JP6757408B2 - 金属内包かご状タンパク質の製造方法 - Google Patents

金属内包かご状タンパク質の製造方法 Download PDF

Info

Publication number
JP6757408B2
JP6757408B2 JP2018526038A JP2018526038A JP6757408B2 JP 6757408 B2 JP6757408 B2 JP 6757408B2 JP 2018526038 A JP2018526038 A JP 2018526038A JP 2018526038 A JP2018526038 A JP 2018526038A JP 6757408 B2 JP6757408 B2 JP 6757408B2
Authority
JP
Japan
Prior art keywords
protein
metal
cage protein
encapsulated
ferritin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018526038A
Other languages
English (en)
Other versions
JPWO2018008441A1 (ja
Inventor
麻美 田中
麻美 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagase and Co Ltd
Original Assignee
Nagase and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagase and Co Ltd filed Critical Nagase and Co Ltd
Publication of JPWO2018008441A1 publication Critical patent/JPWO2018008441A1/ja
Application granted granted Critical
Publication of JP6757408B2 publication Critical patent/JP6757408B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/02General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length in solution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/113General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/30Extraction; Separation; Purification by precipitation
    • C07K1/32Extraction; Separation; Purification by precipitation as complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明は、金属内包かご状タンパク質の製造方法に関する。
フェリチンに代表されるかご状タンパク質は、その内部に空洞を有しており、空洞内に鉄等の金属元素を貯蔵することができる。金属元素を内包するかご状タンパク質は、量子ドットの作製に用いられることが提案されており、レーザー、太陽電池、熱電変換素子等への応用が期待されている。
かご状タンパク質に金属元素を導入するための方法として、例えば特許文献1には、緩衝液中でフェリチンに鉄を導入する方法が開示されている。
特開2008−194815号公報
しかし、特許文献1に記載の方法ではフェリチン内部への鉄の導入効率が十分に高いものではなく、鉄が導入されなかったフェリチンを除去する工程を要するため、工業的な生産の観点からは改善の余地が残っている。
本発明は、上記事情に鑑みてなされたものであり、かご状タンパク質に金属元素を高効率で導入することのできる、金属含有かご状タンパク質の製造方法の提供を目的とする。
本発明は、多糖類の存在下で、かご状タンパク質に金属元素を導入して、上記金属元素を内包する金属内包かご状タンパク質を生成させる工程を備える、金属内包かご状タンパク質の製造方法に関する。本発明に係る製造方法によれば、高効率でかご状タンパク質に金属元素を導入することができるため、金属内包かご状タンパク質を効率よく製造することができる。
本発明に係る製造方法は、かご状タンパク質に金属元素を高効率で導入することを可能とするので、上記金属内包かご状タンパク質を生成させる工程の後に、上記金属内包かご状タンパク質を含む混合物をゲル濾過クロマトグラフィーで精製し、得られた溶出液をそのまま濃縮する工程を備えてもよい。
上記多糖類は、オリゴ糖であってもよい。この構成を備えることにより、より高効率でかご状タンパク質に金属元素を導入することができる。
上記オリゴ糖は、二糖類であってもよい。また、上記二糖類は、スクロース、トレハロース及びマルトースからなる群から選択される少なくとも一種であってもよい。この構成を備えることにより、より一層高効率でかご状タンパク質に金属元素を導入することができる。
上記オリゴ糖は、三糖類、四糖類又は五糖類であってもよい。この構成を備えることにより、より一層高効率でかご状タンパク質に金属元素を導入することができる。
上記多糖類は、デキストリンであってもよい。この構成を備えることにより、より高効率でかご状タンパク質に金属元素を導入することができる。
本発明に係る製造方法は、上記かご状タンパク質がフェリチンである金属内包かご状タンパク質を製造するために特に有用である。また、本発明に係る製造方法は、上記金属元素が鉄である金属内包かご状タンパク質を製造するために特に有用である。
本発明によれば、かご状タンパク質に金属元素を高効率で導入することのできる、金属内包かご状タンパク質の製造方法が提供される。
以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
本実施形態に係る金属内包かご状タンパク質の製造方法は、多糖類の存在下で、かご状タンパク質に金属元素を導入して、上記金属元素を内包する金属内包かご状タンパク質を生成させる工程を備える。
本明細書において、金属内包かご状タンパク質とは、金属元素を内包するかご状タンパク質を意味する。
かご状タンパク質は、金属元素を内包できるタンパク質であればよい。かご状タンパク質としては、例えば、フェリチン、Dps(DNA binding protein from starved cells)、又はウイルスのコートタンパク質が挙げられる。また、かご状タンパク質本来の構造及び機能を有するかご状タンパク質の変異体も、本明細書におけるかご状タンパク質に含まれる。
フェリチンは、20〜25kDaのサブユニットから構成される直径8.5〜12nmのタンパク質である。フェリチンは、微生物由来、動物由来若しくは植物由来のフェリチンを含む。微生物由来のフェリチンとしては、ヘリコバクター菌由来のフェリチン等が挙げられる。動物由来のフェリチンとしては、ヒト由来のフェリチン、マウス由来のフェリチン、及びウマ由来のフェリチン等が挙げられる。植物由来のフェリチンとしては、大豆フェリチン等が挙げられる。本明細書において「フェリチン」とは、特に明記しない限り、金属を内包しないフェリチン(すなわち、アポフェリチン)を意味する。
Dpsはフェリチン様タンパク質であり、例えば、リステリア菌由来のDps、及びスルホロバス菌由来のDpsが挙げられる。ウイルスのコートタンパク質としては、CCMV(cowpea chlorotic mottle virus)のコートタンパク質等が挙げられる。これらの中でも、熱、pHなどに高い安定性を示すフェリチンが好ましい。
かご状タンパク質は、当業者に周知の方法で製造することができる。一例として、特開2012−200242号公報に記載の方法に従い、かご状タンパク質をコードする遺伝子等を含むプラスミドを構築し、当該プラスミドを大腸菌に導入して得られた形質転換体としての大腸菌を培養してかご状タンパク質を産生させ、産生したかご状タンパク質を精製することにより、かご状タンパク質を製造することができる。また、かご状タンパク質の変異体は、通常の遺伝子工学的手法、例えば部位特異的変異導入法によってかご状タンパク質をコードする遺伝子に人為的に変異を導入する方法により作製することができる。
かご状タンパク質に導入される金属元素は、かご状タンパク質内部の空洞に貯蔵され得る金属元素であればよい。本明細書において、金属元素は、金属イオン等の金属元素そのものであってもよいし、金属元素を構成元素とする金属化合物(酸化物、硫化物等)としてかご状タンパク質に内包されていてもよい。金属元素は、2価の金属イオンを形成できる金属元素であってもよく、例えば、鉄、ニッケル、コバルト、インジウム、亜鉛、銅、カドミウム、金が挙げられる。これらの中でも、かご状タンパク質内部への導入効率が高い鉄が好ましい。
本明細書において多糖類は、2以上の単糖分子同士、あるいは1以上の単糖分子と1以上の糖アルコールが脱水縮合し、グリコシド結合を形成して1分子となった糖を意味し、以下に詳述するオリゴ糖は本明細書における多糖類に含まれる。オリゴ糖以外の多糖類としては、例えば、デキストリン、デンプン、フルクタンが挙げられる。これらの中でも、より高効率でかご状タンパク質に金属元素を導入することができる観点から、デキストリンが好ましい。多糖類は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
本明細書においてオリゴ糖は、2以上の単糖分子同士、あるいは1以上の単糖分子と1以上の糖アルコールが脱水縮合し、グリコシド結合を形成して1分子となった糖のうち、構成する単糖分子数が10以下であるものを意味する。オリゴ糖の中でも、より高効率でかご状タンパク質に金属元素を導入することができる観点から、二糖類が好ましい。二糖類としては、例えば、スクロース、トレハロース、マルトース、セロビオースが挙げられる。これら二糖類の中でも、より一層高効率でかご状タンパク質に金属元素を導入することができる観点から、スクロース、トレハロース、マルトースが好ましい。また、オリゴ糖の中でも、より高効率でかご状タンパク質に金属元素を導入することができる観点から、三糖類、四糖類又は五糖類が好ましい。三糖類としては、例えば、マルトトリオース、ラフィノース、マルトトリイトールが挙げられる。四糖類としては、例えば、マルトテトラオース、スタキオース、マルトテトライトールが挙げられる。五糖類としては、例えば、マルトペンタオースが挙げられる。これら三糖類、四糖類及び五糖類の中でも、より一層高効率でかご状タンパク質に金属元素を導入することができる観点から、三糖類としてはマルトトリオースが好ましく、四糖類としてはマルトテトラオースが好ましく、五糖類としてはマルトペンタオースが好ましい。オリゴ糖は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。なお、本実施形態に係る製造方法においては、オリゴ糖に代えて、又はオリゴ糖とともに糖アルコールを使用してもよい。本明細書において糖アルコールは、糖類のカルボニル基を還元することで得られる炭素数3〜8の多価アルコールを意味する。糖アルコールとしては、例えば、グリセロール、エリトリトール、キシリトール、マンニトール、ソルビトールが挙げられる。
金属元素の導入方法の一例として、溶媒、かご状タンパク質、金属源、及び多糖類を含む溶液中で、かご状タンパク質に金属元素を導入することができる。溶媒としては、例えば、水を用いることができる。金属源は、溶媒中で2価の金属イオンを形成できる金属化合物などを用いることができ、例えば、硫酸アンモニウム鉄((NHFe(SO)、硫酸アンモニウムコバルト((NHCo(SO)、硫酸インジウムが挙げられる。
本工程においては、緩衝液を用いて溶液のpHを7〜8に調整することが好ましい。このような緩衝液としては、例えば、4−(2−ヒドロキシエチル)−1−ピペラジンエタンスルホン酸(HEPES)緩衝液を用いることができる。
かご状タンパク質に金属元素を導入して、金属内包かご状タンパク質を生成させる工程において、混合溶液の温度は、好ましくは0〜20℃、より好ましくは5〜15℃であり、混合溶液の撹拌時間は、好ましくは2〜4時間である。温度及び時間をこのように設定することで、より高効率でかご状タンパク質に金属元素を導入することができる。
また、かご状タンパク質に金属元素を導入して、金属内包かご状タンパク質を生成させる工程において、特に金属元素の酸化反応を伴う場合は、より高効率でかご状タンパク質に金属元素を導入することができる観点から、混合溶液に通気しながら撹拌するのが好ましい。通気量は、好ましくは0.2〜5vvmであり、より好ましくは1〜2vvmである。
本実施形態に係る製造方法は、金属内包かご状タンパク質を生成させる工程の後に、塩類、金属源、及びかご状タンパク質のオリゴマーを除去するための精製工程を備えてもよい。精製工程の一例として、金属内包かご状タンパク質を生成させる工程で得られた金属内包かご状タンパク質を含む混合物を、ゲル濾過クロマトグラフィーで精製する方法が挙げられる。金属内包かご状タンパク質の純度をより高くするため、金属内包かご状タンパク質を含む混合物をゲル濾過クロマトグラフィーで精製する前に、塩析、限外濾過濃縮等を行ってもよい。
本実施形態に係る製造方法は、金属内包かご状タンパク質を生成させる工程の後に、金属元素を含まないかご状タンパク質を除去する工程を備えていてもよい。通常、高純度の金属内包かご状タンパク質を得るためには、かご状タンパク質に金属元素を導入して、金属内包かご状タンパク質を生成させる工程において、金属元素を取り込まなかったかご状タンパク質を除去する工程が別途必要となる。金属元素を含まないかご状タンパク質を除去する方法としては、例えば、密度勾配遠心法が挙げられる。他方、本実施形態に係る製造方法は、高効率でかご状タンパク質に金属元素を導入することを可能とする。したがって、本実施形態に係る製造方法は、金属内包かご状タンパク質を生成させる工程の後に、金属内包かご状タンパク質を含む混合物をゲル濾過クロマトグラフィーで精製し、得られた溶出液をそのまま濃縮する工程を備えてもよい。
金属内包かご状タンパク質が鉄内包フェリチンであるとき、フェリチンへの鉄の導入率は380nmにおける吸光度と密接に相関することが知られている(Arch.Biochem.Biophys.,1992,298(1),259−264)。したがって、380nmにおける一定濃度の鉄内包フェリチン溶液の吸光度を測定することで、フェリチンへの鉄の導入率を評価することができる。
以下、実施例を挙げて本発明についてより具体的に説明する。ただし、本発明は、以下の実施例に限定されるものではない。以下の実施例において、内部に鉄を内包していないフェリチンを「アポフェリチン」と称する。
〔1.アポフェリチンの調製〕
特開2012−200242号公報の実施例1に記載の方法に準じて、プラスミドpKL223を作製した。特開2008−194815号公報に記載のウマ由来フェリチン「CNHB−Fer0」のアミノ酸配列をコードする遺伝子を合成し(配列番号1)、開始コドンのすぐ上流にEcoRI及びWSD配列(GAATTCAGGAGGTATTAT、配列番号2)、終始コドンの下流にPstI配列(CTGCAG)を付加した。得られたDNA断片を、EcoRI及びPstIで消化し、プラスミドpKL223のtacプロモーターの下流に位置するEcoRI−PstIギャップに挿入して、プラスミドpKLCNH−Fer0を構築した。作製されたプラスミドpKLCNH−Fer0を大腸菌BL21に導入して、形質転換された大腸菌BL21(pKLCNH−Fer0)を得た。
形質転換された大腸菌BL21(pKLCNH−Fer0)を、終濃度50μg/mLのアンピシリンを添加した10mLのLB培地中で、37℃に加温しながら、200rpmで16〜20時間振とうすることにより培養して、シード培養液を調製した。続いて、ラクトース(2%)を含むTB培地5Lにシード培養液5mLを添加し、37℃、通気量1vvm、撹拌数290rpmで培養を開始した。24〜48時間後、遠心分離(8000×g、15分間、20℃)により培養液から菌体を集めた。菌体を50mM トリスヒドロキシメチルアミノメタン塩酸塩(Tris−HCl)緩衝液(pH8.0)500mLに懸濁してから、再度遠心分離により菌体を集めて、洗浄菌体を調製した。
洗浄菌体を湿重量の5倍量の50mM Tris−HCl緩衝液(pH8.0)に再懸濁し、超音波破砕器によって菌体を破砕した。破砕された菌体を含む懸濁液を遠心分離(10000×g、15分間、4℃)し、上清を集めた。次に、集めた上清を70℃で20分間加熱した。これを室温で1時間静置した後、遠心分離(10000×g、15分間、4℃)し、上清を集めて、アポフェリチン溶液を得た。得られたアポフェリチン溶液におけるタンパク質濃度の定量は、ブラッドフォード法(Quick Startプロテインアッセイ)を用いて行った。
〔2.アポフェリチンへの鉄の導入〕
本実施例では、すべての成分を混合した時点での最終組成が、
80mM HEPES(pH7.5)
0.5mg/mL アポフェリチン
5mM 硫酸アンモニウム鉄
20%(w/v) 二糖類(実施例1:スクロース、実施例2:トレハロース、実施例3:マルトース)
となるように、以下の手順にしたがって合計80mLの溶液を調製し、鉄をアポフェリチンに導入した。
以下では、便宜上スクロースを添加した実施例1の方法について述べるが、実施例2及び3では、スクロースに代えてトレハロース、マルトースをそれぞれ用いたこと以外は実施例1と同様の方法で行い、比較例1では、二糖類を添加しなかったこと以外は実施例1と同様の方法で行った。
500mM HEPES緩衝液(pH7.5)(12.8mL)、蒸留水(24.7mL)、及び50%(w/v)スクロース水溶液(32mL)を混合した溶液を調製した。得られた溶液を窒素で置換し、10〜15℃で20分間撹拌した(撹拌速度:100〜200rpm)。この溶液に、上記の方法に準じて調製した15.9mg/mL アポフェリチン溶液(2.5mL)を添加し、次いで、溶液を通気しながら(1〜2vvm)、50mM 硫酸アンモニウム鉄水溶液8mLを25分間かけて徐々に添加して、10〜15℃で2〜4時間撹拌した。
得られた溶液を、遠心分離(15000×g、15分間、20℃)して上清を回収した。回収した上清に、その1/10容量の5M 塩化ナトリウム水溶液を添加し、遠心分離(10000×g、10分間、4℃)して沈殿を回収した。回収した沈殿に50mM Tris−HCl緩衝剤(pH8.0)(8mL)を添加し、振とう機上で、室温で1〜2時間緩やかに撹拌して沈殿を溶解させた。得られた溶液を、遠心分離(10000×g、10分間、20℃)して上清を回収した。
回収した上清を、ビバスピン20(分画分子量50K、Sartorius社製)を用いて限外濾過(8000×g、10分間、20℃)を行い、約800μLになるまで濃縮した。
濃縮液を、ゲル濾過クロマトグラフィー(HiPrep Sephacryl S−300(GEヘルスケアバイオサイエンス社製)、溶出液:50mM Tris−HCl緩衝液(pH8.0))にて精製し、単量体を内包する画分を回収した。なお、得られた各画分の分析は、HPLCを用いて以下の条件で行った。
カラム:Agilent Bio SEC−5 500A
カラム温度:25℃
移動相:50mM Tris−HCl緩衝液(pH8.0)
流速:1.0mL/分
注入量:50μL
検出:280nm
モノマー保持時間:8.9分付近
回収した単量体を含有する画分を、ビバスピン20(分画分子量50K、Sartorius社製)を用いて限外濾過濃縮(8000×g、5分間、20℃)を行った。濃縮液を2mM Tris−HCl緩衝液(pH8.0)で希釈し、上記と同様の条件で限外濾過濃縮を行い、鉄内包フェリチンを得た。
タンパク質濃度の定量は、ブラッドフォード法(Quick Startプロテインアッセイ)を用いて行った。
鉄の導入率は、上記鉄内包フェリチンを2mM Tris−HCl緩衝液(pH8.0)で5.0mg/mLとなるように調整し、更に50mM Tris−HCl緩衝液(pH8.0)で0.1mg/mLに希釈し、380nmにおける希釈液の吸光度を、分光光度計(NanoDrop ND−1000(Thermo Fisher Scientific社製))を用いて測定することで評価した。
また、ポジティブコントロールとして、特開2008−194815号公報の実施例(準備4−2、5及び6)に記載の方法に準じて鉄内包フェリチンを製造し、上記と同様の方法で鉄の導入率評価を行った。
結果を表1に示す。
Figure 0006757408
二糖類を添加してフェリチンに鉄を導入した実施例1、2及び3の鉄内包フェリチンの吸光度は、ポジティブコントロールとほぼ同等であり、高効率でフェリチンに鉄が導入されたことが確認された。これに対し、二糖類の非存在下でフェリチンに鉄を導入した比較例1の鉄内包フェリチンの吸光度は、ポジティブコントロールの8割程度であり、実施例1、2及び3と比較して明らかに鉄の導入率に劣ることが確認された。
〔3.アポフェリチンへの鉄の導入(2)〕
上記実施例1において、スクロースに代えて以下の表2に記載の各多糖類を用いたこと以外は、上記実施例1と同様の方法でアポフェリチンへの鉄への導入を行い、鉄の導入率を評価した(実施例4〜10)。また、上記実施例1において、糖類を添加しなかったこと以外は、上記実施例1と同様の方法でアポフェリチンへの鉄への導入を行い、鉄の導入率を評価した(比較例2)。結果を表2に示す。
Figure 0006757408
多糖類を添加してフェリチンに鉄を導入した実施例4〜10では、糖類非存在下でフェリチンに鉄を導入した比較例2と比較して380nmにおける吸光度が13〜38%増加しており、より高い効率でフェリチンに鉄が導入されたことが確認された。
以上より、本発明の製造方法によれば、高効率でかご状タンパク質に金属元素を導入できることが示された。

Claims (7)

  1. 多糖類の存在下で、かご状タンパク質に金属元素を導入して、前記金属元素を内包する金属内包かご状タンパク質を生成させる工程を備える、金属内包かご状タンパク質の製造方法であって、
    前記かご状タンパク質がフェリチンであり、
    前記金属元素が鉄であり、
    前記金属内包かご状タンパク質が鉄内包フェリチンである、方法
  2. 前記金属内包かご状タンパク質を生成させる工程の後に、前記金属内包かご状タンパク質を含む混合物をゲル濾過クロマトグラフィーで精製し、得られた溶出液をそのまま濃縮する工程を備える、請求項1に記載の製造方法。
  3. 前記多糖類がオリゴ糖である、請求項1又は2に記載の製造方法。
  4. 前記オリゴ糖が二糖類である、請求項3に記載の製造方法。
  5. 前記二糖類がスクロース、トレハロース及びマルトースからなる群から選択される少なくとも一種である、請求項4に記載の製造方法。
  6. 前記オリゴ糖が三糖類、四糖類又は五糖類である、請求項3に記載の製造方法。
  7. 前記多糖類がデキストリンである、請求項1又は2に記載の製造方法。
JP2018526038A 2016-07-08 2017-06-26 金属内包かご状タンパク質の製造方法 Expired - Fee Related JP6757408B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016135952 2016-07-08
JP2016135952 2016-07-08
PCT/JP2017/023359 WO2018008441A1 (ja) 2016-07-08 2017-06-26 金属内包かご状タンパク質の製造方法

Publications (2)

Publication Number Publication Date
JPWO2018008441A1 JPWO2018008441A1 (ja) 2019-04-18
JP6757408B2 true JP6757408B2 (ja) 2020-09-16

Family

ID=60912581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018526038A Expired - Fee Related JP6757408B2 (ja) 2016-07-08 2017-06-26 金属内包かご状タンパク質の製造方法

Country Status (5)

Country Link
US (1) US11472834B2 (ja)
JP (1) JP6757408B2 (ja)
KR (1) KR102225790B1 (ja)
TW (1) TWI740977B (ja)
WO (1) WO2018008441A1 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0487615T3 (da) * 1989-08-18 1994-03-14 Monsanto Co Ferritin-analoger
JP3588602B2 (ja) 2001-10-01 2004-11-17 松下電器産業株式会社 コバルト−タンパク質複合体の作製方法
AU2003241813A1 (en) * 2002-05-28 2003-12-12 Matsushita Electric Industrial Co., Ltd. Process for producing nanoparticle and nanoparticle produced by the process
JP3999255B2 (ja) 2005-06-07 2007-10-31 松下電器産業株式会社 酸化亜鉛−タンパク質複合体の製造方法
JP4149504B2 (ja) 2006-12-07 2008-09-10 松下電器産業株式会社 フェリチンを基板上に二次元配列させる方法

Also Published As

Publication number Publication date
US20200317720A1 (en) 2020-10-08
WO2018008441A1 (ja) 2018-01-11
US11472834B2 (en) 2022-10-18
KR20190025542A (ko) 2019-03-11
TWI740977B (zh) 2021-10-01
TW201811813A (zh) 2018-04-01
KR102225790B1 (ko) 2021-03-11
JPWO2018008441A1 (ja) 2019-04-18

Similar Documents

Publication Publication Date Title
WO2020127417A2 (en) PRODUCTION OF 3-FUCOSYLLACTOSE AND LACTOSE CONVERTING α-1,3-FUCOSYLTRANSFERASE ENZYMES
JP6728294B2 (ja) たんぱく質精製の新規な方法
JP2009273427A (ja) 組換え体ヒトfshの製造方法
JP6657177B2 (ja) 改良型β−フルクトフラノシダーゼ
CN105899661B (zh) 改良型β-呋喃果糖苷酶
US11603521B2 (en) Amino acid dehydrogenase mutant and use thereof
CA2909440C (en) A method of production of rare disaccharides
JP6757408B2 (ja) 金属内包かご状タンパク質の製造方法
CN106604991B (zh) 修饰型β-半乳糖苷酶
JP5951085B2 (ja) 改良型β−フルクトフラノシダーゼ
JP2021531037A (ja) 非標準アミノ酸含有組成物とその使用
JP2007502609A (ja) 組換えポリペプチドを調製するための方法
WO2019175633A1 (en) Methods for refolding sucrose isomerase
US6713611B2 (en) Method for removing endotoxin from the samples containing basic protein
JP3709435B2 (ja) 改変デキストランスクラーゼ、その遺伝子組み換え体、グルカンの製造法
US10927149B2 (en) Industrially scalable process for recovering biologically active recombinant carrier proteins
EP2376634A1 (en) Process for the enzymatic production of cyclic diguanosine monophosphate employing a diguanylate cyclase comprising a mutated rxxd motif
JP2016158599A (ja) 遺伝子組換え糸状菌、およびそれを用いた、内腔を有する多量体の製造方法
JP7311496B2 (ja) 改変型エステラーゼ及びその用途
JP4382746B2 (ja) 溶菌剤
WO2023286629A1 (ja) 大腸菌を用いたプラスミドdnaの製造方法
WO2024043203A1 (ja) 改変型エステラーゼ
KR101294598B1 (ko) 4-알파-글루카노트랜스퍼레이즈와 아밀로오스의 복합체 및 이의 이용
WO2019175632A1 (en) Methods for refolding isomaltulose synthase
JP5957443B2 (ja) フェリチンの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200610

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200610

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200828

R150 Certificate of patent or registration of utility model

Ref document number: 6757408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees