JP6755472B2 - 光照射装置 - Google Patents

光照射装置 Download PDF

Info

Publication number
JP6755472B2
JP6755472B2 JP2017081272A JP2017081272A JP6755472B2 JP 6755472 B2 JP6755472 B2 JP 6755472B2 JP 2017081272 A JP2017081272 A JP 2017081272A JP 2017081272 A JP2017081272 A JP 2017081272A JP 6755472 B2 JP6755472 B2 JP 6755472B2
Authority
JP
Japan
Prior art keywords
light
mask
unit
lens
irradiation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017081272A
Other languages
English (en)
Other versions
JP2018180367A (ja
Inventor
敏成 新井
敏成 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
V Technology Co Ltd
Original Assignee
V Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by V Technology Co Ltd filed Critical V Technology Co Ltd
Priority to JP2017081272A priority Critical patent/JP6755472B2/ja
Priority to PCT/JP2018/015062 priority patent/WO2018193913A1/ja
Priority to CN201880019554.2A priority patent/CN110462503B/zh
Priority to TW107112274A priority patent/TW201839523A/zh
Priority to KR1020197026314A priority patent/KR20190139204A/ko
Publication of JP2018180367A publication Critical patent/JP2018180367A/ja
Priority to US16/572,213 priority patent/US20200012158A1/en
Application granted granted Critical
Publication of JP6755472B2 publication Critical patent/JP6755472B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/14Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing polarised light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/7035Proximity or contact printers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Liquid Crystal (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、光照射装置に関する。
特許文献1には、ランプから放出される光を楕円集光鏡で集光し、インプットレンズ、偏光素子、インテグレータレンズ、コリメータレンズ等を通過させ、コリメータレンズが出射する平行光をマスクを介してワークに照射して、分割画素毎に光配向を行う光照射装置が開示されている。
特許文献2には、ワークに光を照射する光源と、光源からワークへ照射される光を偏光成分に応じて分岐させる偏光素子と、光源と偏光素子との間に設けられて、光源から入射した光の光強度分布を均一にする第1の均一化部と、第1の均一化部と偏光素子との間に設けられて、第1の均一化部によって光強度分布が均一にされた光を平行光にする第1の平行化部と、第1の平行化部と偏光素子との間に設けられて、第1の平行化部によって平行光にされた均一な光強度分布の光を受け、偏光素子に対する各入射点に入射する光の入射角を均一にするために、各入射点に集束する複数の入射光の光強度を均一にする第2の均一化部と、第2の均一化部と偏光素子との間に設けられて、第2の均一化部によって複数の入射光の光強度が均一にされた光を平行光にする第2の平行化部と、を備える露光装置が開示されている。第1の均一化部及び第2の均一化部にはフライアイレンズが用いられ、第1の平行化部及び第2の平行化部にはコンデンサレンズが用いられる。
特開平11−194345号公報 特開2013−167832号公報
特許文献1に記載の光照射装置では、楕円集光鏡で集光された光の強度分布が均一ではなく、コリメータレンズを通過した光が厳密に平行光とならず、光軸に対して傾いた光がワークに照射される。図17は、光軸に対して傾いた光が照射されたときの露光パターンの位置ずれについて説明する図である。光軸に対して傾いた光L2がフォトマスク111のマスクパターンの開口部111aを通過すると、ワークW上に露光される露光パターンの位置P2が、本来形成されるべき位置P1(光軸と平行な光L1が開口部111aを通過したときに、ワークW上に露光される露光パターンの位置)に対してずれてしまう。特に、高精細ディスプレイ用の基板に対して光配向を行うときには、たとえ露光パターンの位置ズレが小さかったとしても不具合が発生してしまう。
特許文献2に記載の発明では、第1の均一化部、第1の平行化部、第2の均一化部及び第2の平行化部を用いて光の強度分布を均一化し、ワークに平行光を照射するため、本来露光パターンが形成されるべき位置と、実際に露光される露光パターンの位置と、を一致させることができる。しかしながら、特許文献2に記載の発明では、均一化部(フライアイレンズ)を2個用いる必要があるため、装置が大型化してしまううえ、製造コストも増加してしまう。
本発明はこのような事情に鑑みてなされたもので、1組の均一化部及び平行化部のみで、本来露光パターンが形成されるべき位置と、実際に露光される露光パターンの位置と、を一致させることができる光照射装置を提供することを目的とする。
上記課題を解決するために、本発明に係る光照射装置は、例えば、基板の第1方向に沿って帯状に露光パターンを形成する光照射装置であって、光を出射する光源と、前記第1方向に沿った帯状の光透過領域が光軸と交差しない位置に形成されたマスクと、前記光源から出射された光を平行光にして前記マスクに照射するコリメート手段と、前記光源と前記コリメート手段との間に配設され、前記マスクに照射される光の強度分布を均一にするフライアイレンズと、を備え、前記第1方向と略直交する第2方向において、前記光透過領域と前記光軸との距離は、前記光透過領域を通過した光により前記基板に形成される露光パターンと前記光軸との距離のA(Aは1以上の数)倍であることを特徴とする。
本発明に係る光照射装置によれば、帯状の露光パターンに沿った第1方向と略直交する第2方向において、マスクに形成された光透過領域と光軸との距離は、光透過領域を通過した光により基板に形成される露光パターンの位置と光軸との距離のA(Aは1以上の数)倍である。これにより、本来露光パターンが形成されるべき位置と、実際に露光される露光パターンの位置と、を一致させることができる。また、このようなマスクを用いることで、1組のフライアイレンズ及びコンデンサレンズでよく、装置の大型化を防ぐとともに、製造コストを下げることができる。
ここで、前記基板を載置するステージと、前記マスクを、前記ステージの上面と略直交する方向に沿って移動させるマスク移動部と、を備えてもよい。これにより、マスクと基板との距離が異なる場合でも、同じマスクでシフト量分だけ露光パターンの位置をずらすことができる。
ここで、前記光源は、光を出射するランプと、前記ランプの背面側に設けられた反射鏡と、を有し、前記ランプを前記光軸に沿って移動させるランプ移動部を備えてもよい。これにより、効率よく露光パターンの位置をずらすことができる。
本発明によれば、1組の均一化部及び平行化部のみで、本来露光パターンが形成されるべき位置と、実際に露光される露光パターンの位置と、を一致させることができる。
第1の実施の形態に係る偏光光照射装置1の概略を示す斜視図である。 偏光光照射装置1の概略を示す正面図であり、一部を拡大した図である。 フライアイレンズ214を光軸Axと略直交する方向からみたときの概略図である。 マスク32に形成された光透過領域を説明する図であり、マスク32を平面視したときの概略図である。 偏光光照射装置1の電気的な構成を示すブロック図である。 フライアイレンズ214に入射する光の強さS1を示すグラフであり、フライアイレンズ214のyw平面上の位置と光の強さとの関係を示したものである。 図6に示す光の強さS1を、フライアイレンズ214のy方向の位置毎に、w方向に延びる線に沿って光量を加算した結果(光の強さS2)である。 表1におけるワークWの位置が125の場合において、光透過領域32aを通過した理想的な入射光と、表1に示す実際の入射光とを比較した図である。 ワークWのy方向の位置とシフト量との関係を示すグラフである。 (A)は、従来のマスク32’(露光パターンを形成したい位置と光透過領域の位置とが光軸方向に略沿っている)を用いた場合における、光透過領域32aと露光パターンの位置との関係を模式的に示す図であり、(B)は、従来のマスク32’をA倍に拡大したマスク32を用いた場合における、光透過領域32aと露光パターンの位置との関係を模式的に示す図である。 ランプ211aと反射鏡211bとの距離を変化させたときの照度及び均一度を示す図である。 デクリネーション角とワークWの位置との関係を示す図である。 デクリネーション角を考慮したときの、ワークWのy方向の位置とシフト量との関係を示すグラフである。 マスク32Aを用いた場合における、ワークWとマスク32との関係を模式的に示す図である。 フライアイレンズ112へ平行光が入射する場合における理想的な光の経路を説明する図である。 フライアイレンズ112へ平行光が入射する場合における実際の光の経路を説明する図である。 光軸に対して傾いた光が照射されたときの露光パターンの位置ずれについて説明する図である。
以下、本発明の実施形態を、図面を参照して詳細に説明する。以下、光源から出射された光を、光の強度分布を均一にするフライアイレンズ、フライアイレンズを通過した光を平行光にするコリメート手段、偏光子等を通過させて、露光対象物であるワークW(例えば、表面に配向材料膜が形成されたガラス基板)の被露光面に偏光光を照射して光配向処理を行い、液晶パネル等の配向膜を生成する偏光光照射装置を例示して説明する。光配向処理とは、直線偏光紫外線を高分子膜上に照射して、膜内の分子の再配列や異方的な化学反応を誘起することで、膜に異方性を持たせる処理である。
<光学系の特性>
まず、偏光光照射装置における光学系の特性について説明する。図15は、フライアイレンズ112へ平行光が入射する場合における理想的な光の経路を説明する図である。説明のため、フライアイレンズ112は、3個のレンズ112a、112b、112cから構成されるものとする。フライアイレンズ112とコンデンサレンズ116は、f値が同一となるように、すなわち、フライアイレンズ112の後側焦点位置とコンデンサレンズ116の前側焦点位置とが一致するように配置される。
入射光は、レンズ112a、112b、112cにそれぞれ入射する。レンズ112aを通過した光113と、レンズ112bを通過した光114と、レンズ112cを通過した光115は、レンズ112a、112b、112cごとに集光され、コンデンサレンズ116を介してワークWに照射される。
レンズ112aの上端を通過する光113aと、レンズ112bの上端を通過する光114aと、レンズ112cの上端を通過する光115aとは、それぞれワークWの露光エリアの下端の点Waに入射される。レンズ112aの中央を通過する光113bと、レンズ112bの中央を通過する光114bと、レンズ112cの中央を通過する光115bとは、それぞれワークWの露光エリアの中央の点Wbに入射される。レンズ112aの下端を通過する光113cと、レンズ112bの下端を通過する光114cと、レンズ112cの下端を通過する光115cとは、それぞれワークWの露光エリアの上端の点Wcに入射される。
レンズ112bの中心は光軸Axと略一致するため、レンズ112bからの出射する光114は、光軸Axに対して平行に点Wa、Wb、Wcに入射する。光113と光114とのなす角度θ、光114と光115とのなす角度θは、コリメーション半角である。
図15において、点Wa、Wb、Wcに入射する光の重心位置とその光の向きを光La、Lb、Lcとして示す。図15に示す理想的な光の経路においては、光113、114、115の強さは略同一である。したがって、光La、Lb、Lcは、光114と同様、光軸Axと略平行である。
しかしながら、実際には、レンズ112a、112b、112cに入射する光の光強度分布が均一でなく、入射光は、端近傍(レンズ112aの上端及びレンズ112cの下端の近傍)では弱く、光軸Axに近づくにつれて強くなる。図16は、フライアイレンズ112へ光強度分布が均一でない光が入射する場合における実際の光の経路を説明する図である。図16において、強い光を実線で示し、弱い光を破線で示す。
図16において、点Wa、Wcに入射する光の重心位置とその光の向きを光La’、Lc’として示す。点Waへ入射する光のうち、光113aは弱く、光115aは強い。また、点Wcに入射する光のうち、光113cは強く、光115cは弱い。つまり、点Wa、Wcに照射される光のうち、外向きの光は弱く、内向きの光は強い。したがって、光La’、Lc’は、見かけ上光軸Axに対して傾く。
光La’、Lc’が光軸Axに対して傾くことで、光La’、Lc’によって露光される露光パターンの位置は、それぞれ点Wa、Wcよりも光軸Ax側にシフト量Sだけ移動する。本発明は、シフト量分だけ露光パターンの位置をずらし、ワークW上に露光される露光パターンの位置を本来形成されるべき位置と略一致させるものである。
<第1の実施の形態>
図1は第1の実施の形態に係る偏光光照射装置1の概略を示す斜視図である。以下、ワークWの搬送方向(すなわち、走査方向)Fをx方向とし、搬送方向Fに直交する方向をy方向とし、鉛直方向をz方向とする。
偏光光照射装置1は、主として、ワークWを搬送する搬送部10と、露光光を出射する光照射部20と、マスクユニット30と、を備える。
搬送部10は、主として、上面11aにワークWが載置されるステージ11と、ステージを駆動する駆動部12(図5参照)と、ステージ11の位置を測定する位置検出部13(図5参照)と、を有する。
駆動部12は、ステージ11を水平方向に移動させる水平駆動部12a(図5参照)と、ステージ11を回転させる回転駆動部12b(図5参照)と、を有する。水平駆動部12aは、図示しないアクチュエータおよび駆動機構を有し、ステージ11を搬送方向Fに沿って移動させる。回転駆動部12bは、図示しないアクチュエータおよび駆動機構を有し、ステージ11を略180°回転させる。ステージ11は、回転駆動部12bにより、光照射部21(後に詳述)と光照射部22(後に詳述)との間で略180°回転される。
位置検出部13は、例えばセンサやカメラである。ステージ11が搬送方向Fに移動する際には、位置検出部13によりステージ11の位置が検出される。
光照射部20は、ワークWに光を照射する。光照射部20は、主として、x方向に沿って設けられる2つの光照射部21、22を有する。
図2は、偏光光照射装置1の概略を示す正面図であり、一部を拡大した図である。図2においては、光照射部21の要部を透視している。光照射部21と光照射部22とは同一の構成であるため、光照射部22についての説明を省略する。
光照射部21は、主として、光源211と、ミラー212、213と、フライアイレンズ214と、コンデンサレンズ215と、偏光ビームスプリッタ(Polarizing Beam Splitter、PBS)216と、を有する。光照射部21は、ステージ11の上面11aに対して斜め方向(z方向に対して傾いた(例えば、略50度から略70度傾いた)方向)からワークWへ偏光光を照射する。
光源211は、主として、ランプ211aと、ランプ211aの背面側に設けられた反射鏡211bと、を有する。ランプ211aは、例えば水銀灯であり、偏光していない光(例えば、紫外光)を出射する。なお、ランプ211aには、キセノンランプ、エキシマランプ、紫外LED等を用いることもできる。反射鏡211bは、例えば楕円反射鏡であり、ランプ211aの光を前方に反射させる。
ランプ211aから照射された光は、反射鏡211bで反射され、ミラー212、213で向きが変えられて、フライアイレンズ214へ導かれる。図2における二点鎖線は光の経路を示し、矢印は光の進行方向を示す。ランプ211aから照射され、フライアイレンズ214へ導かれる光は、光軸を含む中心部の光の強度が周縁部よりも強い(後に詳述)帯状の光であるが、図2においては光軸Axの位置のみを示す。
フライアイレンズ214は、光入射側レンズアレイ214aと光出射側レンズアレイ214bとが対向して設けられる。光入射側レンズアレイ214aと光出射側レンズアレイ214bとは、それぞれ、複数の小さなレンズ(単位レンズ)を有する。
図3は、フライアイレンズ214を光軸Axと略直交する方向からみたときの概略図である。図3において、上向きが+y方向であり、y方向と略直交する方向をw方向とする。図3の右側に示す数値は、フライアイレンズ214のy方向の位置を示し、光軸Axと重なる位置を0とする。yw平面は、光軸Axと略直交する平面である。
単位レンズ214cは、略矩形形状であり、長手方向がy方向と略平行である。単位レンズ214cは、yw平面に沿ってマトリクス状に配置される。y方向に並べられた単位レンズ214cの数は4個であり、w方向に並べられた単位レンズ214cの数は5個以上(例えば10個)である。
以下、w方向の任意の位置(ここでは、最も−w側)にある単位レンズ214cを、+y側から順にレンズFE1、FE2、FE3、FE4とする。
図3においては、光入射側レンズアレイ214aの単位レンズ214cのみを図示するが、光出射側レンズアレイ214bの単位レンズは、紙面奥側の単位レンズ214cと重なる位置に設けられる。
コンデンサレンズ215は、複数のレンズを組み合わせて構成されたものであり、光を集光させるためのレンズである。フライアイレンズ214を通過した光は、コンデンサレンズ215で集光されて、PBS216に導かれる。
PBS216は、入射光をS偏光とP偏光とに分離する光学素子であり、S偏光を反射させ(図2点線矢印参照)、P偏光を透過させる。
マスクユニット30は、光照射部21、22からワークWへ照射される偏光光の光路上にそれぞれ設けられる。光照射部21、22からワークWへ偏光光が照射されるときに、マスクユニット30と上面11aとが隣接する。
マスクユニット30は、主として、マスク32と、マスク保持部35と、を有する。マスク32は、略板状の部材であり、平面視が略矩形形状である。マスク32は、マスク保持部35により上面11aと略平行に保持される。また、マスク32は、マスク保持部35により、x方向、y方向、z方向、θ方向にそれぞれ駆動される。
図4は、マスク32を平面視したときの概略図である。マスク32は、x方向に沿った帯状の光透過領域32aと、x方向に沿った帯状の遮光領域32bと、を有する。光透過領域32aと遮光領域32bとは、x方向と略直交する方向(y方向)に沿って交互に設けられる。PBS216を透過したP偏光は、光透過領域32aを透過してワークWに照射される。
図5は、偏光光照射装置1の電気的な構成を示すブロック図である。偏光光照射装置1は、主として、制御部101、記憶部102、入力部103、出力部104を含んで構成される。
制御部101は、演算装置であるCPU(Central Processing Unit)等のプログラム制御デバイスであり、記憶部102に格納されたプログラムにしたがって動作する。本実施の形態では、制御部101は、ランプ211aの点灯や消灯を制御する光源制御部101a、駆動部12を制御してステージ11を移動又は回転させる駆動制御部101b、位置検出部13における測定結果を取得してステージ11やステージ11に載置されたワークWの位置を求める位置決定部101c等として機能する。なお、ステージ11の移動及び位置決めは、すでに公知の技術であるため、説明を省略する。
記憶部102は、揮発性メモリ、不揮発性メモリ等であり、制御部101によって実行されるプログラム等を保持するとともに、制御部101のワークメモリとして動作する。
入力部103は、キーボードやマウス等の入力デバイスを含む。出力部104は、ディスプレイ等である。
次に、このように構成された偏光光照射装置1の動作について、図1を用いて説明する。駆動制御部101bは、水平駆動部12aを介してステージ11を搬送方向F(+x方向)に沿って移動させる。
位置決定部101cにより、光照射部21からのP偏光が照射される領域(光照射領域EA1)にワークWが差し掛かったことが求められると、光源制御部101aは、光照射部21のランプ211aを点灯する。その状態のまま、駆動制御部101bはステージ11を搬送方向Fに移動させる。これにより、光照射部21からの光(P偏光)が連続的にワークWに照射される。このとき、偏光光は、ワークW上に帯状に照射される。
位置決定部101cによりワークWが光照射領域EA1を通り過ぎたことが求められると、光源制御部101aは、光照射部21のランプ211aを消灯する。その状態のまま、駆動制御部101bはステージ11を搬送方向Fに移動させる。
位置決定部101cによりステージ11の位置が光照射部21と光照射部22との間にあることが求められると、駆動制御部101bは、回転駆動部12bを介してステージ11を略180度回転させる(図1の矢印R参照)。
ステージ11の回転後、駆動制御部101bはステージ11を搬送方向Fに移動させる。位置決定部101cにより、光照射部22からのP偏光が照射される領域(光照射領域EA2)にワークWが差し掛かったことが求められると、光源制御部101aは、光照射部22のランプ211aを点灯する。その状態のまま、駆動制御部101bはステージ11を搬送方向Fに移動させる。これにより、光照射部22からの光(P偏光)が連続的にワークWに帯状に照射される。このとき光が照射される領域は、光照射部21からの光が照射されなかった領域である。
位置決定部101cによりワークWが光照射領域EA2を通り過ぎたことが求められると、光源制御部101aは、光照射部21のランプ211aを消灯する。その後、制御部101は一連の処理を終了する。
偏光光照射装置1は、光照射領域EA1、EA2においてワークWに光を照射するときに、シフト量分だけ露光パターンの位置をずらし、ワークW上に露光される露光パターンの位置を本来形成されるべき位置と略一致させる点に特徴がある。以下、この点について詳細に説明する。
図6は、フライアイレンズ214に入射する光の強さS1を示すグラフであり、フライアイレンズ214のyw平面上の位置と光の強さとの関係を示したものである。図6において、縦方向が光の強さを示し、下側の矩形がフライアイレンズ214の位置を模式的に示す。下側の数値は光軸Axを中心としたw方向の位置であり、右側の数値は光軸Axを中心としたy方向の位置である。
光は、フライアイレンズ214の全面に入射する。フライアイレンズ214へ導かれる光は、中心部の光の強度が、周縁部よりも強い。
図7は、図6に示す光の強さS1を、フライアイレンズ214のy方向の位置毎に、w方向に延びる線に沿って光量を加算した結果(光の強さS2)である。図7において、横軸はフライアイレンズ214のy方向の位置(図3右側の数値に相当)を示し、縦軸は光量を加算した結果(光の強さ)を示す。
図7に示す光の強さS2は、偏光光照射装置1においてワークWが搬送方向Fに移動されながら光照射領域EA1、EA2を通過する間に、レンズFE1、FE2、FE3、FE4(図3参照)に入射する光の総量とy方向の位置との関係を示す。
レンズFE1、FE2、FE3、FE4に入射する入射光は、y方向の両端近傍は弱く、光軸Ax(y=0)に近づくにつれて光が強くなる。したがって、光軸Ax上の位置以外の位置では、ワークWへ入射する光のうち、外向きの光は弱く、内向きの光は強い(図15参照)。その結果、ワークWの各位置に入射する光の重心の向きが光軸Axに対して傾き、露光位置がシフト量だけずれる(図15参照)。
表1は、フライアイレンズ214の位置及び光の強さと、ワークWのy方向の位置と、シフト量と、の関係を説明する図である。
Figure 0006755472
表1について説明する。「位置」は、レンズFE1、FE2、FE3、FE4(図3参照)におけるy方向の位置を示し、1が+y側、13が−y側である。「光量」は、レンズFE1、FE2、FE3、FE4の各位置1〜13における総入射光量を示す。「照射位置オフセット」は、ワークWとマスク32との隙間が200μm(マイクロメートル)のときの、コリメーション半角(図15参照)による露光位置のy方向のズレを示すものである。
「ワークWの位置」は、レンズFE1、FE2、FE3、FE4の各位置1〜13における光が、ワークWのどの位置(y方向の位置)に入射するかを示す。「シフト量」は、ワークWの位置毎のシフト量を示し、数式(1)により求められる。
[数1]
シフト量=(FE1の光量×FE1の照射位置オフセット+FE2の光量×FE2の照射位置オフセット+FE3の光量×FE3の照射位置オフセット+FE4の光量×FE4の照射位置オフセット)/(FE1の光量+FE2の光量+FE3の光量+FE4の光量) ・・・(1)
ワークW上の任意の位置(位置Pとする)におけるシフト量は、位置Pの光量とシフト量との積をFE1、FE2、FE3、FE4毎に算出してこれらを加算したものを、位置PにおけるFE1、FE2、FE3、FE4の光量の和で除算することにより算出される。シフト量は、光軸Az上(表1において、ワークWの位置=0のとき)で0であり、ワークWの端に行くにつれて(表1においてワークWの位置として示す値の絶対値が大きくなるにつれて)大きくなる。
図8は、表1におけるワークWの位置が125の場合において、光透過領域32aを通過した理想的な入射光と、実際の入射光とを比較した図である。図8の横軸は、y方向の位置であり、ワークWの位置が125の位置を0とし、右側に行くにつれて光軸Axに近くなり、左側に行くにつれて光軸Axから遠ざかる。図8の縦軸は、最も光が強いところの光の強さを1としたときの光の強さを相対値で示す。
図8において実線で示す理想的な入射光の重心(図8におけるy=0)に対し、図8において点線で示す実際の入射光の重心(図8の一点鎖線参照)は、光軸Axのほうへシフト量だけずれている(図8の矢印参照)。
なお、図8において実線で示す理想的な入射光の位置は、マスク32の光透過領域32aの位置と同じである。
本実施の形態では、シフト量だけ露光パターンの位置をずらすように、マスク32に設ける光透過領域32aの位置を調整する。具体的には理想的な入射光の重心と、実際の入射光の重心とを一致させるためには、光透過領域32aの位置を、シフト量の絶対値だけ光軸Axから遠ざかる方向へ平行移動させる。例えば、図8において、光透過領域32aをシフト量だけ−y方向に移動させると、実際の入射光の重心(図8の一点鎖線参照)の位置がシフト量だけ−y方向に移動してy=0と重なる。
その結果、シフト量だけ露光パターンの位置がずれ、ワークW上に露光される露光パターンの位置が本来形成されるべき位置と略一致する。
図9は、ワークWのy方向の位置とシフト量との関係を示すグラフである。横軸は表1における「ワークWの位置」であり、縦軸は表1における「シフト量」である。
図9に示すように、ワークWのy方向の位置とシフト量とは比例関係にある。光透過領域32aをシフト量の絶対値だけ光軸Axから遠ざかる方向へ平行移動させると、光透過領域32aと光軸Axとの距離は、その光透過領域32aを通過した光が形成する露光パターンの位置と光軸Axとの距離のA(Aは1以上の数)倍となる。言い換えると、マスク32の大きさは、ワークWの露光領域の大きさのA倍である。図9に示す場合(ワークWとマスク32との隙間が200μm)は、グラフの傾きが−0.0064であるため、Aは1.0064(1+0.0064)となる。
図10(A)は、従来のマスク32’(本来形成されるはずの露光パターンW1、W2、W3と光透過領域32aとが光軸方向に略沿っている)を用いた場合における、光透過領域32aと露光パターンの位置との関係を模式的に示す図であり、図10(B)は、従来のマスク32’をA倍に拡大したマスク32を用いた場合における、光透過領域32aと露光パターンの位置との関係を模式的に示す図である。図10では、入射光を矢印で示す。また、図10において、紙面左右方向がy方向である。
図10(A)に示す場合は、本来形成されるはずの露光パターンW1、W2、W3と、光透過領域32aのy方向の位置が略一致しているため、ワークW上に露光される露光パターンの位置がシフト量だけずれている。
それに対し、図10(B)では、光透過領域32aの位置が、本来形成されるはずの露光パターンW1、W2、W3の位置より外側(光軸Axからの距離が遠い)にあり、光透過領域32aと光軸Axとの距離は、露光パターンW1、W2、W3と光軸Axとの距離d1、d2、d3のA倍である。したがって、露光パターンW1、W2、W3が本来の位置に形成される。
本実施の形態によれば、光透過領域32aと光軸Axとの距離を、その光透過領域32aを通過した光により形成される露光パターンと光軸Axとの距離のA倍とすることで、シフト量だけ露光パターンの位置をずらし、本来露光パターンが形成されるべき位置と、実際に露光される露光パターンの位置と、を一致させることができる。特に、本実施の形態は、単位レンズの搬送方向に略直交する方向(y方向)の配設数が少ない(ここでは、4個)場合に効果的である。
また、本実施の形態によれば、光透過領域32aの位置を調整することで、本来露光パターンが形成されるべき位置と、実際に露光される露光パターンの位置と、を一致させるため、フライアイレンズ及びコンデンサレンズが1組でよく、装置の大型化を防ぐとともに、製造コストを下げることができる。
なお、本実施の形態では、マスク32の大きさはワークWの露光領域の大きさのA倍であるが、Aは固定値ではなく、マスク32とワークWとの距離に依存する値である。つまり、Aは、マスク32とワークWとの距離(以下、ギャップという)が大きくなると大きくなり、ギャップが小さくなると小さくなる。ただし、Aは1以下にはならない。
また、同じマスク32を用いたとしても、ギャップを変化させると、シフト量が変化する。したがって、ワークWの露光領域の大きさより大きいマスク32を用い、かつ、マスク保持部35によりマスク32をz方向に移動させることで、シフト量分だけ露光パターンの位置をずらしてもよい。これにより、ギャップが異なる場合でも、同じマスク32でシフト量分だけ露光パターンの位置をずらすことができる。
また、本実施の形態では、光透過領域32aと光軸Axとの距離が、その光透過領域32aを通過した光が形成する露光パターンと光軸Axとの距離のA倍となるマスク32を用いてシフト量分だけ露光パターンの位置をずらしたが、フライアイレンズ214に入射する光の強度分布を均一に近づけることで露光パターンの位置をずらす方法も考えられる。
この場合には、ランプ211aを光軸Axに沿って移動させる図示しないランプ移動部を有する。ランプ移動部は、公知の移動機構とアクチュエータとを有する。
図11は、ランプ211aと反射鏡211bとの距離を変化させたときの照度及び均一度を示す図である。図11において、ランプ位置は、ランプ211aと反射鏡211bとの距離であり、照度は、ランプ位置が基準位置にあるときのフライアイレンズ214に入射する光の総量を100%としたときの、フライアイレンズ214に入射する光の総量であり、均一度は、フライアイレンズ214に入射する光の最も強い光と最も弱い光との比である。また、図11において、強度分布は、反射鏡211bから出射する光の強度分布を示すグラフであり、このグラフの中央部分の領域がフライアイレンズ214に入射する。
標準位置は、ランプ211aと反射鏡211bとの距離が図2に示す位置にある場合であり、図6に示すグラフは、図11の基準位置における強度分布のグラフの中央部分を拡大したものである。
ランプ位置が+1mm、+3mm、−1mm、−3mmの場合とは、それぞれ、ランプ211aと反射鏡211bとの距離を1mm遠ざけた場合、ランプ211aと反射鏡211bとの距離を3mm遠ざけた場合、ランプ211aと反射鏡211bとの距離を1mm近づけた場合、ランプ211aと反射鏡211bとの距離を3mm近づけた場合である。ランプ位置を+3mm、−3mmとすることで、フライアイレンズ214に入射する光の強度分布が均一に近づく。
しかしながら、ランプ位置が+3mm、−3mmの場合は、それぞれ、ランプ位置が基準位置にあるときの71%以下、58%以下の光しか使うことができない。したがって、ランプ211aを移動させるよりも、光透過領域32aの位置を調節することでシフト量だけ露光パターンの位置をずらすことが望ましい。ただし、光透過領域32aと光軸Axとの距離が、その光透過領域32aを通過した光が形成する露光パターンと光軸Axとの距離より大きいマスクを用いつつ、ランプ211aを光軸方向に移動させてもよい。2つの方法を併用することで、効率よく露光パターンの位置をずらすことができる。
<第2の実施の形態>
第1の実施の形態は、光透過領域32aと光軸Axとの距離は、その光透過領域32aを通過した光が形成する露光パターンと光軸Axとの距離のA倍であったが、光透過領域32aの配置はこれに限られない。
第2の実施の形態は、デクリネーション角を考慮したマスクを用いる形態である。以下、第2の実施の形態に係る偏光光照射装置について説明する。なお、第1の実施の形態に係る偏光光照射装置1とは、マスク以外同一であるため、以下、第2の実施の形態に係る偏光光照射装置で用いられるマスク32Aについてのみ説明する。
まず、デクリネーション角について説明する。デクリネーション角とは、コンデンサレンズ215の球面収差によりコンデンサレンズ215の周辺部を通過した光が光軸に対して傾くときの、これらのなす角度である。デクリネーション角は、照射領域の最周縁部で最大となるとは限られず、その大きさ及び発生状況はレンズの特性によって決まる。
図12は、デクリネーション角とワークWの位置との関係を示す図である。図12において、横軸がワークWのy方向の位置であり、縦軸がデクリネーション角である。図3は、デクリネーション角は、照射領域の中心部で小さく周縁部で大きくなっている。そして、デクリネーション角が最大となるのは、最周縁部から僅かに内側に入った領域においてである。
なお、デクリネーション角はレンズに依存するため、図12に示すデクリネーション角は一例であり、コンデンサレンズ215の形状等が異なれば図12に示すグラフも変化する。
図13は、デクリネーション角を考慮したときの、ワークWのy方向の位置とシフト量との関係を示すグラフである。図13のグラフは、図9に示すグラフに、図12に示すデクリネーション角によるシフト量を加算することにより求められる。
図14は、マスク32Aを用いた場合における、光透過領域32aと露光パターンの位置との関係を模式的に示す図である。図14に示すように、マスク32Aにおける光透過領域32aと光軸Axとの距離は、その光透過領域32aを通過した光が本来形成するはずの露光パターンと光軸Axとの距離に、その露光パターンの位置における図13に示すシフト量を加算した距離となる。
本実施の形態によれば、デクリネーション角による影響が無視できない場合においても、本来露光パターンが形成されるべき位置と、実際に露光される露光パターンの位置と、を一致させることができる。
以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。
本発明は、偏光光照射装置に限らず、様々な種類の光照射装置に適用することができる。例えば、偏光素子は必須ではなく、偏光していない光をワークWに照射する装置も本発明に含まれる。また、本実施の形態では2つの光照射部21、22を有したが、光照射部は1つでもよい。
また、本発明において、「略」とは、厳密に同一である場合のみでなく、同一性を失わない程度の誤差や変形を含む概念である。例えば、略平行、略直交とは、厳密に平行、直交の場合には限られない。また、例えば、単に平行、直交等と表現する場合においても、厳密に平行、直交等の場合のみでなく、略平行、略直交等の場合を含むものとする。また、本発明において「近傍」とは、例えばAの近傍であるときに、Aの近くであって、Aを含んでも含まなくてもよいことを示す概念である。
1 :偏光光照射装置
10 :搬送部
11 :ステージ
11a :上面
12 :駆動部
12a :水平駆動部
12b :回転駆動部
13 :位置検出部
20、21、22 :光照射部
30 :マスクユニット
32、32A、32’ :マスク
32a :光透過領域
32b :遮光領域
35 :マスク保持部
101 :制御部
101a :光源制御部
101b :駆動制御部
101c :位置決定部
102 :記憶部
103 :入力部
104 :出力部
111 :フォトマスク
111a :開口部
112 :フライアイレンズ
112a、112b、112c :レンズ
113、113a、113b、113c:光
114、114a、114b、114c:光
115、115a、115b、115c:光
116 :コンデンサレンズ
211 :光源
211a :ランプ
211b :反射鏡
212、213 :ミラー
214 :フライアイレンズ
214a :光入射側レンズアレイ
214b :光出射側レンズアレイ
214c :単位レンズ
215 :コンデンサレンズ
216 :PBS

Claims (4)

  1. 基板の走査方向である第1方向に沿って帯状に露光パターンを形成する光照射装置であって、
    光を出射する光源と、
    前記第1方向に沿った帯状の光透過領域と前記第1方向に沿った帯状の遮光領域とが前記第1方向と略直交する第2方向に沿って交互に設けられたマスクと、
    前記光源から出射された光を平行光にして前記マスクに照射するコリメート手段と、
    前記光源と前記コリメート手段との間に配設され、前記マスクに照射される光の強度分布を均一にするフライアイレンズと、
    を備え、
    記第2方向において、前記光透過領域の位置を、光軸上で0であり、前記基板の端に行くにつれて大きくなるシフト量の絶対値だけ前記光軸から遠ざかる方向へ平行移動させる
    ことを特徴とする光照射装置。
  2. 前記基板を載置するステージと、
    前記マスクを、前記ステージの上面と略直交する方向に沿って移動させるマスク移動部と、
    を備えたことを特徴とする請求項1に記載の光照射装置。
  3. 前記光源は、光を出射するランプと、前記ランプの背面側に設けられた反射鏡と、を有し、
    前記ランプを前記光軸に沿って移動させるランプ移動部を備えたことを特徴とする請求項1又は2に記載の光照射装置。
  4. 前記フライアイレンズは、マトリクス状に配置された複数の単位レンズを有し、
    前記基板の任意の位置における前記シフト量は、前記任意の位置における光量と、前記単位レンズの端近傍の入射光が弱いことで光の重心の向きが傾くことによる露光位置のズレとの積を前記単位レンズ毎に算出してこれらを加算したものを、前記任意の位置における前記単位レンズの光量の和で除算することにより算出される
    ことを特徴とする請求項1から3のいずれか一項に記載の光照射装置。
JP2017081272A 2017-04-17 2017-04-17 光照射装置 Expired - Fee Related JP6755472B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017081272A JP6755472B2 (ja) 2017-04-17 2017-04-17 光照射装置
PCT/JP2018/015062 WO2018193913A1 (ja) 2017-04-17 2018-04-10 光照射装置
CN201880019554.2A CN110462503B (zh) 2017-04-17 2018-04-10 光照射装置
TW107112274A TW201839523A (zh) 2017-04-17 2018-04-10 光照射裝置
KR1020197026314A KR20190139204A (ko) 2017-04-17 2018-04-10 광조사 장치
US16/572,213 US20200012158A1 (en) 2017-04-17 2019-09-16 Light irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017081272A JP6755472B2 (ja) 2017-04-17 2017-04-17 光照射装置

Publications (2)

Publication Number Publication Date
JP2018180367A JP2018180367A (ja) 2018-11-15
JP6755472B2 true JP6755472B2 (ja) 2020-09-16

Family

ID=63855787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017081272A Expired - Fee Related JP6755472B2 (ja) 2017-04-17 2017-04-17 光照射装置

Country Status (6)

Country Link
US (1) US20200012158A1 (ja)
JP (1) JP6755472B2 (ja)
KR (1) KR20190139204A (ja)
CN (1) CN110462503B (ja)
TW (1) TW201839523A (ja)
WO (1) WO2018193913A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111108000B (zh) * 2017-09-22 2021-10-12 富士胶片株式会社 图像曝光装置
KR20240030197A (ko) 2022-08-30 2024-03-07 유니램 주식회사 광 조사 장치

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59160134A (ja) * 1983-03-04 1984-09-10 Canon Inc 照明光学系
JP4345331B2 (ja) * 2003-03-17 2009-10-14 セイコーエプソン株式会社 遮光手段を用いた露光装置及び露光方法
JP2006278960A (ja) * 2005-03-30 2006-10-12 Canon Inc 露光装置
JP5688730B2 (ja) * 2010-09-17 2015-03-25 株式会社ブイ・テクノロジー 露光装置
JP2012123207A (ja) * 2010-12-08 2012-06-28 Hitachi High-Technologies Corp 露光装置及び露光方法
CN103782230B (zh) * 2011-08-29 2017-03-01 夏普株式会社 液晶显示装置的制造方法
CN102269925B (zh) * 2011-09-09 2012-10-03 北京理工大学 一种基于Abbe矢量成像模型的相移掩膜优化方法
JP5963194B2 (ja) * 2012-07-17 2016-08-03 株式会社ブイ・テクノロジー 露光装置
JP2016071009A (ja) * 2014-09-29 2016-05-09 株式会社村田製作所 直描型露光装置

Also Published As

Publication number Publication date
WO2018193913A1 (ja) 2018-10-25
CN110462503A (zh) 2019-11-15
KR20190139204A (ko) 2019-12-17
TW201839523A (zh) 2018-11-01
JP2018180367A (ja) 2018-11-15
US20200012158A1 (en) 2020-01-09
CN110462503B (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
KR101245785B1 (ko) 조명 시스템 및 리소그래피 장치
JP5704591B2 (ja) 配向処理方法及び配向処理装置
TWI585541B (zh) A substrate processing apparatus, an element manufacturing system, and an element manufacturing method
JP2008164729A (ja) 光照射器及び光照射装置並びに露光方法
KR101743810B1 (ko) 광조사 장치 및 묘화 장치
JP2008530788A (ja) マイクロリソグラフィ投影露光装置
JP6755472B2 (ja) 光照射装置
TW512251B (en) Irradiation device for polarized light for optical alignment of a liquid crystal cell element
JPH06118623A (ja) レチクル及びこれを用いた半導体露光装置
JP4999827B2 (ja) リソグラフィ装置
JP2007072371A (ja) 露光装置
JP2011053584A (ja) 光照射装置
US9772566B2 (en) Mask alignment mark, photomask, exposure apparatus, exposure method, and manufacturing method of device
JPH09186082A (ja) 走査露光方法
TW201407295A (zh) 照明裝置、處理裝置、及元件製造方法
JP2009182191A (ja) 露光照明装置
JP2009157325A (ja) 露光照明装置及び露光パターンの位置ずれ調整方法
US20140168623A1 (en) Exposure apparatus, exposure method, and method of manufacturing device
JP2021096300A (ja) 露光装置
WO2018139274A1 (ja) 偏光光照射装置及び偏光光照射方法
JP2008172272A (ja) マイクロリソグラフィ投影露光装置
JP2009145452A (ja) 光照射装置
JP4626719B2 (ja) 照明光学装置、投影露光装置、露光方法及びデバイス製造方法
JP2014038178A (ja) 光配向露光装置
TW201250151A (en) Light irradiation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200727

R150 Certificate of patent or registration of utility model

Ref document number: 6755472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees