JP6747974B2 - Rna誘導型遺伝子ドライブ - Google Patents

Rna誘導型遺伝子ドライブ Download PDF

Info

Publication number
JP6747974B2
JP6747974B2 JP2016545854A JP2016545854A JP6747974B2 JP 6747974 B2 JP6747974 B2 JP 6747974B2 JP 2016545854 A JP2016545854 A JP 2016545854A JP 2016545854 A JP2016545854 A JP 2016545854A JP 6747974 B2 JP6747974 B2 JP 6747974B2
Authority
JP
Japan
Prior art keywords
chromosome
nucleic acid
sequence
acid sequence
rna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016545854A
Other languages
English (en)
Other versions
JP2017511685A5 (ja
JP2017511685A (ja
Inventor
ケビン エム. エスベルト、
ケビン エム. エスベルト、
アンドレア、 エル. スマイドラー、
アンドレア、 エル. スマイドラー、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harvard College
Original Assignee
Harvard College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harvard College filed Critical Harvard College
Publication of JP2017511685A publication Critical patent/JP2017511685A/ja
Publication of JP2017511685A5 publication Critical patent/JP2017511685A5/ja
Application granted granted Critical
Publication of JP6747974B2 publication Critical patent/JP6747974B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/905Stable introduction of foreign DNA into chromosome using homologous recombination in yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Description

関連出願データ
本願は、2014年1月8日に提出された米国仮特許出願第61/924,735号、および2014年7月15日に提出された米国仮特許出願第62/024,642号に基づく優先権を主張するものであり、あらゆる目的のために、その全体が参照により本明細書に組み入まれる。
遺伝子ドライブ(gene drive)は、子孫(progeny)にそれらの遺伝が有利に遺伝して受け継がれるように天然のオッズを歪める遺伝因子として一般に知られる。例としては、それを欠く染色体中に自身をコピーするホーミングエンドヌクレアーゼ遺伝子、減数分裂中に競合染色体を破壊する分離ひずみ因子(segregation distorter)、ゲノム中の別の場所に自身のコピーを挿入するトランスポゾン、それを受け継がない競合する同胞(sibling)を排除するMedea因子、および細胞質不和合を引き起こして感染個体の拡散に有利に働くボルバキア(Wolbachia)などの母性遺伝性の微生物が挙げられる。これらは自然選択の通常のルールを回避するので、これらの因子は全て、媒介昆虫集団中に人工的変異を拡散させて疾患の拡大を阻止することができる潜在的「遺伝子ドライブ」システムと考えられてきた。マラリア蚊集団を遺伝的に制御する手段として、ホーミングエンドヌクレアーゼに基づく遺伝子ドライブが提唱されている。Windbichler et al., Nature, doi:10.1038/nature09937 (2011) 参照。自然母集団の制御および遺伝子操作のためのツールとして、部位特異的利己的遺伝子が提唱されている。Burt, Proc. R. Soc. Lond. B (2003) 270, 921-928 (2003) 参照。しかし、提唱されたこれらの遺伝子ドライブは、部位特異性が限定されているか、種々の生物中で発現させることが困難である。したがって、任意の所望の遺伝子を標的とし、幅広い生物に用いることが可能な遺伝子ドライブの開発が必要とされている。
本開示の態様は、RNA誘導型遺伝子ドライブ(RNA guided gene drive)に関し、特に所望の生物の生殖系列細胞中に安定に導入される外来核酸配列に関する。本明細書において、外来核酸配列という用語およびRNA誘導型遺伝子ドライブという用語は、本明細書中で交換可能に使用され得る。結果として生じるトランスジェニック生物は、生殖系列細胞から発生させてもよい。次に、結果として生じるトランスジェニック生物を野生型集団中に導入してもよく、トランスジェニック生物と野生型生物との交配によって、外来核酸配列が結果として生じる子(offspring)または子孫に移行する。結果的に、本開示の方法は、最初のトランスジェニック生物および野生型生物から、所望の形質を有するトランスジェニック生物の集団を作り出すことに関する。トランスジェニック生物が野生型集団中に導入され、野生型生物と交配した場合、生じた子孫は、改変野生型集団と呼ばれ得る。トランスジェニック子またはトランスジェニック子孫のゲノム中に外来核酸配列が安定的に導入された結果、トランスジェニック子またはトランスジェニック子孫は、外来核酸の発現の結果生じる1種類または複数種類の所望の形質を有し得る。ある態様によれば、本明細書に記載の方法は、トランスジェニック生物が外来核酸の発現の結果生じる1種類または複数種類の所望の形質を示す、改変されたトランスジェニック生物の野生型集団を作り出すために用いられ得る。
ある態様によれば、外来核酸配列は、RNA誘導型DNA結合タンパク質ヌクレアーゼ、RNA誘導型DNA結合タンパク質ニッカーゼ、またはヌクレアーゼ欠損(nuclease null)RNA誘導型DNA結合タンパク質のうちの1種類または複数種類などのRNA誘導型DNA結合タンパク質と、1種類以上または複数種類のガイドRNA(リボ核酸)とを少なくともコードする。ガイドRNAは、生殖系列細胞のゲノム中の標的DNAなどのDNA(デオキシリボ核酸)に相補的である。外来核酸配列はさらに、生殖系列細胞が、RNA誘導型DNA結合タンパク質およびガイドRNA、または外来核酸配列中に存在し得る任意の他の核酸配列もしくは遺伝子を発現し得るように、少なくとも1種類または複数種類のプロモーターをコードする。当業者は、本開示および具体的な生殖系列細胞に基づいて、好適なプロモーターを容易に特定可能であろう。外来核酸配列はまた、生殖系列細胞による外来核酸配列の発現に必要であることが当業者に知られる任意の他の1種類または複数種類の核酸配列を含んでいてもよい。外来核酸配列はまた、生殖系列細胞によって発現されることが望まれる任意の他の1種類または複数種類の遺伝子配列を含んでいてもよい。そのような1種類または複数種類の遺伝子配列は、「カーゴDNA(cargo DNA)」と呼ばれ得る。細胞が外来核酸配列を発現する場合に生殖系列細胞によってまたは生殖系列細胞から発生した生物によって示されることを当業者が望む所望の形質に応じて、1種類または複数種類の遺伝子配列を当業者は容易に特定し得ると理解されるであろう。外来核酸配列はまた、少なくともRNA誘導型DNA結合タンパク質ヌクレアーゼおよび1種類または複数種類のガイドRNAに隣接する少なくとも2つの隣接配列(flanking sequence)をコードする。当業者に知られるように、隣接配列は、特定の核酸配列が複数の隣接配列の間になるように、特定の核酸配列の両側に位置する。ある態様によれば、隣接配列は、選択された染色体上の対応する配列と同一の配列を少なくとも含む。ある態様によれば、そのような隣接配列により、相同組換えまたは非相同末端結合などのよく解明された機構を用いて、細胞が外来核酸配列をそのゲノムDNA中に切断部位で挿入することが可能になる。
ある態様によれば、外来核酸配列が生殖系列細胞によって発現される場合、RNA誘導型DNA結合タンパク質の1種類または複数種類、および1種類または複数種類のガイドRNAが産生される。RNA誘導型DNA結合タンパク質およびガイドRNAは、RNA誘導型DNA結合タンパク質と、ガイドRNAと、二本鎖DNA標的配列との複合体を形成する。この態様では、RNAは、DNA結合タンパク質を結合のために二本鎖DNA標的配列へとガイドすると考えられている。本開示のこの態様は、RNAおよびDNA結合タンパク質の二本鎖DNAへのまたは二本鎖DNAとの共局在と呼ばれることがある。
本開示の範囲内のDNA結合タンパク質は、二本鎖切断(double stranded break)を形成するDNA結合タンパク質(DNA結合タンパク質ヌクレアーゼと呼ばれることもある)、一本鎖切断を形成するDNA結合タンパク質(DNA結合タンパク質ニッカーゼと呼ばれる)、またはヌクレアーゼ活性を有さないが標的DNAに結合するDNA結合タンパク質(ヌクレアーゼ欠損DNA結合タンパク質と呼ばれる)を含み得る。このように、標的DNA部位で二本鎖切断を形成、標的DNA部位で一本鎖切断を形成、または細胞によって発現され得る転写調節タンパク質もしくはドメインを標的DNA部位に局在させて標的DNAの発現を調節するために、DNA結合タンパク質−ガイドRNA複合体が用いられ得る。ある態様によれば、外来核酸配列は、DNA結合タンパク質ヌクレアーゼ、DNA結合タンパク質ニッカーゼ、またはヌクレアーゼ欠損DNA結合タンパク質の1種類または複数種類をコードし得る。外来核酸配列はさらに、1種類または複数種類の転写調節タンパク質もしくはドメイン、またはゲノムDNA中に挿入することが意図される1種類または複数種類のドナー核酸配列をコードし得る。ある態様によれば、RNA誘導型ヌクレアーゼ欠損DNA結合タンパク質をコードする外来核酸配列は、RNA誘導型ヌクレアーゼ欠損DNA結合タンパク質に融合した転写調節タンパク質またはドメインをさらにコードする。ある態様によれば、1種類または複数種類のRNAをコードする外来核酸配列は、RNA結合ドメインの標的をさらにコードし、転写調節タンパク質またはドメインをコードする外来核酸は、転写調節タンパク質またはドメインに融合したRNA結合ドメインをさらにコードする。
したがって、生殖系列細胞による外来核酸配列の発現により、ゲノムDNAの二本鎖切断、一本鎖切断、および/または転写の活性化もしくは抑制が引き起こされ得る。ドナーDNAは、相同組換えまたは非相同末端結合などの細胞機構により、切断部位に挿入され得る。本明細書に記載されるように外来核酸配列の発現により、所望により、1種類または複数種類の遺伝子配列を含む標的ゲノムDNA中の種々の位置で、複数の二本鎖切断または一本鎖切断が生じ得ることが理解されるべきである。
本開示の態様は遺伝子ドライブとしての外来核酸配列の使用に関する。遺伝子ドライブの概念は当業者に周知であり、発現された場合に、導入された細胞のゲノム中に自身を挿入可能な外来核酸配列を指す。遺伝子ドライブの概念は、それぞれの全体が参照により援用されるWindbichler et al., Nature, doi:10.1038/nature09937 (2011) およびBurt, Proc. R. Soc. Lond. B (2003) 270, 921-928 (2003) に記載される。
本開示のある態様によれば、本明細書に記載の外来核酸配列は、生殖系列細胞中に導入された場合に遺伝子ドライブとして働く。ある態様によれば、外来核酸配列は、生殖系列細胞によって発現されてRNA誘導型DNA結合タンパク質およびガイドRNAを産生する。ガイドRNAは、染色体上の標的DNA配列に相補的である。RNA誘導型DNA結合タンパク質およびガイドRNAは、標的DNAに共局在し、標的DNAは部位特異的に切断される。標的DNAは、染色体対の一方または両方の染色体上の標的DNA部位であってもよい。次に、外来核酸配列は、例えば相同組換えにより、ゲノムDNA中に標的DNA切断部位で挿入される。RNA誘導型DNA結合タンパク質により各染色体が部位特異的に切断された場合、外来核酸配列は、染色体対の一方または両方の染色体のゲノムDNA中に挿入されてもよい。染色体対の両方の染色体に挿入された場合、生殖系列細胞は、外来核酸配列についてホモ接合型である。別の実施形態によれば、外来核酸配列は、染色体対の第1の染色体中に挿入される。次に、挿入された外来核酸配列が細胞によって発現され、RNA誘導型DNA結合タンパク質およびガイドRNAが染色体対の第2の染色体でまたは第2の染色体に共局在し、次に、第2の染色体は第1の染色体と同様に部位特異的に切断される。次に、第2の染色体中の切断された標的DNAは、例えば相同組換えにより、第1の染色体を鋳型に用いて修復される。このようにして、外来核酸配列を含むように第2の染色体が修復される結果、外来核酸配列についてホモ接合型、すなわち、染色体対の第1の染色体および第2の染色体の両方に外来核酸配列が存在する、生殖系列細胞が得られる。損傷を受けた、開裂された(cleaved)、または切断された(cut)ゲノムDNAを、細胞が修復する機構は周知である。本開示の態様は、細胞が外来遺伝物質についてホモ接合型となる、細胞のゲノムDNAに挿入する所望の外来遺伝物質を有する遺伝子ドライブを創出するために、これらの細胞機構を、DNA結合タンパク質ヌクレアーゼまたはニッカーゼと組み合わせて利用する。次に、外来遺伝物質は子孫へと受け継がれ、1種類または複数種類の所望の形質を有するトランスジェニック生物の集団が生じる。
遺伝子ドライブとして本明細書に記載されるような外来核酸配列の概念を用いて、外来遺伝物質を生物の野生集団に組み込む方法が提供される。外来遺伝物質について細胞をホモ接合型にする方法が提供される。生物の野生集団を通じて遺伝子改変を拡散する方法が提供される。人間が設計した遺伝子改変を生物の野生集団を通じて拡散する方法が提供される。生物の野生集団を通じて人間が設計した遺伝子改変を拡散することによる、パンゲノム工学(pan genome engineering)のための方法が提供される。野生種のゲノムを編集する方法が提供される。生物のゲノムDNAの複数の座位を編集する方法が提供される。ゲノム座位を多重編集する方法が提供される。生物のゲノムDNAの1つまたは複数の座位を可逆的に編集する方法が提供される。
本明細書に記載の遺伝子ドライブの所望の機能に基づいて、生物の野生型集団を通じた遺伝子流動(gene flow)を制御する方法が提供される。生物の標的集団の拡大を抑制する方法が提供される。生物の標的集団を減少させるか、または排除する方法が提供される。生物の標的集団を増加させる方法が提供される。マラリアなどの病原媒介生物による疾患(vector born disease)を減少させるか、または排除する方法が提供される。媒介昆虫集団などの標的生物による疾患の拡散を低減する方法が提供される。標的生物による疾患伝染の原因遺伝子を破壊する方法が提供される。生殖系列細胞中のY染色体を破壊する方法が提供される。生殖系列細胞中のX染色体を破壊する方法が提供される。侵入有害生物(invasive pest)を制御する方法が提供される。生態学的変化に脅かされている種を保存する方法が提供される。
ある態様によれば、(1)破壊された場合にその表現型が優性阻害(dominant negative)致死である遺伝子の再コード化コピーを、野生型コピーがコードされている同じ染色体の遠位領域(distal region)に挿入すること、および(2)同じ遺伝子の野生型バージョンに代わって自身をコピーする利己的遺伝因子(すなわち、本明細書に記載されるようなRNA誘導型遺伝子ドライブであり、遺伝子ドライブという用語は当業者に理解されている)を挿入することを含む、改変生物から野生型集団への遺伝子流動を阻止する方法が提供され、その結果、改変生物と改変生物との子の全てが、再コード化遺伝子の機能的コピーを2つ含み、一方、改変生物と野生型生物との子は、利己的遺伝因子が野生型コピーを置換した後には、再コード化遺伝子のコピーを1つのみ有し、野生型染色体上に再コード化遺伝子をコピーできなくなる。
ある態様によれば、固有配列を有する亜集団と残りの集団との間の遺伝子流動を阻止する方法であって、(1)固有配列を用いてのみ拡散し、且つ破壊された場合にその表現型が優性阻害である遺伝子の一部をゲノム中の別の場所に挿入する、第1の利己的遺伝因子を放出(release)すること、(2)部分的遺伝子配列を用いてのみ拡散し、遺伝子の再コード化バージョンを挿入し、且つ遺伝子の野生型コピーを破壊する、第2の利己的遺伝因子を放出することを含む方法が提供され、その結果、(1)第1の利己的遺伝因子を有する生物と第2の利己的遺伝因子を有する生物との交配により生じる子の全てが第2の利己的遺伝因子を含み、遺伝子の野生型コピーの両方が破壊されているがゲノム中の別の場所で再コード化コピーによって置換されており、(2)遺伝子の野生型コピーが失われ且つ再コード化コピーによって置換されていないため、第2の利己的遺伝因子を含む生物が野生型生物と交雑しても子孫が生じない。
ある態様によれば、(1)前減数分裂期にのみ発現されるRNA誘導型ヌクレアーゼをコードし、且つ(2)ヌクレアーゼを標的とするガイドRNAを発現して性染色体の一方に固有に存在する配列を切断する、1つまたは複数の染色体の使用を含む、子の性比にバイアスをかける方法が提供され、その結果、生存可能な配偶子が標的染色体を含む例が、未改変生物での典型的な例より少なくなる。
ある態様によれば、前減数分裂期にのみ発現されるRNA誘導型ヌクレアーゼをコードし、且つヌクレアーゼを標的として対立する性染色体上に固有に存在する配列を切断するガイドRNAを発現する性染色体を使用することを含む、集団の性比にバイアスをかける方法が提供され、その結果、大部分の生存可能な配偶子が、RNA誘導型ヌクレアーゼをコードする性染色体を含む。
ある態様によれば、子の性比を異型配偶子性(heterogametic sex)(例えばXY)にバイアスをかける方法であって、通常はX染色体上に存在する必須遺伝子のコピーとX染色体上の野生型必須遺伝子の場所に自身をコピーする利己的遺伝因子とで改変された染色体の使用を含む方法が提供され、その結果、雌の子孫が必須遺伝子の喪失のために発生的に生存可能ではなく、一方、雄の子孫は改変染色体上のコピーのために生存する。
ある態様によれば、通常はX染色体上に存在する必須遺伝子のコピーとX染色体上の野生型必須遺伝子の場所に自身をコピーする利己的遺伝因子とで改変されたY染色体の使用を含む、集団の性比を異型配偶子性(例えばXY)にバイアスをかける方法が提供され、その結果、雌の子孫が必須遺伝子の喪失のために発生的に生存可能ではなく、一方、雄の子孫は改変Y染色体上のコピーのために生存可能となる。
ある態様によれば、子の性比を同型配偶子性(homogametic sex)(例えば、哺乳動物におけるXX)にバイアスをかける方法には、(1)RNA誘導型ヌクレアーゼをコードし、且つ(2)ヌクレアーゼを標的とするガイドRNAを発現して異型配偶子性染色体(例えば、哺乳動物におけるXY)上に固有に存在する配列を切断する、1つまたは複数の染色体の使用が含まれ、その結果、通常は異型配偶子性(例えば、哺乳動物における雄)として発生する任意の子の異型配偶子性染色体が破壊される。
ある態様によれば、集団の性比を同型配偶子性(例えば、哺乳動物におけるXX)にバイアスをかける方法には、(1)RNA誘導型ヌクレアーゼをコードし、且つ(2)ヌクレアーゼを標的とするガイドRNAを発現して異型配偶子性染色体(例えば、哺乳動物におけるXY)上に固有に存在する配列を切断する、同型配偶子性染色体の使用が含まれ、その結果、通常は異型配偶子性(例えば、哺乳動物における雄)として発生する任意の子の異型配偶子性染色体が破壊される。
ある態様によれば、集団の性比を雄にバイアスをかける方法には、雌の生殖能(female fertility)に必要な遺伝子の代わりに自身をコピーする利己的遺伝因子をコードする、改変された雄の放出が含まれる。ある態様によれば、利己的遺伝因子はY染色体上にコードされる。ある態様によれば、Y染色体はさらに、X染色体上に存在する必須遺伝子を標的化する利己的遺伝因子をコードする。
ある態様によれば、集団制御の方法であって、雌の子が生存不能になるように、(1)雌の生殖能に必要な遺伝子の代わりに自身をコピーする利己的遺伝因子と(2)X染色体上の必須遺伝子の代わりに自身をコピーする第2の利己的遺伝因子とをコードするY染色体を含む改変雄生物を、除去対象の集団中に放出すること、ならびに第1の利己的遺伝因子および第2の利己的遺伝因子を含む雄と第3の利己的遺伝因子を含む雌との間の交配の子が、生殖可能な雄の子および生殖不能な雌の子を生じるように、X染色体上の必須遺伝子の配列を改変する第3の利己的遺伝因子をコードする生物を保護対象の集団中に放出すること、を含む方法が提供される。
ある態様によれば、以下を含む、生物の真核生殖系列細胞を改変する方法が提供される。
RNA誘導型DNA結合タンパク質ヌクレアーゼおよび1種類または複数種類のガイドRNAをコードし、且つ対応するプロモーター配列ならびに第1の隣接配列および第2の隣接配列を含む第1の外来核酸配列を、生殖系列細胞に導入すること;
ここで、1種類または複数種類のガイドRNAが、生殖系列細胞の染色体対の第1の染色体のゲノムDNA上および第2の染色体のゲノムDNA上の1つまたは複数の標的位置に相補的であり、RNA誘導型DNA結合タンパク質ヌクレアーゼをコードする核酸配列および1種類または複数種類のガイドRNAをコードする核酸配列が、第1の隣接配列と第2の隣接配列との間に存在し、第1の隣接配列が、ゲノムDNAの第1の染色体上または第2の染色体上の標的位置の第1の部分と同じ配列である第1の配列を含み、第2の隣接配列が、ゲノムDNAの第1の染色体上または第2の染色体上の標的位置の第2の部分と同じ配列である第2の配列を含み、第1の隣接配列と第2の隣接配列との間に位置し、外来核酸配列によって切断および置換される配列のうちの少なくとも1つのコピーが、生物の生存または生存可能な子の産生のために必要である、
第1の外来核酸配列を発現させてRNA誘導型DNA結合タンパク質ヌクレアーゼおよび1種類または複数種類のRNAを産生させること;
ここで、RNA誘導型DNA結合タンパク質ヌクレアーゼおよび関連するガイドRNAが、ゲノムDNAの第1の染色体上およびゲノムDNAの第2の染色体上の関連する標的位置に共局在し、RNA誘導型DNA結合タンパク質ヌクレアーゼが、ゲノムDNAの第1の染色体を標的位置で切断部位特異的に切断し、且つゲノムDNAの第2の染色体を標的位置で切断部位特異的に切断する、
第1の外来核酸配列を、ゲノムDNAの染色体対の第1の染色体中に切断部位で挿入し、第1の外来核酸配列をゲノムDNAの染色体対の第2の染色体中に切断部位で挿入して、生殖系列細胞を外来核酸配列についてホモ接合型にすること;および
第1の隣接配列と第2の隣接配列との間に位置し、外来核酸配列によって切断および置換されて遺伝的荷重(genetic load)を生じる配列が、その生物が生存または生殖可能な子を産生するためにもはや必要でない発生段階で、上記発現および挿入ステップを行うこと。
ある態様によれば、本明細書に記載の上記の方法にる標的集団の抑制または絶滅のための方法は、RNA誘導型遺伝的荷重ドライブを標的集団中に放出することを含む。
本明細書において、遺伝的荷重とは、集団中の理論的に最適な遺伝型の適応度と集団中の観察される平均的な遺伝型の適応度との差を指すことがある。遺伝的荷重という用語はさらに、最大適応度と比較した、集団の平均適応度の低下を指すことがある。
本発明の特定の実施形態のその他の特徴および利点は、以下の実施形態およびそれらの図面の説明において、および特許請求の範囲から、さらに十分に明らかになるであろう。
本特許または出願ファイルは、カラーで作製された少なくとも1枚の図面を含む。カラー図面を含む本特許または特許出願公開のコピーは、特許庁へ申請し、必要な料金を支払うことで提供される。本実施形態の、前述した特徴およびその他の特徴、ならびに利点は、添付の図面と共に、具体的実施形態についての以下の詳細な説明からより十分に理解されるであろう。
Cas9およびガイドRNAの発現、共局在、標的遺伝子の切断(cutting)による切断部(break)の形成、および相同組換えによる切断部位での標的遺伝子中へのRNA誘導型Cas9遺伝子ドライブの挿入を示す、標準的なRNA誘導型Cas9遺伝子ドライブの模式図である。 遺伝子ドライブの遺伝の染色体図を示す図である。 標的DNAの切断および遺伝子ドライブの挿入を防止するための、Cas9とガイドRNAとの共局在を防止する変異を示す図である。 遺伝子ドライブの挿入が変異によって防止されることを回避するための、複数のガイドRNAおよび切断部位の使用を示す図である。 ドライブ抵抗性アレルを形成するために、認識部位の全てを欠失させるNHEJを示す図である。 必須遺伝子を有害に破壊するドライブ抵抗性アレルを形成するNHEJを示す図である。 複数の適切なガイドRNAを含めることにより複数の遠位部位を編集するための単一ドライブの使用を示す図である。 第1のドライブにより加えられた変更をアップデートするための、その後のドライブの使用を示す図である。 Cas9遺伝子およびガイドRNAのみを残して、全ての変更を野生型に戻すための回復性ドライブ(restorative drive)の使用を示す図である。 交雑した場合に両方のコピーが失われるため不適合(incompatible)となる異なるガイドRNAを用いた、同一の必須遺伝子を標的とする2種類の遺伝子ドライブの使用を示す図である。この種類のドライブを集団中に放出することにより、ドライブの数と同数の生物種へと集団が人為的に分割される。 減数分裂において競合する性染色体を除去してバイアスのかかった配偶子のプールを生じさせるための減数分裂遺伝子ドライブの使用を示す図である。ドライブが致死的になるのを防ぐために、ドライブ発現は前減数分裂期に限定される。 2種類の直交するCas9ヌクレアーゼを用いて減数分裂による性染色体の発現停止を回避可能であることを示す図である。減数分裂中に競合する性染色体を自由に除去できる発生初期に、Cas9 Aにより、Cas9 Bをコードするカセットが性染色体から常染色体へとコピーされる。 接合体Xドライブ(zygotic X−drive)がY染色体を標的として受精卵中で破壊して、雌の子孫のみを産出可能であることを示す図である。 接合体Yドライブが、通常はX染色体上に存在する必須遺伝子をコードし、遺伝子ドライブカセットを用いてその遺伝子をXから除去可能であることを示す図である。ドライブは、父由来のXから母由来のXへと自身をコピーし、雌の接合体が必須遺伝子のコピーを有さないようにする。 二重機能性(dual-function)Yドライブを用いた集団抑制を示す図であり、生殖不能娘能(sterile-daughter capability)をさらに含むA Yドライブ(Y−ドライブ−SD)が野生型集団中で接合体ドライブとして働き、これにより絶滅が導かれ得る。 必須遺伝子を再コードする標準的ドライブと遭遇すると、Y−ドライブ−SDがもはやドライブしないことを示す図である。生殖不能娘効果は、侵入集団が崩壊(collapse)するまで相互のドライブの侵入を防ぐ。 低移動度および高移動度の侵入種を制御する方法を示す図であり、ミシシッピ川などの侵入された生息地全域に放出されたYドライブ雄コイ(Asian carp)を用いて、コイ集団を根絶することができる。Yドライブ雄のヒトによる意図的な輸送の場合にアジア集団を保護するための保護的再コード化ドライブが利用可能である。 局所的根絶を引き起こし得る侵入ラット集団中へのY−ドライブ−SD雄ラットの放出を示す図であり、一方、標準的ドライブはユーラシアの自然ラット集団を保護的に再コード化する。Y−ドライブ−SDコンストラクトは、ほとんどの島および多くの大陸地域から侵入ラットを根絶し得る。再コード化集団中のY−ドライブ−SDの生殖不能娘効果により、密航生物を介した遺伝子流動(stowaway-mediated gene flow)が制限され得る。このプロセスは、再コード化された密航ラットがラットのいない生息地の侵入に成功した時点で、新たなドライブを用いて繰り返すことができる。 RNA誘導型転写調節因子が遠位の遺伝子の活性をその配列を編集することなく調節可能な、ドライブを介した内在性遺伝子の制御を示す図である。ドライブヌクレアーゼの適切な発現に調節因子が必要である場合、ドライブの寿命中、制御は進化的に安定であり得る。 未改変野生型集団からの種分化の誘導を示す図である。固有アレル(固有遺伝子と表記)を有する亜集団を標的とする2回の連続的な遺伝子ドライブにより、残りの野生型集団との遺伝的不適合を誘発することができる。第1のドライブは、固有アレルを用いて拡散し、破壊された場合に優性致死性の表現型を示す遺伝子を再コード化する。第2のドライブは再コード化遺伝子を用いて拡散し、第1のドライブを除去する。野生型生物との任意の交配により、第2のドライブが野生型コピーを破壊し、全ての子孫において致死となる。 本明細書に記載の方法を示す図であり、ドライブ1は、Y染色体(存在する場合)上の雄必須遺伝子およびX染色体上の劣性必須遺伝子を再コード化し、同時に、固有遺伝子に隣接して自身を挿入する(すなわち、Cas9およびガイドRNAの発現ならびに標的核酸配列へのCas9およびガイドRNAの局在後に、相同組換えなどの細胞機構により挿入される)。ドライブ2は、改変X染色体を経由して拡散し、常染色体からドライブ1を除去し、さらに、改変Y染色体が存在する場合は、改変Y染色体中に跳び込む。野生型生物との交配により、ドライブ2はX染色体またはY染色体から必須遺伝子を除去する。唯一の生存可能な子孫は、X染色体上に劣性必須遺伝子の単一再コード化コピーを保持するハイブリッド雌である。これらは、ドライブ2で改変された雄と自由に交配可能であり、野生型遺伝子が改変集団中に拡散することが可能になる。野生型雄との交配では、さらに多くのハイブリッド雌を生じるだけであり、野生型集団中に戻る遺伝子流動が防止される。 本明細書に記載されるような接合体Yドライブの作製方法を示す図である。 雌の生殖能に必要な遺伝子を除去する、生殖不能娘Y染色体を作製する方法の1つを示す図である。Y染色体(Y−SD)は、真のドライブではないが、雌の生殖能に必須の遺伝子をドライブで置換する限定された遺伝子ドライブ機構を包含する。 Y−SD雄の娘において、ドライブが同様に雌の生殖能遺伝子の母方コピーを置換して生殖不能を引き起こすことを示す図である。雌の生殖能に特異的な遺伝子が知られていない場合、両方の性に必要な生殖能遺伝子を標的とし、それらをY染色体上の別の場所の別のコピーで補完することができる。 生殖不能娘能を有するYドライブ(Y−ドライブ−SD)(Y−ドライブ+生殖不能娘Y染色体)の作製方法を示す図である。野生型雌との交配により、Y−ドライブ−SDは、必須遺伝子および雌生殖能遺伝子の両方を置換または破壊する。雄はY−ドライブ−SD上の別のコピーによる補完のため生き残る。 雌の子孫では、ドライブは同様に母方コピーを置換して、娘を胚性生育不能にすることを示す。結果的に、Y−ドライブ−SDはドライブを示す。 保護的ドライブで改変された雌は、再コード化された必須遺伝子に隣接する部位を有することを示す。Y−ドライブ−SDは生殖能遺伝子を置換できるだけである。 雌の子孫はまだ生存可能であるが、生殖能遺伝子のコピーを欠くため、生殖不能であることを示す。雄は姉妹が存在しないことによる適応度における利益を得ないので、Y−ドライブ−SDは保護された集団中でドライブしないことがある。しかし、適応度におけるその唯一のコストはドライブ自体によるものであるので、これは徐々にではあるが集団から除去されることになる。雌の生殖生産性の喪失により、集団が強力に抑制されることになる。このため、保護された個体は、Y−ドライブ−SDを共有する集団に侵入することが困難となり得る。同様に、Y−ドライブ−SDは、保護集団に侵入不可能となる。 出芽酵母(S. cerevisiae)においてADE2のバイアスのかかった遺伝を容易に見ることができることを示す模式図である。ADE2中の変異は、赤色色素の蓄積によりアデニン制限培地上で赤い表現型を生じる。赤色変異体一倍体を野生型一倍体と交配させるとクリーム色の二倍体が生じ、これは胞子形成により、50%の赤色の子孫および50%のクリーム色の子孫を生じる。出芽酵母では、ADE2のバイアスのかかった遺伝を容易に見ることができる。 ADE2を標的化する遺伝子ドライブを有する一倍体をCas9存在下で野生型一倍体と交配させた場合に、ADE2の切断およびその後の置換または破壊により、赤色子孫のみを生じる赤色二倍体が生じ得ることを示す模式図である。 出芽酵母(S. cerevisiae)のコロニーの画像である。野生型一倍体とADE2::sgRNA遺伝子ドライブ一倍体との交配により生じた二倍体は、Cas9非存在下で、または再コード化により標的部位が除去されている場合に、クリーム色のコロニーを生じるが、両方が存在する場合には一様に赤いコロニーを生じ、このことは、野生型ADE2コピーのCas9依存的な破壊を示す。 アデニン制限プレート上で一様に赤いコロニーを生じる15個の解剖された四分子に由来する胞子の画像であり、野生型の親から受け継いだADE2遺伝子の破壊を示す。標的部位またはCas9の非存在下では、2:2の正常な分離が観察される。 ADE2標的化遺伝子ドライブが、カーゴ遺伝子としてURA3を有するように改変されたことを示す模式図である。 野生型URA3一倍体酵母と、胞子形成させて四分子に解剖して個々の胞子から生じたコロニーを単離した、URA3を有する遺伝子ドライブをコードする一倍体との交配により生じた、二倍体の画像である。これらは全て、ウラシルを含まないプレート上にレプリカプレーティングした場合に生育した。このことは、ドライブが全ての二倍体においてURA3のコピーに成功したことを示す。 ABD1標的化遺伝子ドライブが必須ABD1遺伝子の末端(tail end)を切断および再コード化することを示す模式図である。遺伝子ドライブおよびカーゴ遺伝子は、コピー後も無傷のままであり、非必須遺伝子および必須遺伝子の両方を標的とすることにより拡散可能である。 遺伝子ドライブ試験のために選択された野生型株間の関係を示すゲノム系統樹(phylogenomic tree)の模式図である。マクミラン出版社:Nature 458:337-341, copyright 2009から許可を得て改変した。 種々の酵母株における遺伝のバイアスの程度の定量的PCRの結果を示す図であり、遺伝子ドライブを有するSK1一倍体と種々の野生型一倍体株との交配により生じた二倍体における、野生型アレルとドライブ含有アレルの相対的存在量を示す。「Cas9なし」および「標的なし」は、Cas9の非存在下で野生型一倍体と交配させたか、または標的配列中に切断を妨げる変異を有する野生型株と交配させた、ADE2ドライブ因子を含む一倍体細胞を指す。「第2世代(2nd gen)」は、先の交配の一倍体の子孫を指す。
本開示の実施形態は、標的DNA部位でガイドRNAと共局在して遺伝子ドライブとして働くRNA誘導型DNA結合タンパク質の使用に基づく。種々の目的のためにDNAに結合させるためのそのようなDNA結合タンパク質は、当業者に容易に理解される。そのようなDNA結合タンパク質は天然のものであってもよい。本開示の範囲に含まれるDNA結合タンパク質としては、本明細書中でガイドRNAと呼ぶRNAによってガイドされ得るタンパク質が挙げられる。ある態様によれば、ガイドRNAは約10〜約500ヌクレオチドである。ある態様によれば、RNAは約20〜約100ヌクレオチドである。この態様によれば、ガイドRNAおよびRNA誘導型DNA結合タンパク質は、DNAにおいて共局在複合体を形成する。
ヌクレアーゼ活性を有するそのようなDNA結合タンパク質は、当業者に公知であり、例えばII型CRISPRシステム中に存在する、Cas9タンパク質などのヌクレアーゼ活性を有する天然のDNA結合タンパク質が挙げられる。そのようなCas9タンパク質およびII型CRISPRシステムは、当該技術分野で十分に裏付けられている。その全体が参照により援用される、全ての捕捉情報を含む、Makarova et al., Nature Reviews, Microbiology, Vol. 9, June 2011, pp. 467-477を参照されたい。
細菌および古細菌のCRISPR‐Casシステムは、Casタンパク質と複合体を形成した短鎖ガイドRNAに依存して、侵入する外来核酸中に存在する相補配列を分解する。Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607 (2011); Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America 109, E2579-2586 (2012); Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 (2012); Sapranauskas, R. et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic acids research 39, 9275-9282 (2011);およびBhaya, D., Davison, M. & Barrangou, R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annual review of genetics 45, 273-297 (2011) を参照されたい。近年、ストレプトコッカス・ピオゲネス(S. pyogenes)のII型CRISPRシステムのインビトロ再構成により、通常はトランスにコードされるtracrRNA(「トランス活性化型CRISPR RNA」)と融合したcrRNA(「CRISPR RNA」)が、そのcrRNAに一致する標的DNA配列をCas9タンパク質に配列特異的に切断させるのに十分であることが実証された。標的部位に相同なgRNAの発現により、Cas9が動員され、標的DNAが分解される。H. Deveau et al, Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. Journal of Bacteriology 190, 1390 (Feb, 2008) を参照されたい。
3つのクラスのCRISPRシステムが一般に知られており、I型、II型、またはIII型と呼ばれる)。ある態様によれば、dsDNAを切断するための本開示に係る具体的な有用な酵素は、II型に共通する単一エフェクター酵素Cas9である。その全体が参照により援用されるK. S. Makarova et al., Evolution and classification of the CRISPR-Cas systems. Nature reviews. Microbiology 9, 467 (Jun, 2011) 参照。細菌内で、II型エフェクターシステムは、スペーサー含有CRISPR座位から転写される長いpre−crRNA、多機能性Cas9タンパク質、およびgRNAプロセシングに重要なtracrRNAからなる。tracrRNAは、pre−crRNAのスペーサーを隔てる反復配列にハイブリダイズし、内在性RNaseIIIによるdsRNA切断を開始させ、それに続いて各スペーサー内でCas9による第2の切断イベントが起こり、tracrRNAおよびCas9に結合したままの成熟crRNAが生成する。
ある態様によれば、Cas9などの本開示の酵素は、DNA二本鎖を巻き戻し、crRNAにマッチする配列を探索して切断する。標的DNA中の「プロトスペーサー」配列とcrRNA中の残りのスペーサー配列との間の相補性が検出されると標的認識が起こる。重要なことに、正確なプロトスペーサー隣接モチーフ(PAM)が3′末端にさらに存在する場合のみ、Cas9はDNAを切断する。ある態様によれば、異なるプロトスペーサー隣接モチーフを用いることができる。例えば、ストレプトコッカス・ピオゲネスのシステムは、NGG配列(式中、Nは任意のヌクレオチドであってよい)を要求する。ストレプトコッカス・サーモフィルス(S. thermophilus)のII型システムは、NGGNG(その全体が参照により援用されるP. Horvath, R. Barrangou, CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167 (Jan 8, 2010) 参照、およびNNAGAAW(その全体が参照により援用されるH. Deveau et al., Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. Journal of bacteriology 190, 1390 (Feb, 2008) 参照)をそれぞれ要求するが、別のストレプトコッカス・ミュータンス(S. mutans)のシステムは、NGGまたはNAARを許容する(その全体が参照により援用されるJ. R. van der Ploeg, Analysis of CRISPR in Streptococcus mutans suggests frequent occurrence of acquired immunity against infection by M102-like bacteriophages. Microbiology 155, 1966 (Jun, 2009) 参照。生物情報学分析により、別の有用なPAMの特定および一連のCRISPR標的可能配列の拡張に役立ち得る、種々の細菌におけるCRISPR座位の詳細なデータベースが作製された(それぞれその全体が参照により援用されるM. Rho, Y. W. Wu, H. Tang, T. G. Doak, Y. Ye, Diverse CRISPRs evolving in human microbiomes. PLoS genetics 8, e1002441 (2012) および D. T. Pride et al., Analysis of streptococcal CRISPRs from human saliva reveals substantial sequence diversity within and between subjects over time. Genome research 21, 126 (Jan, 2011) 参照。
ヌクレアーゼ活性を有する例示的なDNA結合タンパク質は、二本鎖DNAにニックを形成するか、または二本鎖DNAを切断するように機能する。そのようなヌクレアーゼ活性は、ヌクレアーゼ活性を示す1つまたは複数のポリペプチド配列を有するDNA結合タンパク質から生じ得る。そのような例示的なDNA結合タンパク質は、それぞれが二本鎖DNAの特定のストランドを切断すること、またはニックを形成することに関与する、2つの別個のヌクレアーゼドメインを有していてもよい。当業者に知られているヌクレアーゼ活性を有する例示的なポリペプチド配列としては、McrA‐HNHヌクレアーゼ関連ドメインおよびRuvC様ヌクレアーゼドメインが挙げられる。したがって、例示的なDNA結合タンパク質は、McrA‐HNHヌクレアーゼ関連ドメインおよびRuvC様ヌクレアーゼドメインのうちの1つまたは複数を含む天然タンパク質である。
ストレプトコッカス・ピオゲネス(S. pyogenes)では、Cas9は、タンパク質中の2つの触媒ドメイン、すなわちDNAの相補鎖を切断するHNHドメインおよび非相補鎖を切断するRuvC様ドメインが介在するプロセスによって、プロトスペーサー隣接モチーフ(PAM)の3bp上流に平滑末端二本鎖切断を形成する。その全体が参照により援用されるJinke et al., Science 337, 816-821 (2012) を参照されたい。Cas9タンパク質は、Makarova et al., Nature Reviews, Microbiology, Vol. 9, June 2011, pp. 467-477の補足情報で確認されている以下のものを含む、多数のII型CRISPRシステム中に存在することが知られている。メタノコッカス・マリパルディス(Methanococcus maripaludis)C7株;コリネバクテリウム・ジフテリアエ(Corynebacterium diphtheriae);コリネバクテリウム・エフィシエンス(Corynebacterium efficiens)YS‐314株;コリネバクテリウム・グルタニカム(Corynebacterium glutamicum)ATCC13032 Kitasato株;コリネバクテリウム・グルタニカム ATCC13032 Bielefeld株;コリネバクテリウム・グルタニカム R株;コリネバクテリウム・クロッペンステッティイ(Corynebacterium kroppenstedtii)DSM44385株;マイコバクテリウム・アブセサス(Mycobacterium abscessus)ATCC19977株;ノカルディア・ファルシニカ(Nocardia farcinica)IFM10152株;ロドコッカス・エリスロポリス(Rhodococcus erythropolis)PR4株;ロドコッカス・ジョスティイ(Rhodococcus jostii)RHA1株;ロドコッカス・オパカス(Rhodococcus opacus)B4 uid36573株;アシドサーマス・セルロリティカス(Acidothermus cellulolyticus)11B株;アルスロバクター・クロロフェノリカス(Arthrobacter chlorophenolicus)A6株;クリベラ・フラビダ(Kribbella flavida)DSM17836 uid43465株;サーモモノスポラ・カーバタ(Thermomonospora curvata)DSM43183株;ビフィドバクテリウム・デンティウム(Bifidobacterium dentium)Bd1株;ビフィドバクテリウム・ロングム(Bifidobacterium longum)DJO10A株;スラッキア・ヘリオトリニレデューセンス(Slackia heliotrinireducens)DSM20476株;パーセフォネラ・マリナ(Persephonella marina)EX H1株;バクテロイデス・フラギリス(Bacteroides fragilis)NCTC9434株;カプノサイトファガ・オクラセア(Capnocytophaga ochracea)DSM7271株;フラボバクテリウム・サイクロフィルム(Flavobacterium psychrophilum)JIP02 86株;アッカーマンシア・ムシニフィラ(Akkermansia muciniphila)ATCC BAA835株;ロゼイフレクサス・キャステンホルツィイ(Roseiflexus castenholzii)DSM13941株;ロゼイフレクサス(Roseiflexus)RS1株;シネコシスティス(Synechocystis)PCC6803株;エルシミクロビウム・ミヌトゥム(Elusimicrobium minutum)Pei191株;未培養細菌Termite group 1 bacterium phylotype Rs D17;フィブロバクター・サクシノゲネス(Fibrobacter succinogenes)S85株;バチルス・セレウス(Bacillus cereus)ATCC10987株;リステリア・イノキュア(Listeria innocua);ラクトバチルス・カゼイ(Lactobacillus casei);ラクトバチルス・ラムノーサス(Lactobacillus rhamnosus)GG株;ラクトバチルス・サリバリウス(Lactobacillus salivarius)UCC118株;ストレプトコッカス・アガラクティアエ(Streptococcus agalactiae)A909株;ストレプトコッカス・アガラクティアエ NEM316株;ストレプトコッカス・アガラクティアエ 2603株;ストレプトコッカス・ディスガテクティアエ亜種エクイシミリス(Streptococcus dysgalactiae equisimilis)GGS124株;ストレプトコッカス・エクイ亜種ズーエピデミカス(Streptococcus equi zooepidemicus)MGCS10565株;ストレプトコッカス・ガロリティカス(Streptococcus gallolyticus)UCN34 uid46061株;ストレプトコッカス・ゴルドニイ(Streptococcus gordonii)チャリス(Challis)株CH1亜株;ストレプトコッカス・ミュータンス(Streptococcus mutans)NN2025 uid46353株;ストレプトコッカス・ミュータンス;ストレプトコッカス・ピオゲネス(Streptococcus pyogenes)M1 GAS株;ストレプトコッカス・ピオゲネスMGAS5005株;ストレプトコッカス・ピオゲネス MGAS2096株;ストレプトコッカス・ピオゲネスMGAS9429株;ストレプトコッカス・ピオゲネス MGAS10270株;ストレプトコッカス・ピオゲネス MGAS6180株;ストレプトコッカス・ピオゲネス MGAS315株;ストレプトコッカス・ピオゲネス SSI‐1株;ストレプトコッカス・ピオゲネス MGAS10750株;ストレプトコッカス・ピオゲネス NZ131株;ストレプトコッカス・サーモフィラス(Streptococcus thermophiles)CNRZ1066株;ストレプトコッカス・サーモフィラス LMD‐9株;ストレプトコッカス・サーモフィラス LMG18311株;クロストリジウム・ボツリヌム(Clostridium botulinum)A3 Loch Maree株;クロストリジウム・ボツリヌム B Eklund 17B株;クロストリジウム・ボツリヌム Ba4 657株;クロストリジウム・ボツリヌム F Langeland株;クロストリジウム・セルロリティカム(Clostridium cellulolyticum)H10株;フィネゴルディア・マグナ(Finegoldia magna)ATCC29328株;ユウバクテリウム・レクターレ(Eubacterium rectale)ATCC33656株;マイコプラズマ・ガリセプティカム(Mycoplasma gallisepticum);マイコプラズマ・モービレ(Mycoplasma mobile)163K株;マイコプラズマ・ペネトランス(Mycoplasma penetrans);マイコプラズマ・シノビアエ(Mycoplasma synoviae)53株;ストレプトバチルス・モニリフォルミス(Streptobacillus moniliformis)DSM12112株;ブラジリゾビウム(Bradyrhizobium)BTAi1株;ニトロバクター・ハンブルゲンシス(Nitrobacter hamburgensis)X14株;ロドシュードモナス・パルストリス(Rhodopseudomonas palustris)BisB18;ロドシュードモナス・パルストリス BisB5株;パルビバクラム・ラバメンティボランス(Parvibaculum lavamentivorans)DS‐1株;ディノロセオバクター・シバエ(Dinoroseobacter shibae)DFL12株;グルコンアセトバクター・ジアゾトロフィクス(Gluconacetobacter diazotrophicus)Pal 5 FAPERJ株;グルコンアセトバクター・ジアゾトロフィクス Pal 5 JGI株;アゾスピリルム(Azospirillum)B510 uid46085株;ロドスピリラム・ルブラム(Rhodospirillum rubrum)ATCC11170株;ディアフォロバクター(Diaphorobacter)TPSY uid29975株;フェルミネフォロバクター・エイセニアエ(Verminephrobacter eiseniae)EF01‐2株;ナイセリア・メニンジティディス(Neisseria meningitides)053442株;ナイセリア・メニンジティディス alpha14;ナイセリア・メニンジティディス Z2491株;デスルホビブリオ・サレキシゲンス(Desulfovibrio salexigens)DSM 2638株;キャンピロバククー・ジェジュニ亜種ドイレイ(Campylobacter jejuni doylei)269 97株;キャンピロバククー・ジェジュニ(Campylobacter jejuni)81116株;キャンピロバククー・ジェジュニ;キャンピロバクター・ラリ(Campylobacter lari)RM2100株;ヘリコバクター・ヘパティカス(H Helicobacter hepaticus);ウォリネラ・サクシノゲネス(Wolinella succinogenes);トルモナス・アウエンシス(Tolumonas auensis)DSM9187株;シュードアルテロモナス・アトランティカ(Pseudoalteromonas atlantica)T6c株;シューワネラ・ペアレアナ(Shewanella pealeana)ATCC700345株;レジオネラ・ニューモフィラ(Legionella pneumophila)Paris株;アクチノバチルス・サクシノゲネス(Actinobacillus succinogenes)130Z株;パスツレラ・ムルトシダ(Pasteurella multocida);フランシセラ・ツラレンシス亜種ノビシダ(Francisella tularensis novicida)U112株;フランシセラ・ツラレンシス亜種ハラークティカ(Francisella tularensis holarctica);フランシセラ・ツラレンシス FSC 198株;フランシセラ・ツラレンシス亜種ツラレンシス(Francisella tularensis tularensis);フランシセラ・ツラレンシス WY96‐3418株;およびトレポネーマ・デンティコラ(Treponema denticola)ATCC35405株。Cas9タンパク質は、文献中で当業者にCsn1と呼ばれることもある。本明細書に記載される実験の対象であるストレプトコッカス・ピオゲネス(S. pyogenes)のCas9タンパク質配列を以下に示す。その全体が参照により援用されるDeltcheva et al., Nature 471, 602-607 (2011)を参照されたい。
ある態様によれば、ゲノムエン改変のための機構としておよびドライブ遺伝子として、gRNA指向性のCas9切断(gRNA-directed Cas9 cleavage)の特異性が用いられる。ある態様によれば、酵素がgRNA/DNAハイブリッドを認識して切断に影響を与えるためには、gRNAのハイブリダイゼーションは100パーセントでなくてもよい。いくらかのオフターゲット活性が生じ得る。例えば、ストレプトコッカス・ピオゲネスのシステムは、インビトロで20bpの成熟スペーサー配列のうち、最初の6塩基におけるミスマッチを許容する。ある態様によれば、(最後の14bpの)NGGにマッチするgRNAに対する潜在的なオフターゲット部位がヒト参照ゲノム内に存在する場合、より高いストリンジェンシーがインビボで有益であり得る。
ある態様によれば、特異性が向上され得る。干渉がgRNA−DNAハイブリッドの融解温度の影響を受けやすい場合、ATリッチな標的配列はオフターゲット部位がより少なくなり得る。ゲノム中の別の場所の少なくとも14bpマッチする配列を有する偽部位が回避されるように標的部位を慎重に選択することで特異性が向上し得る。より長いPAM配列を必要とするCas9バリアントを使用することにより、オフターゲット部位の頻度が低下し得る。定向進化により、オフターゲット活性を完全に防止するのに充分なレベルまでCas9特異性が向上することがあり、理想的には20bpの完全なgRNAマッチおよび最小限のPAMが要求される。したがって、Cas9タンパク質の改変は本開示の代表的な実施形態である。本開示において有用なCRISPRシステムは、それぞれその全体が参照により援用されるR. Barrangou, P. Horvath, CRISPR: new horizons in phage resistance and strain identification. Annual review of food science and technology 3, 143 (2012) および B. Wiedenheft, S. H. Sternberg, J. A. Doudna, RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331 (Feb 16, 2012) に記載される。
ある態様によれば、DNA結合タンパク質は、ヌクレアーゼ活性が不活性化されるように改変または修飾される。そのような改変または修飾には、ヌクレアーゼ活性またはヌクレアーゼドメインを不活性化するために1つまたは複数のアミノ酸を改変すること含まれる。そのような修飾には、ヌクレアーゼ活性を示す1つまたは複数のポリペプチド配列、すなわちヌクレアーゼドメインが、DNA結合タンパク質中に存在しないように、ヌクレアーゼ活性を示す1つまたは複数のポリペプチド配列、すなわちヌクレアーゼドメインを除去することが含まれる。ヌクレアーゼ活性を不活性化するためのその他の修飾は、本開示に基づき当業者に容易に明らかになるであろう。したがって、ヌクレアーゼ欠損DNA結合タンパク質には、ヌクレアーゼ活性を不活性化するように修飾されたポリペプチド配列、またはヌクレアーゼ活性を不活性化するために1つまたは複数のポリペプチド配列を除去することを含む。ヌクレアーゼ欠損DNA結合タンパク質は、ヌクレアーゼ活性は不活性化されていても、DNA結合能を保持している。したがって、DNA結合タンパク質は、DNA結合に必要な1つまたは複数のポリペプチド配列を含んでいるが、ヌクレアーゼ活性を示すヌクレアーゼ配列のうちの1つまたは複数または全てを欠いていてよい。したがって、DNA結合タンパク質は、DNA結合に必要な1つまたは複数のポリペプチド配列を含んでいるが、不活性化されたヌクレアーゼ活性を示すヌクレアーゼ配列のうちの1つまたは複数または全てを有していてもよい。
ある態様によれば、2つ以上のヌクレアーゼドメインを有するDNA結合タンパク質は、ヌクレアーゼドメインのうちの1つを除いた全てが不活性化されるように修飾または改変されてもよい。そのような修飾または改変されたDNA結合タンパク質は、DNA結合タンパク質が二本鎖DNAの一方のストランドのみを切断するか、またはニックを形成するものである限り、DNA結合タンパク質ニッカーゼと呼ばれる。RNAによってDNAにガイドされる場合、DNA結合タンパク質ニッカーゼは、RNA誘導型DNA結合タンパク質ニッカーゼと呼ばれる。
例示的なDNA結合タンパク質は、Cas9タンパク質、または改変Cas9もしくはCs9のホモログなどのII型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼである。例示的なDNA結合タンパク質は、Cas9タンパク質ニッカーゼである。例示的なDNA結合タンパク質は、ヌクレアーゼ活性を欠いたII型CRISPRシステムのRNA誘導型DNA結合タンパク質である。例示的なDNA結合タンパク質は、ヌクレアーゼ欠損Cas9タンパク質である。
本明細書に記載のRNA誘導型ゲノム制御方法のある態様によれば、Cas9は、ヌクレアーゼ活性を低下させるように、実質的に低下させるように、または除去するように改変させる。ある態様によれば、RuvCヌクレアーゼドメインまたはHNHヌクレアーゼドメインを改変することにより、Cas9ヌクレアーゼ活性を低下させる、実質的に低下させる、または除去する。ある態様によれば、RuvCヌクレアーゼドメインが不活性化される。ある態様によれば、HNHヌクレアーゼドメインが不活性化される。ある態様によれば、RuvCヌクレアーゼドメインおよびHNHヌクレアーゼドメインが不活性化される。別の態様によれば、RuvCヌクレアーゼドメインおよびHNHヌクレアーゼドメインが不活性化されたCas9タンパク質が提供される。別の態様によれば、RuvCヌクレアーゼドメインおよびHNHヌクレアーゼドメインが不活性化されている限りにおいて、ヌクレアーゼ欠損Cas9タンパク質が提供される。別の態様によれば、RuvCヌクレアーゼドメインまたはHNHヌクレアーゼドメインのいずれかが不活性化されることにより、残りのヌクレアーゼドメインのヌクレアーゼ活性が活性のままである、Cas9ニッカーゼが提供される。このようにして、二本鎖DNAの一方のストランドだけが切断されるか、またはニック形成される。
別の態様によれば、ヌクレアーゼ欠損Cas9タンパク質をもたらす、Cas9中の1つまたは複数のアミノ酸が改変または除去された、ヌクレアーゼ欠損Cas9タンパク質が提供される。ある態様によれば、それらのアミノ酸にはD10およびH840が含まれる。Jinke et al., Science 337, 816-821 (2012) 参照。別の態様によれば、それらのアミノ酸にはD839およびN863を含まれる。ある態様によれば、D10、H840、D839、およびH863のうちの1つまたは複数または全てが、ヌクレアーゼ活性を低下させるか、実質的に除去するか、または除去するアミノ酸で置換される。ある様によれば、D10、H840、D839、およびH863のうちの1つまたは複数または全てがアラニンで置換される。ある態様によれば、D10、H840、D839、およびH863のうちの1つまたは複数または全てが、アラニンなど、ヌクレアーゼ活性を低下させるか、実質的に除去するか、または除去するアミノ酸で置換されたCas9タンパク質は、ヌクレアーゼ欠損Cas9またはCas9Nと呼ばれ、ヌクレアーゼ活性が低下しているか、または除去されているか、ヌクレアーゼ活性が検出レベル内にないか、または実質的にヌクレアーゼ活性がない。この態様によれば、Cas9Nのヌクレアーゼ活性は、公知のアッセイを用いて検出できないことがあり、すなわち、公知のアッセイの検出レベル未満であり得る。
ある態様によれば、Cas9タンパク質、Cas9タンパク質ニッカーゼ、またはヌクレアーゼ欠損Cas9には、DNAに結合し且つRNAによってガイドされるタンパク質の能力を保持している、そのホモログおよびオルソログが含まれる。ある態様によれば、Cas9タンパク質は、Sストレプトコッカス・ピオゲネス由来の天然Cas9について記載されるような配列、およびそれらの配列に対して少なくとも30%、40%、50%、60%、70%、80%、90%、95%、98%、または99%の相同性を有し、且つRNA誘導型DNA結合タンパク質などのDNA結合タンパク質である、タンパク質配列を含む。
ある態様によれば、ヌクレアーゼ欠損Cas9またはガイドRNAのいずれかに転写活性化ドメインを連結(tether)することによって、細胞におけるRNA誘導性ゲノム制御を可能にする、改変されたCas9−gRNAシステムが提供される。本開示のある態様によれば、1種類または複数種類の転写制御タンパク質またはドメイン(このような用語は互換的に使用される)が、ヌクレアーゼ欠損型Cas9または1種類または複数種類のガイドRNA(gRNA)と結合または接続される。これらの転写制御ドメインは標的座位に対応する。したがって、本開示の態様は、転写制御ドメインをCas9NまたはgRNAのいずれかに、融合、接続、または結合することにより、そのようなドメインを標的座位に局在化させるための方法および物質を含む。ある態様によれば、Cas9N、1種類または複数種類のgRNA、および転写制御タンパク質またはドメインを用いて、内在性遺伝子を制御する方法が提供される。ある態様によれば、内在性遺伝子は、任意の所望の遺伝子であってもよく、この遺伝子は本明細書中では標的遺伝子と呼ばれる。
ある態様によれば、転写活性化可能なCas9N融合タンパク質が提供される。ある態様によれば、VP64活性化ドメイン(その全体が参照により援用されるZhang et al., Nature Biotechnology 29, 149-153 (2011) 参照)が、Cas9NのC末端に結合、融合、接続、または連結される。ある方法によれば、Cas9Nタンパク質によって、標的ゲノムDNAの部位に転写制御ドメインが提供される。ある方法によれば、転写制御ドメインに融合したCas9Nが、1種類または複数種類のガイドRNAと共に細胞内に提供される。転写制御ドメインが融合したCas9Nは、標的ゲノムDNAまたはその近くに結合する。1種類または種類複数のガイドRNAは、標的ゲノムDNAまたはその近くに結合する。転写制御ドメインは、標的遺伝子の発現を制御する。ある態様によれば、Cas9N−VP64融合体が、プロモーターの近辺の配列を標的とするgRNAと組み合わされた場合に、レポーターコンストラクトの転写を活性化して、RNA誘導性の転写活性化を示した。
ある態様によれば、転写活性化可能なgRNA融合タンパク質が提供される。ある態様によれば、VP64活性化ドメインが、gRNAに結合、融合、接続、または連結される。ある方法によれば、gRNAによって、標的ゲノムDNAの部位に転写制御ドメインが提供される。ある方法によれば、転写制御ドメインに融合したgRNAが、Cas9Nタンパク質と共に細胞内に提供される。Cas9Nは、標的ゲノムDNAまたはその近くに結合する。転写制御タンパク質またはドメインが融合した1種類または複数種類のガイドRNAは、標的ゲノムDNAまたはその近くに結合する。転写制御ドメインは、標的遺伝子の発現を制御する。ある態様によれば、転写制御ドメインが融合したgRNAおよびCas9Nタンパク質が、レポーターコンストラクトの転写を活性化して、RNA誘導性の転写活性化を示した。
ある態様によれば、転写調節タンパク質またはドメインは、転写活性化因子である。ある態様によれば、転写調節タンパク質またはドメインは、標的核酸の発現を上方制御する。ある態様によれば、転写調節タンパク質またはドメインは、転写抑制因子である。ある態様によれば、転写調節タンパク質またはドメインは、標的核酸の発現を下方制御する。転写活性化因子および転写抑制因子は、本開示に基づき当業者に容易に特定され得る。
ある態様によれば、外来核酸配列は、それぞれのRNAがDNA標的核酸中の近接する部位に相補的である2種類以上のガイドRNAをコードし、さらに、少なくとも1種類のRNA誘導型DNA結合タンパク質ニッカーゼをコードし、且つ該2種類以上のRNAによってガイドされ、該2種類以上のRNAおよび少なくとも1種類のRNA誘導型DNA結合タンパク質ニッカーゼが発現し、該少なくとも1種類のRNA誘導型DNA結合タンパク質ニッカーゼが該2種類以上のRNAと共にDNA標的核酸に共局在して、該DNA標的核酸にニックを形成することにより2つ以上の近接するニックを生じさせる。ある態様によれば、2つ以上の近接するニックは、二本鎖DNAの同じストランド上に存在する。ある態様によれば、2つ以上の近接するニックは、二本鎖DNAの同じストランド上に存在して、相同組換えを引き起こす。ある態様によれば、2つ以上の近接するニックは、二本鎖DNAの異なるストランド上に存在する。ある態様によれば、2つ以上の近接するニックは、二本鎖DNAの異なるストランド上に存在して、二本鎖切断を生じさせる。ある態様によれば、2つ以上の近接するニックは、二本鎖DNAの異なるストランド上に存在し、二本鎖切断を生じさせて非相同末端結合を引き起こす。ある態様によれば、2つ以上の近接するニックは、二本鎖DNAの異なるストランド上に存在し、且つ互いにオフセット(offset)である。ある態様によれば、2つ以上の近接するニックは、二本鎖DNAの異なるストランド上に存在し、互いにオフセットであり、且つ二本鎖切断を生じさせる。ある態様によれば、2つ以上の近接するニックは、二本鎖DNAの異なるストランド上に存在し、互いにオフセットであり、且つ二本鎖切断を生じさせて非相同末端結合を引き起こす。ある態様によれば、2つ以上の近接するニックは、二本鎖DNAの異なるストランド上に存在し、二本鎖切断を生じさせることにより、標的核酸の断片化を引き起こして標的核酸の発現を妨げる。
ある態様によれば、本明細書に記載の方法に従ってRNA誘導型DNA結合タンパク質の結合特異性が向上され得る。ある態様によれば、ゲノム編集方法においてオフセットニックが用いられる。大部分のニックは、NHEJイベントを引き起こすことはほとんどない(その全体が参照により援用されるCerto et al., Nature Methods 8, 671-676 (2011) 参照)ので、オフターゲットなニック形成の影響が最小限に抑えられる。対照的に、オフセットニックを誘導して二本鎖切断(DSB)を生じさせることは、遺伝子破壊の誘導に非常に効果的である。ある態様によれば、3′オーバーハングとは対照的に、5′オーバーハングは、より有意にNHEJイベントを引き起す。同様に、3′オーバーハングでは、NHEJイベントよりHRイベントが多いが、HRイベントの総数は、5′オーバーハングが生じた場合より有意に少ない。したがって、相同組換えのためのニックの使用、およびCas9−gRNAのオフターゲット活性の影響を最小限に抑えるために二本鎖切断を形成するためのオフセットニックを用いる方法が提供される。
本開示に係る生殖系列細胞には、本明細書に記載されるように外来核酸を導入可能でき、発現させることができるあらゆる生殖系列細胞が含まれる。本明細書に記載される本開示の基本的概念は、細胞の種類によって限定されないと理解されるべきである。本開示に係る生殖系列細胞には、真核生物生殖系列細胞、原核生物生殖系列細胞、動物生殖系列細胞、哺乳動物生殖系列細胞、植物生殖系列細胞、昆虫生殖系列細胞、真菌生殖系列細胞、古細菌生殖系列細胞、真正細菌生殖系列細胞などが含まれる。さらに、生殖系列細胞には、本明細書に記載の外来核酸配列を導入することが有益であるか、または望ましい、任意の生殖系列細胞が含まれる。
標的核酸としては、本明細書に記載される共局在複合体が切断、ニック形成、または制御のいずれかに有用であり得る任意の核酸配列が挙げられる。標的核酸としては、遺伝子が挙げられる。本開示の目的のために、二本鎖DNAなどのDNAは標的核酸を含んでいてもよく、共局在複合体は、その共局在複合体が標的核酸に対する所望の効果を与えられ得るよう、その標的核酸において、またはその標的核酸に隣接して、またはその標的核酸の近傍で、DNAに結合、またはDNAと共局在することができる。そのような標的核酸は、内在性の(または天然の)核酸および外来性の(または外来の)核酸が含んでいてもよい。当業者は、本開示に基づき、標的核酸を含むDNAに共局在するガイドRNAおよびCas9タンパク質を容易に特定またはデザインすることができる。当業者はまた、標的核酸を含むDNAに同様に共局在する転写調節タンパク質またはドメインを特定することができる。DNAには、ゲノムDNA、ミトコンドリアDNA、ウイルスDNA、または外来性DNAが含まれる。
外来核酸(すなわち、細胞の天然核酸組成物の一部でない核酸)は、当業者に公知の任意の導入方法を用いて、細胞に導入されてもよい。そのような方法には、遺伝子導入法、形質導入法、ウイルス形質導入法、マイクロインジェクション法、リポフェクション法、ヌクレオフェクション法、ナノ粒子銃(nanoparticle bombardment)法、形質転換法、結合(conjugation)法などが含まれる。当業者は、容易に特定可能な文献資料を用いてそのような方法を容易に理解し、適用するであろう。
転写活性化因子または転写抑制因子である転写調節タンパク質またはドメインは、本開示および具体的な生殖系列細胞に基づき、当業者に容易に特定され得る。
以下の実施例は本開示の代表例として記載されるものである。本開示、図面、および添付の特許請求の範囲を考慮して、これらの実施形態およびその他の同等の実施形態が明らかになるので、これらの実施例は本開示の範囲を限定するものと解釈されるべきではない。
実施例I
Cas9遺伝子ドライブ
図1Aは、標的DNAへのガイドRNAおよびCas9ヌクレアーゼの共局在を示す模式図である。標的DNA部位は、ガイドRNAの「スペーサー」とマッチする「プロトスペーサー」配列、およびCas9結合に必要な短いプロトスペーサー隣接モチーフ(PAM)を含む。図1Aに示される例示的なCas9遺伝子ドライブは、RNA誘導型Cas9ヌクレアーゼ、隣接必須遺伝子内など、1つまたは複数の標的DNA部位に相補的な1種類または複数種類のガイドRNA、および隣接配列を少なくともコードする、本明細書に記載の外来核酸配列(「カセット」と呼ばれることがあり、この用語は当業者に理解されている)である。カセットはさらに、任意のカーゴ遺伝物質、例えば、カーゴ遺伝物質が挿入される生殖系列細胞によって発現される1種類または複数種類の遺伝子、またはその細胞の子によって発現される1種類または複数種類の遺伝子を含み得る。Cas9遺伝子ドライブを発現させてCas9および1種類または複数種類のガイドRNAを産生させ、これらは次に、染色体対の第1の染色体上の1つまたは複数の標的DNA部位で共局在して、そこでCas9は部位特異的に第1の染色体上の標的DNAを切断して二本鎖切断が形成される。次に、Cas9によって誘導される二本鎖切断の相同性修復により、Cas9遺伝子ドライブが第1の染色体の切断部位に挿入される。ある態様によれば、次に、挿入されたCas9遺伝子ドライブが発現されてCas9および1種類または複数種類のガイドRNAが産生され、これらは次に、染色体対の第2の染色体上の1つまたは複数の標的DNA部位で共局在して、そこで、標的DNAを部位特異的に切断して二本鎖切断が形成される。Cas9により誘導される二本鎖切断の相同性修復は、無傷のCas9ドライブ含有染色体を鋳型として利用し、これによりCas9ドライブが染色体対の第2の染色体に挿入されて、Cas9遺伝子ドライブについてホモ接合型の染色体対が作成される。これを図1Bに示す。
図1Cは、標的DNA部位の変異が単一Cas9タンパク質による切断を防ぎ得ることを示す図である。したがって、図1Dに記載の本開示の態様は、複数の標的DNA部位のための複数のガイドRNAを提供する。このようにして、RNA誘導型遺伝子ドライブは、単一の変異により抵抗性が付与されないように複数の隣接配列を標的とすることにより、抵抗性アレルを克服することができる。標的DNA部位が複数の位置で切断されることになりRNA誘導型遺伝子ドライブを挿入できる切断部位が提供されるため、変異が原因で標的部位が切断されない可能性が大幅に低下する。図1Eに示すように、代替的な非相同末端結合(NHEJ)経路を用いた修復により全ての認識部位が欠失されるため、ドライブを打ち破るドライブ抵抗性アレルが形成される。図1Fは、必須遺伝子を破壊するNHEJイベントが非常に有害であり、ドライブに有利なように、逆選択(selected against)され得ることを示す図である。必須遺伝子内に標的部位を選択することによって、不正確な修復イベントが標的配列の全部を欠失させることにより抵抗性アレルが形成されないことが保証される。非相同末端結合により、小さな挿入または欠失が修復の接続部に形成されることがあり、これにより修復部位へのガイドRNAおよびCas9の結合が防がれ得る。その結果、RNA誘導型遺伝子ドライブにコードされる、この部位に対するガイドRNAが1種類しか存在しない場合、RNA誘導型遺伝子ドライブは染色体上のこの部位に挿入不可能になり得る。しかし、RNA誘導型遺伝子ドライブに複数の部位を標的とする複数のガイドRNAをコードさせて複数の切断部位を作ることにより、RNA誘導型遺伝子ドライブが染色体に挿入される可能性が高くなる。さらに、本開示の態様は、染色体中にRNA誘導型遺伝子ドライブを挿入する効率を向上させる方法としての、必須遺伝子内の複数のCas9部位の標的化に関する。
実施例II
複数の内在性座位の編集および制御
本開示のある態様によれば、RNA誘導型遺伝子ドライブは、それぞれの野生型アレルを標的とする複数のガイドRNAを組み込むことにより、ドライブ自体の遠位(distal)に存在する複数の内在性アレルを編集することができる。図2Aに示されるように、複数の遺伝子配列のために、すなわち遺伝子Aの野生型(WT)、遺伝子Bの野生型、および必須遺伝子の野生型のために、複数のガイドRNAが提供される。複数のガイドRNAおよびCas9タンパク質の発現により、それぞれの遺伝子がCas9によって改変される。ある態様によれば、Cas9ドライブは、転写調節因子が遺伝子を制御できるように標的DNA部位に共局在可能な転写調節因子と共に、関連ガイドRNAおよび1種類または複数種類の直交ヌクレアーゼ欠損Cas9タンパク質をさらに含んでよい。図7参照。図2Bに示されるように、以前のCas9ドライブによって予めなされた改変をアップデートするために、更なる後続のCas9ドライブを用いることができる。例えば、特定のドライブが予想外の副作用を引き起こす場合、アップデートとして放出される第2のドライブが、第1のドライブによってコードされる1つまたは全ての改変を上書きすることができる。この態様によれば、第2のドライブは、既存の挿入されているドライブを除去して、染色体中に自身を挿入するようにデザインすることができる。さらに、以前のRNA誘導型遺伝子ドライブによって改変された1種類または複数種類の遺伝子は、除去されて所望の遺伝子で置換され得る。同様に、図2Cに示されるように、第3の回復ドライブにより、回復ドライブを拡散するために必要なCas9およびガイドRNAの存在を除き、全ゲノム位置の野生型配列を回復することができる。このようにして、集団を改変してその野生型に復帰させることができる。したがって、本開示の態様は、本明細書に記載の方法を用いて、予め改変された細胞に第2のRNA誘導型Cas9遺伝子ドライブを導入することによる、予め挿入されたRNA誘導型Cas9遺伝子ドライブの改変または置換に関する。第2の遺伝子ドライブは、第1の遺伝子ドライブによってなされた改変を超えるその他の改変を行うように、または第1の遺伝子ドライブによってなされた改変を除去するようにデザインされる。
実施例III
拡散の制御
ある態様によれば、単一の標的種または亜集団に関連する固有の遺伝子または配列多型を標的とすることにより、RNA誘導型遺伝子ドライブの拡散を単一の標的種、または亜集団にさえも限定することができる。ドライブは固有配列のみを切断できるので、非標的集団中には拡散しない。したがって、本開示の態様は、固有の遺伝子配列または配列多型に特異的なRNA誘導型遺伝子ドライブをデザインおよび使用する方法に関する。このようにして、固有の遺伝子配列または配列多型に相補的になるように1種類または複数種類のガイドRNAがデザインされる。このようにして、固有の遺伝子配列または配列多型に局在するようにDNA結合タンパク質が制限される。
実施例IV
人為的種分化の誘導
ある態様によれば、2つの集団間に遺伝的不適合を生じさせることにより遺伝子流動を阻止するための、RNA誘導型遺伝子ドライブの使用方法が提供される。この態様によれば、図3に示されるように、異なるガイドRNAを用いて同じ必須遺伝子内の異なる配列を標的とする2つの遺伝子ドライブが、2つの集団中に放出される。各集団内で必須遺伝子の各コピーが喪失することにより、2つの集団は不適合になる。この種類のドライブを集団中に放出することにより、ドライブの数だけ集団が人為的に分割されることになる。例示的な図3に示されるように、ドライブAは必須遺伝子X内の配列1、2、3、および4を切断する。ドライブAが拡散する際、ドライブAは遺伝子Xを配列1、2、3、および4が再コード化されたバージョンで置換するので、これらはこれらは切断されない。ドライブBは遺伝子X内の配列5、6、7、および8を切断し、このバージョンの遺伝子Xはこれらの配列が再コード化されているため、これらは切断されない。ドライブAを有する雄がドライブBを有する雌と交雑すると、ドライブAおよび1/2/3/4が再コード化された遺伝子Xを有する1つの染色体ならびにドライブBおよび5/6/7/8が再コード化された遺伝子Xを有する1つの染色体を受け継いだ子孫が生じる。第2のコピーは部位1/2/3/4が再コード化されておらず、5/6/7/8のみが再コード化されているので、ドライブAは遺伝子Xの第2のコピーを部位1/2/3/4で切断する。同様に、第1のコピーは部位5/6/7/8が再コード化されておらず、1/2/3/4のみが再コード化されているので、ドライブBは遺伝子Xの第1のコピーを部位5/6/7/8で切断する。この生物は最終的に、遺伝子Xの両方のコピーが切断される。遺伝子Xは必須であり、生物はこれらを修復するために用いる遺伝子Xの無傷のコピーを有さないので、生物は死滅する。したがって、ドライブAおよびドライブBは不適合である。
この態様によれば、各ドライブは、異なるバージョンの必須遺伝子、すなわち、第1の外来核酸配列および第2の外来核酸配列、をコードし、それぞれがその遺伝子によってコードされる必須タンパク質のアミノ酸配列を保存しているが、異なる標的位置のセットが再コード化されている。すなわち、第1のドライブは、部位1/2/3/4がガイド1/2/3/4に非相補的になるように再コード化されており、一方、第2のドライブは、部位5/6/7/8がガイド5/6/7/8に非相補的になるように再コード化されている。ドライブが交雑すると、必須遺伝子の第2のドライブのコピーは再コード化された部位1/2/3/4を有していないので、第1のドライブが必須遺伝子の第2のドライブのコピーを1/2/3/4で切断し、一方、必須遺伝子の第1のドライブのコピーは再コード化された部位5/6/7/8を有していないので、第2のドライブが必須遺伝子の第1のドライブのコピーを5/6/7/8で切断する。
より複雑な遺伝子ドライブにより、野生型集団を改変することなく、改変された亜集団と野生型集団との間の遺伝子流動を阻止することができる(図8参照)。この障壁はさらに一方向的であってもよく、改変集団は遺伝物質を受けることはできるが、野生型集団に遺伝物質を提供することはできない(図9参照)。これらのデザインまたは関連するデザインは、他の遺伝子ドライブまたは他の遺伝子改変が同種または関連する生物種の未改変メンバーに拡散するのを防ぐために用いられ得る。この態様によれば、2つの集団のうちの一方だけが改変され、2つの別個のRNA誘導型遺伝子ドライブが用いられる。第1のドライブは第2のドライブのための挿入部位を形成する。第2のドライブは、(1)必須遺伝子のコピーを含み、第1のドライブによって形成された挿入部位中に第2のドライブが拡散する際にその遺伝子をコピーし、(2)その必須遺伝子の野生型コピーを死滅させる。第2のドライブを有する生物が第1のドライブを有する生物と交配する場合、第2のドライブが第1のドライブによって形成された挿入部位中にコピーされ、必須遺伝子のコピーを付加し、野生型コピーを除去する。必須遺伝子の正味の変化は0であるため細胞は生存可能である。第2のドライブを有する生物が野生型生物と交配する場合、野生型染色体は挿入部位を有さないので、ドライブおよびその必須遺伝子は野生型染色体中に挿入不可能である。しかし、第2のドライブは依然として野生型コピーを死滅させる。必須遺伝子の正味の変化は−1であるので、細胞は死滅する。したがって、第2のドライブを含む生物と野生型生物の間の任意の交配は子孫を生じない。本開示のこの態様は、導入遺伝子の拡散を防ぐための、野生型集団と不適合なトランスジェニック生物を作製する方法を提供する。
実施例V
集団の抑制および絶滅
ある態様によれば、RNA誘導型ヌクレアーゼにより、集団制御に有用であり得る、複数の異なった形態の性別バイアス化遺伝子ドライブ(sex-biasing gene drive)を作り出すことができる。図4Aに示されるように、雄減数分裂中にのみX染色体を標的とするCas9およびガイドRNAの発現により、自然界に存在するものと類似した古典的な「減数分裂」Yドライブが生じる。減数分裂遺伝子ドライブにより、減数分裂中に競合する性染色体が除去され、バイアスのかかった配偶子プールが生じる。ドライブ発現は前減数分裂期に厳密に制限されなければならず、さもなければドライブは致死性になる。この種類のドライブは、XY、ZW、およびより低い程度でXOの性決定系を使用する生物の配偶子をいずれかの性別に有利なようにバイアスをかけることができる。さらに図4Aに関して、RNA誘導型遺伝子ドライブが精母細胞のY染色体に導入されている。RNA誘導型遺伝子ドライブには、X染色体上の複数の標的配列に相補的な複数のガイドRNAが含まれる。RNA誘導型遺伝子ドライブが発現される場合、ガイドRNAおよびCas9ヌクレアーゼはX染色体に共局在し、そこでCas9ヌクレアーゼは二本鎖切断を形成してX染色体を作働不能(inoperable)にする。減数分裂後、Y染色体を有する精子のみが生存可能となる。
重要なことに、直交Cas9ヌクレアーゼは、減数分裂による染色の発現停止(mitotic chromosome silencing)を回避可能であるはずである。本開示の態様は、精子形成前に好適なガイドRNAと共にCas9を発現させるためのY染色体上の本明細書に記載されるような第1のRNA誘導型遺伝子ドライブの使用に関し、発現されたCas9および好適なガイドRNAは常染色体を切断し、第2のCas9および好適なガイドRNAをコードする第2のRNA誘導型遺伝子ドライブが常染色体に挿入される。精子形成中、常染色体中の第2のRNA誘導型遺伝子ドライブが発現され、発現された第2のCas9および好適なガイドRNAはX染色体を切断することによりこれを作働不能にする。この方法により、X染色体およびY染色体が精子形成中に発現されない種においてもX染色体を切断することが可能になる。図4Bに示されるように、Cas9は、減数分裂中に競合する性染色体を自由に除去できる発生初期に、Cas9Bをコードするカセットを性染色体から常染色体にコピーさせる。ある態様によれば、特定の性にバイアスをかけるRNA誘導型遺伝子ドライブが、性染色体上に与えられ、ドライブは集団をその性にバイアスをかける。例えば、哺乳動物において雄はY染色体を有するので、集団を雄にバイアスをかけるドライブはY染色体上に存在しなくてはならず、それにより、ドライブはY染色体がより多く自身のコピーを作るのを助ける。哺乳動物の性染色体は減数分裂(精子形成および卵形成)中に発現されないので、発現された場合に性染色体を切断するCas9を産生する染色体中へのドライブの適切な挿入を促進するために、2コピーのCas9を用いてもよい。第1のCas9は、精子形成のかなり前の発生の初期に働き、常染色体(減数分裂中に発現停止されない非性染色体)を切断することにより、第2のCas9をコードするRNA誘導型遺伝子ドライブの常染色体への挿入を可能にする。この第2のCas9は、精子形成中に常染色体から発現され、X染色体を切断することにより、確実に生存可能な精子のほとんどがY染色体を含むようにする。したがって、上記の方法は、2種類のRNA誘導型遺伝子ドライブを用い、1つは、性染色体が減数分裂中に遺伝子を発現できない状況において集団を雄にバイアスをかけるために、発現可能な常染色体に挿入される。
図4Cに示すように、「接合体」の性別バイアス化ドライブは、接合段階または接合後段階(post-zygotic stage)(その全体が参照により援用されるRice and Friberg 2008 参照)に反対の性の同胞を排除する。重要なことに、これらは機能するために高度に特異的な発現パターンを必要としない。Xドライブは、単純にY染色体上の部位を標的とすることにより雄の接合体を排除する(図4C)。Yドライブでは、遺伝子ドライブカセットがX染色体上の必須遺伝子の代わりに自身をコピーし、必須遺伝子の喪失は、雄においてはドライブY染色体上の別の場所に挿入されているコピーによって補完される(図4D)。一部の種において、遺伝子量補償のために、移植された必須遺伝子の発現を調整する必要があり得る。
図4Cに関して、野生型精母細胞により、X染色体を有する野生型精子およびY染色体を有する野生型精子が形成される。卵母細胞は、Y染色体に相補的な1種類または複数種類のガイドRNAを有するRNA誘導型遺伝子ドライブを備え、これは、「Xドライブ卵母細胞」と呼ばれる。Y染色体を有する野生型精子がこの卵母細胞と結合した場合、RNA誘導型遺伝子ドライブが発現され、ガイドRNAおよびCas9ヌクレアーゼがY染色体に共局在し、そこでCas9ヌクレアーゼがY染色体中に二本鎖切断を形成してY染色体を作働不能にすることにより、作働不能な接合体が形成される。対照的に、X染色体を有する野生型精子がこの卵母細胞と結合した場合、RNA誘導型遺伝子ドライブが発現され、X染色体に相補的なガイドRNAおよびCas9ヌクレアーゼがX染色体に共局在し、Cas9ヌクレアーゼがX染色体中に二本鎖切断を形成し、これが相同組換えによって修復されることにより、X染色体中にRNA誘導型遺伝子ドライブが挿入されて、接合体はX染色体についてホモ接合型になる。このX染色体のコピーは、RNA誘導型遺伝子ドライブがコピーされる時に二本鎖切断が修復されるので、生存可能なままである。Y染色体の喪失のため雄は生存可能でないので、生じる子孫は全て雌である。これらの雌は、雄の同胞と資源を競争する必要がないので、RNA誘導型遺伝子ドライブをコードしない他の雌より有利である。その結果、RNA誘導型遺伝子ドライブを有するX染色体は適応度上の利点を有する。図4Dに関して、接合体Yドライブが、通常はX染色体上に存在する必須遺伝子をコードし、遺伝子ドライブカセットを用いてX染色体からその必須遺伝子を除去する。Yドライブが父方のX染色体から母方のX染色体へと挿入され、雌接合体は必須遺伝子のコピーを1つも有さなくなる。特に、精母細胞は、X染色体由来の必須遺伝子およびX染色体上の必須遺伝子に相補的な1種類または複数種類のガイドRNAをコードするRNA誘導型遺伝子ドライブを有するY染色体を備える。精母細胞のX染色体も同じRNA誘導型遺伝子ドライブを含む。精母細胞はY染色体を有する精子およびX染色体を有する精子を産生する。Y染色体を有する精子は、必須遺伝子を有するX染色体を有する野生型卵母細胞と結合する。RNA誘導型遺伝子ドライブが発現される場合、1種類または複数種類のガイドRNAがCas9ヌクレアーゼと共にX染色体に共局在し、Cas9ヌクレアーゼがX染色体から必須遺伝子を切り取る。しかし、X染色体由来の必須遺伝子がY染色体上に存在するため、接合体は生存可能となる。対照的に、RNA誘導型遺伝子ドライブを含むX染色体を有する精子がX染色体を有する野生型卵母細胞と結合すると、発現された1種類または複数種類のガイドRNAはCas9ヌクレアーゼと共にX染色体に共局在して、そこでCas9ヌクレアーゼはX染色体から必須遺伝子を切り取る。必須遺伝子は卵母細胞中にもはや存在しないので、卵母細胞は生存可能ではない。
接合体ドライブの適応度の利点は、同胞競合の程度、子への親の投資の程度、および成体の交配動態によって異なり得る。全ての接合体Yドライブは、競合する野生型Y染色体よりは多くなくとも、少なくとも同じ数の息子を産生するはずであり、それらの息子はいずれも姉妹と競合する必要がないであろう。他のドライブ型と異なり、特定のリスクに晒されている関連種または非標的亜集団との交配が生殖不能になることを確実にすることにより、接合体Yドライブの宿主範囲は制限することができる。これは、X染色体上の固有配列を切断してハイブリッドの雄を排除するガイドRNAを組み込むことにより達成することができる。
ドライブを阻止できる変異がX染色体上または常染色体の1つの上で急速に生じない場合は、Yドライブの放出により局所的集団を絶滅させる。切断に抵抗性の性染色体を有する生物を放出することにより、ドライブを停止させ、最終的に除去することができる。厳重な監視および制御により、完全な絶滅を防止することができる。
RNA誘導型ヌクレアーゼはさらに、集団を抑制できるがドライブのように拡散しない、活動性のより低い「生殖不能娘(sterile-daughter)」Y染色体を作り出すことができる(図10A)。雌の生存能ではなく雌の生殖能に必須のX連鎖遺伝子を標的とするY染色体上のCas9のコピーは、依然として雌子孫の生殖能を取り除くが、息子に利点をもたらさないであろう。Cas9活性のコストが小さいため、生殖不能娘Yは最終的に野生型Y染色体との競争に敗れるが、十分多数が導入された場合は、競争に敗れる前に著しく集団を抑制する。このアプローチは、昆虫および魚の集団を制御するために開発中の、雌特異的致死法および雌特異的生殖不能法に密接に関連しているが、Y上のその位置のため、構築がより簡単であり、進化的により安定であると考えられる。
集団制御のためのハイブリッドアプローチにより、Yドライブ法の利点と生殖不能娘法の利点を組み合わせてもよい(図5A〜B)。例えば、必須遺伝子および雌の生殖能遺伝子の両方を標的とするY染色体は、Yドライブであるため、集団中に自身を急速にドライブするであろう。しかし、X染色体上の必須遺伝子は再コード化するが雌の生殖能遺伝子は再コード化しない、後に放出される標準的遺伝子ドライブに遭遇すると、適応度上の利点を失うであろう。ハイブリッド雌は、胚の時期に死滅する代わりに生殖不能に育ち、絶滅させずに継続的な抑制を引き起こす。
集団制御の関連アプローチでは、RNA誘導型遺伝子ドライブを用いて、(1)生殖能または生存能に必要であるが、(2)1つの無傷のコピーで機能するのにほぼ十分である、1つまたは複数の遺伝子を破壊する。そのようなドライブは、その遺伝子の機能が必要とされるより後の任意の時点で、1コピーのドライブおよび1コピーの野生型遺伝子を受け継ぐ生物の生殖系列細胞中の標的遺伝子を切断および置換し得る。例えば、生殖腺発達およびその後の生殖能に必要な遺伝子が減数分裂の直前にRNA誘導型遺伝子ドライブによって切断および置換され得る。1コピーのみを受け継いだ生物は、野生型コピーがこの目的のために十分であるため、既に生殖腺が正しく発達している可能性があるので、正常な生殖能を有し得る。しかし、精子および/または卵生成の直前にドライブがコピーされるため、大部分の子または全ての子がドライブを受け継ぐ。このデザインは、ほとんどの交配イベントにより1コピーのドライブおよび1コピーの野生型を受け継ぐ個体が多く生じることになるので、希少な場合、ドライブが集団中に拡散することを可能にする。その後、ドライブを保有する2個体間の交配により生殖不能の子が生じ、集団が崩壊(crash)することになる。このシナリオは、それぞれその全体が参照により援用されるBurt, A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc. Biol. Sci. 270, 921-928 (2003), Deredec, A., Burt, A. & Godfray, H. C. J. The population genetics of using homing endonuclease genes in vector and pest management. Genetics 179, 2013-2026 (2008), North, A., Burt, A. & Godfray, H. C. J. Modelling the spatial spread of a homing endonuclease gene in a mosquito population. J. Appl. Ecol. 50, 1216-1225 (2013) に記載されるように大規模にモデル化されている。遺伝子発現を生殖系列細胞および/または減数分裂前の時期に制限する方法は当業者に公知である。
実施例VI
応用例
本明細書に記載の遺伝子ドライブは、感染症の根絶および侵入種の制御において特に実用的である。そのようなRNA誘導型Cas9遺伝子ドライブは、例えば両生類などの絶滅危惧種または準絶滅危惧種を通じて、保護的アレルを急速に拡散するために用いられ得る。そのようなRNA誘導型Cas9遺伝子ドライブは、ドライブによって運ばれる外来種由来のRNAi機構を有するRNAウイルスおよびCas9でdsDNAウイルスを標的化することにより、一般的にヒトウイルスの保有宿主となる野生集団を免疫化するために用いることもできる。本明細書に記載のYドライブ、すなわちX染色体の伝播を阻害するRNA誘導型Cas9遺伝子ドライブを用いて、疾患媒介生物を、病原体を獲得できないように改変するか、または排除することができる。同様に、Yドライブを用いて、侵入的および生態破壊的な有害生物を局所的に制御するまたは根絶することができる。生態学的ダメージを最小限に抑えるため、ならびに避難所および救出機関の必要を減らするために制御される、関連する野生種および野生化した集団に、家畜が遺伝子を供与することを防止することができる。同様に、絶滅の危機に瀕している絶滅危惧種を、個体数の多い近縁種または侵入的な近縁種から、遺伝子希釈(genetic dilution)により分離することができるように、トランスジェニック作物およびトランスジェニック動物をそれらの未改変対応物から遺伝的に分離することができる。最後に、遺伝子ドライブを用いて、自然環境における遺伝子、性比、および種分化の進化的および生態学的重要性に関する仮説を直接試験することができる。
本明細書に記載の遺伝子ドライブは、病原媒介生物による疾患に関して特に実用的である。病原媒介生物による感染症のヒトの被害は驚異的である。マラリアだけで毎年650,000人を超える人が死亡しており、その大部分は子供であり、一方、さらに2億人が消耗性発熱に苦しみ、その社会の経済を逼迫している。デング熱、黄熱病、トリパノソーマ症、リーシュマニア症、シャーガス病、およびライム病が、媒介生物を用いて拡散するその他の病原体によって生じる。伝染を防止する変更を媒介生物中でドライブすることにより、これらの全てを低減すること、または排除することさえもできる可能性がある。科学者はマラリア(Ito et al Nature 2002, PMID:12024215: Dong et al PloS Pathogens 2012, PMID: 22216006; Isaacs et al., PNAS 2012, PMID: 22689959)およびよく研究されている他の疾患(Franz et al PNAS 2006, PMID: 16537508)の伝染に干渉する複数の候補遺伝子破壊または挿入遺伝子を特定しているが、他の多くの病原体では特定されていない。したがって、本開示の態様は、Yドライブを用いて媒介生物種を直接排除することに関する。マラリアの場合、屋外で刺して休むことを好む出現しつつある蚊媒介生物に対して、これらの行動は屋内での殺虫剤噴霧および蚊帳を中心ろした現行の制御戦略に対して非常に耐性があるので、この戦略は特に有望である。伝染を止めるためには所与の地域の全ての媒介生物種を標的としなければならないが、新規に空いた生態的ニッチが、競合する非媒介生物種で占められた場合、疾患は永久的に根絶されることになる。重要なことに、この戦略は媒介生物の分子生物学の理解をほとんどまたは全く必要としないが、媒介生物種の局所的またはおそらく世界的絶滅を必然的に伴う。
本明細書に記載の遺伝子ドライブは侵入種の制御に特に実用的である。世界的経済活動による最も環境にダメージを与える結果の1つが侵入種の輸送であり、これによりしばしば生態破壊および在来種の絶滅が引き起こされる。小さな島の生態系のような孤立した生態系は特に脆弱である。Cas9 Yドライブは、これらの種を制御することにより、またはさらには個々の島もしくはおそらく大陸全体から根絶することにより、生物多様性を促進する非常に大きな可能性を有する。侵入種に固有のドライブ配列をデザインし、危険にさらされている近縁生物のX染色体を分解するガイドRNAを組み込み、且つ種分化ドライブを用いて標的種をその近縁生物と遺伝的に不適合にすることにより、全ての関連種を直接的に改変することなく、ドライブが選択された種を標的とし、異種間転移のリスクが低減される。Yドライブの機能に必要な部位を再コード化する種特異的な標準的遺伝子ドライブを放出することにより、関連種を保護することができる。侵入集団から生息環境(native habitat)にYドライブが拡散するリスクは、淡水魚またはオオヒキガエルなどの意図的なヒトの行為を通じてのみ侵入する種では無視可能であるが、ラットおよび他の侵入的密航生物(invasive stowaway)では、ほぼ確実にYドライブは拡散する。X再コード化ドライブ、またはさらには抵抗性X染色体を放出することにより、在来集団を絶滅から常に保護することができるであろう。例えば、コイなどの移動度の低い種の侵入集団はYドライブによる直接的排除の素晴らしい候補である。(図6A)。遺伝子流動には意図的なヒトによる導入が必要であるので、局所的な根絶は永久的である可能性があり、在来集団を再コード化する必要なく達成可能である。対照的に、ラットおよび他の移動度の高い侵入種は、種の完全な絶滅を除いて、永久的に排除することができない。しかし、在来集団中に標準的再コード化ドライブ、および侵入集団全体に生殖不能娘効果(sterile-daughter effect)を有するYドライブ(Y−ドライブ−SD)を定期的に放出することにより、それらを制御することができる(図6B)。
実施例VII
農業上の安全性および持続可能性
本開示の態様は、農業に関連する雑草および有害生物を制御、低減、または排除するための、本明細書に記載のCas9方法の使用に関する。有害生物とは通常、ヒトまたは農業もしくは家畜生産などのヒトの事業に有害な植物または動物を指す。有害生物という用語には、植物または動物、ヒトまたはヒトの事業、家畜、ヒトの構造、野生の生態系などにとって、侵入的または多産の、有害な(detrimental)、厄介な(troublesome)、侵害性の(noxious)、破壊的な、迷惑な(nuisance)、任意の生きている生物が含まれ得る。有害生物という用語にはさらに、害虫(vermin)、雑草、植物および動物の寄生生物(parasite)、ならびに病原体が含まれ得る。本開示に係る雑草とは、特定の状況で望ましくないと考えられる植物を指し得る。広義には、雑草は、植物である有害生物と考えることができる。例としては通常、農場、庭、芝生、および公園などのヒトにより制御された状況における望まれない植物が挙げられる。「雑草」という用語にはさらに、活発(aggressive)に成長もしくは繁殖するか、またはその生息環境以外で侵入的(invasive)である、任意の植物が含まれ得る。
本開示のある実施形態によれば、にCas9法を用いて、雑草または有害生物の生殖系列細胞のゲノム中に1つまたは複数のRNA誘導型「感作ドライブ(sensitizing drive)」が挿入される。感作ドライブとは、本明細書に記載されるような遺伝子ドライブであり、「感作遺伝子ドライブ」と呼ばれることもある。したがって、「感作ドライブ」とは、ゲノムDNA中に挿入され、子孫へと移行し、子孫をある外部刺激に対して感受性にする遺伝子ドライブである。ある態様によれば、RNA誘導型「感作ドライブ」は、ゲノムDNA中に組み込まれた結果、特定の化合物または化学物質に対して、毒性などの有害な感受性を雑草または有害生物に付与する。このようにして、雑草または有害生物を、雑草または有害生物にとって本体は有毒でない特定の化合物または化学物質または条件に接触させることにより、雑草または有害生物の成長および増殖を制御することができる。このようにして、生殖系列細胞中への遺伝子ドライブの挿入および子孫への移行の結果、感作遺伝子ドライブにより雑草または有害生物の表現型が改変された。このように、雑草または有害生物への言及は、生殖系列細胞中への感作遺伝子ドライブの最初の挿入および野生型集団との交配によって生じた集団を指すことがある。生じた集団は、改変集団(altered population)または感作集団または遺伝的改変集団と呼ばれ得る。
本開示において、雑草または有害生物についての「感受性」という用語は、雑草または有害生物が晒される特定の化合物または化学物質または条件に対する、毒性などの有害反応を意味する。感作ドライブは、ゲノムDNAを改変して、雑草または有害生物が晒される特定の化合物、化学物質、または条件に反応して毒性などの有害反応を生じさせる、本明細書に記載されるような遺伝子ドライブである。「感作ドライブ」は、そのゲノム中に感作ドライブまたは毒性ドライブが存在することにより、特定の化学物質、化合物、または条件が、雑草または有害生物に対して毒性がある限り、本明細書において、「毒性ドライブ」または「毒性遺伝子ドライブ」と呼ばれることもある。ある態様によれば、感作ドライブまたは毒性ドライブは生殖系列生物に外因的に付加される。このように、感作遺伝子ドライブまたは毒性遺伝子ドライブは外来核酸であるが、特定の応用では、雑草または有害生物種に天然に存在するがそれが導入される生殖系列細胞中には存在しない配列が含まれ得る。ある態様によれば、感作ドライブまたは毒性ドライブは、本明細書に記載されるようにRNA誘導型DNA結合タンパク質ヌクレアーゼおよび関連するガイドRNAを用いて生殖系列生物に外因的に加えられる外来核酸である。
ある態様によれば、雑草または有害生物は、特定の除草剤または農薬に抵抗性であるか、または、雑草または有害生物は、長い時間をかけて特定の除草剤または農薬に対する抵抗性を生じたものであってもよい。除草剤または農薬に対する雑草または有害生物の進化は農業にとって大きな問題である。本明細書に記載の方法は、RNA誘導型「感作ドライブ」を用いて、生物の子孫が、特定の化学物質、化合物、または条件に感受性になり、生物が毒性により死ぬか、増殖が低減するか、あるいは生物が生殖できないように生殖不能になるように、その生物にとって以前は非毒性または低毒性であった特定の化学物質、化合物、または条件に対する、生物の感受性を付与する。このようにして、感作遺伝子ドライブ内の核酸配列が雑草または有害生物などの生物によって発現され、核酸の発現により生物の表現型が改変されて、特定の化学物質、化合物、または条件に対して生物を脆弱にする。
別の態様によれば、単数または複数の感作ドライブを用いて、抵抗性アレル(抵抗性変異を有するアレルなど)をその祖先型(または変異していない)同等物で置換して感受性を回復させる。したがって、抵抗性を有する変異型のアレルを除去して、感受性を有する非変異型でそのアレルを置換することにより、アレルの変異によって除草剤または農薬に対する抵抗性を生じた生物を、除草剤または農薬に対して感受性にすることができる。このように、変異型のアレルが含まれるので、生物または生物の集団にとって、非変異型のアレルは外来性である。したがって、感作遺伝子ドライブは、既存の農薬または除草剤に対する抵抗性を付与する既知の変異を逆転させ得る。RNA誘導型遺伝子ドライブを用いて、生物の集団中に拡散したゲノム変化を逆転させる。この態様によれば、本明細書に記載されるように、第2のドライブを放出することにより、第1のドライブによって生じた1つまたは全ての変化を上書きすることができる。このように、生物の集団は、生殖系列細胞中に最初に導入されて子孫においてその表現型を生み出し、次に子孫へと移行した、毒性などの表現型を付与する、第1の遺伝子ドライブおよび第1の核酸配列の存在により特徴付けられる。しかし、変異またはその他の理由により、表現型は失われる。これに関連して、第1の核酸の除去と共にまたは除去しないで、同じ表現型を付与する第2の核酸配列を有する第2の遺伝子ドライブを生殖系列細胞中に導入して、第2の核酸配列が子孫へと伝わり。このようにして、第1の遺伝子ドライブ核酸が第2の遺伝子ドライブ核酸によって上書きされて、例えば抵抗性を生じる変異が逆転されることにより毒性が生じる。
別の態様によれば、感作ドライブが、プロドラッグ変換酵素を発現する生物にとってプロドラッグ分子を有毒にし得る、プロドラッグ変換酵素を保有し得る。このように、酵素が産生され、生物がプロドラッグに接触した場合、酵素は、プロドラッグを雑草または有害生物などの生物に対して毒性を有する特定の化合物または化学物質に変換する。本発明に基づいて、種々のプロドラッグ/酵素の組合せが当業者に明らかとなるであろう。
別の態様によれば、感作ドライブが、必須遺伝子を、特定の小分子によって強力に阻害されるバージョンに置換し得る。したがって、遺伝子の発現が阻害されるか、または遺伝子の発現産物が阻害され得る。そのような阻害は、生物を死滅させるか、または増殖を低下させ得る。いくつかの実施形態では、感作ドライブはその関連分子の非存在下で影響を与えず、場合によってはその逆であるので、これらにより、最小限の生態学的リスクで集団抑制の地理および程度が極めて細かく制御され得る。
例示的なある態様によれば感作ドライブを用いて、ウェスタンコーンルートワーム(western corn rootworm)をBt毒素抵抗性にする変異(その全体が参照により援用されるGassman et al PNAS, vol. 111 no. 14, pages 5141-5146, doi: 10.1073/pnas.1317179111 (2014) 参照)またはヒメムカシヨモギ(horseweed)およびアカザ(pigweed)を、環境的に持続可能な不耕起農業に現在必須の除草剤である除草剤グリホサート(glyphosate)抵抗性する変異(その全体を参照により援用されるGaines, T. A. et al. Proc. Natl. Acad. Sci. 107, 1029-1034 (2010) および Ge, X., d’ Avignon, D. A., Ackerman, J. J. & Sammons, R. D. Pest Manag. Sci. 66, 345-348 (2010) 参照)が逆転される。この態様によれば、感作ドライブを有する生物を、その個々の生物は抵抗性を有しても有さなくてもよい野生集団中に放出し、感作ドライブが子孫へと伝わり、その結果、特定の除草剤または農薬に対して、(野生集団に抵抗性が存在する場合)子孫集団の抵抗性が低下し、(野生集団に抵抗性が存在する場合)子孫集団の感受性が上昇する。野生型集団の一部のメンバーのみが抵抗性を有し得るが、感作ドライブは野生型集団の感受性および抵抗性のメンバーの両方に拡散し、感作ドライブを有する子孫集団が生じると理解されるべきである。ある態様によれば、単数または複数の感作ドライブを含む生物が、除草剤または農薬で処理されていない地域に放出されることにより、除草剤または農薬で処理された隣接地域へと拡散可能な感作ドライブの保有生物が作り出される。
ある態様によれば、単数または複数の感作ドライブを用いて抵抗性をもたらす変異を無効にする(counter)方法が提供される。この態様によれば、初期およびその後の期間に、単数または複数の変異により農薬または除草剤に対する抵抗性を生じた野生型集団のゲノム中に、そのような感作ドライブを導入することにより、抵抗性をもたらす単数または複数の変異の効果を逆転させて、農薬または除草剤を集団に対して毒性にする。このような方法により、抵抗性を付与する変異が無効にされるか、または置換されて、どのような抵抗性が生じても「巻き戻す」ので、任意の所与の除草剤または農薬を永遠に使用することが可能になる。
別の態様によれば、雑草または有害生物などの植物または動物に対して特定の化学物質、化合物、または条件を毒性にする、単数または複数の感作ドライブをそのゲノム(したがって、さらにその子孫)を含むことにより、植物または動物を特定の化学物質または化合物または条件に対して脆弱にすることができる。したがって、植物または動物のゲノム中に単数または複数の感作ドライブを含めることにより特定の化学物質または化合物を植物または動物にとって毒性にする結果、ヒトにとって安全と考えられ得る化合物が植物または動物にとって毒性となり得る。この態様によれば、感作ドライブが、感染した種または実験室単離株(laboratory isolate)から感受性遺伝子を送達するか、または適応度に重要な遺伝子を感受性遺伝子で置換するとしたら、安全および/または有効と見なされている既存の化合物を、現在それらに対して脆弱でない生物に適用することができる。
別の態様によれば、感作ドライブを用いて、他の生物に無害である特定の分子、化合物、または化学物質に対して有害生物集団を脆弱にする方法が提供される。現在の農薬および除草剤は、「有機」に指定されているものでも、昆虫有害生物および雑草に対する毒性で選択されるが、感染経路が種間で保存されているため、これらはしばしば非有害生物種またはさらにはヒトに危害を加える。本開示によれば、通常は無害の分子に対する感受性を生物に付与する単数または複数の遺伝子が送達される方法が提供される。感受性遺伝子ドライブの導入により、その分子が、ドライブで改変された特定の有害生物または雑草種に高度に特異的な農薬または除草剤に効果的に変換される。ドライブと分子の組合せは生物にとって致死的である。ある例示的な実施形態は、酵素/プロドラッグの組合せの使用であり、酵素は生物のゲノムに導入されて、発現される。生物がプロドラッグに晒された場合、酵素がプロドラッグを活性除草剤または農薬に変換する。本開示のこの態様の原理を実証する類似の候補は、局所的に産生されたウイルスまたは腫瘍特異的酵素によりプロドラッグが活性化される、抗ウイルス療法または抗がん療法である。例としては、シトシンデアミナーゼと5−フルオロシトシンの組み合わせ、およびニトロレダクターゼとCB1954の組み合わせが挙げられる。感作ドライブの場合、遺伝子ドライブによって酵素が標的種へと送達されて、プロドラッグが特異的農薬に変わる。別の例示的な組み合わせとしては、特異的な化学物質によって強力に阻害されるように改変された一次代謝酵素が挙げられる。例えば、改変された転化酵素(invertase)は、スクラロースまたは関連するハロゲン化多糖などの生物学的にほぼ不活性な生体異物化学物質の存在下で、非機能性になり得る。感作ドライブにより生物の天然インベルターゼ遺伝子が改変バージョンと置換されて、ほぼ不活性であった化合物に対して感受性になるであろう。当業者であれば、本明細書に記載の感作ドライブ法に基づき、この目的に適した有用な酵素と化学物質の組み合わせを容易に特定することができる。
当業者であれば、本開示の範囲に含まれる雑草には、農作物に有害な雑草植物が含まれると容易に特定することができる。そのような雑草は、連邦法または州法で「有害雑草(noxious weed)」として指定されていてもよく、されていなくてもよい。例えば、ヒメムカシヨモギおよびアカザは農作物に有害な雑草と見なされるが、有害雑草に指定されていないこともある。USDAによって有害雑草に指定されている例示的な雑草としては、以下が挙げられる。
本開示の範囲に含まれるその他の雑草としては、アカザ(Atriplex, Spreading);センダングサ(Beggarsticks, Nodding);ウマノチャヒキ(Brome, Downy);ノラニンジン(carrot, wild);イヌカミツレ(Camomile, scentless);ハコベ(Chickweed, common);アレチウリ(Cucumber, bur);タンポポ(Dandelion);ヒメムカシヨモギ(Fleabane, Canada);クジラグサ(Flixweed);スズメガヤ(Grass, Stink);Grass, Tufted love;Groundcherry, Smooth;イヌゴマ(Hedge-nettle, Marsh);ワルナスビ(Horse-nettle);スギナ(Horsetail, Field);トゲチシャ(Lettuce, Prickly);アカリファ(Mercury, Three-seeded;Muhly, Wire-stemmed);ヤブタビラコ(Nipplewort);コヌカグサ(Redtop);Sandbur, Long-spined;Smartweed, Swamp;一年生ノゲシ(Sow-thistle, Annual);多年生ノゲシ(Sow-thistle, Perrenial);タチイヌノフグリ(Speedwell, Corn);クサフジ(Vetch, Tufted);Violet, Field;Waterhemp, Common;カタバミ種(Wood-sorrel species);バミューダグラス(Bermuda grass);ヒルガオ(Bindweed);セイヨウオオバコ(Broadleaf plantain);ゴボウ(Burdock);シロザ(Common lambsquarters);セイヨウカキドオシ(Creeping Charlie);タンポポ(Dandelion);アキノキリンソウ(Goldenrod);イタドリ(Japanese Knotweed);葛(kudzu);ハギクソウ(Leafy spurge);マリアアザミ(Milk thistle);ツタウルシ(Poison ivy);ブタクサ(Ragweed);ギシギシ(Sorrel);ストライガ(Striga);セイヨウオトギリソウ(St John’s wort);ウルシ(Sumac);ニワウルシ(Tree of heaven);ノラニンジン(Wild carrot);カタバミ(Wood sorrel);およびキハマスゲ(Yellow nutsedge)が挙げられる。
学名で特定されるその他の雑草としては、Acalypha rhomboidea Raf.;Agrostis gigantea Roth;Amaranthus rudis L.;Atriplex patula L.;Bidens cernua L.;Bromus tectorum L.;Cenchrus longispinus Hack.;Conyza Canadensis;Daucus carota L.;Descurainia sophia L.;Equisetium arvense L.;Eragrostis spp.;Lactuca scariola L.;Lapsana communis L.;Matricaria perforata Merat.;Muhlenbergia frondosa Poir.;Oxallis dillenii Jacq;Physalis virginiana Mill.;Polygonum coccineum Muhl.;Sicyos angulatus L.;Solanum carolinense L;Sonchus arvensis L.;Sonchus oleraceus L.;Stachys palustris L.;Stellaria media;Taraxacum officinale Weber.;Veronica avensis L.;Vicia cracca L.;およびViola avensis Lが挙げられる。
当業者に容易に入手可能な資料により、本開示の範囲に含まれるその他の雑草が特定できると理解されるべきである。
雑草が抵抗性であり得るまたは抵抗性を生じさせ得る一般的な除草剤には以下が含まれる。当業者は、本開示に基づき特定の雑草種に毒性の除草剤を容易に特定することができる。
当業者に容易に入手可能な資料により本開示の範囲に含まれる他の除草剤が特定できると理解されるべきである。
トウモロコシに関連する本開示の範囲に含まれる有害生物として以下が含まれる。
綿に関連する本開示の範囲に含まれる有害生物として以下が含まれる。
オーク(oak)に関連する本開示の範囲に含まれる有害生物として以下が含まれる。
マツ(pine)に関連する本開示の範囲に含まれる有害生物として以下が含まれる。
小穀物に関連する本開示の範囲に含まれる有害生物として以下が含まれる。
ダイズに関連する本開示の範囲に含まれる有害生物として以下が含まれる。
ブドウに関連する本開示の範囲に含まれる有害生物として以下が含まれる。
ヤシ(palm)に関連する本開示の範囲に含まれる有害生物として以下が含まれる。
ナス科植物に関連する本開示の範囲に含まれる有害生物として以下が含まれる。
石果に関連する本開示の範囲に含まれる有害生物として以下が含まれる。
その他の農業害虫(agricultural pest)として以下のシストセンチュウが含まれる。
その他の農業害虫として以下の外来性のキクイムシ(wood borer)またはバークビートル(bark beetle)が含まれる。
その他の農業害虫として以下の軟体動物が含まれる。
その他の農業害虫として以下のガが含まれる。
当業者に容易に入手可能な資料により、本開示の範囲に含まれる他の有害生物が特定できると理解されるべきである。
有害生物が抵抗性であり得るまたは抵抗性を生じさせ得る本開示の範囲に一般に含まれる一般的農薬として、殺藻剤、防汚剤、抗微生物剤、誘引剤、バイオ農薬、殺生物剤、消毒薬、殺真菌剤、燻蒸剤、殺虫剤、殺ダニ剤、微生物農薬、軟体動物駆除剤、抗線虫薬、フェロモン、忌避剤(repellant)、および殺鼠剤が挙げられる。
以下の農薬種、すなわち、グリホサート、アトラジン、メタムナトリウム、メトラクロール−S、アセトクロール、ジクロロプロペン、2,4−D、臭化メチル、クロロピクリン、ペンディメンタリン、エテホン、クロロタロニル、メタムカリウム、クロルピリホス、水酸化銅、硫酸銅、シマジン、トリフルラリン、プロパニル、マンコゼブ、アルジカルブ、アセフェート、ジウロン、MCPA、パラコート、ジメテナミド、カルバリル、MCPP、MSMA、ピレスロイド、マラチオン、ジカンバ、ペラルゴン酸、フッ化スルフリル、トリクロピル、パラジクロロベンゼン、ナフタレン、クロルピリホス、ナレッド、ジクロトホス、ホスメット、ホレート、ダイアジノン、ジメトエート、アジンホスメチル、およびN,N−ジエチル−メタ−トルアミド(防虫剤)が、本開示の範囲内で有用である。当業者は、公に利用可能なデータベースの情報、例えばワールドワイドウェブサイトiaspub.epa.gov/apex/pesticides/f?p=chemicalsearch:1で入手可能な登録済農薬のEPAリストを用いて、およびEPAにより編集され、ワールドワイドウェブサイトwww.epa.gov/opp00001/pestsales/で公に利用可能なU.S. Agricultural, Home and Garden, Industry, Commercial, and Government Market Sectorsの最も一般的に用いられる従来の農薬活性成分を参照して、他の農薬種を容易に特定することができる。
当業者は、本開示に基づき、特定の有害生物種にとって毒性の農薬を容易に特定することができる。
したがって、本開示の態様は、以下を含む、生物の真核生殖系列細胞を改変する方法に関する。
RNA誘導型DNA結合タンパク質ヌクレアーゼおよび1種類または複数種類のガイドRNAをコードし、対応するプロモーター配列ならびに第1の隣接配列および第2の隣接配列を含み、且つ生物が特定の化学物質、化合物、または条件に晒された場合にその発現が生物にとって有害である感作核酸を含む第1の外来核酸配列を、生殖系列細胞に導入すること;
ここで、1種類または複数種類のガイドRNAが、生殖系列細胞の染色体対の第1の染色体のゲノムDNA上および第2の染色体のゲノムDNA上の1つまたは複数の標的位置に相補的であり、RNA誘導型DNA結合タンパク質ヌクレアーゼをコードする核酸配列および1種類または複数種類のガイドRNAをコードする核酸配列が、第1の隣接配列と第2の隣接配列との間に存在し、第1の隣接配列が、ゲノムDNAの第1の染色体上または第2の染色体上の標的位置の第1の部分と同じ配列である第1の配列を含み、第2の隣接配列が、ゲノムDNAの第1の染色体上または第2の染色体上の標的位置の第2の部分と同じ配列である第2の配列を含む、
第1の外来核酸配列を発現させてRNA誘導型DNA結合タンパク質ヌクレアーゼおよび1種類または複数種類のRNAを産生させること;
ここで、RNA誘導型DNA結合タンパク質ヌクレアーゼおよび関連するガイドRNAが、ゲノムDNAの第1の染色体上およびゲノムDNAの第2の染色体上の関連する標的位置に共局在し、RNA誘導型DNA結合タンパク質ヌクレアーゼが、ゲノムDNAの第1の染色体を標的位置で切断部位特異的に切断し、且つゲノムDNAの第2の染色体を標的位置で切断部位特異的に切断する、
第1の外来核酸配列をゲノムDNAの染色体対の第1の染色体中に切断部位で挿入し、第1の外来核酸配列をゲノムDNAの染色体対の第2の染色体中に切断部位で挿入して、生殖系列細胞を外来核酸配列についてホモ接合型にすること;および
生じた生物が特定の化学物質、化合物、または条件に晒された場合に死滅するまたは生殖不能になるように、生じた生物を特定の化学物質、化合物、または条件に対して感受性にする感作核酸を発現させること。
ある態様によれば、感作核酸の発現により、生物に対する特定の化学物質、化合物、または条件の毒性が増大する。ある態様によれば、生殖系列細胞を生物へと成長させ、感作核酸を子孫に移行させて、感作核酸を含む生物の集団を作り出し、感作核酸が生物に対する特定の化学物質、化合物、または条件の毒性を増大させる。ある態様によれば、生物は雑草または有害生物である。ある態様によれば、感作核酸は、現存遺伝子を置換する感作遺伝子である。ある態様によれば、感作遺伝子は、現在の変異バージョンが祖先形態で置換されるような、野生集団中の現存変異遺伝子の正確なまたはコドンを改変した祖先バージョンである。ある態様によれば、現存遺伝子は、農薬、除草剤、または殺真菌剤に対する抵抗性に寄与する変異を獲得している。ある態様によれば、特定の化学物質または化合物は、農薬、除草剤、または殺真菌剤である。ある態様によれば、農薬、除草剤、または殺真菌剤は、Cry1A.105、CryIAb、CryIF、Cry2Ab、Cry3Bb1、Cry34Ab1、Cry35Ab1、mCry3A、またはVIPによって産生されるBt毒素;2,4−D、またはグリホサートのいずれかである。ある態様によれば、感作遺伝子は、生物の生存または生殖にその機能が必要とされる現存遺伝子を置換する。ある態様によれば、特定の化学物質はプロドラッグであり、感作遺伝子は対応するプロドラッグ変換酵素をコードする。ある態様によれば、酵素と化学物質の組み合わせは、シトシンデアミナーゼと5−フルオロシトシン、またはニトロレダクターとCB1954である。
本開示のある態様によれば、特定の化学物質、化合物、または条件が存在する場合に、雑草または有害生物集団を毒性に対して脆弱にする、感受性遺伝子ドライブを雑草または有害生物集団のゲノム中に含む、雑草または有害生物集団を制御する方法であって、雑草もしくは有害生物を死滅させる、雑草もしくは有害生物の増殖を低減する、または雑草もしくは有害生物を生殖不能にして増殖を阻害するのに有効な量の特定の化学物質、化合物、または条件と雑草または有害生物集団を接触させることを含む方法が提供される。ある態様によれば、特定の化学物質または化合物は、除草剤、または農薬、または殺真菌剤である。
本開示のある態様によれば、以下を含む、第1の感作遺伝子ドライブを含む生物の真核生殖系列細胞を改変する方法が提供される。
RNA誘導型DNA結合タンパク質ヌクレアーゼおよび1種類または複数種類のガイドRNAをコードし、対応するプロモーター配列ならびに第1の隣接配列および第2の隣接配列を含み、且つ生物が特定の化学物質、化合物、または条件に晒された場合にその発現が生物にとって有害である第2の感作核酸配列を含む第2の外来核酸配列を、生殖系列細胞に導入すること;
ここで、1種類または複数種類のガイドRNAが、第1の感作遺伝子ドライブを含む生殖系列細胞の染色体対の第1の感作遺伝子ドライブを含む第1の染色体のゲノムDNA上および第2の染色体のゲノムDNA上の1つまたは複数の標的位置に相補的であり、第2の外来核酸配列のRNA誘導型DNA結合タンパク質ヌクレアーゼをコードする核酸配列および1種類または複数種類のガイドRNAをコードする核酸配列が、第1の隣接配列と第2の隣接配列との間に存在し、第1の隣接配列が、ゲノムDNAの第1の染色体上または第2の染色体上の標的位置の第1の部分と同じ配列である第1の配列を含み、第2の隣接配列が、ゲノムDNAの第1の染色体上または第2の染色体上の標的位置の第2の部分と同じ配列である第2の配列を含む、
第2の外来核酸配列を発現させてRNA誘導型DNA結合タンパク質ヌクレアーゼおよび1種類または複数種類のRNAを産生させること;
ここで、RNA誘導型DNA結合タンパク質ヌクレアーゼおよび関連するガイドRNAが、ゲノムDNAの第1の染色体上およびゲノムDNAの第2の染色体上の関連する標的位置に共局在し、RNA誘導型DNA結合タンパク質ヌクレアーゼが、ゲノムDNAの第1の染色体を標的位置で切断部位特異的に切断し、ゲノムDNAの第2の染色体を標的位置で切断部位特異的に切断して、第1の外来核酸配列が除去される、
第2の外来核酸配列をゲノムDNAの染色体対の第1の染色体中に切断部位で挿入し、第2の外来核酸配列をゲノムDNAの染色体対の第2の染色体中に切断部位で挿入して、生殖系列細胞を第2の外来核酸配列についてホモ接合型にすること;および
生じた生物が特定の化学物質、化合物、または条件に晒された場合に死滅するまたは生殖不能になるように、生じた生物を特定の化学物質、化合物、または条件に対して感受性にする第2の感作核酸配列を発現させること。
ある態様によれば、生じた生物と野生型生物の子孫が第2の感作核酸配列を含むように、生じた生物を野生型集団中に導入する。ある態様によれば、生物は雑草または有害生物である。
本開示のある態様によれば、以下を含む、第1の感作遺伝子ドライブを含む生物の真核生殖系列細胞を改変する方法が提供される。
RNA誘導型DNA結合タンパク質ヌクレアーゼおよび1種類または複数種類のガイドRNAをコードし、対応するプロモーター配列ならびに第1の隣接配列および第2の隣接配列を含み、且つ生物が特定の化学物質、化合物または条件に晒された場合にその発現が生物にとって有害である第2の感作核酸配列を含む第2の外来核酸配列を、生殖系列細胞に導入すること;
ここで、1種類または複数種類のガイドRNAが、第1の感作遺伝子ドライブを含む生殖系列細胞の染色体対の第1の感作遺伝子ドライブを含む第1の染色体のゲノムDNA上および第2の染色体のゲノムDNA上の1つまたは複数の標的位置に相補的であり、第2の外来核酸配列のRNA誘導型DNA結合タンパク質ヌクレアーゼをコードする核酸配列および1種類または複数種類のガイドRNAをコードする核酸配列が、第1の隣接配列と第2の隣接配列との間に存在し、第1の隣接配列が、ゲノムDNAの第1の染色体上または第2の染色体上の標的位置の第1の部分と同じ配列である第1の配列を含み、第2の隣接配列が、ゲノムDNAの第1の染色体上または第2の染色体上の標的位置の第2の部分と同じ配列である第2の配列を含む、
第2の外来核酸配列を発現させてRNA誘導型DNA結合タンパク質ヌクレアーゼおよび1種類または複数種類のRNAを産生させること;
ここで、RNA誘導型DNA結合タンパク質ヌクレアーゼおよび関連するガイドRNAが、ゲノムDNAの第1の染色体上およびゲノムDNAの第2の染色体上の関連する標的位置に共局在し、RNA誘導型DNA結合タンパク質ヌクレアーゼが、ゲノムDNAの第1の染色体を標的位置で切断部位特異的に切断し、且つゲノムDNAの第2の染色体を標的位置で切断部位特異的に切断する、
第2の外来核酸配列をゲノムDNAの染色体対の第1の染色体中に切断部位で挿入し、第2の外来核酸配列をゲノムDNAの染色体対の第2の染色体中に切断部位で挿入して、生殖系列細胞を第2の外来核酸配列についてホモ接合型にすること;および
生じた生物が特定の化学物質、化合物、または条件に晒された場合に死滅するまたは生殖不能になるように、生じた生物を特定の化学物質、化合物、または条件に対して感受性にする第2の感作核酸配列を発現させること。
ある態様によれば、生じた生物と野生型生物との子孫が第2の感作核酸配列を含むように、生じた生物を野生型集団中に導入する。ある態様によれば、生物は雑草または有害生物である。
実施例I
プラスミドおよびゲノムカセット
遺伝子ドライブカセットをgBlocks(Integrated DNA Technologies社、アイオワ州コーラルビル)から合成し、以下のようにしてCas9を介したゲノム改変によりSK1細胞に挿入した。各ドライブのガイドRNAを、SNR52プロモーターによって発現がドライブされるp416−Cas9含有プラスミドにクローニングした。DiCarlo, J. E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems, Nucleic Acids Res. 41, 4336-4343 (2013) 参照。標的座位に対する60塩基対のホモロジーアームを遺伝子ドライブカセットの両末端にPCRによって付加し、5μgのPCR産物をp416−Cas9−gRNAプラスミドと同時形質転換した。正確に組み込まれた遺伝子ドライブをシークエンシングにより確認し、5−フルオロオロチン酸(FOA)選択を用いてp416−Cas9−gRNAプラスミドを除去(cure)した。
URA3含有ADE2遺伝子ドライブを作製するために、ADE2遺伝子ドライブを、pAG60プラスミド中のカンジダ・アルビカンス(Candida albicans)のURA3遺伝子の隣にクローニングした。URA3カセットおよび遺伝子ドライブの全体をPCR増幅し、Cas9を介したゲノム改変を用いて一倍体SK1細胞のADE2座位に挿入した。
相同性を除去して同義置換によりシード配列中に変異を作成するために、ABD1遺伝子の再コード化C末端および対応する遺伝子ドライブをgBlockとして合成した。ABD1はVHC1遺伝子とターミネーターを共有しているので、TEF1ターミネーターを再コード化ABD1遺伝子の3′末端に遺伝子とgRNAとの間で挿入した。Cas9を介したゲノム改変を用いてカセット全体を一倍体SK1ゲノムに組み込んだ。
p416−Cas9−gRNAプラスミド(ウラシル原栄養性を付与)は、以前に報告されているp414−Cas9−gRNAプラスミド(トリプトファン原栄養性を付与)(DiCarlo, J. E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems, Nucleic Acids Res. 41, 4336-4343 (2013) 参照)(Addgene社、#43802)の変異株である。一方または他方を各接合実験に用いた。選択された細胞型にpRS413ベクターを形質転換して,
二倍体細胞を選択するためのマーカーとしてヒスチジン原栄養性を付与した。株の遺伝子型を以下の表1に示す。
実施例II
酵母接合実験
一倍体ドライブ含有SK1酵母および正反対の接合型の一倍体野生型株をYPAD液体培地中で等量混合し、一晩インキュベートした。生じた二倍体を滅菌水中で洗浄し、両方の親の遺伝子型の選択培地上にプレーティングした。以下の表2に具体的な交雑を詳述する。
実施例III
胞子形成および四分子解剖
液体YPAD中での接合および選択プレート上での二倍体の選択後、選択プレートを10mLの選択培地に擦りつけ、30℃で一晩生育した。次に、新鮮な5mLのYPAD培養液に接種してOD=0.1にし、30℃で4〜5時間生育した。次に、培養全体を10mLの水中で2回洗浄し、2mLの胞子形成培地(1%酢酸カリウム)に接種し、室温で3日間または胞子が見えるまでインキュベートした。胞子形成した細胞を50μLのザイモリエイス(Zymolyase)のストック溶液(1Mソルビトール中50μg/mL)に懸濁し、30℃で5分間インキュベートし、氷に移し、150μLの冷HOで希釈し、Zeiss社製の四分子解剖顕微鏡(tetrad dissection microscope)を用いて顕微解剖し、単離した胞子をYPADプレート上で成長させた。
実施例IV
URA3機能に対する選択
解剖した胞子を合成完全(SC)培地中で成長させた後、SC培地およびウラシルを含まないSC培地にスポットした。赤色を増強するために、プレートイメージに用いた全てのSC固体培地に0.5×ヘミ硫酸アデニン(最終濃度0.08mM)を含ませた。
実施例V
定量的PCR
各ドライブ、またはドライブによって置換された野生型配列、および対照としてのACT1遺伝子に特異的な短い領域を増幅するように、候補プライマー対をデザインした。全ての配列は、補足情報に含まれている。Looke et al. (31) に記載の方法Aを用いてゲノムDNAを抽出した。
KAPA SYBR FAST qPCR Master Mix(2X)を用いて、25ngのゲノムDNAでqPCR反応を行った。野生型一倍体およびドライブ一倍体に由来するゲノムDNAの希釈物をそれぞれ増幅することにより、各プライマー対の増幅効率および相対的特異性を測定し、最も成績がよく、且つ良くマッチした対を使用に選択した(使用した全てのプライマーについては以下を参照)。親一倍体のそれぞれから、および独立した3つの接合イベントにより生じた二倍体から単離されたゲノムDNAに対して定量的PCR反応を行った。Roche社のLightCycler 96マシンを用いて1サンプルにつき3つの反応(技術的複製物)を行った。
実施例VI
計算
3つの技術的複製物の結果を平均して計算した。PCR増幅前のアレルの比率を直接計算するために、種々のプライマー対の効率を最初に決定した。段階希釈物(10のオーダー)のqPCRランから以下のように効率を計算した:
値は、1対(ade2::URA3+sgRNA)を除く全ての実例で、0.99より大きかった。
アレルの比率は以下のように計算した。
式中、xおよびxは、ドライブDNAおよび野生型DNAの初期濃度であり、
およびEは、各プライマー対の効率であり、
Ct,a、およびCt,bは、各サンプルのCt値である。
実施例VII
酵母におけるCRISPR/Cas9遺伝子ドライブの効率
酵母におけるCRISPR/Cas9遺伝子ドライブの効率を直接測定するために、ADE2遺伝子の機能的コピーを欠いた酵母中に蓄積される赤色を用いてシステムを構築した。Chamberlain, N., Cutts, N. S. & Rainbow, C. The formation of pigment and arylamine by yeasts. J. Gen. Microbiol. 7, 54-60 (1952) 参照。図13Aに示されるように、赤いADE2一倍体をクリーム色の野生型一倍体と接合させた場合、生じるヘテロ接合型二倍体は1つの機能的コピーを受け継ぎ、したがってクリーム色になる。これらの二倍体が減数分裂して胞子形成により生殖する場合、生じる一倍体の半分は破壊されたコピーを受け継ぐので赤色であり、残りの半分は無傷のコピーを受け継ぐのでクリーム色である(図13A)。
図13Bに示されるように、赤い一倍体が、野生型の親から受け継いだ無傷のADE2座位を切断および置換する機能的遺伝子ドライブをコードする場合、それらの二倍体の子孫は赤色になるであろう。これらの赤い二倍体は2個の壊れたADE2のコピーを有することになるので、それらの胞子形成した一倍体の子は全て壊れたコピーを受け継ぎ、その結果、これらも赤色になるであろう。したがって、単に二倍体をプレーティングし、赤色である割合を計数することにより、ADE2を標的として置換する遺伝子ドライブの切断効率を評価することができる。
ADE2を標的とする遺伝子ドライブコンストラクトを作製した。遺伝子ドライブが偶発的に野生型に流出することを防ぐために、Cas9およびガイドRNAを分離して、自立的(self−sufficient)な遺伝バイアス化カセットが生じるのを回避した。その結果、コンストラクトはADE2を標的とするガイドRNAをコードし、一方、Cas9はエピソームプラスミドから与えられた。赤い一倍体を、プラスミドの存在下または非存在下で正反対の接合型の野生型酵母と接合させ、二倍体を選択する培地にプレーティングした。図13Cに示されるように、ほぼ全てのコロニーがプラスミドの存在下で赤色であり、このことは、野生型の親から受け継いだADE2コピーの非常に効率的な切断を示している。Cas9の非存在下では、赤い二倍体コロニーは観察されず、これにより、ドライブを供する実験室酵母集団中でしかドライブが拡散できないことが実証された。
野生型の親に由来するADE2アレルが失われたことを検証するために、接合させた二倍体を胞子形成させ、それらから生じた一倍体の子孫を調べた。図13Dに示されるように、18個のcas9+二倍体を解剖した後、完全な4:0の比率の赤色:クリーム色の一倍体が観察され、ADE2座位の全コピーが破壊されたことが確認された。対照的に、18個のクリーム色cas9−二倍体では赤色:クリーム色の比率は2:2となり、このことにより、不活性化されたドライブおよび野生型アレルの通常の遺伝が示された。
赤色二倍体におけるADE2破壊が相同組換えによるドライブ因子のコピー成功によるものであるかどうかを決定するために、解剖したcas9+二倍体に由来する72個の一倍体をシークエンシングした。シークエンシングされた全てのコロニーは、その他の変異のない無傷のドライブを含んでおり、このことは、ドライブ可動化が効率的であり、高い忠実度で起こったことを示す。
図14Aに模式的に示されるように、ウラシルの補充なしで実験室改変酵母株を増殖させるシスのURA3アレルを含むように、ADE2遺伝子ドライブを改変した。このドライブ因子を、標的座位にコピーされた場合に遺伝子ドライブが関連するカーゴ因子を「運ぶ」能力について調べた。エピソームCas9プラスミドの存在下で、URA3含有ドライブ一倍体を野生型一倍体と接合させ、二倍体を選択し(全て赤色であった)、胞子形成させ、18個の四分子を解剖した。元のADE2遺伝子ドライブの場合と同様、胞子形成した一倍体細胞は全て赤いコロニーを形成した。図14Bに示されるように、ウラシル欠乏培地にレプリカプレーティングした場合、全て正常に成長し、このことは、URA3カーゴ因子がドライブと共に効率的にコピーされたことを示す。
必須遺伝子を標的化および再コード化する遺伝子ドライブは、標的部位を改変する誤りがちな修復(error-prone repair)イベントが致死的となり得るので、大きな集団中でさえもドライブ抵抗性を回避することができる。必須ではないが重要な遺伝子も、NHEJイベントにより生じる変異体が、やはりドライブ自体と比べて適応度が低いので、同様に編集することができる。ドライブ挿入における必須遺伝子の再コード化を調べるために、図14Cに模式的に示されるABD1を標的とする第3の遺伝子ドライブを構築した。Mao, X., Schwer, B. & Shuman, S. Mutational analysis of the Saccharomyces cerevisiae ABD1 gene: cap methyltransferase activity is essential for cell growth, Mol. Cell. Biol. 16, 475-480 (1996) 参照。
天然ABD1コード配列を標的とするガイドRNAの上流に再コード化ABD1アレルを含む一倍体株を、Cas9の存在下で野生型細胞と接合させた。二倍体細胞を選択し、そのうち18個を胞子形成させた。72個の分離個体をシークエンシングした。全てが、再コード化ABD1座位およびガイドRNAを含んでおり、これにより、必須遺伝子再コード化に基づく遺伝子ドライブが実証された。
遺伝子ドライブを実験室株から多様なグループの天然出芽酵母(S. cerevisiae)株にコピーした。ADE2ドライブ含有一倍体を一倍体出芽酵母の6つの系統的および表現型的に多様な野生型株と接合させた。Liti, G. et al. Population genomics of domestic and wild yeasts, Nature 458, 337-341 (2009) 参照。図15Aも参照。各交雑での遺伝子ドライブコピー効率を定量的に測定するために、ドライブに特異的な1組のプライマー、および野生型またはNHEJ破壊アレルのいずれかを増幅するようにデザインされたもう1組のプライマーを用いて、全ての二倍体の集団について定量的PCRを行った。BoxPlot(Spitzer, M., Wildenhain, J., Rappsilber, J. & Tyers, M. BoxPlotR: a web tool for generation of box plots. Nat. Methods 11, 121-122 (2014) 参照)を用いて作製された図15Bに示されるように、ADE2遺伝子ドライブを含む二倍体染色体の割合は、野生型の親に関係なく、99%を超えており、これにより、多様な背景におけるドライブの使用が実証された。URA3カーゴ遺伝子を付加してもこの効率はあまり変わらなかった。ABD1ドライブは同等の割合でコピーされた。
連続的なコピーイベントにわたるドライブの安定性を調べた。図15Bに示されるように、第1ラウンドのADE2遺伝子ドライブ二倍体の複数の一倍体の子を、Cas9発現プラスミドを含む野生型一倍体と接合させた。第2世代遺伝子ドライブコンストラクトは全て、同じ効率で遺伝にバイアスをかけたことから、有性生殖集団中に拡散する能力が何世代にもわたり続くことが実証された。
以下のゲノム改変プライマーおよびgBlock配列が提供される。

本発明の態様は以下を含む。
付記1
以下を含む、生物の真核生殖系列細胞を改変する方法。
RNA誘導型DNA結合タンパク質ヌクレアーゼおよび1種類または複数種類のガイドRNAをコードし、且つ対応するプロモーター配列ならびに第1の隣接配列および第2の隣接配列を含む第1の外来核酸配列を、前記生殖系列細胞に導入すること;
ここで、前記1種類または複数種類のガイドRNAが、前記生殖系列細胞の染色体対の第1の染色体のゲノムDNA上および第2の染色体のゲノムDNA上の1つまたは複数の標的位置に相補的であり、
前記RNA誘導型DNA結合タンパク質ヌクレアーゼをコードする核酸配列および前記1種類または複数種類のガイドRNAをコードする核酸配列が、前記第1の隣接配列と前記第2の隣接配列との間に存在し、
前記第1の隣接配列が、前記ゲノムDNAの前記第1の染色体上または前記第2の染色体上の前記標的位置の第1の部分と同じ配列である第1の配列を含み、
前記第2の隣接配列が、前記ゲノムDNAの前記第1の染色体上または前記第2の染色体上の前記標的位置の第2の部分と同じ配列である第2の配列を含む、
前記第1の外来核酸配列を発現させて前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記1種類または複数種類のRNAを産生させること;
ここで、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび関連するガイドRNAが、前記ゲノムDNAの前記第1の染色体上および前記ゲノムDNAの前記第2の染色体上の関連する標的位置に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、前記ゲノムDNAの前記第1の染色体を前記標的位置で切断部位特異的に切断し、且つ前記ゲノムDNAの前記第2の染色体を前記標的位置で切断部位特異的に切断する、
前記第1の外来核酸配列を、前記ゲノムDNAの前記染色体対の前記第1の染色体中に前記切断部位で挿入し、前記第1の外来核酸配列を、前記ゲノムDNAの前記染色体対の前記第2の染色体中に前記切断部位で挿入して、前記生殖系列細胞を前記外来核酸配列についてホモ接合型にすること。
付記2
前記RNA誘導型DNA結合タンパク質ヌクレアーゼが二本鎖切断を生じさせる、付記1に記載の方法。
付記3
前記RNA誘導型DNA結合タンパク質ヌクレアーゼがCas9である、付記1に記載の方法。
付記4
前記RNA誘導型DNA結合タンパク質ヌクレアーゼが一本鎖切断を生じさせる、付記1に記載の方法。
付記5
前記RNA誘導型DNA結合タンパク質ヌクレアーゼがCas9ニッカーゼである、付記1に記載の方法。
付記6
少なくとも1つの標的位置が必須遺伝子内に存在し、前記外来核酸配列が前記必須遺伝子に隣接して挿入されて、前記必須遺伝子の一部を置換する、付記1に記載の方法。
付記7
前記第1の外来核酸が相同組換えにより挿入される、付記1に記載の方法。
付記8
前記生殖系列細胞が、真菌細胞、植物細胞、昆虫細胞、または哺乳動物細胞である、付記1に記載の方法。
付記9
前記RNAが約10〜約250ヌクレオチドを含む、付記1に記載の方法。
付記10
前記RNAが約20〜約100ヌクレオチドを含む、付記1に記載の方法。
付記11
前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、関連するガイドRNAと共に複数の関連する標的位置に共局在して、前記第1の染色体または前記第2の染色体のいずれかを複数の切断部位で切断する、付記1に記載の方法。
付記12
前記複数の切断部位での切断により、DNA配列が除去されるとともに相同組換えによって前記第1の外来核酸配列で置換される、付記11に記載の方法。
付記13
前記生殖系列細胞を生物へと成長させるステップをさらに含む、付記1に記載の方法。
付記14
前記生物を同じ生物種の野生型生物と交配させて前記第1の外来核酸配列を有する染色体対の第1の染色体を含む子生殖系列細胞を産生させるステップをさらに含む、付記13に記載の方法。
付記15
前記第1の外来核酸配列が前記子生殖系列細胞によって発現されて前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記1種類または複数種類のRNAが産生され、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび関連するガイドRNAが、前記染色体対の第2の染色体上の関連する標的位置に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、前記第2の染色体を前記標的位置で切断部位特異的に切断し、
前記第1の外来核酸配列を前記染色体対の前記第2の染色体中に前記切断部位で挿入して前記子生殖系列細胞を前記外来核酸配列についてホモ接合型にする、
付記14に記載の方法。
付記16
前記生殖系列細胞を生物へと成長させるステップおよび前記生物を同じ生物種の野生型生物と交配させるステップを繰り返して、前記第1の外来核酸配列についてホモ接合型である同じ生物種の生物集団を作り出す、付記15に記載の方法。
付記17
前記第1の外来核酸配列が1種類または複数種類の選択された遺伝子配列を含む、付記1に記載の方法。
付記18
前記第1の外来核酸配列が1種類または複数種類の選択された遺伝子配列を含み、前記1種類または複数種類の選択された遺伝子配列が、前記生物集団内の生物のゲノム内に存在する、付記16に記載の方法。
付記19
RNA誘導型DNA結合タンパク質ヌクレアーゼおよび1種類または複数種類のガイドRNAをコードし、且つ対応するプロモーター配列ならびに第1の隣接配列および第2の隣接配列を含む第2の外来核酸配列をそのゲノム内に含む改変生物を、前記生物集団に導入し、
前記1種類または複数種類のガイドRNAが、前記第1の外来核酸配列上の1つまたは複数の標的位置に相補的であり、前記第1の隣接配列が、前記第1の外来核酸配列上の前記標的位置の第1の部分と同じ配列である第1の配列を含み、前記第2の隣接配列が、前記第1の外来核酸配列上の前記標的位置の第2の部分と同じ配列である第2の配列を含み、
前記改変生物が、前記生物集団のメンバーと交配して、前記第2の外来核酸配列および前記第1の外来核酸配列を含む子生殖系列細胞を産生し、
前記子生殖系列細胞が、前記第2の外来核酸配列を発現して前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記1種類または複数種類のRNAを産生し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび関連するガイドRNAが、前記第1の外来核酸配列上の関連する標的位置に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、前記第1の外来核酸配列を前記標的位置で切断部位特異的に切断し、
前記第2の外来核酸配列が前記生殖系列細胞のゲノム中に前記切断部位で挿入されて前記子生殖系列細胞を前記第2の外来核酸配列についてホモ接合型にする、
付記16に記載の方法。
付記20
改変野生型生物が、前記第1の外来核酸配列が前記改変野生型生物のゲノムに侵入しないよう、前記1種類または複数種類のガイドRNAが前記1つまたは複数の標的位置に非相補的となり、且つ前記1つまたは複数の標的位置と結合できないように、ゲノムDNA上の前記1つまたは複数の標的位置が改変された前記集団に導入される、付記16に記載の方法。
付記21
前記改変野生型生物が、前記第1の外来核酸配列に共局在して前記第1の外来核酸配列を切断部位特異的に切断して再コード化アレルを生じさせる、RNA誘導型DNA結合タンパク質ヌクレアーゼおよび1種類または複数種類のガイドRNAをコードする第2の外来核酸配列の発現によって改変される、付記20に記載の方法。
付記22
さらに以下を含む、付記1に記載の方法。
RNA誘導型DNA結合タンパク質ヌクレアーゼおよび1種類または複数種類のガイドRNAをコードし、且つ対応するプロモーター配列ならびに第1の隣接配列および第2の隣接配列を含む第2の外来核酸配列を、前記生殖系列細胞に導入すること;
ここで、前記1種類または複数種類のガイドRNAが、前記第1の外来核酸配列によって改変された前記1つまたは複数の標的位置に相補的である、
前記第2の外来核酸配列を発現させて前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記1種類または複数種類のRNAを産生させること;
ここで、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび関連するガイドRNAが、前記ゲノムDNAの前記染色体上の関連する標的位置に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、前記ゲノムDNAの前記染色体を前記標的位置で切断部位特異的に切断して前記第1の外来核酸配列を除去する、および
前記第2の外来核酸配列を前記ゲノムDNAの前記染色体中に前記切断部位で挿入すること。
付記23
前記第2の外来核酸配列が、前記第1の外来核酸配列とは異なる遺伝的改変を含む、付記22に記載の方法。
付記24
前記第2の外来核酸配列が、前記第1の外来核酸配列によって改変された染色体の野生型配列を含む、付記23に記載の方法。
付記25
少なくとも1つの標的位置が必須タンパク質コード遺伝子内に存在し、前記必須タンパク質のアミノ酸配列は保存されるように前記外来核酸配列が前記必須遺伝子中に挿入されるが、前記1種類または複数種類のガイドRNAが前記1つまたは複数の標的位置に非相補的になるように前記遺伝子のヌクレオチド配列が改変される、付記1に記載の方法。
付記26
以下を含む、真核生殖系列細胞を改変する方法。
RNA誘導型DNA結合タンパク質ヌクレアーゼおよび1種類または複数種類のガイドRNAをコードし、且つ対応するプロモーター配列ならびに第1の隣接配列および第2の隣接配列を含む外来核酸配列を、前記生殖系列細胞に導入すること;
ここで、前記1種類または複数種類のガイドRNAが、前記生殖系列細胞の染色体対の第1の染色体のゲノムDNA上および第2の染色体のゲノムDNA上の1つまたは複数の標的位置に相補的であり、
前記RNA誘導型DNA結合タンパク質ヌクレアーゼをコードする核酸配列および前記1種類または複数種類のガイドRNAをコードする核酸配列が、前記第1の隣接配列と前記第2の隣接配列との間に存在し、
前記第1の隣接配列が、前記ゲノムDNAの前記第1の染色体上の前記標的位置の第1の部分と同じ配列である第1の配列を含み、
前記第2の隣接配列が、前記ゲノムDNAの前記第1の染色体上の前記標的位置の第2の部分と同じ配列である第2の配列を含む、
前記外来核酸配列を発現させて前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記1種類または複数種類のRNAを産生させること;
ここで、前記RNA誘導型DNA結合タンパク質および関連するガイドRNAが、前記ゲノムDNAの前記第1の染色体上の関連する標的位置に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、前記ゲノムDNAの前記第1の染色体を前記標的位置で切断部位特異的に切断する、
前記ゲノムDNAの前記染色体対の前記第1の染色体中に前記切断部位で前記外来核酸配列を挿入すること;
前記挿入された外来核酸配列を発現させて前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記1種類または複数種類のRNAを産生させること;
ここで、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび関連するガイドRNAが、前記ゲノムDNAの前記第2の染色体上の関連する標的位置に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、前記ゲノムDNAを前記標的位置で切断部位特異的に切断する、
前記ゲノムDNAの前記染色体対の前記第2の染色体中に前記切断部位で前記外来核酸配列を挿入して前記生殖系列細胞を前記外来核酸配列についてホモ接合型にすること。
付記27
以下を含む、ある生物種の2つの集団を、生存可能な子孫を産生できないようにする方法。
前記生物種の第1の集団を、RNA誘導型DNA結合タンパク質ヌクレアーゼおよび1種類または複数種類の第1のガイドRNAをコードし、且つ対応するプロモーター配列ならびに第1の隣接配列および第2の隣接配列を含む第1の外来核酸配列を含むように改変すること;
ここで、前記1種類または複数種類の第1のガイドRNAが、必須遺伝子上の1つまたは複数の標的位置に相補的であり、且つ前記必須遺伝子のヌクレオチド配列が、前記1種類または複数種類のガイドRNAが前記1つまたは複数の標的配列に非相補的であるがコードされる必須タンパク質のアミノ酸配列が保存されるように改変されている、
前記生物種の第2の集団を、RNA誘導型DNA結合タンパク質ヌクレアーゼおよび1種類または複数種類の第2のガイドRNAをコードし、且つ対応するプロモーター配列ならびに第1の隣接配列および第2の隣接配列を含む第2の外来核酸配列を含むように改変すること;
ここで、前記1種類または複数種類の第2のガイドRNAが、前記1種類または複数種類の第1のガイドRNAの前記標的位置とは異なる前記必須遺伝子上の1つまたは複数の標的位置に相補的であり、且つ前記必須遺伝子のヌクレオチド配列が、前記1種類または複数種類の第2のガイドRNAが前記1つまたは複数の標的位置に非相補的であるがコードされる必須タンパク質のアミノ酸配列が保存されるように改変されている、
前記第1の集団を前記第2の集団と交配させて生殖系列細胞を産生させること;
ここで、前記第1の外来核酸配列が発現されて、第2の親から与えられた前記必須遺伝子を切断し、前記第2の外来核酸配列が発現されて、前記第1の親から与えられた前記必須遺伝子を切断する。
付記28
以下を含む、標的核酸配列中に変異を有する真核生殖系列細胞中のアレルを置換する方法。
RNA誘導型DNA結合タンパク質ヌクレアーゼおよび複数のガイドRNAをコードし、且つ対応するプロモーター配列ならびに第1の隣接配列および第2の隣接配列を含む第1の外来核酸配列を、前記生殖系列細胞に導入すること;
ここで、前記複数のガイドRNAが、アレル上の変異に隣接する染色体のゲノムDNA上の複数の標的位置に相補的であり、前記変異により、対応するガイドRNAが前記ゲノムDNAに結合することが妨げられ、
前記RNA誘導型DNA結合タンパク質ヌクレアーゼをコードする核酸配列および前記複数のガイドRNAをコードする核酸配列が、前記第1の隣接配列と前記第2の隣接配列との間に存在し、
前記第1の隣接配列が、前記ゲノムDNAの前記染色体上の前記標的位置の第1の部分と同じ配列である第1の配列を含み、
前記第2の隣接配列が、前記ゲノムDNAの前記染色体上の前記標的位置の第2の部分と同じ配列である第2の配列を含む、
前記第1の外来核酸配列を発現させて前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記複数のRNAを産生させること;
ここで、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび関連するガイドRNAが、前記ゲノムDNAの前記染色体上の複数の関連する標的位置に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、前記ゲノムDNAの前記第1の染色体を前記複数の標的位置で切断部位特異的に切断して、前記変異を含む前記ゲノムDNAの一部を除去する、および
前記第1の外来核酸配列を前記ゲノムDNAの前記染色体中に前記切断部位で挿入すること。
付記29
全ての標的位置を除去する欠失が起こると非常に有害であり自然選択により前記集団から除かれることになるように、前記標的位置の少なくとも1つが必須遺伝子などの前記生物の適応度に重要な遺伝子内に存在する、付記28に記載の方法。
付記30
以下を含む、生物の真核生殖系列細胞を複数の遺伝子において改変する方法。
RNA誘導型DNA結合タンパク質ヌクレアーゼおよび複数のガイドRNAをコードし、且つ対応するプロモーター配列ならびに第1の隣接配列および第2の隣接配列を含む第1の外来核酸配列を、前記複数の遺伝子に対応する1種類または複数種類の更なる外来核酸配列と共に前記生殖系列細胞に導入すること;
ここで、前記複数のガイドRNAが、前記生殖系列細胞の染色体のゲノムDNA中の複数の遺伝子上の1つまたは複数の標的位置に相補的な1種類または複数種類の遺伝子特異的ガイドRNAを含み、
前記RNA誘導型DNA結合タンパク質ヌクレアーゼをコードする核酸配列および前記複数のガイドRNAをコードする核酸配列が、前記第1の隣接配列と前記第2の隣接配列との間に存在し、
前記第1の隣接配列が、前記ゲノムDNAの前記染色体上の前記標的位置のうちの1つの第1の部分と同じ配列である第1の配列を含み、
前記第2の隣接配列が、前記ゲノムDNAの前記染色体上の同じ標的位置の第2の部分と同じ配列である第2の配列を含み、
前記1種類または複数種類の核酸配列の各々が、残りの標的位置の第1の部分および第2の部分に対応する第1の隣接配列および第2の隣接配列を含む、
前記第1の外来核酸配列を発現させて前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記複数のRNAを産生させること;
ここで、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび関連するガイドRNAが、前記ゲノムDNAの前記染色体上の複数の関連する標的位置に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、前記ゲノムDNAの前記第1の染色体を複数の遺伝子において切断部位特異的に切断する、および
前記第1の外来核酸配列を前記ゲノムDNAの前記染色体中に前記切断部位で挿入すること。
付記31
RNA誘導型DNA結合タンパク質ヌクレアーゼおよび複数のガイドRNAをコードし、且つ対応するプロモーター配列ならびに第1の隣接配列および第2の隣接配列を含む第2の外来核酸配列を、前記生殖系列細胞に導入すること;
ここで、前記複数のガイドRNAが、前記第1の外来核酸配列によって改変された前記複数の標的位置に相補的である、
前記第2の外来核酸配列を発現させて前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記複数のガイドRNAを産生させること;
ここで、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび関連するガイドRNAが、前記ゲノムDNAの前記染色体上の関連する標的位置に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、前記ゲノムDNAの前記染色体を前記関連する標的位置で切断部位特異的に切断して前記第1の外来核酸配列を除去する、および
前記第2の外来核酸配列を前記ゲノムDNAの前記染色体中に前記切断部位で挿入すること
をさらに含む、付記30に記載の方法。
付記32
前記第2の外来核酸配列が、前記第1の外来核酸配列とは異なる遺伝的改変を含む、付記31に記載の方法。
付記33
前記第2の外来核酸配列が、前記第1の外来核酸配列によって改変された前記染色体の野生型配列を含む、付記32に記載の方法。
付記34
以下を含む、2つの集団を、互いの間で子を産生できないようにする方法。
RNA誘導型DNA結合タンパク質ヌクレアーゼおよび第1セットのガイドRNA群をコードし、且つ対応するプロモーター配列ならびに第1の隣接配列および第2の隣接配列を含む第1の外来核酸配列を、第1の生殖系列細胞に導入すること;
ここで、前記第1セットのガイドRNA群が、染色体のゲノムDNA上の第1セットの標的位置群に相補的であり、
前記第1セットの標的位置群が必須タンパク質コード遺伝子内に存在し、前記必須タンパク質のアミノ酸配列は保存されるが、前記第1セットのガイドRNA群が前記1つまたは複数の標的位置に非相補的であるように前記遺伝子のヌクレオチド配列が改変されるように、前記第1の外来核酸配列が前記必須遺伝子中に挿入され、
前記RNA誘導型DNA結合タンパク質ヌクレアーゼをコードする核酸配列、および前記第1セットのガイドRNA群をコードする核酸配列、および前記必須タンパク質のアミノ酸配列を保存する前記第1の外来核酸配列が、前記第1の隣接配列と前記第2の隣接配列との間に存在し、
前記第1の隣接配列が、前記ゲノムDNAの前記染色体上の前記標的位置の第1の部分と同じ配列である第1の配列を含み、
前記第2の隣接配列が、前記ゲノムDNAの前記染色体上の前記標的位置の第2の部分と同じ配列である第2の配列を含む、
前記第1の外来核酸配列を発現させて前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記第1セットのガイドRNA群を産生させること;
ここで、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび関連するガイドRNA群が、前記ゲノムDNAの前記染色体上の関連する第1セットの標的位置群に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、前記ゲノムDNAの前記第1の染色体を前記第1セットの標的位置群で切断部位特異的に切断して前記必須遺伝子内の前記ゲノムDNAの一部を除去する、および
前記第1の外来核酸配列を前記ゲノムDNAの前記染色体中に前記切断部位で挿入すること;および
RNA誘導型DNA結合タンパク質ヌクレアーゼおよび第2セットのガイドRNA群をコードし、且つ対応するプロモーター配列ならびに第1の隣接配列および第2の隣接配列を含む、第2の外来核酸配列を、第2の生殖系列細胞に導入すること;
ここで、前記第2セットのガイドRNA群が、染色体のゲノムDNA上の第2セットの標的位置群に相補的であり、
前記第2セットの標的位置群が、前記第1セットの標的位置群と同じ必須タンパク質コード遺伝子内に存在するが、前記第1セットの標的位置群のいずれとも同じでなく、前記必須タンパク質のアミノ酸配列は保存されるが、前記第2セットのガイドRNA群が前記第2セットの標的位置群に非相補的になるように前記遺伝子のヌクレオチド配列が改変されるように、前記第2の外来核酸配列が前記必須遺伝子中に挿入され、
前記RNA誘導型DNA結合タンパク質ヌクレアーゼをコードする核酸配列、および前記第2セットのガイドRNA群をコードする核酸配列、および前記必須タンパク質のアミノ酸配列を保存する前記第2の外来核酸配列が、前記第1の隣接配列と前記第2の隣接配列との間に存在し、
前記第1の隣接配列が、前記ゲノムDNAの前記染色体上の前記標的位置の第1の部分と同じ配列である第1の配列を含み、
前記第2の隣接配列が、前記ゲノムDNAの前記染色体上の前記標的位置の第2の部分と同じ配列である第2の配列を含む、
前記第2の外来核酸配列を発現させて前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記第2セットのガイドRNA群を産生させること;
ここで、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび関連する第2セットのガイドRNA群が、前記ゲノムDNAの前記染色体上の第2セットの関連する標的位置群に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、前記ゲノムDNAの前記第1の染色体を前記第2セットの標的位置群で切断部位特異的に切断して前記必須内の前記ゲノムDNAの一部を除去する、および
前記第2の外来核酸配列を前記ゲノムDNAの前記染色体中に前記切断部位で挿入すること;
ここで、前記第1セットのガイドRNA群が、前記RNA誘導型DNA結合タンパク質ヌクレアーゼに前記第2の外来核酸配列内の前記第1セットの標的位置群を切断させ、前記第2セットのガイドRNA群が、前記RNA誘導型DNA結合タンパク質ヌクレアーゼに前記第1の外来核酸配列内の前記第2セットの標的位置群を切断させる場合に、前記第1の生殖系列細胞および前記第2の生殖系列細胞から生じる生物の相互間の子孫が生存可能できない。
付記35
以下を含む、精母細胞からY染色体精子のみを産生する方法。
RNA誘導型DNA結合タンパク質ヌクレアーゼおよび1種類または複数種類のガイドRNAをコードし、且つ対応するプロモーター配列ならびに第1の隣接配列および第2の隣接配列を含む第1の外来核酸配列を、前記精母細胞に導入すること;
ここで、前記1種類または複数種類のガイドRNAが、前記精母細胞のX染色体上の1つまたは複数の標的位置および前記精母細胞のY染色体上の1つまたは複数の標的位置に相補的であり、
前記RNA誘導型DNA結合タンパク質ヌクレアーゼをコードする核酸配列および前記1種類または複数種類のガイドRNAをコードする核酸配列が、前記第1の隣接配列と前記第2の隣接配列との間に存在し、
前記第1の隣接配列が、前記Y染色体上の前記標的位置の第1の部分と同じ配列である第1の配列を含み、
前記第2の隣接配列が、前記Y染色体上の前記標的位置の第2の部分と同じ配列である第2の配列を含む、
前記第1の外来核酸配列を発現させて、前記RNA誘導型DNA結合タンパク質ヌクレアーゼと、前記精母細胞の前記X染色体上の1つまたは複数の標的位置と前記精母細胞の前記Y染色体上の1つまたは複数の標的位置とに相補的な前記1種類または複数種類のRNAとを産生させること;
ここで、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記Y染色体上の標的位置に相補的な関連するガイドRNAが、前記Y染色体上の関連する標的位置に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが前記Y染色体を前記標的位置で切断部位特異的に切断する、
前記第1の外来核酸配列を前記Y染色体中に前記切断部位で挿入すること;
ここで、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記X染色体上の標的位置に相補的な関連するガイドRNAが、前記X染色体上の関連する標的位置に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、前記X染色体を前記標的位置で切断部位特異的に切断して前記X染色体を作働不能(inoperable)にする。
付記36
精母細胞からY染色体精子のみを産生させる方法であって、
RNA誘導型DNA結合タンパク質ヌクレアーゼおよび1種類または複数種類のガイドRNAを、対応するプロモーター配列を用いて前記Y染色体上に位置する配列から発現させることを含み、
前記1種類または複数種類のガイドRNAが前記精母細胞のX染色体上の1つまたは複数の標的位置に相補的であり、
前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記X染色体上の1種類または複数種類の標的配列に相補的な関連するガイドRNAが、前記X染色体上の前記1つまたは複数の関連する標的位置に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、前記X染色体を前記1つまたは複数の標的位置で切断部位特異的に切断して前記X染色体を作働不能にする、
前記方法。
付記37
精母細胞からX染色体精子のみを産生させる方法であって、
RNA誘導型DNA結合タンパク質ヌクレアーゼおよび1種類または複数種類のガイドRNAを、対応するプロモーター配列を用いて前記X染色体上に位置する配列から発現させることを含み、
前記1種類または複数種類のガイドRNAが、前記精母細胞のY染色体上の1つまたは複数の標的位置に相補的であり、
前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記Y染色体上の1種類または複数種類の標的配列に相補的な関連するガイドRNAが、前記Y染色体上の前記1つまたは複数の関連する標的位置に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、前記Y染色体を前記1つまたは複数の標的位置で切断部位特異的に切断して前記Y染色体を作働不能にする、
前記方法。
付記38
精母細胞からY染色体含有精子のみを産生させる方法であって、
第1の外来核酸配列および第2の外来核酸配列をコードするようにY染色体を改変することを含み、
ここで、前記第1の外来核酸配列が、第1のRNA誘導型DNA結合タンパク質ヌクレアーゼ、第1セットのガイドRNA群、および対応するプロモーター配列をコードし、
前記第2の外来核酸配列が、RNA誘導型DNA結合タンパク質ヌクレアーゼ、第2セットのガイドRNA群、対応するプロモーター配列、ならびに第1の隣接配列および第2の隣接配列をコードし、
前記RNA誘導型DNA結合タンパク質ヌクレアーゼをコードする前記第2の核酸配列および前記第2セットのガイドRNA群をコードする核酸配列が、前記第1の隣接配列と前記第2の隣接配列との間に存在し、
前記第1のRNA誘導型DNA結合タンパク質ヌクレアーゼが、前記第2セットのガイドRNA群を認識できず、前記第2のRNA誘導型DNA結合タンパク質ヌクレアーゼが、前記第1セットのガイドRNA群を認識できず、
前記第1セットのガイドRNA群が、性染色体ではない染色体のゲノムDNA上の複数の標的位置に相補的であり、
前記第1の隣接配列が、前記ゲノムDNAの前記染色体上の前記標的位置の第1の部分と同じ配列である第1の配列を含み、
前記第2の隣接配列が、前記ゲノムDNAの前記染色体上の前記標的位置の第2の部分と同じ配列である第2の配列を含み、
前記第1の外来核酸配列が減数分裂前に前記生殖系列中で発現されて前記第1のRNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記第1セットのRNA群が産生され、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび関連するガイドRNA群が、前記ゲノムDNAの前記染色体上の第1セットの関連する標的位置群に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、細胞修復機構により前記第2の外来核酸配列が前記Y染色体から前記ゲノムDNAの前記染色体上にコピーされるように、前記ゲノムDNAの前記染色体を前記第1セットの標的位置群で切断部位特異的に切断し、
前記ゲノムDNAの前記染色体上に位置する前記第2の外来核酸配列の前記コピーが、減数分裂より前または減数分裂中に発現されて前記第2のRNA誘導型DNA結合タンパク質および前記第2セットのガイドRNA群が産生され、
前記第2のRNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記X染色体上の1つまたは複数の標的位置に相補的な前記第2セットのガイドRNA群が、前記X染色体上の前記1つまたは複数の関連する標的位置に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、前記X染色体を前記1つまたは複数の標的位置で切断部位特異的に切断して前記X染色体を作働不能にする、
前記方法。
付記39
精母細胞からX染色体含有精子のみを産生する方法であって、
第1の外来核酸配列および第2の外来核酸配列をコードするようにX染色体を改変することを含み、
ここで、前記第1の外来核酸配列が、第1のRNA誘導型DNA結合タンパク質ヌクレアーゼ、および第1セットのガイドRNA群、および対応するプロモーター配列をコードし、
前記第2の外来核酸配列が、RNA誘導型DNA結合タンパク質ヌクレアーゼ、および第2セットのガイドRNA群、および対応するプロモーター配列、ならびに第1の隣接配列および第2の隣接配列をコードし、
前記RNA誘導型DNA結合タンパク質ヌクレアーゼをコードする前記第2の核酸配列および前記第2セットのガイドRNA群をコードする核酸配列が、前記第1の隣接配列と前記第2の隣接配列との間に存在し、
前記第1のRNA誘導型DNA結合タンパク質ヌクレアーゼが、前記第2セットのガイドRNA群を認識できず、前記第2のRNA誘導型DNA結合タンパク質ヌクレアーゼが、前記第1セットのガイドRNA群を認識できず、
前記第1セットのガイドRNA群が、性染色体ではない染色体のゲノムDNA上の複数の標的位置に相補的であり、
前記第1の隣接配列が、前記ゲノムDNAの前記染色体上の前記標的位置の第1の部分と同じ配列である第1の配列を含み、
前記第2の隣接配列が、前記ゲノムDNAの前記染色体上の前記標的位置の第2の部分と同じ配列である第2の配列を含み、
前記第1の外来核酸配列が減数分裂の前に前記生殖系列中で発現されて前記第1のRNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記第1セットのRNA群が産生され、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび関連するガイドRNA群が、前記ゲノムDNAの前記染色体上の第1セットの関連する標的位置群に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、細胞修復機構により前記第2の外来核酸配列が前記X染色体から前記ゲノムDNAの前記染色体上にコピーされるように、前記ゲノムDNAの前記染色体を前記第1セットの標的位置群で切断部位特異的に切断し、
前記ゲノムDNAの前記染色体上に位置する前記第2の外来核酸配列の前記コピーが減数分裂の前または減数分裂中に発現されて、前記第2のRNA誘導型DNA結合タンパク質および前記第2セットのガイドRNA群が産生され、
前記第2のRNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記Y染色体上の1つまたは複数の標的位置に相補的な前記第2セットのガイドRNA群が、前記Y染色体上の前記1つまたは複数の関連する標的位置に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、前記Y染色体を前記1つまたは複数の標的位置で切断部位特異的に切断して前記Y染色体を作働不能にする。
付記40
RNA誘導型DNA結合タンパク質ヌクレアーゼと、精子のY染色体上の1種類または複数種類の標的核酸配列に相補的な1種類または複数種類のガイドRNAと、精子のX染色体上の1種類または複数種類の標的核酸配列に相補的な1種類または複数種類のガイドRNAと、第1の隣接配列と、第2の隣接配列とをコードする第1の外来核酸配列を有する改変X染色体を有する、雄子孫を排除するための雌子孫を産生する方法であって、
前記第1の外来核酸配列を卵母細胞中で発現させてRNA誘導型DNA結合タンパク質ヌクレアーゼ、および前記Y染色体上の1種類または複数種類の標的核酸配列と前記X染色体上の1種類または複数種類の標的核酸配列とに相補的な1種類または複数種類のガイドRNAを産生させ、
前記RNA誘導型DNA結合タンパク質ヌクレアーゼをコードする核酸配列および前記1種類または複数種類のガイドRNAをコードする核酸配列が、前記第1の隣接配列と前記第2の隣接配列との間に存在し、
前記第1の隣接配列が、前記ゲノムDNAの前記X染色体上の前記標的位置の第1の部分と同じ配列である第1の配列を含み、
前記第2の隣接配列が、前記ゲノムDNAの前記X染色体上の前記標的位置の第2の部分と同じ配列である第2の配列を含み、
前記第1の外来核酸配列を発現させてRNA誘導型DNA結合タンパク質ヌクレアーゼ、および前記Y染色上の前記1種類または複数種類の標的核酸配列と前記X染色体上の前記1種類または複数種類の標的核酸配列とに相補的な1種類または複数種類のガイドRNAを産生させ、
Y染色体を有する野生型精子と前記改変X染色体を含む卵母細胞が結合すると、前記RNA誘導型DNA結合タンパク質ヌクレアーゼと前記Y染色体を標的とする前記1種類または複数種類のガイドRNAとが前記Y染色体上の前記1種類または複数種類の標的核酸配列に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが前記Y染色体を切断して前記卵母細胞の雄生物へのその後の発生を作働不能にし、
X染色体を有する野生型精子と前記改変X染色体を含む卵母細胞が結合すると、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記1種類または複数種類のガイドRNAが前記X染色体上の前記1種類または複数種類の標的核酸配列に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが前記X染色体を切断し、そこで前記第1の外来核酸配列が前記X染色体中に挿入される、
前記方法。
付記41
RNA誘導型DNA結合タンパク質ヌクレアーゼと、発生に必須の遺伝子内に位置する前記X染色体上の1種類または複数種類の標的核酸配列に相補的な1種類または複数種類のガイドRNAとをコードし、且つ対応するプロモーター配列ならびに第1の隣接配列および第2の隣接配列を含む第1の外来核酸配列を有する改変Y染色体を有する、雌子孫を排除するための雄子孫を産生する方法であって、
前記第1の隣接配列が、前記X染色体上の前記必須遺伝子の第1の部分と同じ配列である第1の配列を含み、
前記第2の隣接配列が、前記X染色体上の前記必須遺伝子の第2の部分と同じ配列である第2の配列を含み、前記改変Y染色体が、前記1種類または複数種類のガイドRNAによって認識される前記1つまたは複数の標的位置が1種類または複数種類の前記ガイドRNAによって認識される前記配列と非相補的になるように改変された前記X染色体上の前記必須遺伝子をコードする第2の核酸配列をさらに含み、その結果、野生型X染色体を有する卵母細胞が前記改変Y染色体を有する精子と結合した場合に前記第1の外来核酸配列が発現されてRNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記X染色体上の1種類または複数種類の標的核酸配列に相補的な1種類または複数種類のガイドRNAが産生され、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記1種類または複数種類のガイドRNAが前記X染色体上の前記1種類または複数種類の標的核酸配列に共局在し、そこで前記RNA誘導型DNA結合タンパク質ヌクレアーゼが前記X染色体を切断して前記必須遺伝子を除去してそこに前記第1の核酸配列を挿入し、前記Y染色体上の前記必須遺伝子の前記の追加のコピーのために生存可能なままである改変X染色体が作られ、
野生型X染色体を有する卵母細胞と前記改変X染色体を有する精子が結合すると、前記第1の外来核酸配列が発現されて、RNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記X染色体上の1種類または複数種類の標的核酸配列に相補的な1種類または複数種類のガイドRNAが産生され、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記1種類または複数種類のガイドRNAが前記X染色体上の前記1種類または複数種類の標的核酸配列に共局在し、そこで前記RNA誘導型DNA結合タンパク質ヌクレアーゼが前記X染色体を切断して前記必須遺伝子を除去し、前記第1の外来核酸配列を前記X染色体中に挿入し、その結果、前記接合体が前記必須X染色体遺伝子を欠くことになる、
前記方法。
付記42
生殖可能な雄および生殖不能の雌を作製する方法であって、付記41に記載の方法が、その遺伝子を欠いた生物が生殖不能となるように、前記X染色体上の前記必須遺伝子が生殖能にのみ必須である点で改変されている、方法。
付記43
前記第1の核酸配列が、第3の隣接配列および第4の隣接配列をさらに含み、
前記第3の隣接配列が、生殖能に必須の遺伝子の第1の部分と同じ配列である第3の配列を含み、
前記第4の隣接配列が、生殖能に必須の遺伝子の第2の部分と同じ配列である第4の配列を含み、
前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、前記第3の隣接配列と前記第4の隣接配列との間に位置し、前記第1の核酸配列が、前記生殖能に必須の遺伝子内に位置する1種類または複数種類の標的配列に相補的な第2セットのガイドRNA群をさらに含み、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記第2セットのガイドRNA群が発現し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記1種類または複数種類のガイドRNAが前記生殖能に必須の遺伝子内の前記1種類または複数種類の標的核酸配列に共局在し、
前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、前記生殖能に必須の遺伝子を切断してそこに前記第1の核酸配列を挿入する、付記41に記載の方法。
付記44
制御された集団抑制の方法であって、付記43に記載のY染色体を抑制対象の集団中に放出し、付記43に記載のY染色体に利用される前記ガイドRNAに非相補的となるが前記遺伝子によりコードされるタンパク質が同じアミノ酸配列を保持するように、付記43に記載のY染色体によって標的とされた前記生殖能に必須の遺伝子内に位置する前記1種類または複数種類の標的配列を改変する付記30に記載のRNA誘導型遺伝子ドライブを、前記Y染色体が、前記抑制対象の集団中で息子のみを産生し、保護対象の集団中に放出された前記RNA誘導型遺伝子ドライブにより改変された雌と交配した場合には生殖可能な息子および生殖不能な娘を産出するように、前記保護対象の集団中に放出する、方法。
付記45
抑制または根絶する対象の集団中に付記44に記載のY染色体を放出することを含む、標的集団抑制または標的集団絶滅のための方法。
付記46
標的集団中に性別にバイアスをかける染色体を放出することを含む、標的集団抑制または標的集団絶滅のための方法。
付記47
以下を含む、改変生物から同じ生物種の野生型生物への遺伝子流動を阻止する方法。
最初に、前記生物が生存可能であるためには2つの機能的なコピーとして存在しなければならない遺伝子(以後、必須遺伝子と呼ぶ)の中央部の配列に対応する配列が、前記遺伝子の野生型コピーの遠位に存在する染色体の別の領域中に挿入されるように、前記野生型生物のゲノムを改変すること;および次に、
RNA誘導型DNA結合タンパク質ヌクレアーゼおよび1種類または複数種類のガイドRNAをコードし、且つ対応するプロモーター配列、第1の隣接配列、第2の隣接配列、第3の隣接配列、第4の隣接配列、および前記必須遺伝子と同じタンパク質をコードするが同じ核酸配列を使用しない配列(以後、再コード化必須遺伝子と呼ぶ)を含む第1の外来核酸配列を、前記改変生物の生殖系列に導入すること;
ここで、前記1種類または複数種類のガイドRNAが、前記染色体の前記遠位領域中に挿入された前記1つまたは複数の標的位置および前記必須遺伝子内の配列に相補的であり、
前記RNA誘導型DNA結合タンパク質ヌクレアーゼをコードする核酸配列と、前記1種類または複数種類のガイドRNA、前記第3の隣接配列、前記第4の隣接配列、および前記再コード化必須遺伝子をコードする核酸配列とが、前記第1の隣接配列と前記第2の隣接配列との間に存在し、
前記第1の隣接配列が、前記染色体の遠位領域中の前記標的位置の第1の部分と同じ配列である第1の配列を含み、
前記第2の隣接配列が、前記染色体の遠位領域中の前記標的位置の第2の部分と同じ配列である第2の配列を含み、
前記第3の隣接配列が、前記必須遺伝子の第3の部分と同じ配列である第3の配列を含み、
前記第4の隣接配列が、前記必須遺伝子の第4の部分と同じ配列である第4の配列を含む、
前記第1の外来核酸配列を発現させて前記RNA誘導型DNA結合タンパク質ヌクレアーゼ、および前記染色体の前記遠位領域中の1つまたは複数の標的位置と前記必須遺伝子内の前記1種類または複数種類の標的配列とに相補的な前記1種類または複数種類のRNAを産生させること;
ここで、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび標的位置に相補的な関連するガイドRNAが、前記染色体の前記遠位領域中の関連する標的位置に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、前記染色体の前記遠位領域中の前記標的配列を切断部位特異的に切断する、
前記第1の外来核酸配列を前記染色体の前記遠位領域中に挿入すること;
ここで、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび標的位置に相補的な関連するガイドRNAが、前記野生型必須遺伝子中の関連する標的位置に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、前記野生型必須遺伝子を切断部位特異的に切断する、
前記第3の隣接領域と前記第4の隣接領域との間の配列を前記必須遺伝子の野生型コピー中に挿入することによりその機能を破壊して、
その結果、前記改変生物が、前記染色体の遠位領域中に前記必須遺伝子の2つの再コード化コピーを有し、前記野生型必須遺伝子の機能的コピーを有さず、改変生物が野生型生物と交雑すると、前記染色体の前記遠位領域中に前記再コード化必須遺伝子の追加のコピーを挿入することなく前記必須遺伝子の野生型コピーが破壊されること。
付記48
前記必須遺伝子が、前記X染色体上に位置し、生存能に2コピーが必要であり;前記遠位領域も前記X染色体上に存在し;雄の生殖能または生存能に必要な遺伝子(以後、雄必須遺伝子と呼ぶ)が、コードされている雄必須タンパク質のアミノ酸配列を保存するようその核酸配列中に再コード化されるように、前記生物の前記第1の改変により前記Y染色体がさらに改変され;非機能的である前記雄必須遺伝子の更なるコピーが前記雄必須遺伝子の前記再コード化コピーの隣に挿入され;前記第1の核酸配列が、前記雄必須遺伝子の第5の部分と同じ配列である第5の配列を含む第5の隣接配列も含み;前記第1の核酸配列が、前記雄必須遺伝子の第6の部分と同じ配列である第6の配列を含む第6の隣接配列も含み;前記第1の核酸配列が、前記遺伝子を非機能的にするように再コード化された前記野生型雄必須遺伝子内の配列に対応する第2セットのガイドRNA群も含み;前記RNA誘導型DNA結合タンパク質ヌクレアーゼをコードする核酸配列ならびに前記ガイドRNA、前記第3の隣接配列、前記第4の隣接配列、および前記再コード化必須遺伝子をコードする核酸配列が、前記第1の隣接配列と前記第2の隣接配列との間に存在する前記第5の隣接配列と前記第6の隣接配列との間に存在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼは前記再コード化遺伝子または前記非機能的雄必須遺伝子を切断せず、前記改変Y染色体は前記改変X染色体上の前記必須遺伝子を切断しないので、改変Y染色体を有する雄と交配した2つの改変X染色体を有する雌が、生存可能な雄の子を生じ;野生型Y染色体を有する精子と受精した、2つの改変X染色体を有する雌に由来する卵母細胞の場合は、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが前記野生型雄必須遺伝子を切断してその場所に前記第5の隣接配列と前記第6の隣接配列との間の配列をコピーして、生殖不能または生存不能な雄が生じ;改変Y染色体を有する精子と受精した、野生型雌に由来する卵母細胞の場合は、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが前記必須遺伝子を切断して、生存不能な雄の子孫が生じ;改変X染色体および野生型X染色体を共に含む精子と卵が結合すると、前記再コード化必須遺伝子をコピーすることなく前記RNA誘導型DNA結合タンパク質ヌクレアーゼが前記野生型必須遺伝子を切断して、1つの改変X染色体および1つの破壊されたX染色体を有するハイブリッド雌子孫が生じ;野生型雄と交配させたこれらのハイブリッド雌が、生存不能もしくは生殖不能な雄またはハイブリッド雌を産生し;ハイブリッド雌と改変Y染色体を有する雄との雄子孫の半数が生存可能である、付記47に記載の方法。
付記49
以下を含む、固有の遺伝的多型を有する亜集団から野生型集団の残りへの遺伝子流動を阻止する方法。
前記第1の隣接配列と前記第2の隣接配列との間の標的位置中に固有の多型を有する集団中でのみ拡散でき、さらに前記染色体の遠位領域中に前記標的部位を挿入する、付記30に記載のRNA誘導型遺伝子ドライブを放出すること;
ここで、前記RNA誘導型遺伝子ドライブが、前記固有多型領域中に前記RNA誘導型遺伝子ドライブを挿入するための前記第1および第2の隣接配列をコードし、且つ前記遠位領域中に前記標的部位を挿入するための第3および第4の隣接配列をコードする、および次に、
RNA誘導型DNA結合タンパク質ヌクレアーゼ、第2セットのガイドRNA群、および第3セットのガイドRNA群をコードし、且つ対応するプロモーター配列、第5の隣接配列、第6の隣接配列、第7の隣接配列、第8の隣接配列、第9の隣接配列、第10の隣接配列、および前記必須遺伝子と同じタンパク質をコードするが同じ核酸配列を使用しない配列(以後、再コード化必須遺伝子と呼ぶ)を含む、第2の外来核酸配列を最初に上記のように改変された生物の生殖系列に導入することによって二次的に改変した生物を放出すること;
ここで、前記第2セットのガイドRNA群が、前記染色体の前記遠位領域に挿入された前記第1セットの標的位置群およびさらに前記必須遺伝子内の配列に相補的であり、
前記第3セットのガイドRNA群が、前記第1セットの核酸配列内に固有に存在する標的配列群に相補的であり、
前記RNA誘導型DNA結合タンパク質ヌクレアーゼをコードする核酸配列ならびに前記1種類または複数種類のガイドRNA、前記第7の隣接配列、前記第8の隣接配列、前記第9の隣接配列、前記第10の隣接配列、および前記再コード化必須遺伝子をコードする核酸配列が、前記第5の隣接配列と前記第6の隣接配列との間に存在し、
前記第5の隣接配列が、前記染色体の前記遠位領域中の前記標的位置の第5の部分と同じ配列である第5の配列を含み、
前記第6の隣接配列が、前記染色体の前記遠位領域中の前記標的位置の第6の部分と同じ配列である第6の配列を含み、
前記第7の隣接配列が、前記必須遺伝子の第7の部分と同じ配列である第7の配列を含み、
前記第8の隣接配列が、前記必須遺伝子の第8の部分と同じ配列である第8の配列を含み、
前記第9の隣接配列が、前記第1の隣接配列の第9の部分と同じ配列である第9の配列を含み、
前記第10の隣接配列が、前記第2の隣接配列の第10の部分と同じ配列である第10の配列を含む、
前記第2の外来核酸配列を発現させて前記RNA誘導型DNA結合タンパク質ヌクレアーゼ、および前記染色体の前記遠位領域中の前記第2セットの標的位置群と前記必須遺伝子内の前記第2セットの標的配列群とに相補的な前記第2セットのRNA群を産生させること;、
ここで、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび標的位置に相補的な関連するガイドRNAが、前記染色体の前記遠位領域中の関連する標的位置に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが前記染色体の前記遠位領域中の前記標的配列を切断部位特異的に切断する、
前記第1の外来核酸配列を前記染色体の前記遠位領域に挿入すること;
ここで、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび標的位置に相補的な関連するガイドRNAが、野生型必須遺伝子中の関連する標的位置に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、前記野生型必須遺伝子を切断部位特異的に切断する、
前記第7の隣接領域と前記第8の隣接領域との間の配列を前記必須遺伝子の前記野生型コピー中に挿入することによりその機能を破壊すること;
前記第1の核酸配列内に固有に位置する配列に相補的な前記第3セットのガイドRNA群を発現させること;
ここで、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記第1の核酸配列内の配列に相補的な関連するガイドRNAが、前記第1の核酸配列内の標的配列に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、前記第1の核酸配列内の前記標的配列を切断部位特異的に切断する、
前記第1の核酸配列を、前記第9の隣接領域と前記第10の隣接領域との間の配列で置換し、
その結果、前記改変生物が、前記第1の核酸配列のコピーを有さず、2つの前記必須遺伝子の再コード化コピーを前記染色体の遠位領域中に有し、前記野生型必須遺伝子の機能的コピーを有さず、改変生物が野生型生物と交雑すると、前記染色体の前記遠位領域中に前記再コード化必須遺伝子の追加のコピーを挿入することなく前記必須遺伝子の前記野生型コピーが破壊されること。
付記51
RNA誘導型DNA結合タンパク質ヌクレアーゼおよび1種類または複数種類のガイドRNAをコードし、且つ対応するプロモーター配列ならびに第1の隣接配列および第2の隣接配列を含む外来核酸配列を含む生殖系列細胞であって、
前記1種類または複数種類のガイドRNAが、前記生殖系列細胞の染色体対の第1の染色体のゲノムDNA上および第2の染色体のゲノムDNA上の1つまたは複数の標的位置に相補的であり、
前記RNA誘導型DNA結合タンパク質ヌクレアーゼをコードする核酸配列および前記1種類または複数種類のガイドRNAをコードする核酸配列が、前記第1の隣接配列と前記第2の隣接配列との間に存在し、
前記第1の隣接配列が、前記ゲノムDNAの前記第1の染色体上または前記第2の染色体上の前記標的位置の第1の部分と同じ配列である第1の配列を含み、
前記第2の隣接配列が、前記ゲノムDNAの前記第1の染色体上または前記第2の染色体上の前記標的位置の第2の部分と同じ配列である第2の配列を含む、
前記生殖系列細胞。
付記52
以下を含む、生物の真核生殖系列細胞を改変する方法。
RNA誘導型DNA結合タンパク質ヌクレアーゼおよび1種類または複数種類のガイドRNAをコードし、対応するプロモーター配列ならびに第1の隣接配列および第2の隣接配列を含み、且つ前記生物が特定の化学物質、化合物、または条件に晒された場合にその発現が前記生物にとって有害である感作核酸(sensitizing nucleic acid)を含む第1の外来核酸配列を、前記生殖系列細胞に導入すること;
ここで、前記1種類または複数種類のガイドRNAが、前記生殖系列細胞の染色体対の第1の染色体のゲノムDNA上および第2の染色体のゲノムDNA上の1つまたは複数の標的位置に相補的であり、
前記RNA誘導型DNA結合タンパク質ヌクレアーゼをコードする核酸配列および前記1種類または複数種類のガイドRNAをコードする核酸配列が、前記第1の隣接配列と前記第2の隣接配列との間に存在し、
前記第1の隣接配列が、前記ゲノムDNAの前記第1の染色体上または前記第2の染色体上の前記標的位置の第1の部分と同じ配列である第1の配列を含み、
前記第2の隣接配列が、前記ゲノムDNAの前記第1の染色体上または前記第2の染色体上の前記標的位置の第2の部分と同じ配列である第2の配列を含む、
前記第1の外来核酸配列を発現させて前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記1種類または複数種類のRNAを産生させること;
ここで、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび関連するガイドRNAが、前記ゲノムDNAの前記第1の染色体上および前記ゲノムDNAの前記第2の染色体上の関連する標的位置に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、前記ゲノムDNAの前記第1の染色体を前記標的位置で切断部位特異的に切断し、且つ前記ゲノムDNAの前記第2の染色体を前記標的位置で切断部位特異的に切断する、
前記第1の外来核酸配列を前記ゲノムDNAの前記染色体対の前記第1の染色体中に前記切断部位で挿入し、前記第1の外来核酸配列を前記ゲノムDNAの前記染色体対の前記第2の染色体中に前記切断部位で挿入して、前記生殖系列細胞を前記外来核酸配列についてホモ接合型にすること;および
生じた生物が前記化学物質、化合物、または条件に晒された場合に死滅するまたは生殖不能になるように、前記生じた生物を前記化学物質、化合物、または条件に対して感受性にする前記感作核酸を発現させること。
付記53
前記感作核酸の発現により、前記生物に対する前記化学物質、化合物、または条件の毒性が増大する、付記52に記載の方法。
付記54
前記生殖系列細胞を生物へと成長させ、前記感作核酸を子孫に移行させて、前記感作核酸を含む生物の集団を作り出し、前記感作核酸が前記生物に対する前記化学物質、化合物、または条件の毒性を増大させる、付記52に記載の方法。
付記55
前記生物が雑草または有害生物である、付記52に記載の方法。
付記56
前記感作核酸が、現存遺伝子を置換する感作遺伝子である、付記52に記載の方法。
付記57
前記感作遺伝子が、野生集団中の現存変異遺伝子の正確なまたはコドンを改変した祖先バージョンであり、前記現在の変異バージョンが前記祖先形態で置換される、付記56に記載の方法。
付記58
前記現存遺伝子が、農薬、除草剤、または殺真菌剤に対する抵抗性に寄与する変異を獲得している、付記56に記載の方法。
付記59
前記化学物質または化合物が、農薬、除草剤、または殺真菌剤である、付記52に記載の方法。
付記60
前記農薬、除草剤、または殺真菌剤が、Cry1A.105、CryIAb、CryIF、Cry2Ab、Cry3Bb1、Cry34Ab1、Cry35Ab1、mCry3A、もしくはVIPによって産生されるBt毒素、2,4−D、またはグリホサートのいずれかである、付記59に記載の方法。
付記61
前記感作遺伝子が、前記生物の生存または生殖にその機能が必要とされる現存遺伝子を置換する、付記56に記載の方法。
付記62
前記化学物質がプロドラッグであり、前記感作遺伝子が対応するプロドラッグ変換酵素をコードする、付記52に記載の方法。
付記63
前記酵素と化学物質の組み合わせが、シトシンデアミナーゼと5−フルオロシトシン、またはニトロレダクターゼとCB1954である、付記62に記載の方法。
付記64
感受性遺伝子ドライブが、特定の化学物質、化合物、または条件の存在する場合に、雑草または有害生物集団を毒性に対して脆弱にする、感受性遺伝子ドライブを雑草または有害生物の集団のゲノム中に含む、前記雑草または有害生物の集団を制御する方法であって、
前記雑草もしくは有害生物を死滅させる、前記雑草もしくは有害生物の増殖を低減する、または前記雑草もしくは有害生物を生殖不能にして増殖を阻害するのに有効な量の前記化学物質、化合物、または条件と前記雑草または有害生物集団を接触させることを含む、前記方法。
付記65
前記化学物質または化合物が、除草剤、農薬、または殺真菌剤である、付記64に記載の方法。
付記66
以下を含む、第1の感作遺伝子ドライブを含む生物の真核生殖系列細胞を改変する方法。
RNA誘導型DNA結合タンパク質ヌクレアーゼおよび1種類または複数種類のガイドRNAをコードし、対応するプロモーター配列ならびに第1の隣接配列および第2の隣接配列を含み、且つ前記生物が特定の化学物質、化合物、または条件に晒された場合にその発現が前記生物にとって有害である第2の感作核酸配列を含む第2の外来核酸配列を、前記生殖系列細胞に導入すること;
ここで、前記1種類または複数種類のガイドRNAが、前記第1の感作遺伝子ドライブを含む前記生殖系列細胞の染色体対の前記第1の感作遺伝子ドライブを含む第1の染色体のゲノムDNA上および第2の染色体のゲノムDNA上の1つまたは複数の標的位置に相補的であり、
前記第2の外来核酸配列の前記RNA誘導型DNA結合タンパク質ヌクレアーゼをコードする核酸配列および前記1種類または複数種類のガイドRNAをコードする核酸配列が、前記第1の隣接配列と前記第2の隣接配列との間に存在し、
前記第1の隣接配列が、前記ゲノムDNAの前記第1の染色体上または前記第2の染色体上の前記標的位置の第1の部分と同じ配列である第1の配列を含み、
前記第2の隣接配列が、前記ゲノムDNAの前記第1の染色体上または前記第2の染色体上の前記標的位置の第2の部分と同じ配列である第2の配列を含む、
前記第2の外来核酸配列を発現させて前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記1種類または複数種類のRNAを産生させること;
ここで、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび関連するガイドRNAが、前記ゲノムDNAの前記第1の染色体上および前記ゲノムDNAの前記第2の染色体上の関連する標的位置に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、前記ゲノムDNAの前記第1の染色体を前記標的位置で切断部位特異的に切断し、前記ゲノムDNAの前記第2の染色体を前記標的位置で切断部位特異的に切断して、前記第1の外来核酸配列が除去される、
前記第2の外来核酸配列を前記ゲノムDNAの前記染色体対の前記第1の染色体中に前記切断部位で挿入し、前記第2の外来核酸配列を前記ゲノムDNAの前記染色体対の前記第2の染色体中に前記切断部位で挿入して、前記生殖系列細胞を前記第2の外来核酸配列についてホモ接合型にすること;および
生じた生物が前記化学物質、化合物、または条件に晒された場合に死滅するまたは生殖不能になるように、前記生じた生物を前記化学物質、化合物、または条件に対して感受性にする前記第2の感作核酸配列を発現させること。
付記67
前記生じた生物と野生型生物との子孫が前記第2の感作核酸配列を含むように、前記生じた生物を野生型集団中に導入する、付記66に記載の方法。
付記68
前記生物が雑草または有害生物である、付記66に記載の方法。
付記69
以下を含む、第1の感作遺伝子ドライブを含む生物の真核生殖系列細胞を改変する方法。
RNA誘導型DNA結合タンパク質ヌクレアーゼおよび1種類または複数種類のガイドRNAをコードし、対応するプロモーター配列ならびに第1の隣接配列および第2の隣接配列を含み、且つ前記生物が特定の化学物質、化合物、または条件に晒された場合にその発現が前記生物にとって有害である第2の感作核酸配列を含む第2の外来核酸配列を、前記生殖系列細胞に導入すること;
ここで、前記1種類または複数種類のガイドRNAが、前記第1の感作遺伝子ドライブを含む前記生殖系列細胞の染色体対の前記第1の感作遺伝子ドライブを含む第1の染色体のゲノムDNA上および第2の染色体のゲノムDNA上の1つまたは複数の標的位置に相補的であり、
前記第2の外来核酸配列の前記RNA誘導型DNA結合タンパク質ヌクレアーゼをコードする核酸配列および前記1種類または複数種類のガイドRNAをコードする核酸配列が、前記第1の隣接配列と前記第2の隣接配列との間に存在し、
前記第1の隣接配列が、前記ゲノムDNAの前記第1の染色体上または前記第2の染色体上の前記標的位置の第1の部分と同じ配列である第1の配列を含み、
前記第2の隣接配列が、前記ゲノムDNAの前記第1の染色体上または前記第2の染色体上の前記標的位置の第2の部分と同じ配列である第2の配列を含む、
前記第2の外来核酸配列を発現させて前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記1種類または複数種類のRNAを産生させること;
ここで、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび関連するガイドRNAが、前記ゲノムDNAの前記第1の染色体上および前記ゲノムDNAの前記第2の染色体上の関連する標的位置に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、前記ゲノムDNAの前記第1の染色体を前記標的位置で切断部位特異的に切断し、且つ前記ゲノムDNAの前記第2の染色体を前記標的位置で切断部位特異的に切断する、
前記第2の外来核酸配列を前記ゲノムDNAの前記染色体対の前記第1の染色体中に前記切断部位で挿入し、前記第2の外来核酸配列を前記ゲノムDNAの前記染色体対の前記第2の染色体中に前記切断部位で挿入して、前記生殖系列細胞を前記第2の外来核酸配列についてホモ接合型にすること;および
生じた生物が前記化学物質、化合物、または条件に晒された場合に死滅するまたは生殖不能になるように、前記生じた生物を前記化学物質、化合物、または条件に対して感受性にする前記第2の感作核酸配列を発現させること。
付記70
前記生じた生物と野生型生物との子孫が前記第2の感作核酸配列を含むように、前記生じた生物を野生型集団中に導入する、付記69に記載の方法。
付記71
前記生物が雑草または有害生物である、付記69に記載の方法。
付記72
以下を含む、生物の真核生殖系列細胞を改変する方法。
RNA誘導型DNA結合タンパク質ヌクレアーゼおよび1種類または複数種類のガイドRNAをコードし、且つ対応するプロモーター配列ならびに第1の隣接配列および第2の隣接配列を含む第1の外来核酸配列を、前記生殖系列細胞に導入すること;
前記1種類または複数種類のガイドRNAが、前記生殖系列細胞の染色体対の第1の染色体のゲノムDNA上および第2の染色体のゲノムDNA上の1つまたは複数の標的位置に相補的であり、
前記RNA誘導型DNA結合タンパク質ヌクレアーゼをコードする核酸配列および前記1種類または複数種類のガイドRNAをコードする核酸配列が、前記第1の隣接配列と前記第2の隣接配列との間に存在し、
前記第1の隣接配列が、前記ゲノムDNAの前記第1の染色体上または前記第2の染色体上の前記標的位置の第1の部分と同じ配列である第1の配列を含み、
前記第2の隣接配列が、前記ゲノムDNAの前記第1の染色体上または前記第2の染色体上の前記標的位置の第2の部分と同じ配列である第2の配列を含み、
前記外来核酸配列によって切断および置換される前記第1の隣接配列と前記第2の隣接配列との間に位置する配列の少なくとも1個のコピーが、前記生物が生存するためまたは生存可能な子を産生するために必要である、
前記第1の外来核酸配列を発現させて前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび前記1種類または複数種類のRNAを産生させること;
ここで、前記RNA誘導型DNA結合タンパク質ヌクレアーゼおよび関連するガイドRNAが、前記ゲノムDNAの前記第1の染色体および前記ゲノムDNAの前記第2の染色体上の関連する標的位置に共局在し、前記RNA誘導型DNA結合タンパク質ヌクレアーゼが、前記ゲノムDNAの前記第1の染色体を前記標的位置で切断部位特異的に切断し、前記ゲノムDNAの前記第2の染色体を前記標的位置で切断部位特異的に切断する、
前記第1の外来核酸配列を前記ゲノムDNAの前記染色体対の前記第1の染色体中に前記切断部位で挿入し、前記第1の外来核酸配列を前記ゲノムDNAの前記染色体対の前記第2の染色体中に前記切断部位で挿入して、前記生殖系列細胞を前記外来核酸配列についてホモ接合型にすること;および
前記第1の隣接配列と前記第2の隣接配列との間に位置し、前記外来核酸配列によって切断および置換されて遺伝的荷重を生じる配列が、その生物が生存または生殖可能な子を産生するためにもはや必要ない発生段階で、前記発現および挿入ステップを行うこと。
付記73
RNA誘導型遺伝的荷重ドライブを標的集団中に放出することを含む、付記1〜72のいずれか一項記載の標的集団の抑制または絶滅のための方法。

Claims (29)

  1. 以下を含む、ヒト以外の生物の真核生殖系列細胞を改変する方法。
    II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼをコードする配列、1種類または複数種類のガイドRNAをコードする配列、および前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼと前記1種類または複数種類のガイドRNAとを発現させるための1つまたは複数のプロモーター配列を、第1の隣接配列および第2の隣接配列の間に含む第1の外来核酸配列を、前記生殖系列細胞に導入すること;
    ここで、前記1種類または複数種類のガイドRNAが、前記生殖系列細胞の染色体対の第1の染色体のゲノムDNA上および第2の染色体のゲノムDNA上の1つまたは複数の標的部位に相補的であり、
    前記第1の隣接配列が、前記ゲノムDNAの前記第1の染色体上または前記第2の染色体上の第1の部分と同じ配列である第1の配列を含み、
    前記第2の隣接配列が、前記ゲノムDNAの前記第1の染色体上または前記第2の染色体上の第2の部分と同じ配列である第2の配列を含み、
    前記1つまたは複数の標的部位が前記第1の部分と前記第2の部分の間に位置する、
    前記第1の外来核酸配列を発現させて前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼおよび前記1種類または複数種類のガイドRNAを産生させること;
    ここで、前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼおよび前記1種類または複数種類のガイドRNAに含まれるガイドRNAが、前記ゲノムDNAの前記第1の染色体上および前記ゲノムDNAの前記第2の染色体上の該ガイドRNAに相補的な標的部位に共局在し、前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼが、前記ゲノムDNAの前記第1の染色体を該標的部位で切断部位特異的に切断し、且つ前記ゲノムDNAの前記第2の染色体を前記標的部位で切断部位特異的に切断する、
    前記第1の外来核酸配列を、前記ゲノムDNAの前記染色体対の前記第1の染色体中に前記切断部位で挿入し、前記第1の外来核酸配列を、前記ゲノムDNAの前記染色体対の前記第2の染色体中に前記切断部位で挿入して、前記生殖系列細胞を前記外来核酸配列についてホモ接合型にすること;
    II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼをコードする配列、1種類または複数種類のガイドRNAをコードする配列、および前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼと前記1種類または複数種類のガイドRNAとを発現させるための1つまたは複数のプロモーター配列を、第3の隣接配列および第4の隣接配列の間に含む第2の外来核酸配列を、前記生殖系列細胞に導入すること;
    ここで、前記第2の外来核酸配列にコードされる前記1種類または複数種類のガイドRNAが、前記第1の外来核酸配列によって改変された前記1つまたは複数の標的部位に相補的であり、
    前記第3の隣接配列が、前記第1の外来核酸配列によって改変された前記第1の染色体上または前記第2の染色体上の第3の部分と同じ配列である第3の配列を含み、
    前記第4の隣接配列が、前記第1の外来核酸配列によって改変された前記第1の染色体上または前記第2の染色体上の第4の部分と同じ配列である第4の配列を含み、
    前記第1の外来核酸配列によって改変された前記1つまたは複数の標的部位が前記第3の部分と前記第4の部分の間に位置する、
    前記第2の外来核酸配列を発現させて前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼおよび前記1種類または複数種類のガイドRNAを産生させること;
    ここで、前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼおよび前記1種類または複数種類のガイドRNAに含まれるガイドRNAが、前記第1の外来核酸配列によって改変されており且つ該ガイドRNAに相補的な標的部位に共局在し、前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼが、前記ゲノムDNAの前記染色体を前記第1の外来核酸配列によって改変された該標的部位で切断部位特異的に切断して前記第1の外来核酸配列を除去する、および
    前記第2の外来核酸配列を前記ゲノムDNAの前記染色体中に前記切断部位で挿入すること。
  2. 前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼが二本鎖切断又は一本鎖切断を生じさせる、請求項1に記載の方法。
  3. 前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼがCas9である、請求項1に記載の方法。
  4. 前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼがCas9ニッカーゼである、請求項1に記載の方法。
  5. 少なくとも1つの標的部位が必須遺伝子内に存在し、前記第1の外来核酸配列が前記必須遺伝子に隣接して挿入されて、前記必須遺伝子の一部を置換する、請求項1に記載の方法。
  6. 前記第1の外来核酸配列が相同組換えにより挿入される、請求項1に記載の方法。
  7. 前記生殖系列細胞が、真菌細胞、植物細胞、昆虫細胞、または哺乳動物細胞である、請求項1に記載の方法。
  8. 前記第1の外来核酸配列にコードされる前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼおよびガイドRNAの共局在が、2種以上のガイドRNAにより複数の標的部位で起こり、前記第1の染色体または前記第2の染色体を複数の切断部位で切断する、請求項1に記載の方法。
  9. 前記複数の切断部位での切断により、DNA配列が除去され、相同組換えによって前記第1の外来核酸配列で置換される、請求項8に記載の方法。
  10. 前記第2の外来核酸配列が、前記第1の外来核酸配列とは異なる遺伝的改変を含む、請求項1に記載の方法。
  11. 前記第2の外来核酸配列が、前記第1の外来核酸配列によって改変された染色体の野生型配列を含む、請求項1に記載の方法。
  12. 以下を含む、ヒト以外の生物の真核生殖系列細胞を複数の遺伝子において改変する方法。
    II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼをコードする配列、複数のガイドRNAをコードする配列、およびII型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼと前記複数のガイドRNAとを発現させるための1つまたは複数のプロモーター配列を、第1の隣接配列および第2の隣接配列の間に含む第1の外来核酸配列を、前記複数の遺伝子中に挿入されるための1種類または複数種類の外来核酸配列Aと共に前記生殖系列細胞に導入すること;
    ここで、前記複数のガイドRNAが、前記生殖系列細胞の染色体のゲノムDNA中の複数の遺伝子上の1つまたは複数の標的部位に相補的な1種類または複数種類の遺伝子特異的ガイドRNAを含み、
    前記第1の隣接配列が、前記ゲノムDNAの前記染色体上の第1の部分と同じ配列である第1の配列を含み、
    前記第2の隣接配列が、前記ゲノムDNAの前記染色体上の第2の部分と同じ配列である第2の配列を含み、
    少なくとも1つの標的部位が前記第1の部分と前記第2の部分の間に位置し、
    前記1種類または複数種類の外来核酸配列Aの各々が、前記ゲノムDNAの前記染色体上の第3の部分と同じである第3の隣接配列および第4の部分と同じである第4の隣接配列を含み、
    外来核酸配列Aが複数種類存在する場合、それぞれの外来核酸配列Aの第3の隣接配列同士は互いに独立した配列であり、かつ、それぞれの外来核酸配列Aの第4の隣接配列同士も互いに独立した配列であり、
    少なくとも1つの標的部位が前記第3の部分と前記第4の部分の間に位置し、
    前記第1の外来核酸配列を発現させて前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼおよび前記複数のガイドRNAを産生させること;
    ここで、前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼおよび前記複数のガイドRNAに含まれるガイドRNAが、前記複数の遺伝子上の該ガイドRNAに相補的な標的部位に共局在し、前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼが、前記ゲノムDNAの前記染色体を複数の遺伝子において切断部位特異的に切断する、
    前記第1の外来核酸配列および前記1種類または複数種類の外来核酸配列Aを前記ゲノムDNAの前記染色体中に前記複数の切断部位で挿入すること;
    II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼをコードする配列、複数のガイドRNAをコードする配列、および前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼと前記複数のガイドRNAとを発現させるための1つまたは複数のプロモーター配列を、第5の隣接配列および第6の隣接配列の間に含む第2の外来核酸配列を、前記生殖系列細胞に導入すること;
    ここで、前記第2の外来核酸配列にコードされる前記複数のガイドRNAが、前記第1の外来核酸配列および前記1種類または複数種類の外来核酸配列Aによって改変された前記複数の標的部位に相補的であり、
    前記第5の隣接配列が、前記第1の外来核酸配列によって改変された前記ゲノムDNAの前記染色体上の第5の部分と同じ配列である第5の配列を含み、
    前記第6の隣接配列が、前記第1の外来核酸配列によって改変された前記ゲノムDNAの前記染色体上の第6の部分と同じ配列である第6の配列を含み、
    少なくとも1つの標的部位が前記第5の部分と前記第6の部分の間に位置する、
    前記第2の外来核酸配列を発現させて前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼおよび前記複数のガイドRNAを産生させること;
    ここで、前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼおよび前記複数のガイドRNAに含まれるガイドRNAが、前記第1の外来核酸配列によって改変されており且つ該ガイドRNAに相補的な標的部位に共局在し、前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼが、前記ゲノムDNAの前記染色体を前記第1の外来核酸配列によって改変された該標的部位で切断部位特異的に切断して前記第1の外来核酸配列を除去する、および
    前記第2の外来核酸配列を前記ゲノムDNAの前記染色体中に前記切断部位で挿入すること。
  13. 前記第2の外来核酸配列が、前記第1の外来核酸配列とは異なる遺伝的改変を含む、請求項12に記載の方法。
  14. 前記第2の外来核酸配列が、前記第1の外来核酸配列によって改変された前記染色体の野生型配列を含む、請求項12に記載の方法。
  15. 以下を含む、ヒト以外の生物の真核生殖系列細胞を改変する方法。
    II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼをコードする配列、1種類または複数種類のガイドRNAをコードする配列、前記生物が特定の化学物質、化合物、または条件に晒された場合にその発現が前記生物にとって有害である感作核酸(sensitizing nucleic acid)配列、および前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼと前記1種類または複数種類のガイドRNAと前記感作核酸配列とを発現させるための1つまたは複数のプロモーター配列を、第1の隣接配列および第2の隣接配列の間に含む第1の外来核酸配列を、前記生殖系列細胞に導入すること;
    ここで、前記1種類または複数種類のガイドRNAが、前記生殖系列細胞の染色体対の第1の染色体のゲノムDNA上および第2の染色体のゲノムDNA上の1つまたは複数の標的部位に相補的であり、
    前記第1の隣接配列が、前記ゲノムDNAの前記第1の染色体上または前記第2の染色体上の第1の部分と同じ配列である第1の配列を含み、
    前記第2の隣接配列が、前記ゲノムDNAの前記第1の染色体上または前記第2の染色体上の第2の部分と同じ配列である第2の配列を含み、
    前記1つまたは複数の標的部位が前記第1の部分と前記第2の部分の間に位置する、
    前記第1の外来核酸配列を発現させて前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼおよび前記1種類または複数種類のガイドRNAを産生させること;
    ここで、前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼおよび前記1種類または複数種類のガイドRNAに含まれるガイドRNAが、前記ゲノムDNAの前記第1の染色体上および前記ゲノムDNAの前記第2の染色体上の該ガイドRNAに相補的な標的部位に共局在し、前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼが、前記ゲノムDNAの前記第1の染色体を前記標的部位で切断部位特異的に切断し、且つ前記ゲノムDNAの前記第2の染色体を前記標的部位で切断部位特異的に切断する、
    前記第1の外来核酸配列を前記ゲノムDNAの前記染色体対の前記第1の染色体中に前記切断部位で挿入し、前記第1の外来核酸配列を前記ゲノムDNAの前記染色体対の前記第2の染色体中に前記切断部位で挿入して、前記生殖系列細胞を前記外来核酸配列についてホモ接合型にすること;および
    生じた生物が前記化学物質、化合物、または条件に晒された場合に死滅するまたは生殖不能になるように、前記生じた生物を前記化学物質、化合物、または条件に対して感受性にする前記感作核酸配列を発現させること。
  16. 前記感作核酸配列の発現により、前記生物に対する前記化学物質、化合物、または条件の毒性が増大する、請求項15に記載の方法。
  17. 前記生殖系列細胞を生物へと成長させ、前記感作核酸配列を子孫に移行させて、前記感作核酸配列を含む生物の集団を作り出し、前記感作核酸配列が前記生物に対する前記化学物質、化合物、または条件の毒性を増大させる、請求項15に記載の方法。
  18. 前記生物が雑草または有害生物である、請求項15に記載の方法。
  19. 前記感作核酸配列が、現存遺伝子を置換する感作遺伝子をコードする配列である、請求項15に記載の方法。
  20. 前記感作遺伝子配列が、野生集団中の現存変異遺伝子の正確なまたはコドンを改変した祖先バージョンであり、前記現在の変異バージョンが前記祖先形態で置換される、請求項19に記載の方法。
  21. 前記現存遺伝子が、農薬、除草剤、または殺真菌剤に対する抵抗性に寄与する変異を獲得している、請求項19に記載の方法。
  22. 前記化学物質または化合物が、農薬、除草剤、または殺真菌剤である、請求項15に記載の方法。
  23. 前記農薬、除草剤、または殺真菌剤が、Cry1A.105、CryIAb、CryIF、Cry2Ab、Cry3Bb1、Cry34Ab1、Cry35Ab1、mCry3A、もしくはVIPによって産生されるBt毒素、2,4−D、またはグリホサートのいずれかである、請求項22に記載の方法。
  24. 前記感作遺伝子配列が、前記生物の生存または生殖にその機能が必要とされる現存遺伝子の配列を置換する、請求項19に記載の方法。
  25. 前記化学物質がプロドラッグであり、前記感作核酸配列が対応するプロドラッグ変換酵素をコードする配列である、請求項15に記載の方法。
  26. 前記プロドラッグ変換酵素と化学物質の組み合わせが、シトシンデアミナーゼと5−フルオロシトシン、またはニトロレダクターゼとCB1954である、請求項25に記載の方法。
  27. 以下を含む、第1の感作遺伝子ドライブを含むヒト以外の生物の真核生殖系列細胞を改変する方法。
    II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼをコードする配列、1種類または複数種類のガイドRNAをコードする配列、前記生物が特定の化学物質、化合物、または条件に晒された場合にその発現が前記生物にとって有害である第2の感作核酸配列、および前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼと前記1種類または複数種類のガイドRNAと前記第2の感作核酸配列を発現させるための1つまたは複数のプロモーター配列を、第1の隣接配列および第2の隣接配列の間に含む第2の外来核酸配列を、前記生殖系列細胞に導入すること;
    ここで、前記1種類または複数種類のガイドRNAが、前記第1の感作遺伝子ドライブを含む前記生殖系列細胞の染色体対の前記第1の感作遺伝子ドライブを含む第1の染色体のゲノムDNA上および第2の染色体のゲノムDNA上の1つまたは複数の標的部位に相補的であり、
    前記第1の隣接配列が、前記ゲノムDNAの前記第1の染色体上または前記第2の染色体上の第1の部分と同じ配列である第1の配列を含み、
    前記第2の隣接配列が、前記ゲノムDNAの前記第1の染色体上または前記第2の染色体上の第2の部分と同じ配列である第2の配列を含み、
    前記1つまたは複数の標的部位が前記第1の部分と前記第2の部分の間に位置する、
    前記第2の外来核酸配列を発現させて前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼおよび前記1種類または複数種類のガイドRNAを産生させること;
    ここで、前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼおよび前記1種類または複数種類のガイドRNAに含まれるガイドRNAが、前記ゲノムDNAの前記第1の染色体上および前記ゲノムDNAの前記第2の染色体上の該ガイドRNAに相補的な標的部位に共局在し、前記II型CRISPRシステムのRNA誘導型DNA結合タンパク質ヌクレアーゼ又はニッカーゼが、前記ゲノムDNAの前記第1の染色体を前記標的部位で切断部位特異的に切断し、且つ前記ゲノムDNAの前記第2の染色体を前記標的部位で切断部位特異的に切断する、
    前記第2の外来核酸配列を前記ゲノムDNAの前記染色体対の前記第1の染色体中に前記切断部位で挿入し、前記第2の外来核酸配列を前記ゲノムDNAの前記染色体対の前記第2の染色体中に前記切断部位で挿入して、前記生殖系列細胞を前記第2の外来核酸配列についてホモ接合型にすること;および
    生じた生物が前記化学物質、化合物、または条件に晒された場合に死滅するまたは生殖不能になるように、前記生じた生物を前記化学物質、化合物、または条件に対して感受性にする前記第2の感作核酸配列を発現させること。
  28. 前記生じた生物と野生型生物との子孫が前記第2の感作核酸配列を含むように、前記生じた生物を野生型集団中に導入する、請求項27に記載の方法。
  29. 前記生物が雑草または有害生物である、請求項27に記載の方法。
JP2016545854A 2014-01-08 2015-01-08 Rna誘導型遺伝子ドライブ Active JP6747974B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201461924735P 2014-01-08 2014-01-08
US61/924,735 2014-01-08
US201462024642P 2014-07-15 2014-07-15
US62/024,642 2014-07-15
PCT/US2015/010550 WO2015105928A1 (en) 2014-01-08 2015-01-08 Rna-guided gene drives

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020134219A Division JP7187508B2 (ja) 2014-01-08 2020-08-06 Rna誘導型遺伝子ドライブ

Publications (3)

Publication Number Publication Date
JP2017511685A JP2017511685A (ja) 2017-04-27
JP2017511685A5 JP2017511685A5 (ja) 2018-02-22
JP6747974B2 true JP6747974B2 (ja) 2020-08-26

Family

ID=53524319

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016545854A Active JP6747974B2 (ja) 2014-01-08 2015-01-08 Rna誘導型遺伝子ドライブ
JP2020134219A Active JP7187508B2 (ja) 2014-01-08 2020-08-06 Rna誘導型遺伝子ドライブ

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020134219A Active JP7187508B2 (ja) 2014-01-08 2020-08-06 Rna誘導型遺伝子ドライブ

Country Status (10)

Country Link
US (1) US10526618B2 (ja)
EP (1) EP3092310B1 (ja)
JP (2) JP6747974B2 (ja)
CN (1) CN106133141B (ja)
AU (2) AU2015204784B2 (ja)
BR (1) BR112016015958A2 (ja)
CA (1) CA2936312A1 (ja)
SG (2) SG11201605550QA (ja)
WO (1) WO2015105928A1 (ja)
ZA (1) ZA201604874B (ja)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6261500B2 (ja) 2011-07-22 2018-01-17 プレジデント アンド フェローズ オブ ハーバード カレッジ ヌクレアーゼ切断特異性の評価および改善
EP3553174A1 (en) 2012-12-17 2019-10-16 President and Fellows of Harvard College Rna-guided human genome engineering
AU2014207618A1 (en) 2013-01-16 2015-08-06 Emory University Cas9-nucleic acid complexes and uses related thereto
PT3456831T (pt) 2013-04-16 2021-09-10 Regeneron Pharma Modificação alvejada do genoma de rato
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
US9737604B2 (en) 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
US9340800B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College Extended DNA-sensing GRNAS
AU2014346559B2 (en) 2013-11-07 2020-07-09 Editas Medicine,Inc. CRISPR-related methods and compositions with governing gRNAs
KR102170502B1 (ko) 2013-12-11 2020-10-28 리제너론 파마슈티칼스 인코포레이티드 게놈의 표적화된 변형을 위한 방법 및 조성물
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
EP3161128B1 (en) 2014-06-26 2018-09-26 Regeneron Pharmaceuticals, Inc. Methods and compositions for targeted genetic modifications and methods of use
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US20180291382A1 (en) * 2014-11-05 2018-10-11 The Regents Of The University Of California Methods for Autocatalytic Genome Editing and Neutralizing Autocatalytic Genome Editing
PT3221457T (pt) 2014-11-21 2019-06-27 Regeneron Pharma Métodos e composições para modificação genética visada através da utilização de arn guia emparelhados
CA2970370A1 (en) 2014-12-24 2016-06-30 Massachusetts Institute Of Technology Crispr having or associated with destabilization domains
US10117911B2 (en) 2015-05-29 2018-11-06 Agenovir Corporation Compositions and methods to treat herpes simplex virus infections
WO2016205749A1 (en) 2015-06-18 2016-12-22 The Broad Institute Inc. Novel crispr enzymes and systems
US20170096649A1 (en) * 2015-10-02 2017-04-06 Agenovir Corporation Transgenic nuclease systems and methods
WO2017058839A1 (en) * 2015-10-02 2017-04-06 President And Fellows Of Harvard College Dependent component genome editing gene drives
WO2017070632A2 (en) 2015-10-23 2017-04-27 President And Fellows Of Harvard College Nucleobase editors and uses thereof
WO2017196858A1 (en) * 2016-05-09 2017-11-16 Massachusetts Institute Of Technology Methods to design and use gene drives
US20190161743A1 (en) * 2016-05-09 2019-05-30 President And Fellows Of Harvard College Self-Targeting Guide RNAs in CRISPR System
WO2018027078A1 (en) 2016-08-03 2018-02-08 President And Fellows Of Harard College Adenosine nucleobase editors and uses thereof
CA3033327A1 (en) 2016-08-09 2018-02-15 President And Fellows Of Harvard College Programmable cas9-recombinase fusion proteins and uses thereof
US20210000091A1 (en) * 2016-08-17 2021-01-07 The Regents Of The University Of California Split Trans-Complementing Gene-Drive System for Suppressing Aedes Aegypti Mosquitos
WO2018039438A1 (en) 2016-08-24 2018-03-01 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
EP3510154A2 (en) * 2016-09-09 2019-07-17 Massachusetts Institute of Technology Methods and compounds for gene insertion into repeated chromosome regions for multi-locus assortment and daisyfield drives
KR102026421B1 (ko) * 2016-09-13 2019-09-27 주식회사 툴젠 시토신 디아미나제에 의한 dna에서의 염기 교정 확인 방법
GB2573062A (en) 2016-10-14 2019-10-23 Harvard College AAV delivery of nucleobase editors
WO2018119359A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Editing of ccr5 receptor gene to protect against hiv infection
TW201839136A (zh) 2017-02-06 2018-11-01 瑞士商諾華公司 治療血色素異常症之組合物及方法
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
WO2018165629A1 (en) 2017-03-10 2018-09-13 President And Fellows Of Harvard College Cytosine to guanine base editor
KR20190130613A (ko) 2017-03-23 2019-11-22 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 핵산 프로그램가능한 dna 결합 단백질을 포함하는 핵염기 편집제
AU2017407272A1 (en) * 2017-03-30 2019-11-21 Kyoto University Method for inducing exon skipping by genome editing
WO2018127611A1 (en) * 2017-04-06 2018-07-12 Dsm Ip Assets B.V. Self-guiding integration construct (sgic)
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
CN111801345A (zh) 2017-07-28 2020-10-20 哈佛大学的校长及成员们 使用噬菌体辅助连续进化(pace)的进化碱基编辑器的方法和组合物
WO2019139645A2 (en) 2017-08-30 2019-07-18 President And Fellows Of Harvard College High efficiency base editors comprising gam
WO2019067011A1 (en) * 2017-09-29 2019-04-04 Kansas State University Research Foundation PROGRAMMED MODULATION OF CRISPR / CAS9 ACTIVITY
WO2019079347A1 (en) 2017-10-16 2019-04-25 The Broad Institute, Inc. USES OF BASIC EDITORS ADENOSINE
KR20200088446A (ko) * 2017-11-21 2020-07-22 더 리전츠 오브 더 유니버시티 오브 캘리포니아 곤충에서 엔도뉴클레아제 암수구별 및 불임
CN108285892A (zh) * 2018-02-01 2018-07-17 上海市东方医院 一种稳定产生人内源性Ito,s电流的细胞模型及构建方法与应用
US20210222150A1 (en) * 2018-05-29 2021-07-22 Buck Institute For Research On Aging Gene-drive in dna viruses
GB201810253D0 (en) * 2018-06-22 2018-08-08 Imperial Innovations Ltd Gene drive
IL280208B1 (en) 2018-07-18 2024-02-01 Plantarc Bio Ltd Methods and preparations to reduce the invasion of the palm weevil pest
US20210177832A1 (en) 2018-08-20 2021-06-17 The Broad Institute, Inc. Inhibitors of rna-guided nuclease target binding and uses thereof
US20210317429A1 (en) 2018-08-20 2021-10-14 The Broad Institute, Inc. Methods and compositions for optochemical control of crispr-cas9
WO2020041384A1 (en) 2018-08-20 2020-02-27 The Broad Institute, Inc. 3-phenyl-2-cyano-azetidine derivatives, inhibitors of rna-guided nuclease activity
WO2020041387A1 (en) 2018-08-20 2020-02-27 The Brigham And Women's Hospital, Inc. Degradation domain modifications for spatio-temporal control of rna-guided nucleases
KR20210143230A (ko) 2019-03-19 2021-11-26 더 브로드 인스티튜트, 인코퍼레이티드 뉴클레오티드 서열을 편집하기 위한 방법 및 조성물
GB201906203D0 (en) * 2019-05-02 2019-06-19 Pirbright Inst Method
JP2022547570A (ja) 2019-09-12 2022-11-14 ザ・ブロード・インスティテュート・インコーポレイテッド 操作済みのアデノ随伴ウイルスキャプシド
CN116096873A (zh) 2020-05-08 2023-05-09 布罗德研究所股份有限公司 同时编辑靶标双链核苷酸序列的两条链的方法和组合物
WO2023064706A1 (en) * 2021-10-12 2023-04-20 The Regents Of The University Of California Gene drive system and method of use thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0126251D0 (en) * 2001-11-01 2002-01-02 Imp College Innovations Ltd Methods
US20120315670A1 (en) * 2009-11-02 2012-12-13 Gen9, Inc. Compositions and Methods for the Regulation of Multiple Genes of Interest in a Cell
DK2836226T3 (en) * 2012-02-24 2017-09-18 Hutchinson Fred Cancer Res COMPOSITIONS AND PROCEDURES FOR TREATING HEMOGLOBINOPATHY
GB2500113A (en) * 2012-03-05 2013-09-11 Oxitec Ltd Arthropod male germline gene expression system
WO2013141680A1 (en) * 2012-03-20 2013-09-26 Vilnius University RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX
AU2013259647B2 (en) * 2012-05-07 2018-11-08 Corteva Agriscience Llc Methods and compositions for nuclease-mediated targeted integration of transgenes
JP6343605B2 (ja) * 2012-05-25 2018-06-13 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Rna依存性標的dna修飾およびrna依存性転写調節のための方法および組成物
WO2013188638A2 (en) * 2012-06-15 2013-12-19 The Regents Of The University Of California Endoribonucleases and methods of use thereof
EP2861737B1 (en) * 2012-06-19 2019-04-17 Regents Of The University Of Minnesota Gene targeting in plants using dna viruses
KR102170502B1 (ko) * 2013-12-11 2020-10-28 리제너론 파마슈티칼스 인코포레이티드 게놈의 표적화된 변형을 위한 방법 및 조성물

Also Published As

Publication number Publication date
EP3092310A4 (en) 2017-11-22
EP3092310B1 (en) 2019-12-25
CN106133141A (zh) 2016-11-16
ZA201604874B (en) 2022-08-31
AU2021202590A1 (en) 2021-05-27
WO2015105928A1 (en) 2015-07-16
AU2015204784B2 (en) 2021-01-28
CA2936312A1 (en) 2015-07-16
SG11201605550QA (en) 2016-08-30
US20160333376A1 (en) 2016-11-17
JP7187508B2 (ja) 2022-12-12
US10526618B2 (en) 2020-01-07
SG10201805815YA (en) 2018-08-30
AU2015204784A1 (en) 2016-07-21
EP3092310A1 (en) 2016-11-16
CN106133141B (zh) 2021-08-20
BR112016015958A2 (pt) 2017-09-19
JP2021003112A (ja) 2021-01-14
WO2015105928A9 (en) 2015-09-24
JP2017511685A (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP7187508B2 (ja) Rna誘導型遺伝子ドライブ
Gould et al. Population genetics of autocidal control and strain replacement
Rausher Co-evolution and plant resistance to natural enemies
US20210000091A1 (en) Split Trans-Complementing Gene-Drive System for Suppressing Aedes Aegypti Mosquitos
Marshall et al. Gene drive strategies for population replacement
McLaughlin et al. Invasive insects: management methods explored
JP2017511685A5 (ja)
CN104271747B (zh) 生物防治
Braig et al. The spread of genetic constructs in natural insect populations
US20190175762A1 (en) Dependent Component Genome Editing Gene Drives
US20180320164A1 (en) Dna sequence modification-based gene drive
US11965172B2 (en) DNA sequence modification-based gene drive
Ying et al. CRISPR-based genetic control strategies for insect pests
Izraeli et al. Wolbachia influence on the fitness of Anagyrus vladimiri (Hymenoptera: Encyrtidae), a bio‐control agent of mealybugs
Tebbe et al. Incidence and spread of knockdown resistance (kdr) in G erman C olorado potato beetle (L eptinotarsa decemlineata S ay) populations
Wickramasinghe et al. Advances in Aedes mosquito vector control strategies using CRISPR/Cas9
Suresh et al. The CRISPR/CAS mediated genome editing: a novel insect pest management strategy
Häcker et al. Genome editing and its applications for insect pest control: curse or blessing?
Gong Invasive species management on military lands: clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9 (CRISPR/Cas9)-based gene drives
Rüdelsheim et al. Gene Drives
Venkataraman et al. Applications of Gene Drive for Weeds and Pest Management Using CRISPR/Cas9 System in Plants
Miglani et al. Intervention of Modern Genetic Tools for Managing Insect Pests of Fruit Crops
Whitfield et al. Novel Strategies for Management of Arthropod Vectors of Vector-borne Vegetable Diseases
Zeng et al. Aberrant splicing of a nicotinic acetylcholine receptor alpha 6 subunit is associated with spinosad tolerance in the thrips predator Orius laevigatus
Ahmad et al. Regulations of multiplex genome-edited crops and CRISPR/Cas gene drives

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200806

R150 Certificate of patent or registration of utility model

Ref document number: 6747974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250