JP6720510B2 - 移動体システム - Google Patents

移動体システム Download PDF

Info

Publication number
JP6720510B2
JP6720510B2 JP2015227268A JP2015227268A JP6720510B2 JP 6720510 B2 JP6720510 B2 JP 6720510B2 JP 2015227268 A JP2015227268 A JP 2015227268A JP 2015227268 A JP2015227268 A JP 2015227268A JP 6720510 B2 JP6720510 B2 JP 6720510B2
Authority
JP
Japan
Prior art keywords
line
vehicle
imaging device
moving body
stereo camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015227268A
Other languages
English (en)
Other versions
JP2016131367A (ja
Inventor
洋義 関口
洋義 関口
栄太 渡邊
栄太 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to EP15202587.0A priority Critical patent/EP3043202B1/en
Priority to US14/983,881 priority patent/US10171796B2/en
Publication of JP2016131367A publication Critical patent/JP2016131367A/ja
Application granted granted Critical
Publication of JP6720510B2 publication Critical patent/JP6720510B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Studio Devices (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Image Analysis (AREA)

Description

本発明は、移動体システムに関する。
従来から、移動体にステレオカメラを取り付けることで、移動体周辺の情報を取得する移動体システムが知られている。
移動体システムとしては、例えば車両に複数のステレオカメラをそれぞれ同一方向又は異なる方向を撮影するように固定した構成が開示されている(例えば、特許文献1参照)。
しかしながら、ステレオカメラがある方向に固定されている状態では、移動体が例えば左方向、右方向に進行方向を変更した場合、移動体周辺の情報を取得するまでの時間が長くなることがある。
そこで、本発明の一つの案では、移動体周辺の情報を取得するまでの時間の短縮を図ることを目的とする。
一つの案では、移動体に取り付けられた撮像装置と、前記撮像装置の視線方向を変更する視線方向変更機構と、前記移動体の進行方向の変化に応じて、前記撮像装置の視線方向を制御する制御部とを有し、前記制御部は、前記移動体の方向指示器のオン・オフの判定を行うように構成されており、前記制御部は、前記方向指示器がオンされた場合、前記方向指示器と対応する方向に前記撮像装置の視線方向が変化するように前記撮像装置を制御した後、前記移動体の進行方向の変化に応じて、前記撮像装置の視線方向を制御する、移動体システムが提供される。
一態様によれば、移動体周辺の情報を取得するまでの時間の短縮を図ることができる。
本発明の第1実施形態に係る移動体システムの概略構成図(その1)である。 本発明の第1実施形態に係る移動体システムの制御ブロック図である。 本発明の第1実施形態に係るステレオカメラのハードウェア構成を示すブロック図である。 本発明の第1実施形態に係る移動体システムの動作の一例を示すフローチャートである。 ステアリング操舵角とステレオカメラの視線方向との関係を例示するテーブルである。 本発明の第1実施形態に係る移動体システムの動作の他の例を示すフローチャートである。 車両の進行方向が前方向であるときに、車両が左方向に操舵された場合の移動体システムの動作を説明するための図である。 車両の進行方向とステレオカメラの視線方向との関係を説明するための図である。 車両の進行方向が前方向であるときに、車両が右方向に操舵された場合の移動体システムの動作を説明するための図である。 本発明の第1実施形態に係る移動体システムの概略構成図(その2)である。 車両の進行方向が後方向であるときに、車両が左方向に操舵された場合の移動体システムの動作を説明するための図である。 車両の進行方向が後方向であるときに、車両が右方向に操舵された場合の移動体システムの動作を説明するための図である。 本発明の第2実施形態に係るステレオカメラのハードウェア構成を示すブロック図である。 本発明の第2実施形態に係る移動体システムの制御ブロック図である。 本発明の第3実施形態に係る移動体システムの制御ブロック図である。 ステレオカメラによる測距の原理を説明するための図である。 ステレオカメラにおいて視差画像を生成するための処理工程を説明するための図である。 視差探索による画像マッチングを説明するための図である。 画像マッチングにより計算された非類似度を視差量に応じてプロットしたグラフである。
以下、本発明の実施形態について添付の図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することによって重複した説明を省く。
本発明の一実施形態に係る移動体システムは、移動体に取り付けられた撮像装置と、撮像装置の視線方向を変更する視線方向変更機構と、移動体の進行方向の変化に応じて、撮像装置の視線方向を制御する制御部とを有する。
以下、移動体の一例として車両を用いた場合の移動体システムについて説明するが、本発明はこの点において限定されるものではない。
[第1実施形態]
(移動体システムの構成)
本発明の第1実施形態に係る移動体システムについて説明する。図1は、本発明の第1実施形態に係る移動体システムの概略構成図(その1)である。図2は、本発明の第1実施形態に係る移動体システムの制御ブロック図である。なお、図1における矢印は、車両の進行方向を示す。
図1及び図2に示すように、移動体システムは、ステレオカメラ100と、回転機構200と、ECU(Electronic Control Unit、電子制御ユニット)300と、回転機構制御部400とを有する。
ステレオカメラ100は、撮像装置の一例である。ステレオカメラ100は、視点の異なる少なくとも2つのカメラを備え、これらのカメラで撮像対象の人や物体を撮像することで、車両500周辺の情報を取得する。具体的には、ステレオカメラ100は、例えば車両500と、車両500の周囲から近づいてくる人や物との間の距離を測定する。ステレオカメラ100は、例えば回転機構200を介して車両500の天井部(ルーフ)上に取り付けられており、回転機構200が回転することにより回転機構200と共に回転する。
なお、図1では、ステレオカメラ100を撮像装置の一例として用いているが、本発明はこの点において限定されるものではなく、ステレオカメラ100に代えて、単眼カメラを用いてもよい。この場合、画角を広く取るために多数の単眼カメラを並べて人や物体との距離を測定する形態としてもよく、また、位相シフト法を用いて人や物体との距離を測定する形態としてもよい。
また、図1では、ステレオカメラ100が車両500の天井部上に取り付けられているが、本発明はこの点において限定されるものではなく、例えば車両500のボンネット上に取り付けられていてもよい。
ステレオカメラ100のハードウェア構成について説明する。図3は、本発明の第1実施形態に係るステレオカメラ100のハードウェア構成を示すブロック図である。
図3に示すように、ステレオカメラ100は、CPU(Central Processing Unit)101と、ROM(Read Only Memory)102と、RAM(Random Access Memory)103と、撮像部104と、画像処理部105とを備える。なお、ステレオカメラ100の各部は、バス106を介して接続されている。
CPU101は、ROM102に記憶されたプログラムをRAM103を作業メモリに実行し、ステレオカメラ100の制御を行う。
ROM102は、不揮発性メモリであり、ROMインタフェース(I/F)107を介してバス106に接続されている。ROM102は、CPU101が実行するプログラム、データ等を格納する。
RAM103は、DRAM(Dynamic Random Access Memory)、SRAM(Static Random Access Memory)等の主記憶装置である。RAM103は、RAMインタフェース(I/F)108を介してバス106に接続されている。RAM103は、各種プログラムがCPU101によって実行される際に展開される、作業領域として機能する。
撮像部104は、物体を撮像するカメラであり、画像処理部105に接続されている。撮像部104で撮像された画像(輝度画像)は、適宜、画像処理部105により画像処理される。また、撮像部104は、撮像部制御用インタフェース(I/F)109を介してバス106に接続されている。
画像処理部105は、撮像部104により撮像された物体の輝度画像に基づいて視差を算出し、算出した視差に基づいてステレオカメラ100から人や物体までの距離を算出すると共に、視差画像を生成する。また、画像処理部105は、生成した視差画像及び輝度画像に基づいて、人や物体を認識する。画像処理部105により人や物体までの距離を算出(以下「測距」ともいう。)する方法については後述する。なお、視差は、距離についての関数であるため、距離情報の一態様として説明する。
回転機構200は、視線方向変更機構の一例である。回転機構200は、ステレオカメラ100の視線方向を自由に変更させることが可能な機構である。なお、図1では、視線方向変更機構の一例として回転機構200を用いているが、ステレオカメラ100の視線方向を自由に変更させることが可能なものであれば特に限定されるものではない。
ECU300は、制御部の一例である。ECU300は、車両500の進行方向を示す情報に基づいて、ステレオカメラ100の視線方向を制御する。結果として、ECU300は、車両500の進行方向の変化に応じて、ステレオカメラ100の視線方向を制御する。なお、車両500の進行方向を示す情報としては、ステアリング操舵角、ステアリング操舵速度、車輪傾斜角等のステアリング操舵に関する情報を用いることができる。具体的には、ECU300は、例えば車両500のステアリング操舵角を取得(検出)し、取得したステアリング操舵角の変化に基づいて、ステレオカメラ100の視線方向を制御する。ECU300は、CAN(Controller Area Network)、LIN(Local Interconnect Network)等の車載ネットワークを介して回転機構制御部400、車両500に搭載された他のECU等と通信可能に接続されている。
回転機構制御部400は、車載ネットワークに接続されており、例えばECU300と通信することができる。回転機構制御部400は、回転機構200の回転角がECU300により指定された角度となるように、回転機構200の動作を制御する。
(移動体システムの動作)
移動体システムの動作の一例について説明する。
ECU300は、図2に示すように、車両500の進行方向を示す情報に基づいて、回転機構制御部400に対して回転機構200の回転角を決定し、回転機構制御部400を介して回転機構200の動作を制御する。回転機構200が回転すると、回転機構200に取り付けられているステレオカメラ100が回転機構200と共に回転するため、ステレオカメラ100の視線方向が変更される。これにより、車両500周辺の情報を取得するまでの時間の短縮を図ることができる。結果として、車両500と人や物との衝突を防ぐことができる。
ECU300は、車両500の進行方向の変化量に応じて、ステレオカメラ100の視線方向と車両500の進行方向との成す角を変更するように回転機構200の回転角を決定することが好ましい。特に、ECU300は、車両500の進行方向の変化量が大きいほど、ステレオカメラ100の視線方向と車両500の進行方向との成す角が大きくなるように回転機構200の回転角を決定することが好ましい。これにより、運転者が車両500の進行方向を短時間に大きく変化させた場合であっても、車両周辺情報を速やかに取得することができる。
ECU300は、車両500の曲がる方向の内側に角度をつけた方向になるように、回転機構200の回転角を決定することが好ましい。これにより、ステレオカメラ100は、車両500の進行方向に対して余分に角度をつけた内側方向に向くため、運転者の視野から外にある物体の存在を特に早く撮像及び認識することができる。
ECU300は、ステレオカメラ100の視線方向を変更するために用いる情報として、車両500の進行方向を示す情報に加えて、車両速度の情報を用いることが好ましい。具体的には、ECU300は、車両速度が速いときの回転機構200の回転角が、車両速度が遅いときの回転機構200の回転角よりも大きくなるように回転機構200の回転角を決定することが好ましい。これにより、車両速度が速い場合には、移動する方向に対して余分に角度をつける必要のある角度量を大きくすることができ、車両速度が遅い場合には、移動する方向に対して余分に角度をつける必要のある角度量を小さく抑えることが可能である。
次に、ECU300が行う制御の一例について説明する。図4は、本発明の第1実施形態に係る移動体システムの動作の一例を示すフローチャートである。
図4に示すように、まず、ECU300は、方向指示器(ウィンカ)がオン(点滅)されているか否かを判定する(ステップS11)。
ステップS11において、方向指示器がオンされていると判定された場合、ECU300は、車両500のステアリング操舵角を取得する(ステップS12)。ステップS11において、方向指示器がオンされていないと判定された場合、ステップS11を繰り返す。
次いで、ECU300は、ステップS12で取得したステアリング操舵角が所定角度以上であるか否かを判定する(ステップS13)。
ステップS13において、ステアリング操舵角が所定角度以上であると判定された場合、ECU300は、以下の式1により制御値としてのステレオカメラ100の視線方向(角度)を算出する(ステップS14)。
θ=A×H 〔式1〕
式1において、θはステレオカメラ100の視線方向、Hはステアリング操舵角、Aは車種、カメラ設置位置、カメラ画角等に応じた定数である。ステップS13において、ステアリング操舵角が所定角度より小さいと判定された場合、ステップS11へ戻る。
次いで、ECU300は、ステップS14において算出された制御値を用いて、算出された角度だけステレオカメラ100の視線方向が変化するようにステレオカメラ100を制御する(ステップS15)。その後、ステップS11へ戻る。
なお、図4では、方向指示器がオンされていると判定された場合にECU300が車両500のステアリング操舵角を取得しているが、方向指示器のオン・オフの判定を行うことなく、ECU300が車両500のステアリング操舵角を取得してもよい。ただし、車両500が車線変更する際等に頻繁にステレオカメラ100の視線方向θが変更されてしまうことを抑制できるという観点から、方向指示器のオン・オフの判定を行うことが好ましい。
また、式1では、ステレオカメラ100の視線方向θがステアリング操舵角Hの1次関数であるが、これに限定されず、例えばステアリング操舵角Hの2次関数、3次関数等の高次関数であってもよい。
また、ECU300は、車種、カメラ設置位置、カメラ画角等に応じて予め定められたステアリング操舵角Hとステレオカメラ100の視線方向θとの関係を示すテーブルに基づいて、ステレオカメラ100を制御してもよい。図5は、ステアリング操舵角Hとステレオカメラ100の視線方向θとの関係を例示するテーブルである。
図5(a)に示すテーブルでは、ステアリング操舵角Hが所定の閾値T以下の場合、ステレオカメラ100の視線方向θが0度に制御される。また、ステアリング操舵角Hが所定の閾値Tよりも大きい場合、ステレオカメラ100の視線方向θが90度に制御される。
図5(b)に示すテーブルでは、ステアリング操舵角Hが第1閾値T1以下の場合、ステレオカメラ100の視線方向θが0度に制御される。また、ステアリング操舵角Hが第1閾値T1よりも大きく、第2閾値T2以下の場合、ステレオカメラ100の視線方向θがθに依存させた角度に制御される。さらに、ステアリング操舵角Hが第2閾値T2よりも大きい場合、ステレオカメラ100の視線方向θが90度に制御される。なお、θに依存させた角度とは、例えば上述のθについての1次式や2次式にて規定される角度である。
次に、ECU300が行う制御の他の例について説明する。図6は、本発明の第1実施形態に係る移動体システムの動作の他の例を示すフローチャートである。
図6に示すように、まず、ECU300は、方向指示器がオンされているか否かを判定する(ステップS21)。
ステップS21において、方向指示器がオンされていると判定された場合、ECU300は、方向指示器と対応する方向に予め定められた角度だけステレオカメラ100の視線方向が変化するようにステレオカメラ100を制御する(ステップS22)。例えば、方向指示器が左方向を指している場合には、ECU300は左方向に予め定められた角度だけステレオカメラ100の視線方向が変化するようにステレオカメラ100を制御する。ステップS21において、方向指示器がオンされていないと判定された場合、ステップS21を繰り返す。
次いで、ECU300は、車両500のステアリング操舵角を取得する(ステップS23)。
次いで、ECU300は、ステップS23で取得したステアリング操舵角が所定角度以上であるか否かを判定する(ステップS24)。
ステップS24において、ステアリング操舵角が所定角度以上であると判定された場合、ECU300は、以下の式2により制御値としてのステレオカメラ100の視線方向を算出する(ステップS25)。
θ=A×H+W 〔式2〕
式2において、θはステレオカメラ100の視線方向、Hはステアリング操舵角、Aは車種、カメラ設置位置、カメラ画角等に応じた定数、Wは方向指示器がオンされたときに変更させるステレオカメラ100の角度である。ステップS24において、ステアリング操舵角が所定角度より小さいと判定された場合、ステップS21へ戻る。
次いで、ECU300は、ステップS25において算出された制御値を用いて、算出された角度だけステレオカメラ100の視線方向が変化するようにステレオカメラ100を制御する(ステップS26)。その後、ステップS21へ戻る。
図6では、運転者により方向指示器がオンされた時点で、ステレオカメラ100の視線方向が方向指示器と対応する方向に向くように制御される。これにより、運転者がステアリング(ハンドル)を操作する前に、車両500が進行する予定の方向の情報を取得することができるため、人、バイク等の巻き込みを特に抑制することができる。
なお、式2では、ステレオカメラ100の視線方向θがステアリング操舵角Hの1次関数であるが、これに限定されず、例えばステアリング操舵角Hの2次関数、3次関数等の高次関数であってもよい。
また、図4の場合と同様に、ECU300は、車種、カメラ設置位置、カメラ画角等に応じて予め定められたステアリング操舵角Hとステレオカメラ100の視線方向θとの関係を示すテーブルに基づいて、ステレオカメラ100を制御してもよい。
以下、車両500の進行方向が前方向であるときに、車両500が左方向に曲がる場合を例として、ECU300による具体的な制御について説明する。
図7は、車両500の進行方向が前方向であるときに、車両500が左方向に操舵された場合の移動体システムの動作を説明するための図である。車両500の進行方向が前方向であるときに、車両500が左方向に曲がる場合(図7中「矢印FL」で示す。)、ECU300は車両500の進行方向の変化に応じてステレオカメラ100の視線方向を制御する。
以下、車両500の進行方向が前方向から左方向に変わる場合の各地点における車両500の進行方向とステレオカメラ100の視線方向との関係について説明する。
図8は、車両500の進行方向とステレオカメラ100の視線方向との関係を説明するための図である。図8(a)は車両500が左に曲がる場合の車両500の軌跡と軌跡中の地点a,b,c,d及びeを示し、図8(b)は図8(a)における地点a,b,c,d及びeでのステレオカメラ100の視線方向を示している。なお、図8(b)における白抜き矢印は車両500の軌跡を表す。また、図8(b)における実線矢印Ea,Eb,Ec,Ed及びEeは地点a,b,c,d及びeにおけるステレオカメラ100の視線方向を表し、破線Tb,Tc及びTdは地点b,c及びdにおける車両500の軌跡の接線を表す。
地点aでは、運転者は方向指示器をオンさせているが、ステアリングを操作していない(切っていない)。よって、車両500は前方向に直進している。このとき、車両500の進行方向が変化していないため、ECU300は、ステアリングが切られていないという情報であるH=0を取得し、式1によりステレオカメラ100の視線方向θを算出し、ステレオカメラ100の視線方向が車両500の進行方向と同じ状態を維持するように(図8中「矢印Ea」で示す。)、回転機構制御部400を介して回転機構200を制御する。これにより、ステレオカメラ100の視線方向は、矢印Eaの方向となる。
地点bでは、運転者はステアリングを左回りに回転させている(左に切っている)。よって、車両500は左方向に曲がるように進行している(図8中「矢印Tb」で示す。)。このとき、ECU300は、ステアリングが左に切られているという情報であるH=h1を取得し、式1によりステレオカメラ100の視線方向θを算出し、ステレオカメラ100の視線方向が車両500の曲がる方向の内側に角度θbをつけた方向になるように(図8中「矢印Eb」で示す。)、回転機構制御部400を介して回転機構200を制御する。これにより、ステレオカメラ100の視線方向は、矢印Ebの方向となる。
地点cでは、運転者は左に切っていたステアリングを徐々に元の状態に戻している。よって、車両500は左方向に曲がるように進行している(図中「矢印Tc」で示す。)。このとき、ECU300は、ステアリングが左に切られているという情報であるH=h2(h2<h1)を取得し、式1によりステレオカメラ100の視線方向θを算出し、ステレオカメラ100の視線方向が車両500の曲がる方向の内側に角度θcをつけた方向になるように(図8中「矢印Ec」で示す。)、回転機構制御部400を介して回転機構200を制御する。これにより、ステレオカメラ100の視線方向は、矢印Ecの方向となる。
地点dでは、運転者は左に切っていたステアリングを地点cよりも更に元の状態に戻し、まっすぐに近づけている。よって、車両500は左方向に曲がるように進行している(図8中「矢印Td」で示す。)。このとき、ECU300は、ステアリングが左に切られているという情報であるH=h3(h3<h2)を取得し、式1によりステレオカメラ100の視線方向θを算出し、ステレオカメラ100の視線方向が車両500の曲がる方向の内側に角度θdをつけた方向になるように(図8中「矢印Ed」で示す。)、回転機構制御部400を介して回転機構200を制御する。これにより、ステレオカメラ100の視線方向は、矢印Edの方向となる。
地点eでは、運転者は左に切っていたステアリングを元の状態(まっすぐ)に戻し、車両500は左方向に直進している。このとき、車両500の進行方向が変化していないため、ECU300は、ステアリングが切られていないという情報であるH=0を取得し、式1によりステレオカメラ100の視線方向θを算出し、ステレオカメラ100の視線方向が車両500の進行方向と同じ状態を維持するように(図8中「矢印Ee」で示す。)、回転機構制御部400を介して回転機構200を制御する。これにより、ステレオカメラ100の視線方向は、矢印Eeの方向となる。
以上に説明したように、ECU300は、車両500のステアリング操舵角を取得し、取得したステアリング操舵角の変化に基づいて、ステレオカメラ100の視線方向を制御する。すなわち、ECU300は、車両500の進行方向の変化に応じて、ステレオカメラ100の視線方向を制御する。このため、車両500周辺の情報を取得するまでの時間の短縮を図ることができる。
なお、上記においては、ステアリング操舵角を利用しているが、これに限定されず、ステアリング操舵速度、車輪傾斜角等の情報によっても実現可能である。
なお、図9に示すように、車両500の進行方向が前方向であるときに、車両500が右方向に曲がる場合(図9中「矢印FR」で示す。)においても、ECU300は同様の制御を行うことが好ましい。
次に、車両500の進行方向が後方向である場合を例として説明する。図10は、本発明の第1実施形態に係る移動体システムの概略構成図(その2)である。図11は、車両500の進行方向が後方向であるときに、車両500が左方向に操舵された場合の移動体システムの動作を説明するための図である。図12は、車両500の進行方向が後方向であるときに、車両500が右方向に操舵された場合の移動体システムの動作を説明するための図である。なお、図10における矢印は、車両500の進行方向を示す。
図10に示すように、車両500の進行方向が後方向であるときに、車両500が左方向に曲がる場合(図11中「矢印RL」で示す。)、ECU300は、車両500の進行方向の変化に応じてステレオカメラ100の視線方向を制御する。このため、車両500周辺の情報を取得するまでの時間の短縮を図ることができる。
また、図12に示すように、車両500の進行方向が後方向であるときに、車両500が右方向に曲がる場合(図12中「矢印RR」で示す。)においても、ECU300は同様の制御を行うことが好ましい。
以上に説明したように、本発明の第1実施形態に係る移動体システムは、車両に取り付けられたステレオカメラと、ステレオカメラの視線方向を変更する回転機構と、車両の進行方向の変化に応じて、ステレオカメラの視線方向を制御するECUとを有する。このため、車両周辺の情報を取得するまでの時間の短縮を図ることができる。その結果、左折の際の人、バイク等の巻き込み事故を抑制することができる。
[第2実施形態]
本発明の第2実施形態に係る移動体システムについて説明する。
本発明の第2実施形態に係る移動体システムは、ECU300が、車両500の進行方向の変化に応じて、少なくともステレオカメラ110のフレームレートと認識処理レートのいずれか一方を変更する点で、本発明の第1実施形態に係る移動体システムと異なる。以下、第1実施形態と異なる点を中心に説明する。
図13は、本発明の第2実施形態に係るステレオカメラ110のハードウェア構成を示すブロック図である。図14は、本発明の第2実施形態に係る移動体システムの制御ブロック図である。
図13に示すように、ステレオカメラ110は、車両情報インタフェース(I/F)111を有する。
車両情報インタフェース111は、ECU300と接続されている。このため、ECU300は、車両情報インタフェース111を介して、車両500のステアリング操舵の情報、車両速度の情報等の車両情報をステレオカメラ110に送信することができる。車両情報インタフェース111としては、車両情報を受信することができるインタフェースであれば特に限定されるものではないが、例えばCANインタフェース(I/F)、LINインタフェース(I/F)を用いることができる。
ECU300は、図14に示すように、車両500の進行方向を示す情報及び/又は車両速度の情報に基づいて、回転機構制御部400に対して回転機構200の回転角を決定し、回転機構制御部400を介して回転機構200の動作を制御する。車両500の進行方向を示す情報としては、ステアリング操舵角、ステアリング操舵速度、車輪傾斜角等のステアリング操舵に関する情報を用いることができる。
ECU300は、車両500の進行方向を示す情報及び/又は車両速度の情報をステレオカメラ110に送信し、少なくともステレオカメラ110の撮像部のフレームレートとステレオカメラ110の認識処理レートのいずれか一方を変更する。具体的には、ECU300は、ステレオカメラ110の視線方向が変更された場合、少なくともステレオカメラ110のフレームレートと認識処理レートのいずれか一方を高くすることが好ましい。これにより、認識処理に影響を与える画像フレーム間の時間差を短くすることができる。結果として、車両500の運転者の視野外の範囲に関して、時間的に高密度な撮像及び認識を実行することができる。特に、隣接する画像フレームに撮像されている認識対象物のトラッキング精度が確保できるため、認識精度を向上させることができる。
また、車両500の進行方向が元の状態に戻された場合には、ECU300は、変更されたステレオカメラ110のフレームレート又は認識処理レートを元に戻すことが好ましい。これにより、車両500の進行方向が変更されていないときの消費電力及び発熱を抑制することができる。
以上に説明したように、本発明の第2実施形態に係る移動体システムは、車両に取り付けられたステレオカメラと、ステレオカメラの視線方向を変更する回転機構と、車両の進行方向の変化に応じて、ステレオカメラの視線方向を制御するECUとを有する。このため、車両周辺の情報を取得するまでの時間の短縮を図ることができる。
特に、第2実施形態では、ECUが、車両の進行方向の変化に応じて、少なくともステレオカメラのフレームレートと認識処理レートのいずれか一方を変更する。このため、ステレオカメラによる人や物体の認識精度を向上させることができる。
[第3実施形態]
本発明の第3実施形態に係る移動体システムについて説明する。
本発明の第3実施形態に係る移動体システムは、ステレオカメラ100が認識した物体の情報に基づいて、ECU300がステレオカメラ110の動作及び/又は車両500の動作を制御する点で、本発明の第2実施形態に係る移動体システムと異なる。以下、第2実施形態と異なる点を中心に説明する。
図15は、本発明の第3実施形態に係る移動体システムの制御ブロック図である。
ECU300は、ステレオカメラ110により取得された視差情報に基づいて、ステレオカメラ110のフレームレートを変更する。具体的には、ECU300は、視差の大きい物体が視差情報に存在する場合のステレオカメラ110のフレームレートが視差の大きい物体が視差情報に存在しない場合のステレオカメラ110のフレームレートよりも高くなるように、ステレオカメラ110の動作を制御することが好ましい。これにより、車両500からの距離が近い人や物体が存在するときの認識時間の間隔を短くし、隣接する画像フレームに撮像されている認識対象物のトラッキング情報が確保できるため、認識精度を向上させることができる。
なお、車両500からの距離が近い人や物体が存在しない場合には、認識時間の間隔を短くする必要はないため、フレームレート及び認識処理レートを、車両500の進行方向が変化していないときと同じ設定にしておくことが好ましい。これにより、車両500の進行方向が変更されていないときの消費電力及び発熱を抑制することができる。
また、ECU300は、ステレオカメラ110により認識した人や物体の認識結果を取得して、自動ブレーキ等の車両制御を実行することが好ましい。これにより、車両500が人や物体に衝突することを未然に防ぐことができる。
以上に説明したように、本発明の第3実施形態に係る移動体システムは、車両に取り付けられたステレオカメラと、ステレオカメラの視線方向を変更する回転機構と、車両の進行方向の変化に応じて、ステレオカメラの視線方向を制御するECUとを有する。このため、車両周辺の情報を取得するまでの時間の短縮を図ることができる。
特に、第3実施形態では、ステレオカメラが認識した物体の情報に基づいて、ECUがステレオカメラの動作を制御する。このため、ステレオカメラによる人や物体の認識精度を向上させることができる。
また、第3実施形態では、ステレオカメラが認識した物体の情報に基づいて、ECUが車両の動作を制御する。このため、車両が人や物体に衝突することを未然に回避することができる。
[測距の原理]
本発明の一実施形態において適用される測距の原理について説明する。ここでは、例えば、ステレオカメラから物体に対する視差を導き出し、この視差を示す視差値によって、ステレオカメラから物体までの距離を測定する原理について説明する。図16は、撮像装置から物体までの距離を導き出す原理の説明図である。なお、以下では、説明を簡略化するため、所定領域ではなく、1画素単位により説明する。
(視差値算出)
まず、撮像装置10a及び撮像装置10bによって撮像された各画像を、それぞれ基準画像Ia及び比較画像Ibとする。なお、図16では、撮像装置10a及び撮像装置10bが平行等位に設置されているものとする。図16において、3次元空間内の物体E上のS点は、撮像装置10a及び撮像装置10bの同一水平線上の位置に写像される。
すなわち、各画像中のS点は、基準画像Ia中の点Sa(x,y)及び比較画像Ib中の点Sb(X,y)において撮像される。このとき、視差値Δは、撮像装置10a上の座標におけるSa(x,y)と撮像装置10b上の座標におけるSb(X,y)とを用いて、次式のように表される。
Δ=X−x 〔式3〕
ここで、図16のような場合には、基準画像Ia中の点Sa(x,y)と撮像レンズ11aから撮像面上におろした垂線の交点との距離をΔaとし、比較画像Ib中の点Sb(X,y)と撮像レンズ11bから撮像面上におろした垂線の交点との距離をΔbとすると、視差値Δ=Δa+Δbとなる。
(距離算出)
また、視差値Δを用いることで、撮像装置10a,10bと物体Eとの間の距離Zを導き出すことができる。具体的には、距離Zは、撮像レンズ11aの焦点位置と撮像レンズ11bの焦点位置とを含む面から物体E上の特定点Sまでの距離である。
図16に示されるように、撮像レンズ11a及び撮像レンズ11bの焦点距離f、撮像レンズ11aと撮像レンズ11bとの間の長さである基線長B、及び視差値Δを用いて、次式により、距離Zを算出することができる。
Z=(B×f)/Δ 〔式4〕
上記の式4により、視差値Δが大きいほど距離Zは小さく、視差値Δが小さいほど距離Zは大きくなることが分かる。
(視差計算手法)
図17を用いて、視差計算手法について説明する。図17は、ステレオカメラにおいて視差画像を生成するための処理工程を説明するための図である。
視差計算手法は、図17に示すように、画像マッチング部が基準画像Ia及び比較画像Ibを用いて、非類似度であるコスト値を視差ごとに算出し、非類似度が低い位置の視差を算出する。そして、最終的に視差画像生成部により全ての画素における視差値を示す視差画像を導き出す方法である。なお、生成された視差画像は、輝度画像と共に視差画像生成部の後段に設けられる物体認識部による人や物体の認識に用いられる。
(コスト値の算出)
図18及び図19を用いて、コスト値C(p,d)の算出方法について説明する。
図18は、視差探索による画像マッチングを説明するための図である。具体的には、図18(a)は基準画像Iaにおける基準画素を示す概略図であり、図18(b)は図18(a)の基準画素に対して比較画像Ibにおける対応画素の候補を順次シフトしながら(ずらしながら)、シフト量(ズレ量)を算出する際の概略図である。ここで、対応画素とは、基準画像Ia内の基準画素に最も類似する比較画像Ib内の画素のことをいう。
図19は、シフト量ごとのコスト値を示すグラフである。具体的には、図19における横軸はシフト量dを表し、縦軸はコスト値Cを表す。
図18(a)に示すように、基準画像Ia内の所定の基準画素p(x,y)と、この基準画素p(x,y)に対する比較画像Ib内におけるエピポーラ線EL上の複数の対応画素の候補q(x+d,y)との各輝度値に基づいて、基準画素p(x,y)に対する各対応画素の候補q(x+d,y)のコスト値C(p,d)が算出される。dは、基準画素pと対応画素の候補qのシフト量(ズレ量)であり、本実施形態では、画素単位のシフト量が表されている。
すなわち、図18では、対応画素の候補q(x+d,y)を予め指定された範囲(例えば、0<d<25)において順次1画素分シフトしながら、対応画素の候補q(x+d,y)と基準画素p(x,y)との輝度値の非類似度であるコスト値C(p,d)が算出される。
このようにして算出されたコスト値C(p,d)は、例えば図19に示すように、シフト量dごとに示されるグラフによって表すことができる。図19では、コスト値Cは、シフト量d=17で最小値となるため、視差値が17と決まる。
以下、実施例において本発明を具体的に説明するが、本発明はこれらの実施例に限定して解釈されるものではない。
[実施例1]
移動体システムの一例として、車両500のボンネット上に、ステレオカメラ100の視線方向を変更するための回転機構200を設け、回転機構200上にステレオカメラ100を取り付けた。回転機構200は、車両500のステアリング操舵角の情報を元にCAN情報を利用して制御可能となっている。車両500の左折時に、人が左側から車両500との距離が10m離れている状態で道路を横断する場合を想定して、実車でシミュレーションを行った。その結果、ステレオカメラ100が運転者の視野に入っていない人を撮像して認識することができたため、その情報を受け取った車両500は自動的にブレーキをかけ、未然に人との衝突を防ぐことができた。
[比較例1]
実施例1と同様の移動体システムを用いて、回転機構200をOFFにしてステレオカメラ100の視線方向が動かない状態(車両500の進行方向に固定されている状態)で、実施例1と同様の実車でシミュレーションを行った。その結果、車両500に人の存在が伝えられなかったため、車両500と人とが衝突しそうになった。
[実施例2]
実施例1と同様の移動体システムを用いて、車両500の左折時に、他車両が左側から車両500との距離が20m離れている状態で道路を横断する場合を想定して、実車でシミュレーションを行った。その結果、ステレオカメラ100が運転者の視野に入っていない他車両を撮像して認識することができたため、その情報を受け取った車両500は自動的にブレーキをかけ、未然に他車両との衝突を防ぐことができた。
[比較例2]
実施例2と同様の移動体システムを用いて、回転機構200をOFFにしてステレオカメラ100の視線方向が動かない状態で、実施例2と同様の実車でシミュレーションを行った。その結果、車両500に他車両の存在が伝えられなかったため、車両500と他車両とが衝突しそうになった。
[実施例3]
移動体システムの一例として、車両500のルーフ上に、ステレオカメラ100の視線方向を変更するための回転機構200を設け、回転機構200上にステレオカメラ100を取り付けた。回転機構200は、車両500の車輪傾斜角の情報を元にCAN情報を利用して制御可能となっている。車両500の左折時に、人が左側から車両500との距離が10m離れている状態で道路を横断する場合を想定して、実車でシミュレーションを行った。その結果、ステレオカメラ100が運転者の視野に入っていない人を撮像して認識することができたため、その情報を受け取った車両500は自動的にブレーキをかけ、未然に人との衝突を防ぐことができた。
[比較例3]
実施例3と同様の移動体システムを用いて、回転機構200をOFFにしてステレオカメラ100の視線方向が動かない状態で、実施例3と同様の実車でシミュレーションを行った。その結果、車両500に人の存在が伝えられなかったため、車両500と人とが衝突しそうになった。
[実施例4]
実施例3と同様の移動体システムを用いて、車両500の左折時に、他車両が左側から車両500との距離が20m離れている状態で道路を横断する場合を想定して、実車でシミュレーションを行った。その結果、ステレオカメラ100が運転者の視野に入っていない他車両を撮像して認識することができたため、その情報を受け取った車両500は自動的にブレーキをかけ、未然に他車両との衝突を防ぐことができた。
[比較例4]
実施例4と同様の移動体システムを用いて、回転機構200をOFFにしてステレオカメラ100の視線方向が動かない状態で、実施例4と同様の実車でシミュレーションを行った。その結果、車両500に他車両の存在が伝えられなかったため、車両500と他車両とが衝突しそうになった。
[実施例5]
実施例1の形態で、ステレオカメラ100は10m離れている人についての視差を取得したため、ステレオカメラ100のフレームレートを高くした。その結果、ステレオカメラ100が運転者の視野に入っていない人を撮像して認識することができたため、その情報を受け取った車両500は自動的にブレーキをかけ、余裕を持って衝突を防ぐことができた。
以上、移動体システムを実施形態により説明したが、本発明は上記実施形態に限定されるものではなく、本発明の範囲内で種々の変形及び改良が可能である。
上述の実施形態に係る移動体システムは、移動体の一例として車両の場合について説明したが、本発明はこの点において限定されるものではない。移動体としては、例えば操縦桿で操作されるヘリコプター、飛行機等の飛行体、無線操縦機で遠隔操作される無人飛行体であってもよい。また、移動体としては、船舶であってもよい。
移動体が操縦桿で操作される飛行体の場合、移動体システムの制御部は、操縦桿の操縦信号の変化に基づいて、撮像装置の視線方向を制御することが好ましい。
移動体が無線操縦機で遠隔操作される飛行体の場合、移動体システムの制御部は、無線操縦機の操縦信号又は撮像装置で撮像される画像情報に基づいて、撮像装置の視線方向を制御することが好ましい。撮像装置で撮像される画像情報に基づいて撮像装置の視線方向を制御する場合には、例えば画像情報に基づいて障害物が認識され、認識された障害物を避けるように移動体が制御される。このため、障害物を避けるためにいずれの方向に移動するかの移動信号が算出された際に、その移動信号に基づいて、撮像装置の視線方向が制御されれば良い。なお、画像情報に基づいて撮像装置の視線方向を変更する構成は飛行体において好適ではあるが、前述の車両等においても適用は可能である。
なお、移動体が飛行体の場合、撮像装置の視線方向の制御は、左右方向だけではなく、当然に上下方向にも行われる。
また、ステレオカメラに代えて、単眼カメラを使用してもよい。単眼カメラを使用する場合、レーザレーダ等により距離情報を取得することができる。ただし、取得した距離情報に基づいて人や物体を認識する場合、レーザレーダを用いると空間分解能がとりにくく認識精度が十分確保できない場合がある。よって、上述の移動体システムのような、移動体前方だけでなく移動体周辺の情報までを取得するシステムにおいては、空間分解能のより高いステレオカメラを用いることが好適である。
100 ステレオカメラ
200 回転機構
300 ECU
500 車両
特開2013−93013号公報

Claims (14)

  1. 移動体に取り付けられた撮像装置と、
    前記撮像装置の視線方向を変更する視線方向変更機構と、
    前記移動体の進行方向の変化に応じて、前記撮像装置の視線方向を制御する制御部と
    を有し、
    前記制御部は、前記移動体の方向指示器のオン・オフの判定を行うように構成されており、
    前記制御部は、前記方向指示器がオンされた場合、前記方向指示器と対応する方向に前記撮像装置の視線方向が変化するように前記撮像装置を制御した後、前記移動体の進行方向の変化に応じて、前記撮像装置の視線方向を制御する、
    移動体システム。
  2. 前記制御部は、前記移動体の進行方向の変化量に応じて、前記撮像装置の視線方向と前記移動体の進行方向との成す角を変更するように、前記撮像装置の視線方向を制御する、
    請求項に記載の移動体システム。
  3. 前記制御部は、前記移動体のステアリング操舵角、ステアリング操舵速度、車輪傾斜角の少なくともいずれか1つの情報に基づいて、前記撮像装置の視線方向を制御する、
    請求項1又は2に記載の移動体システム。
  4. 前記制御部は、前記移動体の進行方向の変化量が大きいほど、前記撮像装置の視線方向と前記移動体の進行方向との成す角が大きくなるように、前記撮像装置の視線方向を制御する、
    請求項に記載の移動体システム。
  5. 前記移動体が車両である、
    請求項1乃至のいずれか一項に記載の移動体システム。
  6. 前記制御部は、前記車両の曲がる方向の内側に角度をつけた方向になるように、前記撮像装置の視線方向を制御する、
    請求項に記載の移動体システム。
  7. 前記移動体が飛行体である、
    請求項1乃至のいずれか一項に記載の移動体システム。
  8. 前記移動体は、操縦桿で操作される飛行体であり、
    前記制御部は、
    前記操縦桿の操縦信号の変化に基づいて、前記移動体の進行方向の変化を検出し、前記撮像装置の視線方向を制御する、
    請求項に記載の移動体システム。
  9. 前記移動体は、無線操縦機で遠隔操作される飛行体であり、
    前記制御部は、前記無線操縦機の操縦信号又は前記撮像装置で撮像される画像情報に基づいて、前記撮像装置の視線方向を制御する、
    請求項に記載の移動体システム。
  10. 前記制御部は、前記撮像装置の視線方向が変更された場合、少なくとも前記撮像装置のフレームレートと認識処理レートのいずれか一方を変更する、
    請求項1乃至のいずれか一項に記載の移動体システム。
  11. 前記制御部は、前記撮像装置の視線方向が変更された場合、少なくとも前記撮像装置のフレームレートと認識処理レートのいずれか一方を高くする、
    請求項10に記載の移動体システム。
  12. 前記制御部は、前記撮像装置の視線方向が変更された後、前記移動体の進行方向が直進に戻った場合、変更された前記撮像装置のフレームレート又は認識処理レートを元の値に戻す、
    請求項10又は11に記載の移動体システム。
  13. 前記制御部は、前記撮像装置により取得された画像情報に基づき、距離が近い物体が前記移動体の周辺に存在する場合、前記距離が近い物体が前記移動体の周辺に存在しない場合よりも、前記撮像装置のフレームレートを高くする、
    請求項10乃至12のいずれか一項に記載の移動体システム。
  14. 前記撮像装置は、ステレオカメラである、
    請求項1乃至13のいずれか一項に記載の移動体システム。
JP2015227268A 2015-01-09 2015-11-20 移動体システム Active JP6720510B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15202587.0A EP3043202B1 (en) 2015-01-09 2015-12-23 Moving body system
US14/983,881 US10171796B2 (en) 2015-01-09 2015-12-30 Moving body system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015003482 2015-01-09
JP2015003482 2015-01-09

Publications (2)

Publication Number Publication Date
JP2016131367A JP2016131367A (ja) 2016-07-21
JP6720510B2 true JP6720510B2 (ja) 2020-07-08

Family

ID=56415690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015227268A Active JP6720510B2 (ja) 2015-01-09 2015-11-20 移動体システム

Country Status (1)

Country Link
JP (1) JP6720510B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6740067B2 (ja) * 2016-09-16 2020-08-12 キヤノン株式会社 固体撮像装置及びその駆動方法
JP6750876B2 (ja) * 2016-10-07 2020-09-02 キヤノン株式会社 固体撮像装置及びその駆動方法
JP6784609B2 (ja) * 2017-02-24 2020-11-11 キヤノン株式会社 光電変換装置、撮像システム及び移動体
JP6547984B2 (ja) * 2017-03-07 2019-07-24 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 制御装置、撮像装置、撮像システム、移動体、制御方法、及びプログラム
JP6815926B2 (ja) * 2017-04-27 2021-01-20 キヤノン株式会社 撮像装置、撮像システム、移動体、チップ
KR101954619B1 (ko) * 2017-11-28 2019-03-06 쌍용자동차 주식회사 차량 속도에 따른 스테레오카메라 제어장치
JP7075201B2 (ja) * 2017-12-15 2022-05-25 東芝ライフスタイル株式会社 電気掃除機
JP7141242B2 (ja) * 2018-05-18 2022-09-22 株式会社小糸製作所 センサシステム
JP7153505B2 (ja) * 2018-08-24 2022-10-14 株式会社ダイヘン 移動体
WO2023077255A1 (zh) * 2021-11-02 2023-05-11 深圳市大疆创新科技有限公司 可移动平台的控制方法、装置、可移动平台及存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3419802B2 (ja) * 1992-08-03 2003-06-23 富士通株式会社 車載用赤外線画像表示装置
JPH07250268A (ja) * 1994-03-14 1995-09-26 Yazaki Corp 車両周辺監視装置
JP3895238B2 (ja) * 2002-08-28 2007-03-22 株式会社東芝 障害物検出装置及びその方法
JP2005178512A (ja) * 2003-12-18 2005-07-07 Tietech Co Ltd 警察車両用車載撮影装置
JP2006295676A (ja) * 2005-04-13 2006-10-26 Sanyo Electric Co Ltd 移動体用撮像装置
JP2007172035A (ja) * 2005-12-19 2007-07-05 Fujitsu Ten Ltd 車載画像認識装置、車載撮像装置、車載撮像制御装置、警告処理装置、画像認識方法、撮像方法および撮像制御方法
JP4765649B2 (ja) * 2006-02-08 2011-09-07 日産自動車株式会社 車両用映像処理装置、車両周囲監視システム並びに映像処理方法
JP2010268343A (ja) * 2009-05-18 2010-11-25 Olympus Imaging Corp 撮影装置および撮影方法

Also Published As

Publication number Publication date
JP2016131367A (ja) 2016-07-21

Similar Documents

Publication Publication Date Title
JP6720510B2 (ja) 移動体システム
JP7021372B2 (ja) 自動化されたトレーラヒッチングのための、群点を介したカプラおよび牽引バーの検出
US10171796B2 (en) Moving body system
EP3832263B1 (en) Systems and methods for navigating lane merges and lane splits
CN106796648B (zh) 用于检测对象的系统和方法
US10341633B2 (en) Systems and methods for correcting erroneous depth information
US9151626B1 (en) Vehicle position estimation system
JP5089545B2 (ja) 道路境界検出判断装置
JP6565188B2 (ja) 視差値導出装置、機器制御システム、移動体、ロボット、視差値導出方法、およびプログラム
WO2019181284A1 (ja) 情報処理装置、移動装置、および方法、並びにプログラム
JP6787157B2 (ja) 車両制御装置
CA3064523C (en) Parking control method and parking control apparatus
WO2019073920A1 (ja) 情報処理装置、移動装置、および方法、並びにプログラム
JP6003673B2 (ja) 3次元位置推定装置、車両制御装置、および3次元位置推定方法
JP2015052548A (ja) 車外環境認識装置
JP2010198552A (ja) 運転状況監視装置
JP6455164B2 (ja) 視差値導出装置、機器制御システム、移動体、ロボット、視差値導出方法、およびプログラム
JP2007188354A (ja) 車両の前方立体物認識装置
US10733459B2 (en) Image processing device, image processing method, computer-readable recording medium, object recognition device, device control system, and movable body
JP6044084B2 (ja) 移動物体位置姿勢推定装置及び方法
WO2017158951A1 (ja) 物体検知システム、異常判定方法、及びプログラム
JP7436331B2 (ja) 画像処理装置
JP2014194618A (ja) 車外環境認識装置および車外環境認識方法
JP2019016053A (ja) 車外環境認識装置および車外環境認識方法
JP5272818B2 (ja) 画像処理装置および方法、並びに、プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200601

R151 Written notification of patent or utility model registration

Ref document number: 6720510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151