
Vgs={(Id−Idb)×Va+(Ida−Id)×Vb}/(Ida−Idb) …(2)
とすればよい。
ステップS1002からS1009までのループ処理を終了したら、キャパシター521の保持電圧が上で設定したゲート−ソース間電圧Vgsになるように、DAC400から画像信号を出力することによって光書き込みを行う(S1010)。また、これに並行してソース−ドレイン間電圧Vsdを検出する(S1011)。これによって、Vsd検出データテーブル724のソース−ドレイン間電圧Vsdが最新データに書き換えられる。その後、光書き込みを完了したら(S1012:YES)、すべての処理を終了する。
このようにすれば、OLED駆動用TFT522の飽和領域におけるソース−ドレイン間電圧VsdのシフトやOLED201の順方向電圧Velの変動による光量ばらつきを抑制することができる。
[5]高周波ノイズに起因する光量変動の補正
次に、高周波ノイズに起因する光量変動を抑制するための処理について説明する。
帯電装置や現像装置が発する高周波ノイズは定常的な周期ノイズである。周期ノイズは濃度むらによるスジノイズを印刷画像に発生させる。このようなスジノイズが視認されないようにするためには、濃度むらを1%未満に抑える必要がある。OLED201の発光量は高周波ノイズの位相に応じて増減するため、高周波ノイズの位相を検出して駆動電流量を増減すれば、高周波ノイズに起因する光量変動を抑制することができる。従って、印刷画像における濃度むらを1%抑制して、スジノイズを視認できないようにすることができる。
このため、本実施の形態においては、高周波ノイズによって書き込み配線530に重畳するノイズ成分を検出し、DAC400が出力する輝度信号を予めノイズ成分に相当する分だけ補正しておく。このようにすれば、輝度信号にノイズ成分が重畳することによって、OLED201を所望の光量で発光させることができるので、高周波ノイズに起因する濃度むらを抑制することができる。
高周波ノイズに起因する光量変動を補正する際には、図16に示すように、画像のライン毎にステップS1602からS1608までの処理を実行する(S1601、S1609)。まず、画像検出部710が画像データの当該ラインを精査して、n番目の発光画素回路520が露光する画像領域における連続領域を特定する(S1602)。そして、露光を開始して(S1603)、連続領域を露光する際には(S1604:YES)、ノイズ検出用ADC500がデジタル化した輝度信号をラッチ回路502にて保持する(S1605)。
制御部101は、ラッチ回路502が保持する輝度信号を参照することができる。
制御部101は、ノイズ検出用ADC500が出力する検出値Vdetectからn番目のDAC400の入力値(デジタル値)Vdacを減算して、n番目の発光画素回路520におけるノイズ成分Ax(以下、単に「n番目のノイズ成分Ax」という。)を算出する(S1606)。
Ax = Vdetect − Vdac …(3)
高周波ノイズに起因するノイズ成分の大きさはDAC400毎に異なる。そこで、n番目以外のDAC400の配下のOLED201に供給する駆動電流Idを補正するために、n番目のノイズ成分Axからn番目以外のノイズ成分Axを求める(S1607)。
具体的には、m番目のノイズ成分Ax_mを求める場合、図17に示すようなDC成分及びゲイン成分テーブル725を参照して、下式(4)のように、n番目のノイズ成分Axからn番目のDC成分DCnを減算し、算出した減算値にm番目のゲイン成分Gainmを乗算する。更に、乗算値にm番目のDC成分DCmを加算する。
Ax_m = (Ax − DCn) × Gainm + DCm …(4)
式(4)を用いれば、1から(n−1)まで及び(n+1)から150までの各Ax_mを算出することができる。
画像データ中の次のラインにおいて、m番目の発光画素回路520へ輝度信号を出力するためにm番目のDAC400が入力する入力値Vi_mは、上記[4]において述べたように経時劣化等を考慮して決定されるのだが、m番目のノイズ成分Ax_mが重畳すると予想されるので、重畳するノイズ成分Ax_mを相殺するために、DAC400の入力値Vi_mを補正する(S1608)。
Vdac_m = Vi_m − Ax_m …(5)
このようにすれば、画像データ中の次のラインにおいてDAC400が出力する輝度信号が予めノイズ成分だけ補正されているので、輝度信号にノイズ成分が重畳することによって所望のゲート−ソース電圧Vgsがキャパシター521に保持される。従って、高周波ノイズに起因するOLED201の光量変動が抑制されるので、高い印刷画質を実現することができる。
[6]変形例
以上、本発明を実施の形態に基づいて説明してきたが、本発明が上述の実施の形態に限定されないのは勿論であり、以下のような変形例を実施することができる。
(1)上記実施の形態においては、ノイズ検出用ADC500が選択用TFT512のソース電圧を検出する場合を例にとって説明したが、本発明がこれに限定されないのは言うまでもなく、これに代えて駆動用TFT512のゲート電圧を検出してもよい。このようにしても、本発明の効果は同じである。
(2)上記実施の形態においては、画像データ中の連続領域においてノイズ検出用ADC500にて輝度信号をAD変換する場合を例にとって説明したが、本発明がこれに限定されないのは言うまでもなく、これに代えて次のようにしてもよい。例えば、ノイズ検出用ADC500が、1つのサンプル期間内で、輝度信号のAD変換を完了することができる場合には、連続領域を検出する必要はない。任意のサンプル期間内において輝度信号をAD変換すれば、ノイズ成分Axを算出して、輝度信号を補正することができる。
(3)上記実施の形態においては、画像データ中の先行するラインで検出したノイズ成分をそのまま用いて次のラインの輝度信号を補正する場合を例にとって説明したが、本発明がこれに限定されないのは言うまでもなく、これに代えて次のようにしてもよい。
高周波ノイズに起因するノイズ成分Axは周期的に変動する。ノイズ成分Axの変動周期が長い場合には、画像データ中で副走査方向に隣り合うラインどうしでのノイズ成分Axの変動が小さい。このため、上記実施の形態のように、前のラインで検出したノイズ成分Axをそのまま使って次のラインの輝度信号を補正することができる。
しかしながら、印刷画像は濃度むらが1%を超えるとスジノイズが視認される。このため、ノイズ成分Axの変動周期が短く、隣り合うラインどうしでのノイズ成分Axの変動が大きい場合に、前のラインで検出したノイズ成分Axをそのまま使って次のラインの輝度信号を補正すると、高周波ノイズに起因する濃度変動を1%未満に抑制することができないおそれがある。
また、例えば、QRコード(登録商標)のように副走査方向にOLED201の点消灯状態が頻繁に切り替わるラインが続くと、連続領域がないためにノイズ成分Axを検出することができないラインが連続することになる。このような場合には、最後に検出したノイズ成分Axを用いて輝度信号を補正しても濃度むらが1%を超えるおそれがある。
このような問題に対しては、次のようにすることができる。帯電装置112や現像装置113が発生させる高周波ノイズは周期や振幅が一定しているため、ノイズ成分Axの周期や振幅も一定である。ノイズ成分Axの周期と振幅とは、工場出荷時に計測する等すれば予め知ることができる。従って、図18に示すような高周波ノイズデータテーブル726に、ノイズ成分Axの位相ごとにノイズ成分Axの値を対応させた高周波ノイズデータを予めASIC306に記憶させておくことができる。
従って、ノイズ成分Axの位相は、画像形成に当たって帯電装置112及び現像装置113を始動してからの経過時間とノイズ成分Axの周期とからある程度の精度で想定することができる。このため、露光タイミングにおけるノイズ成分Axの位相を予想して、輝度信号を補正すれば、濃度むらを精度よく抑制することができる。なお、ノイズ成分Axの想定位相Paには誤差が生じる恐れがある。このような誤差を補正するためには、以下のようにすればよい。
まず、ノイズ成分Axの位相を4種類の期間に分類する。図19に示すように、期間#1はノイズ成分Axの位相の検出誤差Bの範囲内でノイズ成分Axが単調減少する期間であり、具体的には、位相誤差Bの範囲が90度以上で、かつ270度以下の範囲内に含まれる場合である。
期間#2は位相誤差Bの範囲内でノイズ成分Axが単調増加する期間である。具体的には、位相誤差Bの範囲が270度以上で、かつ90度(450度)以下の範囲内に含まれる場合である。
期間#3は位相誤差Bの範囲内にノイズ成分Axの極大値を含む期間である。具体的には、位相誤差Bの範囲が(90−B)度以上で、かつ(90+B)度以下の範囲内に含まれる場合である。
期間#4は位相誤差Bの範囲内にノイズ成分Axの極小値を含む期間である。具体的には、位相誤差Bの範囲が(270−B)度以上で、かつ(270+B)度以下の範囲内に含まれる場合である。
なお、位相誤差Bは、ノイズ検出用ADC500のAD変換速度から決まる検出誤差の範囲である。また、以下においては、位相pのノイズ成分Axの値をAx(p)と表記する。
(3−1)期間#1、#2
期間#1、#2内ではノイズ成分Axは単調減少または単調増加するので、DAC400の入力値Vdacに想定位相Paのノイズ成分Ax(Pa)が重畳した値Viが、ノイズ検出用ADC500の検出値Vdetectに一致する位相は、期間#1内で1点しかない。従って、ノイズ成分Axの想定位相Paの補正の要否を以下のように判定する。
(3−1−1)Vi=Vdetectである場合
図20に示すように、DAC400は、経年劣化等を考慮した輝度信号値Viから想定位相Paのノイズ成分Ax(Pa)を差し引いた輝度信号値Vdac(=Vi−Ax(Pa))をDA(Digital to Analogue)変換して出力する。ノイズ検出用ADC500は、DAC400の出力信号に高周波ノイズが重畳した信号をAD変換して信号値Vdetectを出力する。検出信号値Vdetectには、
Vdetect = Vdac + Ax(P) …(6)
のように、実際の位相Pのノイズ成分Ax(P)が含まれている。一方、経年劣化等を考慮した輝度信号値Viは、
Vi = Vdac + Ax(Pa) …(7)
のように、DAC400の入力値Vdacに想定位相Paのノイズ成分Ax(Pa)を重畳した値になっている。
このため、ノイズ検出用ADC500の出力値Vdetectが信号値Viに等しい場合には、ノイズ成分Axの想定位相Paが実際の位相Pに一致していると判断されるので、想定位相Paを補正する必要はない。
(3−1−2)Vi≠Vdetectである場合
この場合には、上記の式(6)、(7)から
Ax(Pa)>Ax(P) …(8)
または、
Ax(Pa)<Ax(P) …(9)
であると判断される。(8)である場合、期間#1ではノイズ成分Axは単調減少するため、ノイズ成分Axの想定位相Paは実際の位相Pよりも遅れていることになる。期間#2ではノイズ成分Axは単調増加するため、ノイズ成分Axの想定位相Paは実際の位相Pよりも進んでいることになる。
(9)である場合は、(8)である場合とは逆に、期間#1ではノイズ成分Axの想定位相Paは実際の位相Pよりも進んでいることになり、期間#2ではノイズ成分Axの想定位相Paは実際の位相Pよりも遅れていることになる。
いずれの場合も想定位相Paが実際の位相Pからずれているので、想定位相Paを補正する必要がある。このため、高周波ノイズデータテーブル726を参照して、実際のノイズ成分Ax(P)に最も近いノイズ成分値Ax(x)、Ax(y)を特定する。ここで、期間#1では、
Ax(x) > Ax(P) > Ax(y) …(10)
となり、また、期間#2では、
Ax(x) < Ax(P) < Ax(y) …(10)
となるように、位相xは実際の位相Pよりも遅れた位相であり、位相yは実際の位相Pよりも進んだ位相であるものとする。これらの値を用いた補間によって、想定位相Paを次式のように更新する。
Pa = {x×(Ax(P)−Ax(y))+y×(Ax(x)−Ax(P))}/(Ax(x)−Ax(y)) …(10)
ノイズ検出用ADC500にて信号値Vdetectを検出したラインよりも後に露光するラインについては更新後のノイズ成分Ax(Pa)を用いれば、高周波ノイズに起因する露光むらを補正することができる。
なお、ノイズ成分Axの変動を振幅Bの正弦波形で近似できる場合には、
Ax(P) = B×sin(P) …(11)
と書けるので、想定位相Paを
Pa = sin−1(Ax(P)/B) …(12)
のように、更新してもよい。
(3−2)期間#3、#4
ノイズ成分Axの想定位相Paの位相誤差Bの範囲が期間#3、#4である場合には、検出されたノイズ成分Ax(P)に対応する位相値が2つある場合がある。例えば、図21(a)に示すように、期間#3において位相誤差Bの範囲が位相90度を含む位相Pa−から位相Pa+までの範囲に亘っており、ノイズ成分Ax(P−)がノイズ成分Ax(P+)よりも大きい場合には、検出されたノイズ成分Ax(P)がAx(P−)以上で、かつ位相が90度であるときのノイズ成分Ax(90°)未満だと実際の位相Pの候補が2つあるため、実際の位相Pを確定することができない。
一方、検出されたノイズ成分Ax(P)がAx(P+)以上で、かつAx(P−)未満である場合には、実際の位相Pの候補が1つしかないので、この位相Pになるように想定位相Paを更新すればよい。
期間#4においても同様に、図21(b)に示すように、位相誤差Bの範囲が位相270度を含む位相Pa−から位相Pa+までの範囲に亘っており、ノイズ成分Ax(P+)がノイズ成分Ax(P−)よりも小さい場合には、検出されたノイズ成分Ax(P)がAx(P−)以下で、かつ位相が270度であるときのノイズ成分Ax(270°)より大きい実際の位相Pの候補が2つあるため、実際の位相Pを確定することができない。
一方、検出されたノイズ成分Ax(P)がAx(P+)より大きく、かつAx(P−)以下である場合には、実際の位相Pの候補が1つしかないので、この位相Pになるように想定位相Paを更新すればよい。
以上のような考察を進めると、位相P、P+及びP−におけるノイズ成分Ax(P)、Ax(P+)及びAx(P−)の大小関係を次の7通りに分けて、実際の位相Pの確定の可否を考えることができる。
(a)Ax(P+) > Ax(P) > Ax(P−)
(b)Ax(P+) = Ax(P) > Ax(P−)
(c)Ax(P)>Ax(P+)>Ax(P−)
(d)Ax(P)>Ax(P+)=Ax(P−)
(e)Ax(P)>Ax(P−)>Ax(P+)
(f)Ax(P−)=Ax(P)>Ax(P+)
(g)Ax(P−)>Ax(P)>Ax(P+)
(3−2−1)実際の位相Pを確定できない場合
上記の7通りのうち、(b)から(f)までについては実際の位相Pの候補が2つあるので、実際の位相Pを確定することができない。このため、実際の位相Pを用いて想定位相Paを更新することができない。
(3−2−2)実際の位相Pを確定できる場合
上記の7通りのうち、(a)及び(g)については実際の位相Pを確定することができるので、実際の位相Pを用いて想定位相Paを更新することができる。
(3−2−2−1)Vi=Vdetectである場合
ノイズ検出用ADC500の出力値Vdetectが信号値Viに等しい場合には、ノイズ成分Axの想定位相Paが実際の位相Pに一致していると判断されるので、想定位相Paを補正する必要はない。
(3−2−2−2)Vi≠Vdetectである場合
この場合には想定位相Paが実際の位相Pからずれているので、上記の(3−1−2)と同様にして想定位相Paを補正する。
すなわち、高周波ノイズデータテーブル726を参照して、実際のノイズ成分Ax(P)に最も近いノイズ成分値Ax(x)、Ax(y)を特定し、これらの値を用いた補間によって、想定位相Paを式(10)のように更新する。このように想定位相Paを更新すれば、高周波ノイズに起因する露光むらを補正することができる。
(4)上記実施の形態においては、DC成分及びゲイン成分テーブル725を参照してn番目のノイズ成分Axからm番目のノイズ成分Ax_mを求める場合を例にとって説明したが、本発明がこれに限定されないのは言うまでもなく、これに代えて次のようにしてもよい。例えば、複数の書き込み配線530に重畳するノイズ成分Axを検出し、これらのノイズ成分Axを用いた補間演算によって、他の書き込み配線530に重畳するノイズ成分Axを算出してもよい。
図22の例では、1番目、75番目及び150番目の書き込み配線530に重畳するノイズ成分Ax_1、Ax_75及びAx_150を検出するために、各書き込み配線530から引き出された引き出し配線531にそれぞれノイズ検出用ADC500が接続されている。各ノイズ検出用ADC500は、図23に例示するように、対応する画像領域に連続領域がある場合にノイズ成分Axを検出する。
本変形例に係るASIC306が記憶する高周波ノイズデータテーブル726は、1番目、75番目及び150番目の書き込み配線に重畳する位相角ごとのノイズ成分Axを、図24に例示するように、記憶している。検出されたノイズ成分Ax_1、Ax_75及びAx_150と高周波ノイズデータテーブル726とを用いて高周波ノイズの位相が特定される。
m番目のノイズ成分Ax_mを求める場合、
1 < m <75 …(13)
ならば、1番目と75番目のノイズ成分Ax_1、Ax_75から、下記の式(14)を用いて、m番目のノイズ成分Ax_mを算出する。
Ax_m = {Ax_1×(75−m)+Ax_75×(m−1)}/(75−1) …(14)
同様に、
75 < m <150 …(13)
ならば、75番目と150番目のノイズ成分Ax_75、Ax_150から、下記の式(15)を用いて、m番目のノイズ成分Ax_mを算出する。
Ax_m = {Ax_75×(150−m)+Ax_150×(m−75)}/(150−75) …(15)
このようにすれば、2番目から74番目及び76番目から149番目までの各ノイズ成分Ax_mを算出することができる。また、本変形例では、上記実施の形態とは異なって、m番目のノイズ成分Ax_mを算出するためにDC成分及びゲイン成分テーブル725を必要としない。このため、ASIC306の記憶容量を削減することができるという意味でコスト低減を図ることができる。
なお、ノイズ成分Axを検出する書き込み配線530の組み合わせは、1番目、75番目及び150番目の組み合わせに限定されないのは言うまでもなく、他の組み合わせを用いてもよいし、4つ以上を組み合わせてもよい。
(5)上記実施の形態においては、高周波ノイズデータテーブル726を予め初期データとしてASIC306に記憶しておく場合を例にとって説明したが、本発明がこれに限定されないのは言うまでもなく、これに代えて次のようにしてもよい。
すなわち、予め初期データとして記憶しておいた高周波ノイズテーブル726が、高周波ノイズが経時変化することによって不適切になった場合、高周波ノイズデータテーブル726を用いてDAC400の入力値Vi_mを補正すると、ノイズ成分Axを精度よく相殺することができなくなるおそれがある。また、高周波ノイズデータテーブル726を予め記憶させる場合、データを作成したり記憶させたりするためのコストが発生するといった問題がある。
これに対して、本変形例では、画像形成装置1の電源投入時、アイドリング時及び紙間時にノイズ成分Axを検出することによって高周波ノイズデータテーブル726を作成する。なお、電源投入時、アイドリング時及び紙間時にはOLED201は消灯され続けるので、連続領域を検出する必要はなく、常にノイズ成分Axを検出することができる。
このようにすれば、高周波ノイズの経時変化に合わせて高周波ノイズデータテーブル726を更新するので、高周波ノイズの位相を精度よく検出することができる。従って、高周波ノイズが経時変化してもノイズ成分Axを精度よく相殺するようにDAC400の入力値Vi_mを補正することができる。
(6)上記実施の形態においては、n番目の書き込み配線530に重畳するノイズ成分Axを検出する場合を例にとって説明したが、本発明がこれに限定されないのは言うまでもなく、これに代えて次のようにしてもよい。
すなわち、上記実施の形態においては、n番目の書き込み配線530に重畳するノイズ成分Axのみを検出するため、n番目のDAC400に対応する画像領域に連続領域がない場合が連続すると、高周波ノイズの位相を精度よく検出することができなくなる。
これに対して、本変形例では、図25に示すように、1番目、75番目及び150番目の書き込み配線530に重畳するノイズ成分Ax_1、Ax_75及びAx_150を検出するために、各書き込み配線530から引き出された引き出し配線531にそれぞれノイズ検出用ADC500が接続されている。
駆動IC302は、セレクター2500を制御することによって、対応する画像領域に連続領域があるノイズ検出用TFT2501をオンし、連続領域がないノイズ検出用TFT2501をオフする。引き出し配線531が接続されている場合には、ノイズ検出用ADC500はノイズ成分Axを検出することができる。
このようにすれば、1番目のDAC400に対応する画像領域に連続領域が無くても、他のDAC400に対応する連続領域があれば、高周波ノイズの位相を精度よく検出することができる。
なお、高周波ノイズデータテーブル726は、ノイズ成分Axを検出するたびに更新してもよいし、予め初期データとしてASIC306に記憶しておいてもよい。また、ノイズ成分Axを検出する書き込み配線530は、1番目、75番目及び150番目の組み合わせに限定されないのは言うまでもなく、他の組み合わせを用いてもよいし、4つ以上の書き込み配線530についてノイズ成分Axを検出してもよい。
(7)上記実施の形態においては、印字領域で輝度信号を補正する場合を例にとって説明したが、紙間領域も含めて画像検出を行い、補正を行ってもよいことは言うまでもない。
(8)上記実施の形態においては、ラッチ回路502が保持する輝度信号を制御部101が参照して輝度信号を補正する処理を行う場合を例にとって説明したが、本発明がこれに限定されないのは言うまでもなく、これに代えて、駆動IC302にて輝度信号を補正する処理を行ってもよい。この場合において、駆動IC302は、制御部101のASIC306に対して処理を要求してもよいし、ASIC306に相当する機能を駆動IC302に搭載してもよい。
(9)上記実施の形態においては、画像形成装置1がタンデム型のカラープリンターである場合を例にとって説明したが、本発明がこれに限定されないのは言うまでもなく、タンデム型以外のカラープリンターやモノクロプリンターに本発明を適用してもよい。また、スキャナーを備えた複写装置や、更に、ファクシミリ通信機能を備えたファクシミリ装置といった単機能、これらの機能を兼ね備えた複合機(MFP: Multi-Function Peripheral)に本発明を適用しても同様の効果を得ることができる。
本発明に係る光書き込み装置及び画像形成装置は、高周波ノイズに起因する濃度むらを防止する装置として有用である。
1………画像形成装置
100…光書き込み装置
101…制御部
110…作像部
112…帯電装置
113…現像装置
200…OLEDパネル
300…TFT基板
302…駆動IC
306…ASIC
400…DAC
500…ノイズ検出用ADC

Claims (9)

  1. ライン状に配列された複数の発光素子と、前記複数の発光素子に1対1に対応して設けられ、対応する発光素子を発光させる複数の駆動手段と、画像データに応じて前記発光素子の発光量を前記駆動手段に指示する輝度信号を出力する設定手段と、を有し、前記発光素子の出射光によって感光体表面を1ラインずつ露光する光書き込み装置であって、
    前記設定手段が輝度信号を出力している状態で、前記設定手段から前記駆動手段に至る前記輝度信号の伝達回路上で、前記輝度信号に重畳するノイズ成分を検出する検出手段と、
    前記検出手段がノイズ成分を検出したラインに後続するラインについて、前記設定手段が出力する輝度信号を、前記検出手段が検出したノイズ成分に応じて補正する補正手段と、を備える
    ことを特徴とする光書き込み装置。
  2. 前記駆動手段は、薄膜トランジスターであって、ソース端子に定電圧を印加され、ゲート−ソース電圧Vgsに応じたドレイン電流を供給して前記発光素子を発光させ、
    前記検出手段は、前記駆動手段のゲート電圧に含まれるノイズ成分を検出する
    ことを特徴とする請求項1に記載の光書き込み装置。
  3. 前記設定手段から前記駆動手段に至る前記輝度信号の伝達回路上に設けられ、前記輝度信号の伝達先となる前記駆動手段を切り替える切り替え手段と、を備え、
    前記検出手段は、前記設定手段から前記切り替え手段に至る前記輝度信号の伝達回路上で前記ノイズ成分を検出する
    ことを特徴とする請求項1に記載の光書き込み装置。
  4. 前記切り替え手段配下の発光素子の点灯状態が、当該発光素子が露光する画像領域において、所定画素数以上連続して同一であるか否かを前記画像データから判定する判定手段と、
    前記判定手段による判定が否定的である場合に、前記検出手段による検出を禁止する禁止手段と、を備える
    ことを特徴とする請求項3に記載の光書き込み装置。
  5. 前記検出手段は、前記設定手段が出力する輝度信号と、前記伝達回路上で検出された信号との差分を求めることによって、前記ノイズ成分を検出する
    ことを特徴とする請求項1から4の何れかに記載の光書き込み装置。
  6. 前記補正手段は、前記検出手段が前記ノイズ成分を検出したときの当該ノイズ成分の位相と、次に輝度信号を出力するときに当該輝度信号に重畳するノイズ成分の位相との差に応じて前記輝度信号を補正する
    ことを特徴とする請求項1から5の何れかに記載の光書き込み装置。
  7. 前記伝達回路は複数設けられており、
    前記検出手段は、前記複数の伝達回路のうちの一部の伝達回路についてのみ前記ノイズ成分を検出し、
    前記補正手段は、前記検出手段が検出したノイズ成分を用いて、前記検出手段が前記ノイズ成分を検出しない伝達回路によって伝達される輝度信号を補正する
    ことを特徴とする請求項1から6の何れかに記載の光書き込み装置。
  8. 前記伝達回路から前記検出手段に至る配線は、前記伝達回路を構成する配線よりも配線インピーダンスが低い
    ことを特徴とする請求項1から7の何れかに記載の光書き込み装置。
  9. 請求項1から8の何れかに記載の光書き込み装置を備える
    ことを特徴とする画像形成装置。
JP2017012652A 2017-01-27 2017-01-27 光書き込み装置及び画像形成装置 Active JP6760107B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017012652A JP6760107B2 (ja) 2017-01-27 2017-01-27 光書き込み装置及び画像形成装置
US15/879,559 US10482357B2 (en) 2017-01-27 2018-01-25 Optical print head and image forming device
CN201810077158.7A CN108363280A (zh) 2017-01-27 2018-01-26 光写入装置以及图像形成装置
EP18153777.0A EP3355125B1 (en) 2017-01-27 2018-01-26 Optical print head and image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017012652A JP6760107B2 (ja) 2017-01-27 2017-01-27 光書き込み装置及び画像形成装置

Publications (2)

Publication Number Publication Date
JP2018118481A JP2018118481A (ja) 2018-08-02
JP6760107B2 true JP6760107B2 (ja) 2020-09-23

Family

ID=61054282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017012652A Active JP6760107B2 (ja) 2017-01-27 2017-01-27 光書き込み装置及び画像形成装置

Country Status (4)

Country Link
US (1) US10482357B2 (ja)
EP (1) EP3355125B1 (ja)
JP (1) JP6760107B2 (ja)
CN (1) CN108363280A (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6846945B2 (ja) * 2017-02-22 2021-03-24 株式会社小糸製作所 光源駆動装置、車両用灯具
JP6822269B2 (ja) * 2017-03-29 2021-01-27 コニカミノルタ株式会社 光書き込み装置及び画像形成装置
JP2020154214A (ja) * 2019-03-22 2020-09-24 ブラザー工業株式会社 光走査装置
CN114787906B (zh) 2020-10-28 2024-06-14 京东方科技集团股份有限公司 显示装置、电压采集电路和方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828528B2 (ja) * 1988-05-30 1996-03-21 ローム株式会社 Ledアレイの輝度調整方法およびledアレイの輝度調整抵抗の抵抗値検出装置
JP2523933Y2 (ja) * 1988-10-12 1997-01-29 ローム株式会社 光プリントヘッド
JPH0583547A (ja) * 1991-09-24 1993-04-02 Canon Inc 光電変換装置
JP2002258560A (ja) * 2001-02-28 2002-09-11 Canon Inc 画像形成装置
US6911993B2 (en) * 2002-05-15 2005-06-28 Konica Corporation Color image forming apparatus using registration marks
JP2004037489A (ja) * 2002-06-28 2004-02-05 Canon Inc 印刷装置システム
US7053920B1 (en) * 2005-03-11 2006-05-30 Nuelight Corporation Feedback control apparatus and method for an emissive printhead
JP5200360B2 (ja) * 2006-09-29 2013-06-05 富士ゼロックス株式会社 露光装置および画像形成装置
JP5076470B2 (ja) 2006-12-05 2012-11-21 富士ゼロックス株式会社 画像形成装置、制御装置およびプログラム
JP4965290B2 (ja) * 2007-03-16 2012-07-04 株式会社リコー 画像形成装置
JP5081338B2 (ja) * 2007-03-17 2012-11-28 株式会社リコー 液体吐出装置、画像形成装置
JP5751826B2 (ja) * 2010-12-22 2015-07-22 キヤノン株式会社 画像形成装置及び画像処理装置
KR20120127052A (ko) * 2011-05-13 2012-11-21 삼성전자주식회사 화상형성장치 및 칼라 레지스트레이션 보정 방법
JP2013195285A (ja) * 2012-03-21 2013-09-30 Konica Minolta Inc 画像形成装置
JP6213205B2 (ja) * 2013-12-16 2017-10-18 コニカミノルタ株式会社 光書込み装置及び画像形成装置
JP2015135408A (ja) * 2014-01-17 2015-07-27 キヤノン株式会社 画像形成装置
CN105223791B (zh) * 2014-06-30 2018-01-30 京瓷办公信息系统株式会社 电子设备
JP5976727B2 (ja) * 2014-06-30 2016-08-24 京セラドキュメントソリューションズ株式会社 電子機器
JP6413473B2 (ja) * 2014-08-20 2018-10-31 富士ゼロックス株式会社 発光装置および画像形成装置
JP2017012652A (ja) 2015-07-06 2017-01-19 ダイコク電機株式会社 遊技場用システム

Also Published As

Publication number Publication date
EP3355125A1 (en) 2018-08-01
US20180218244A1 (en) 2018-08-02
EP3355125B1 (en) 2020-08-19
JP2018118481A (ja) 2018-08-02
US10482357B2 (en) 2019-11-19
CN108363280A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
JP6760107B2 (ja) 光書き込み装置及び画像形成装置
JP6213205B2 (ja) 光書込み装置及び画像形成装置
US10384464B2 (en) Optical print head and image forming device
JP5493386B2 (ja) 露光装置、画像形成装置、露光制御プログラム
JP6288038B2 (ja) 発光装置、光書込み装置及び画像形成装置
JP6187521B2 (ja) 光書込み装置及び画像形成装置
JP6825416B2 (ja) 光書込み装置およびそれを備える画像形成装置
JP5423360B2 (ja) 露光装置、画像形成装置、及び露光制御プログラム
US9829824B2 (en) Optical writing device and image forming device
US9471001B2 (en) Optical writing device and image forming device
JP6822269B2 (ja) 光書き込み装置及び画像形成装置
JP6672936B2 (ja) 光書込み装置及び画像形成装置
JP6036755B2 (ja) 光書込み装置及び画像形成装置
JP6737100B2 (ja) 光書き込み装置及び画像形成装置
JP6672937B2 (ja) 光書込み装置及び画像形成装置
CN111665700B (zh) 图像形成装置
JP6264061B2 (ja) 光書込み装置及び画像形成装置
JP6217512B2 (ja) 光書込み装置及び画像形成装置
US20200253022A1 (en) Optical writing device, image formation apparatus, and computer-implemented method
JP6750442B2 (ja) 光書き込み装置及び画像形成装置
CN111665700A (zh) 图像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R150 Certificate of patent or registration of utility model

Ref document number: 6760107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150