JP6695887B2 - 赤外線吸収層用組成物、赤外線カットフィルタ、及び撮像装置 - Google Patents

赤外線吸収層用組成物、赤外線カットフィルタ、及び撮像装置 Download PDF

Info

Publication number
JP6695887B2
JP6695887B2 JP2017541227A JP2017541227A JP6695887B2 JP 6695887 B2 JP6695887 B2 JP 6695887B2 JP 2017541227 A JP2017541227 A JP 2017541227A JP 2017541227 A JP2017541227 A JP 2017541227A JP 6695887 B2 JP6695887 B2 JP 6695887B2
Authority
JP
Japan
Prior art keywords
infrared
phosphoric acid
cut filter
absorbing layer
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017541227A
Other languages
English (en)
Other versions
JPWO2017051512A1 (ja
Inventor
雄一郎 久保
雄一郎 久保
新毛 勝秀
勝秀 新毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Publication of JPWO2017051512A1 publication Critical patent/JPWO2017051512A1/ja
Application granted granted Critical
Publication of JP6695887B2 publication Critical patent/JP6695887B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/329Phosphorus containing acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds

Description

本発明は、赤外線吸収層用組成物、赤外線カットフィルタ、及び撮像装置に関する。
デジタルカメラなどの撮像装置において、撮像素子として、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)などのSi(シリコン)を用いた2次元画像センサが使用されている。Siを用いた撮像素子は、赤外線域の波長の光に対する受光感度を有し、人間の視感度とは異なる波長特性を有する。このため、撮像装置において、撮像素子から得られる画像が人間の認識した画像に近づくように、撮像素子の前方に赤外線域の波長の入射光を遮蔽するフィルタ(赤外線カットフィルタ)が通常配置されている。
例えば、特許文献1には、吸収型カットフィルタ(光吸収素子)と、吸収型カットフィルタの表面に設けられた反射型カットコート(干渉膜)とを備える複合フィルタが記載されている。
特許文献2には、赤外線吸収体と赤外線反射体とが接着されて形成されている赤外線カットフィルタが記載されている。赤外線吸収体は、赤外線吸収ガラスの一主面に反射防止膜(ARコート)が形成されることによって作製されている。赤外線吸収ガラスは、銅イオン等の色素を分散させた青色ガラスである。反射防止膜は、赤外線吸収ガラスの一主面に対して、MgF2からなる単層、Al23とZrO2とMgF2とからなる多層膜、及びTiO2とSiO2とからなる多層膜のいずれかの膜を真空蒸着装置によって真空蒸着することによって形成されている。また、赤外線反射体は、透明基板の一主面に赤外線反射膜が形成されることによって作製されている。赤外線反射膜は、TiO2などの高屈折率材料からなる第1薄膜と、SiO2などの低屈折率材料からなる第2薄膜とが交互に複数積層された多層膜である。
特許文献3には、透明樹脂中に所定の有機色素を含有している近赤外線吸収層を有する光学フィルムが記載されている。
特許文献4には、所定のリン酸エステル化合物及び銅イオンより成る成分並びに所定のリン酸エステル化合物と銅化合物との反応により得られるリン酸エステル銅化合物のうち少なくとも一つの成分を含有している近赤外線吸収層を備えた、光学フィルタが記載されている。近赤外線吸収層は、これらの成分がアクリル系樹脂等の樹脂に含有されている樹脂組成物から形成されてもよい。
特開2001−42230号公報 国際公開第2011/158635号 特開2008−165215号公報 特開2001−154015号公報
特許文献1及び2に記載の技術は、所望の赤外線吸収特性を得るために、反射型カットコート又は反射防止膜のような干渉膜を形成する必要がある。特許文献3の技術によれば、所定の有機色素が吸収可能な赤外線の波長域は限られているので、所望の赤外線吸収特性を実現するために、複数種類の有機色素を透明樹脂に含有させることが必要になる可能性がある。しかし、複数種類の有機色素を透明樹脂に分散させることは困難な場合も多く、赤外域の一部の波長域における吸収性能を補完するために反射型のフィルタが必要になる可能性がある。
特許文献4に記載の技術は、以下の観点から有利である。まず、リン酸エステルなどのリン酸系化合物と銅イオンとからなる化合物は、赤外線域の光に対して適切な吸収特性を有することがあり、このような化合物をマトリクス成分に分散させることによって人間の視感度に近い光学特性を有する光学部品を製造することができる。このようなリン酸系化合物と銅イオンとからなる化合物を赤外線吸収成分として含有している光学フィルタ(赤外線カットフィルタ)は、耐熱性及び耐候性の観点からの問題も少なく、光学特性の設計に対する柔軟性、加工性、多くの製品への適応性、及び製造コストの観点からも優れている。
赤外線カットフィルタには、可視光域での光に対して高い透過率を有することが当然に求められる。特許文献4に記載の光学フィルタにおける400nm付近(400nm〜450nm)の波長域の光に対する透過率は、可視光域の光に対する透過率のピーク値に比べるとある程度低くなっている。このため、特許文献4に記載の光学フィルタを使用する場合、可視光域の全域において一様に高い光量で光を導くことが難しい可能性がある。
本発明は、かかる事情に鑑み、撮像装置に用いられる赤外線カットフィルタとして望ましい光学特性を赤外線カットフィルタに付与できるとともに、赤外線カットフィルタの400nm付近の光の透過率が可視光域の光に対する透過率の中で相対的に低くなる度合を軽減できる赤外線吸収層用組成物を提供する。
本発明は、
少なくとも、銅イオンと、下記式(a)で表されるホスホン酸とによって形成された化合物と、
下記式(b1)で表されるリン酸ジエステル及び下記式(b2)で表されるリン酸モノエステルの少なくとも一方と、を含有し、
少なくとも前記化合物を含む微粒子が分散しており、
前記ホスホン酸の含有量は、前記リン酸ジエステルの含有量と前記リン酸モノエステルの含有量との合計量に対してモル基準で2.5倍未満である、
赤外線吸収層用組成物を提供する。
Figure 0006695887
[式中、R1は、2〜4の炭素数を有するアルキル基であり、R21、R22、及びR3は、それぞれ、−(CH2CH2O)n4で表される1価の官能基であり、nは、1〜25の整数であり、R4は、炭素数6〜25のアルキル基を示し、R21、R22、及びR3は、互いに同一又は異なる種類の官能基である。]
また、本発明は、
透明誘電体基板と、
前記透明誘電体基板の少なくとも一方の主面に、上記の赤外線吸収層用組成物を用いて形成された赤外線吸収層と、を備えた、
赤外線カットフィルタを提供する。
さらに、本発明は、
上記の赤外線カットフィルタと、
前記赤外線カットフィルタを透過した光が入射する撮像素子と、を備えた、
撮像装置を提供する。
上記の赤外線吸収層用組成物によれば、撮像装置に用いられる赤外線カットフィルタとして望ましい光学特性を有する赤外線カットフィルタを製造できる。加えて、上記の赤外線吸収層用組成物によって形成された赤外線カットフィルタの400nm付近の光の透過率が可視光域の光に対する透過率の中で相対的に低くなる度合が軽減される。
本発明の実施形態に係る赤外線カットフィルタの断面図 本発明の別の実施形態に係る赤外線カットフィルタの断面図 本発明のさらに別の実施形態に係る赤外線カットフィルタの断面図 本発明のさらに別の実施形態に係る赤外線カットフィルタの断面図 本発明の実施形態に係る撮像装置を示す図 実施例1−1〜実施例1−3に係る赤外線カットフィルタの分光透過率スペクトルを示すグラフ 実施例1−1〜1−9及び比較例1−1〜1−6に係る赤外線カットフィルタの波長400nmにおける透過率と、ホスホン酸の含有量Caとリン酸エステルの含有量Ceとのモル比[Ca/Ce]との関係を示すグラフ 実施例1−1〜1−9及び比較例1−1〜1−6に係る赤外線カットフィルタの波長400nmにおける透過率と、反応性水酸基の含有量Chと銅イオンの含有量Ccとのモル比[Ch/Cc]との関係を示すグラフ 実施例2−1、実施例2−3、及び実施例2−8に係る赤外線カットフィルタの分光透過率スペクトルを示すグラフ 実施例2−1〜2−8並びに比較例2−1及び比較例2−2に係る赤外線カットフィルタの波長400nmにおける透過率と、ホスホン酸の含有量Caとリン酸エステルの含有量Ceとのモル比[Ca/Ce]との関係を示すグラフ 実施例2−1〜2−8並びに比較例2−1及び比較例2−2に係る赤外線カットフィルタの波長400nmにおける透過率と、反応性水酸基の含有量Chと銅イオンの含有量Ccとのモル比[Ch/Cc]との関係を示すグラフ 実施例3−1、実施例3−2、及び実施例3−3に係る赤外線カットフィルタの波長400nmにおける分光透過率スペクトルを示すグラフ 実施例3−1〜3−3及び比較例3−1に係る赤外線カットフィルタの波長400nmにおける透過率と、ホスホン酸の含有量Caとリン酸エステルの含有量Ceとのモル比[Ca/Ce]との関係を示すグラフ 実施例3−1〜3−3及び比較例3−1に係る赤外線カットフィルタの波長400nmにおける透過率と、反応性水酸基の含有量Chと銅イオンの含有量Ccとのモル比[Ch/Cc]との関係を示すグラフ 実施例4−1−A〜実施例4−1−Cに係る赤外線カットフィルタの分光透過率スペクトル 図15Aの可視光域を拡大した実施例4−1−A〜4−1−Cに係る赤外線カットフィルタの分光透過率スペクトル 実施例4−2−A及び実施例4−2−Bに係る赤外線カットフィルタの分光透過率スペクトル 図16Aの可視光域を拡大した実施例4−2−A及び実施例4−2−Bに係る赤外線カットフィルタの分光透過率スペクトル 実施例4−3−A及び実施例4−3−Bに係る赤外線カットフィルタの分光透過率スペクトル 図17Aの可視光域を拡大した実施例4−3−A及び実施例4−3−Bに係る赤外線カットフィルタの分光透過率スペクトル 実施例5に係る赤外線カットフィルタの分光透過率スペクトル
以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の説明は、本発明の一例に関するものであり、本発明はこれらに限定されるものではない。
本発明に係る赤外線吸収層用組成物は、少なくとも、銅イオンと、下記式(a)で表されるホスホン酸とによって形成された化合物と、下記式(b1)で表されるリン酸ジエステル及び下記式(b2)で表されるリン酸モノエステルの少なくとも一方と、を含有している。また、本発明に係る赤外線吸収層用組成物において、少なくとも、銅イオンと、下記式(a)で表されるホスホン酸とによって形成された化合物を含む微粒子が分散している。ホスホン酸の含有量は、下記式(b1)で表されるリン酸ジエステルの含有量と下記式(b2)で表されるリン酸モノエステルの含有量との合計量に対してモル基準で2.5倍未満である。
Figure 0006695887
上記の化学式において、R1は、2〜4の炭素数を有するアルキル基である。また、R21、R22、及びR3は、それぞれ、−(CH2CH2O)n4で表される1価の官能基であり、nは、1〜25の整数であり、R4は、炭素数6〜25のアルキル基を示す。R21、R22、及びR3は、互いに同一又は異なる種類の官能基である。
微粒子は、例えば、式(a)で表されるホスホン酸が銅イオンに配位することによって形成されている。発明者らは、試行錯誤を何度も重ねたうえで、式(a)で表されるホスホン酸の含有量が、式(b1)で表されるリン酸ジエステルの含有量と式(b2)で表されるリン酸モノエステルの含有量との合計量に対してモル基準で2.5倍未満である場合に、赤外線吸収層用組成物を用いて形成された赤外線吸収層を備えた赤外線カットフィルタが望ましい光学特性を有することを発見し、本発明を完成させた。つまり、本発明に係る赤外線吸収層用組成物を用いて形成された赤外線吸収層を備えた赤外線カットフィルタは、所望の赤外線吸収特性及び所望の可視光透過特性を有し、特に、400nm付近の波長の光に対する赤外線カットフィルタの透過率が高く、400nm付近の波長の光に対する赤外線カットフィルタの透過率が可視光域の光に対する透過率の中で相対的に低くなる度合が軽減されている。例えば、式(a)で表されるホスホン酸の含有量は、式(b1)で表されるリン酸ジエステルの含有量と式(b2)で表されるリン酸モノエステルの含有量との合計量に対してモル基準で0.85倍以上である。これにより、400nm付近の波長の光に対する赤外線カットフィルタの透過率が可視光域の光に対する透過率の中で相対的に低くなる度合をより確実に軽減できる。
例えば、赤外線吸収層用組成物に含まれる式(a)で表されるホスホン酸の含有量は、銅イオンの含有量に対してモル基準で0.45倍〜0.9倍である。銅イオンの供給源は、例えば、銅塩である。銅塩としては、例えば、酢酸銅、酢酸銅の水和物、安息香酸銅、及び水酸化銅が挙げられる。例えば、酢酸銅一水和物は、Cu(CH3COO)2・H2Oと表され、1モルの酢酸銅一水和物によって1モルの銅イオンが供給される。
例えば、微粒子の平均粒子径は、5nm〜200nmである。微粒子の平均粒子径が5nm以上であれば、微粒子の微細化のために特別な工程を要さず、銅イオンとホスホン酸とによって形成された微粒子の構造が壊れる可能性が小さい。また、赤外線吸収層用組成物において微粒子が良好に分散する。また、微粒子の平均粒子径が200nm以下であると、ミー散乱による影響を低減でき、赤外線カットフィルタの可視光線に対する透過率を向上させることができ、撮像装置で撮影された画像のコントラスト及びヘイズなどの特性が低下することを抑制できる。微粒子の平均粒子径は、望ましくは100nm以下である。この場合、レイリー散乱による影響が低減されるので、赤外線吸収層の可視光に対する透明性がさらに高まる。また、微粒子の平均粒子径は、より望ましくは75nm以下である。この場合、赤外線吸収層の可視光に対する透明性がとりわけ高い。なお、微粒子の平均粒子径は、動的光散乱法によって測定できる。
微粒子は、少なくとも、銅イオンと、式(a)で表されるホスホン酸と、式(b1)で表されるリン酸ジエステル及び式(b2)で表されるリン酸モノエステルの少なくとも一方とによって形成されていてもよい。例えば、微粒子において、式(a)で表されるホスホン酸に加えて、式(b1)で表されるリン酸ジエステル及び式(b2)で表されるリン酸モノエステルの少なくとも一方が銅イオンに配位していてもよい。
赤外線吸収層用組成物は、リン酸をさらに含有していてもよい。この場合、400nm付近の波長の光に対する赤外線カットフィルタの透過率が可視光域の光に対する透過率の中で相対的に低くなる度合を有利に軽減できる。これは、リン酸の含有により、微粒子の分散性が高まるためであると本発明者らは考えている。赤外線吸収層用組成物におけるリン酸の含有量は、例えば、赤外線吸収層用組成物における銅イオンの含有量に対してモル基準で0.04倍〜0.21倍である。
赤外線吸収層用組成物がリン酸をさらに含有している場合、微粒子は、少なくとも、銅イオンと、式(a)で表されるホスホン酸と、式(b1)で表されるリン酸ジエステル及び式(b2)で表されるリン酸モノエステルの少なくとも一方と、リン酸とによって形成されていてもよい。例えば、微粒子において、リン酸が銅イオンに配位していてもよい。
式(a)で表されるホスホン酸のR1は、例えば、エチル基又はブチル基(n−ブチル基)である。この場合、赤外線カットフィルタが良好な赤外線吸収特性及び良好な可視光透過特性を有するとともに、400nm付近の波長の光に対する赤外線カットフィルタの透過率が可視光域の光に対する透過率の中で相対的に低くなる度合を有利に軽減できる。式(a)で表されるホスホン酸のR1は、例えば、プロピル基(n−プロピル基)であってもよい。
式(a)で表されるホスホン酸の1分子中に含まれる2つの水酸基、式(b1)で表されるリン酸ジエステルの1分子中に含まれる1つの水酸基、式(b2)で表されるリン酸モノエステルの1分子中に含まれる1つの水酸基、及び赤外線吸収層用組成物がリン酸を含有している場合にはさらにリン酸の1分子中に含まれる2つの水酸基を反応性水酸基と定義する。この場合、赤外線吸収層用組成物における反応性水酸基の含有量は、例えば、銅イオンの含有量に対してモル基準で2.08倍〜2.5倍である。
赤外線吸収層用組成物がリン酸をさらに含有している場合に、式(a)で表されるホスホン酸のR1がブチル基であってもよい。このとき、赤外線吸収層用組成物における反応性水酸基の含有量は、例えば、銅イオンの含有量に対してモル基準で1.95倍以上であり、望ましくは2.0倍以上であってもよい。これにより、赤外線カットフィルタが良好な赤外線吸収特性及び良好な可視光透過特性をより確実に有するとともに、400nm付近の波長の光に対する赤外線カットフィルタの透過率が可視光域の光に対する透過率の中で相対的に低くなる度合をより有利に軽減できる。赤外線吸収層用組成物における反応性水酸基の含有量は、例えば、銅イオンの含有量に対してモル基準で2.5倍以下であり、望ましくは2.35倍以下である。
反応性水酸基の定義は、本発明者らの以下の考察によるものである。式(a)で表されるホスホン酸の1分子中に含まれる2つの水酸基のいずれも銅イオンと反応可能であると考えられる。式(b1)で表されるリン酸ジエステルの1分子中に含まれる1つの水酸基は銅イオンとの反応に寄与すると考えられる。式(b2)で表されるリン酸モノエステルの1分子中には2つの水酸基が含まれるが、R3はポリオキシエチレン基及び長鎖のアルキル基を含むので、立体障害により、2つの水酸基のうち1つの水酸基のみが銅イオンとの反応に寄与すると考えられる。リン酸の1分子中にはリン原子に3つの水酸基が結合しているが、リン酸の立体構造を考慮すると、3つの水酸基のうちのせいぜい2つの水酸基が銅イオンとの反応に寄与すると考えられる。
赤外線吸収層用組成物がリン酸を含有していない場合に、式(a)で表されるホスホン酸のR1がブチル基であってもよい。このとき、赤外線吸収層用組成物における反応性水酸基の含有量は、例えば、銅イオンの含有量に対してモル基準で2.08倍以上であり、望ましくは2.1倍以上である。これにより、赤外線カットフィルタが良好な赤外線吸収特性及び良好な可視光透過特性をより確実に有するとともに、400nm付近の波長の光に対する赤外線カットフィルタの透過率が可視光域の光に対する透過率の中で相対的に低くなる度合をより有利に軽減できる。赤外線吸収層用組成物における反応性水酸基の含有量は、例えば、銅イオンの含有量に対してモル基準で2.5倍以下であり、望ましくは2.35倍以下であり、より望ましくは2.3倍以下である。
式(a)で表されるホスホン酸のR1はエチル基であってもよい。このとき、反応性水酸基の含有量は、例えば、銅イオンの含有量に対してモル基準で2.0倍以上であり、望ましくは2.08倍以上であり、より望ましくは2.1倍以上である。これにより、赤外線カットフィルタが良好な赤外線吸収特性及び良好な可視光透過特性をより確実に有するとともに、400nm付近の波長の光に対する赤外線カットフィルタの透過率が可視光域の光に対する透過率の中で相対的に低くなる度合をより有利に軽減できる。赤外線吸収層用組成物における反応性水酸基の含有量は、例えば、銅イオンの含有量に対してモル基準で2.5倍以下であり、望ましくは2.35倍以下であり、より望ましくは2.3倍以下である。
本発明に係る赤外線吸収層用組成物は、例えば、マトリクス成分をさらに含有している。マトリクス成分は、例えば、可視光線及び赤外線に対し透明であり、かつ、上記の微粒子を分散可能な樹脂である。この場合、式(a)で表されるホスホン酸の含有量は、例えば、赤外線吸収層用組成物におけるマトリクス成分100質量部に対して、10〜50質量部である。
マトリクス成分は、望ましくはポリシロキサン(シリコーン樹脂)である。マトリクス成分として使用可能なポリシロキサンの具体例としては、KR−255、KR−300、KR−2621−1、KR−211、KR−311、KR−216、KR−212、及びKR−251を挙げることができる。これらはいずれも信越化学工業社製のシリコーン樹脂である。
本発明に係る赤外線吸収層用組成物の調製方法の一例を説明する。まず、酢酸銅一水和物などの銅塩をテトラヒドロフラン(THF)などの所定の溶媒に添加して撹拌し、銅塩の溶液を得る。次に、銅塩の溶液に、式(b1)で表されるリン酸ジエステル及び式(b2)で表されるリン酸モノエステルの少なくとも一方を含むリン酸エステルを加えて撹拌し、A液を調製する。また、式(a)で表されるホスホン酸をTHFなどの所定の溶媒に加えて撹拌し、ホスホン酸溶液を調製する。必要に応じて、リン酸をTHFなどの所定の溶媒に加えて撹拌し、リン酸溶液を調製する。次に、A液を撹拌しながら、A液にホスホン酸溶液を加えて所定時間撹拌する。この場合、必要に応じてA液にリン酸溶液を加える。その後、溶液にトルエンなどの所定の溶媒を加え、所定の温度で加熱処理を行って溶媒の一部を揮発させる。次に、溶液にシリコーン樹脂などのマトリクス成分を加えて撹拌する。このようにして、液状の赤外線吸収層用組成物を調製できる。
本発明に係る赤外線カットフィルタ1aは、図1に示すように、透明誘電体基板20と、赤外線吸収層10とを備えている。赤外線吸収層10は、透明誘電体基板20の少なくとも一方の主面に、本発明に係る赤外線吸収層用組成物を用いて形成されている。赤外線吸収層10において、微粒子11がマトリクス12に分散している。透明誘電体基板20は、例えば、透明ガラス基板である。
赤外線吸収層10の厚みは、例えば、40μm〜200μmである。これにより、赤外線カットフィルタ1aがより確実に所望の光学特性を発揮できる。
デジタルカメラなどの撮像装置における撮像素子の前方に配置される赤外線カットフィルタには、例えば、以下のような特性(1)〜(3)が求められる。
(1)可視光域の波長(400nm〜600nm)における光の透過率が高い(例えば、70%以上の分光透過率)。
(2)赤外線域の波長(800nm〜1100nm)における光の透過率が低い(例えば、5%以下の分光透過率)。
(3)可視光域から赤外線域に遷移する波長域において可視光域から赤外線域に向かって分光透過率が急峻に変化(低下)する。
赤外線カットフィルタ1aは、上記の特性(1)〜(3)を満たすので、デジタルカメラなどの撮像装置における撮像素子の前方に配置される赤外線カットフィルタとして望ましい光学特性を有する。加えて、赤外線カットフィルタ1aによれば、400nm付近の波長の光の透過率が可視光域の光に対する透過率の中で相対的に低くなる度合が軽減されている。
赤外線カットフィルタ1aの製造方法の一例について説明する。まず、液状の赤外線吸収層用組成物をスピンコーティング又はディスペンサによる塗布により、透明誘電体基板20の一方の主面に塗布して塗膜を形成する。次に、この塗膜に対して所定の加熱処理を行って塗膜を硬化させる。このようにして、赤外線カットフィルタ1aを製造できる。加熱処理における塗膜の雰囲気温度の最高値は、例えば140℃以上であり、望ましくは160℃以上である。これにより、赤外線カットフィルタ1aにおける400nm付近の波長の光の透過率が高まりやすい。
別の実施形態によれば、赤外線カットフィルタ1aは、図2に示す、赤外線カットフィルタ1bのように変更されてもよい。赤外線カットフィルタ1bは、赤外線カットフィルタ1bの両主面上に反射防止膜30aを備えている点を除いて、赤外線カットフィルタ1aと同様の構成を有している。これにより、迷光の原因となるフレネル反射光を除去できるともに、可視光域の光量を向上させることができる。反射防止膜30aの屈折率又は膜厚などの反射防止膜30aの諸元は、透明誘電体基板20の屈折率又は赤外線吸収層10の屈折率に基づいて、公知の手法により最適化できる。反射防止膜30aは、単層膜又は積層多層膜である。反射防止膜30aが単層膜である場合、反射防止膜30aは、透明誘電体基板20の屈折率又は赤外線吸収層10の屈折率よりも低い屈折率を有する材料でできていることが望ましい。なお、反射防止膜30aは、透明誘電体基板20の屈折率又は赤外線吸収層10の屈折率以上の屈折率を有する材料でできていてもよい。反射防止膜30aが積層多層膜である場合、反射防止膜30aは、互いに異なる屈折率を有する2種類以上の材料を交互に積層することによって形成されている。反射防止膜30aを形成する材料は、例えば、SiO2、TiO2、及びMgF2などの無機材料又はフッ素樹脂などの有機材料である。反射防止膜30aを形成する方法は、特に制限されず、反射防止膜30aを形成する材料の種類に応じて、真空蒸着、スパッタリング、CVD(Chemical Vapor Deposition)、及びスピンコーティング又はスプレーコーティングを利用したゾルゲル法のいずれかを用いることができる。
さらに別の実施形態によれば、赤外線カットフィルタ1aは、図3に示す、赤外線カットフィルタ1cのように変更されてもよい。赤外線カットフィルタ1cにおいて、透明誘電体基板20の両方の主面上に赤外線吸収層10が形成されている。これにより、1つの赤外線吸収層10によってではなく、2つの赤外線吸収層10によって、赤外線カットフィルタ1cが所望の光学特性を得るために必要な赤外線吸収層の厚みを確保できる。透明誘電体基板20の両方の主面上における各赤外線吸収層10の厚みは同一であってもよいし、異なっていてもよい。すなわち、赤外線カットフィルタ1cが所望の光学特性を得るために必要な赤外線吸収層の厚みが均等に又は不均等に分配されるように、透明誘電体基板20の両方の主面上に赤外線吸収層10が形成されている。これにより、透明誘電体基板20の両方の主面上に形成された各赤外線吸収層10の厚みが比較的小さい。このため、赤外線吸収層の厚みが大きい場合に生じる赤外線吸収層の厚みのばらつきを抑制できる。また、液状の赤外線吸収層用組成物を塗布する時間を短縮でき、赤外線吸収層用組成物の塗膜を硬化させるための時間を短縮できる。透明誘電体基板20が非常に薄い場合、透明誘電体基板20の一方の主面上のみに赤外線吸収層10を形成すると、赤外線吸収層用組成物から赤外線吸収層10を形成する場合に生じる収縮に伴う応力によって、赤外線カットフィルタが反る可能性がある。しかし、透明誘電体基板20の両方の主面上に赤外線吸収層10が形成されていることにより、透明誘電体基板20が非常に薄い場合でも、赤外線カットフィルタ1cにおいて反りが抑制される。
さらに別の実施形態によれば、赤外線カットフィルタ1aは、図4に示す、赤外線カットフィルタ1dのように変更されてもよい。赤外線カットフィルタ1dは、透明誘電体基板20と、第一赤外線吸収層10a及び第二赤外線吸収層10bと、中間保護層40とを備えている。第一赤外線吸収層10a及び第二赤外線吸収層10bは、透明誘電体基板20の少なくとも一方の主面に、本発明に係る赤外線吸収層用組成物を用いて形成されている。第一赤外線吸収層10a及び第二赤外線吸収層10bにおいて、赤外線吸収層10と同様に、微粒子11がマトリクス12に分散している。透明誘電体基板20は、例えば、透明ガラス基板である。中間保護層40は、第一赤外線吸収層10aと第二赤外線吸収層10bとの間に配置されている。
本発明に係る赤外線吸収層用組成物を用いて、撮像装置に適した赤外線カットフィルタを製造する場合、赤外線カットフィルタにおける赤外線吸収層の厚みは、望ましくは40〜250μmであり、より望ましくは100〜200μmである。このような厚みを有する赤外線吸収層を赤外線吸収層用組成物を用いて単一層として形成しようとすると、場合によっては、赤外線吸収層の平坦性又は平滑性が損なわれることもある。なぜなら、赤外線吸収層用組成物の塗膜を加熱により硬化させて赤外線吸収層を形成するときに、赤外線吸収層用組成物に含まれうる溶媒の揮発量が増加して、赤外線吸収層用組成物が激しく流動する可能性があるからである。また、このような厚みを有する赤外線吸収層を赤外線吸収層用組成物を用いて単一層として形成しようとすると、微粒子が凝集して赤外線吸収層の透過率の低下又はヘイズ率の増加を引き起こす可能性がある。なぜなら、赤外線吸収層用組成物の塗膜を加熱により硬化させて赤外線吸収層を形成するときに、塗膜の膜面内で不均一に溶媒が揮発して反応が進むので微粒子が凝集するからである。
そこで、赤外線吸収層の平坦性や平滑性の維持の観点から、赤外線吸収層用組成物の比較的薄い塗膜の加熱による硬化を複数回繰り返して、複数の赤外線吸収層を積層させることが考えられる。しかし、透明ガラス基板などの透明誘電体基板上で赤外線吸収層用組成物の塗膜を加熱により硬化させて形成された一層目の赤外線吸収層上に、二層目の赤外線吸収層の形成のための赤外線吸収層用組成物を塗布すると、塗布液が一層目の赤外線吸収層に入り込む。このため、一層目の赤外線吸収層に入り込んだ塗布液の溶媒の揮発により、赤外線吸収層におけるクラックの発生又は赤外線吸収層の剥離が引き起こされる可能性がある。三層目以降の赤外線吸収層を形成する場合も同様である。
赤外線カットフィルタ1dによれば、第一赤外線吸収層10a及び第二赤外線吸収層10bを形成するときに、中間保護層40によって、第二赤外線吸収層10bを形成するための塗布液の溶媒が既に形成された第一赤外線吸収層10aに入り込むことを防止できる。これにより、平坦性又は平滑性が良好でクラック及び剥離の発生が防止された赤外線吸収層を所望の厚みで形成できるとともに、微粒子の凝集による透過率の低下やヘイズ率の増加を防止することができる。
中間保護層40は、可視光の透過率が高く、赤外線吸収層を形成するための塗布液の浸入を抑制できる材料でできている。例えば、中間保護層40は、主成分としてアルコキシシランの加水分解縮合生成物を含む。ここで、「主成分」とは、中間保護層40に質量基準で最も多く含まれる成分を意味する。この場合、中間保護層40が緻密な層であるので、第二赤外線吸収層10bを形成するための塗布液の溶媒が既に形成された第一赤外線吸収層10aに入り込むことをより確実に防止できる。この場合、中間保護層40は、例えば、ゾルゲル法を用いて形成できる。例えば、アルコキシシランと、水、アルコール、及び酸を含む溶媒とを含有している中間保護層40用の塗布液において、アルコキシシランを加水分解させ縮合重合させることによって中間保護層40を形成できる。例えば、第一赤外線吸収層10a上に中間保護層40用の塗布液を塗布し、得られた塗膜を加熱により硬化させることによって中間保護層40を形成できる。中間保護層40用の塗布液の塗膜は、例えば、スピンコーティングによって数μmの厚みで形成される。なお、上記の実施形態において、2層の赤外線吸収層と中間保護層とを備えた赤外線カットフィルタを例に説明したが、赤外線カットフィルタは、3層以上の赤外線吸収層と、それらの赤外線吸収層同士の間に配置された複数の中間保護層とを備えていてもよい。
さらに別の実施形態によれば、赤外線カットフィルタ1aは、デジタルカメラなどの撮像装置に使用される。図5に示すように、撮像装置100は、赤外線カットフィルタ1aと、撮像素子2と、を備えている。撮像素子2は、例えば、CCD又はCMOSなどの固体撮像素子である。撮像装置100は、撮像レンズ3をさらに備えている。図5に示すように、被写体からの光は、撮像レンズ3によって集光され、赤外線カットフィルタ1aによって赤外線域の光がカットされた後、撮像素子2に入射する。このため、色再現性の高い良好な画像を得ることができる。撮像装置100は、赤外線カットフィルタ1aに代えて、赤外線カットフィルタ1b、赤外線カットフィルタ1c、及び赤外線カットフィルタ1dのいずれかを備えていてもよい。
実施例により、本発明をより詳細に説明する。なお、本発明は以下の実施例に限定されない。まず、実施例における評価方法を説明する。
<赤外線カットフィルタの分光透過率>
各実施例に係る赤外線カットフィルタの分光透過率を、紫外線可視分光光度計(日本分光社製、製品名:V−670)を用いて測定した。この測定において、赤外線カットフィルタに対する入射光の入射角を0°(度)に設定した。各実施例に係る赤外線カットフィルタにおける赤外線吸収層の厚みの違いによる影響を排除するため、測定された分光透過率に100/92を乗じて界面における反射をキャンセルしたうえで、波長1000nmにおける透過率が1%になるように係数を定めた。さらに、各波長の透過率を吸光度に換算したうえで定めた係数をかけて調整し、このようにして得られた透過率に92/100を乗じて分光透過率を算出した。すなわち、波長1000nmでの透過率が1%となるように正規化された、各実施例に係る赤外線カットフィルタの分光透過率スペクトルを得た。各実施例に係る赤外線カットフィルタの400nm及び570nmにおける分光透過率を表1、表3、及び表4に示す。
(微粒子の平均粒子径)
各実施例に係る赤外線吸収層用組成物における微粒子の平均粒子径を動的光散乱法によって測定した。測定装置として大塚電子株式会社製の粒径アナライザFPAR−1000(測定プローブ:濃厚系プローブ)を用いた。結果を表1、表3、及び表4に示す。
<実施例1−1>
(赤外線吸収層用組成物の調製)
実施例1−1に係る赤外線吸収層用組成物を以下のように調製した。酢酸銅一水和物0.225g(1.13ミリモル(以下、「mmol」と記載する))とテトラヒドロフラン(THF)12.0gとを混合して1時間撹拌し、酢酸銅溶液を得た。次に、得られた酢酸銅溶液にリン酸エステル化合物であるプライサーフA208F(第一工業製薬社製)0.180g(0.54mmol)を加えて30分間撹拌し、A1液を得た。また、ブチルホスホン酸0.135g(0.98mmol)にTHF2.0gを加えて30分間撹拌し、ホスホン酸溶液を得た。次に、A1液を撹拌しながら、A1液にホスホン酸溶液を加え、室温で3時間撹拌した。次に、この溶液にトルエンを4.0g加え、その後85℃の環境で3.5時間かけて溶媒を揮発させた。その後、この溶液にシリコーン樹脂(信越化学工業社製、製品名:KR−300)0.88gを加えて30分間撹拌した。このようにして、実施例1−1に係る赤外線吸収層用組成物を得た。なお、プライサーフA208Fは、式(b1)で表されるリン酸ジエステル及び式(b2)で表されるリン酸モノエステルを含み、式(b1)及び式(b2)におけるR21、R22、及びR3が、それぞれ、同一種類の−(CH2CH2O)n4である、1価の官能基であった。ここで、n=1であり、R4は、炭素数が8のアルキル基であった。プライサーフA208Fの分子量は、式(b1)で表されるリン酸ジエステルと式(b2)で表されるリン酸モノエステルとを、モル比で、1:1で含んでいるとして算出した。
(赤外線カットフィルタの作製)
76mm×76mm×0.21mmの寸法を有するホウケイ酸ガラスでできた透明ガラス基板(Schott社製、製品名:D263)の表面の30mm×30mmの範囲にディスペンサを用いて実施例1−1に係る赤外線吸収層用組成物を0.1〜0.2g塗布して透明ガラス基板上に塗膜を形成した。85℃で3時間、次に125℃で3時間、次に150℃で1時間、次に170℃で4時間の条件で塗膜に対して加熱処理を行い、塗膜を硬化させ、実施例1−1に係る赤外線カットフィルタを作製した。
<実施例1−2>
プライサーフA208Fの添加量を0.165g(0.50mmol)に変更した以外は、実施例1−1と同様にして、実施例1−2に係る赤外線吸収層用組成物を調製し、実施例1−2に係る赤外線カットフィルタを作製した。
<実施例1−3>
プライサーフA208Fの添加量を0.150g(0.45mmol)に変更した以外は、実施例1−1と同様にして、実施例1−3に係る赤外線吸収層用組成物を調製し、実施例1−3に係る赤外線カットフィルタを作製した。
<実施例1−4>
プライサーフA208Fの添加量を0.143g(0.43mmol)に変更した以外は、実施例1−1と同様にして、実施例1−4に係る赤外線吸収層用組成物を調製し、実施例1−4に係る赤外線カットフィルタを作製した。
<実施例1−5>
プライサーフA208Fの添加量を0.207g(0.62mmol)、ブチルホスホン酸の添加量を0.127g(0.92mmol)に変更した以外は、実施例1−1と同様にして、実施例1−5に係る赤外線吸収層用組成物を調製し、実施例1−5に係る赤外線カットフィルタを作製した。
<実施例1−6>
プライサーフA208Fの添加量を0.297g(0.89mmol)、ブチルホスホン酸の添加量を0.114g(0.83mmol)に変更した以外は、実施例1−1と同様にして、実施例1−6に係る赤外線吸収層用組成物を調製し、実施例1−6に係る赤外線カットフィルタを作製した。
<実施例1−7>
実施例1−7に係る赤外線吸収層用組成物を以下のように調製した。酢酸銅一水和物0.225g(1.13mmol)とテトラヒドロフラン(THF)12.0gとを混合して1時間撹拌し、酢酸銅溶液を得た。次に、得られた酢酸銅溶液にリン酸エステル化合物であるDDP−2(日光ケミカルズ社製)を0.220g(0.43mmol)加えて30分間撹拌し、A2液を得た。また、ブチルホスホン酸0.135g(0.98mmol)にTHF2.0gを加えて30分間撹拌し、ホスホン酸溶液を得た。次に、A2液を撹拌しながらA2液にホスホン酸溶液を加え、室温で3時間撹拌した。次に、この溶液にトルエン4.0gを加えた後、85℃の環境で3.5時間かけて溶媒を揮発させた。次に、この溶液に、シリコーン樹脂(信越化学工業社製、製品名:KR−212)0.30gを加えて30分間撹拌した。このようにして、実施例1−7に係る赤外線吸収層用組成物を調製した。なお、DDP−2は、式(b1)で表されるリン酸ジエステル及び式(b2)で表されるリン酸モノエステルを含み、式(b1)及び式(b2)におけるR21、R22、及びR3が、それぞれ、同一種類の−(CH2CH2O)n4であった。ここで、n=2であり、R4は、炭素数が12〜15のアルキル基であった。DDP−2の分子量は、式(b1)で表されるリン酸ジエステルと式(b2)で表されるリン酸モノエステルとを、モル比で、1:1で含んでおり、R4の炭素数は12と15との中央値である13.5であるとして算出した。
実施例1−1に係る赤外線吸収層用組成物の代わりに、実施例1−7に係る赤外線吸収層用組成物を用いた以外は、実施例1−1と同様にして実施例1−7に係る赤外線カットフィルタを作製した。
<実施例1−8>
DDP−2の代わりに、リン酸エステル化合物であるDDP−6(日光ケミカルズ社製)を0.33g(0.42mmol)用いたこと以外は、実施例1−7と同様にして、実施例1−8に係る赤外線吸収層用組成物を調製し、実施例1−8に係る赤外線カットフィルタを作製した。なお、DDP−6は、式(b1)で表されるリン酸ジエステル及び式(b2)で表されるリン酸モノエステルを含み、式(b1)及び式(b2)におけるR21、R22、及びR3が、それぞれ、同一種類の−(CH2CH2O)n4であった。ここで、n=6であり、R4は、炭素数が12〜15のアルキル基であった。DDP−6の分子量は、式(b1)で表されるリン酸ジエステルと式(b2)で表されるリン酸モノエステルとを、モル比で、1:1で含んでおり、R4の炭素数は12と15との中央値である13.5であるとして算出した。
<実施例1−9>
プライサーフA208Fの添加量を0.132g(0.40mmol)に変更した以外は、実施例1−1と同様にして、実施例1−9に係る赤外線吸収層用組成物を調製し、実施例1−9に係る赤外線カットフィルタを作製した。
<比較例1−1>
プライサーフA208Fの添加量を0.115g(0.35mmol)に変更した以外は、実施例1−1と同様にして赤外線吸収層用組成物の調製を試みたところ、分散液中で凝集が発生し、透明性の高い液状の組成物を得ることができなかった。
<比較例1−2>
プライサーフA208Fの添加量を0.099g(0.30mmol)に変更した以外は、実施例1−1と同様にして赤外線吸収層用組成物の調製を試みたところ、分散液中で凝集が発生し、透明性の高い液状の組成物を得ることができなかった。
<比較例1−3>
プライサーフA208Fの添加量を0.074g(0.22mmol)に変更し、ブチルホスホン酸の添加量を0.145g(1.05mmol)に変更した以外は、実施例1−1と同様にして赤外線吸収層用組成物の調製を試みたところ、分散液中で凝集が発生し、透明性の高い液状の組成物を得ることができなかった。
<比較例1−4>
プライサーフA208Fの添加量を0.116g(0.35mmol)に変更し、ブチルホスホン酸の添加量を0.132g(0.96mmol)に変更した以外は、実施例1−1と同様にして赤外線吸収層用組成物の調製を試みたところ、分散液中で凝集が発生し、透明性の高い液状の組成物を得ることができなかった。
<比較例1−5>
プライサーフA208Fの添加量を0.165g(0.50mmol)に変更し、ブチルホスホン酸の添加量を0.172g(1.25mmol)に変更した以外は、実施例1−1と同様にして赤外線吸収層用組成物の調製を試みたところ、分散液中で凝集が発生し、透明性の高い液状の組成物を得ることができなかった。
<比較例1−6>
プライサーフA208Fの添加量を0.116g(0.35mmol)に変更し、ブチルホスホン酸の添加量を0.172g(1.25mmol)に変更した以外は、実施例1−1と同様にして赤外線吸収層用組成物の調製を試みたところ、分散液中で凝集が発生し、透明性の高い液状の組成物を得ることができなかった。
<評価>
実施例1−1〜実施例1−9に係る赤外線吸収層用組成物の調製条件を表1に、比較例1−1〜比較例1−6における組成物の調製条件を表2に示す。また、実施例1−1、実施例1−2、及び実施例1−3に係る赤外線カットフィルタの分光透過率スペクトルを図6に示す。
実施例1−1〜実施例1−9の赤外線カットフィルタの波長400nmにおける分光透過率と、ホスホン酸(ブチルホスホン酸)の含有量Caとリン酸エステルの含有量Ceとのモル比(Ca/Ce)との関係を図7に示す。図7における丸印のプロットが実施例の結果を示す。比較例1−1〜比較例1−6において、液中の微粒子が凝集して透明な液状の赤外線吸収層用組成物を得ることができなかったが、参考のために、比較例1−1〜比較例1−6におけるホスホン酸(ブチルホスホン酸)の含有量Caとリン酸エステルの含有量Ceとのモル比(Ca/Ce)の値を図7の横軸上に三角印のプロットで示す。
実施例1−1〜実施例1−9の赤外線カットフィルタの波長400nmにおける分光透過率と、反応性水酸基の含有量Chと銅イオンの含有量Ccとのモル比(Ch/Cc)との関係を図8に示す。図8における丸印のプロットが実施例の結果を示す。参考のために、比較例1−1〜比較例1−6(比較例1−5を除く)における反応性水酸基の含有量Chと銅イオンの含有量Ccとのモル比(Ch/Cc)の値を図8の横軸上に三角印のプロットで示す。
表1、表2、及び図7に示すように、Ca/Ceが2.5を超えると、液中で微粒子が凝集して微粒子が液中で適切に分散できず、赤外線吸収層を形成することが困難であった。リン酸エステルが分散剤として望ましい性能を発揮するためには、Ca/Ceが2.5未満であることが望ましい。また、図8に示すように、Ch/Ccが2.2に近いほど赤外線カットフィルタの波長400nmにおける分光透過率が高いことが示唆された。Ch/Ccが2.2に近いと、ホスホン酸及びリン酸エステルが、それらの分子内に存在する水酸基を介して銅イオンに安定的に配位すると考えられる。Ch/Ccが2.08〜2.3の範囲であれば、波長400nmにおける分光透過率の高い赤外性カットフィルタが得られ、さらにCh/Ccが2.1〜2.3の範囲に収まれば、波長400nmにおける分光透過率が75%を超える赤外線カットフィルタを得ることができ、Ch/Ccが2.1〜2.3の範囲に収まることが望ましいことが示唆された。一方、Ch/Ccが2.08より小さい場合、又は、2.5を超える場合には、銅イオンとホスホン酸とによって形成された微粒子が液中で凝集して微粒子の分散性が悪化し、赤外線吸収層を形成することが困難であることが示唆された。
<実施例2−1>
(赤外線吸収層用組成物の調製)
実施例2−1に係る赤外線吸収層用組成物を以下のようにして調製した。酢酸銅一水和物0.225g(1.13mmol)とテトラヒドロフラン(THF)12.0gとを混合して1時間撹拌し、酢酸銅溶液を得た。次に、得られた酢酸銅溶液に、リン酸エステル化合物であるプライサーフA208F(第一工業製薬社製)を0.297g(0.89mmol)加えて30分間撹拌し、A3液を得た。また、リン酸0.10gにTHF0.90gを加えてリン酸溶液を得た。さらに、ブチルホスホン酸0.105g(0.76mmol)にTHF2.0gを加えて30分間撹拌し、ホスホン酸溶液を得た。次に、A3液を撹拌しながらA3液にリン酸溶液0.05g(リン酸の含有量:0.05mmol)加え、さらにホスホン酸溶液を加えて、室温で3時間撹拌した。次に、この溶液にトルエン4.0gを加えた後、85℃の環境で3.5時間かけて溶媒を揮発させた。次に、この溶液に対して、シリコーン樹脂(信越化学工業社製、製品名:KR−300)0.88gを加えて30分間撹拌した。このようにして、実施例2−1に係る赤外線吸収層用組成物を得た。
(赤外線カットフィルタの作製)
76mm×76mm×0.21mmの寸法を有するホウケイ酸ガラスでできた透明ガラス基板(Schott社製、製品名:D263)の表面の30mm×30mmの範囲にディスペンサを用いて実施例2−1に係る赤外線吸収層用組成物を0.1〜0.2g塗布して透明ガラス基板上に塗膜を形成した。85℃で3時間、次に125℃で3時間、次に150℃で1時間の条件で塗膜に対して加熱処理を行い、塗膜を硬化させ、実施例2−1に係る赤外線カットフィルタを作製した。
<実施例2−2>
プライサーフA208Fの添加量を0.223g(0.67mmol)に変更し、ブチルホスホン酸の添加量を0.114g(0.83mmol)に変更した以外は、実施例2−1と同様にして、実施例2−2に係る赤外線吸収層用組成物を調製し、実施例2−2に係る赤外線カットフィルタを作製した。
<実施例2−3>
プライサーフA208Fの添加量を0.149g(0.45mmol)に変更し、ブチルホスホン酸の添加量を0.123g(0.89mmol)に変更した以外は、実施例2−1と同様にして、実施例2−3に係る赤外線吸収層用組成物を調製し、実施例2−3に係る赤外線カットフィルタを作製した。
<実施例2−4>
プライサーフA208Fの添加量を0.223g(0.67mmol)に変更し、ブチルホスホン酸の添加量を0.129g(0.93mmol)に変更した以外は、実施例2−1と同様にして、実施例2−4に係る赤外線吸収層用組成物を調製し、実施例2−4に係る赤外線カットフィルタを作製した。
<実施例2−5>
プライサーフA208Fの添加量を0.223g(0.67mmol)に変更し、ブチルホスホン酸の添加量を0.122g(0.88mmol)に変更した以外は、実施例2−1と同様にして、実施例2−5に係る赤外線吸収層用組成物を調製し、実施例2−5に係る赤外線カットフィルタを作製した。
<実施例2−6>
プライサーフA208Fの添加量を0.223g(0.67mmol)に変更し、ブチルホスホン酸の添加量を0.106g(0.77mmol)に変更した以外は、実施例2−1と同様にして、実施例2−6に係る赤外線吸収層用組成物を調製し、実施例2−6に係る赤外線カットフィルタを作製した。
<実施例2−7>
プライサーフA208Fの添加量を0.223g(0.67mmol)に変更し、ブチルホスホン酸の添加量を0.099g(0.72mmol)に変更し、リン酸溶液の添加量を0.12g(リン酸の含有量:0.12mmol)に変更した以外は、実施例2−1と同様にして、実施例2−7に係る赤外線吸収層用組成物を調製し、実施例2−7に係る赤外線カットフィルタを作製した。
<実施例2−8>
プライサーフA208Fの添加量を0.223g(0.67mmol)に変更し、ブチルホスホン酸の添加量を0.076g(0.55mmol)に変更し、リン酸溶液の添加量を0.23g(リン酸の含有量:0.23mmol)に変更した以外は、実施例2−1と同様にして、実施例2−8に係る赤外線吸収層用組成物を調製し、実施例2−8に係る赤外線カットフィルタを作製した。
<比較例2−1>
プライサーフA208Fの添加量を0.223g(0.67mmol)に変更し、ブチルホスホン酸の添加量を0.250g(1.81mmol)に変更した以外は、実施例2−1と同様にして赤外線吸収層用組成物の調製を試みたところ、分散液中で凝集が発生し、透明性の高い液状の組成物を得ることができなかった。
<比較例2−2>
プライサーフA208Fの添加量を0.100g(0.30mmol)に変更し、ブチルホスホン酸の添加量を0.122g(0.88mmol)に変更した以外は、実施例2−1と同様にして赤外線吸収層用組成物の調製を試みたところ、分散液中で凝集が発生し、透明性の高い液状の組成物を得ることができなかった。
<評価>
実施例2−1〜実施例2−8並びに比較例2−1及び比較例2−2における組成物の調製条件を表3に示す。また、実施例2−1、実施例2−3、及び実施例2−8に係る赤外線カットフィルタの分光透過率スペクトルを図9に示す。
また、実施例2−1〜実施例2−8の赤外線カットフィルタの波長400nmにおける分光透過率と、ホスホン酸(ブチルホスホン酸)の含有量Caとリン酸エステルの含有量Ceとのモル比(Ca/Ce)との関係を図10に示す。図10における丸印のプロットが実施例の結果を示す。参考のために、比較例2−1及び比較例2−2におけるホスホン酸(ブチルホスホン酸)の含有量Caとリン酸エステルの含有量Ceとのモル比(Ca/Ce)の値を図10の横軸上に三角印のプロットで示す。
実施例2−1〜実施例2−8の赤外線カットフィルタの波長400nmにおける分光透過率と、反応性水酸基の含有量Chと銅イオンの含有量Ccとのモル比(Ch/Cc)との関係を図11に示す。図11における丸印のプロットが実施例の結果を示す。参考のために、比較例2−2における反応性水酸基の含有量Chと銅イオンの含有量Ccとのモル比(Ch/Cc)の値を図11の横軸上に三角印のプロットで示す。
表3及び図10に示すように、Ca/Ceが2.5を超えると、液中で微粒子が凝集して微粒子が液中で適切に分散できず、赤外線吸収層を形成することが困難であった。また、図11に示すように、Ch/Ccが2.2に近いほど赤外線カットフィルタの400nmにおける分光透過率が高い傾向があることが示唆された。実施例2−1〜実施例2−8におけるこの傾向は、実施例1−1〜実施例1−9における同様の傾向よりも顕著であった。Ch/Ccが2.2に近いと、ホスホン酸、リン酸エステル、及びリン酸が、それらの分子内に存在する水酸基を介して銅イオンに安定的に配位すると考えられる。Ch/Ccが2以上であれば、波長400nmにおける分光透過率が80%を超える赤外線カットフィルタを得ることができ、Ch/Ccが2.1〜2.35の範囲であれば、波長400nmにおける分光透過率が安定して85%を超える赤外線カットフィルタを得ることができることが示された。Ch/Ccが2.1〜2.35の範囲であることがより望ましいことが示唆された。また、Ch/Ccが1.95〜2.1の範囲にあるときでも、波長400nmにおける分光透過率が75%以上となることが示唆された。一方、Ch/Ccが1.95より小さいとき、銅イオン及びホスホン酸によって形成された微粒子が凝集して微粒子の分散性が悪化し、赤外線吸収層を形成することが困難であることが示唆された。
<実施例3−1>
(赤外線吸収層用組成物の調製)
実施例3−1に係る赤外線吸収層用組成物を以下のようにして調製した。酢酸銅一水和物0.225g(1.13mmol)とTHF12.0gとを混合して1時間撹拌し、酢酸銅溶液を得た。次に、得られた酢酸銅溶液に、リン酸エステル化合物であるプライサーフA208F(第一工業製薬社製)を0.165g(0.50mmol)加えて30分間撹拌し、A4液を得た。また、エチルホスホン酸0.105g(0.95mmol)にTHF2.0gを加えて30分間撹拌し、ホスホン酸溶液を得た。次に、A4液を撹拌しながらA4液にホスホン酸溶液を加え、室温で16時間撹拌した。次に、この溶液にトルエン4.0gを加えた後、85℃の環境で3.5時間かけて溶媒を揮発させた。次に、この溶液にシリコーン樹脂(信越化学工業社製、製品名:KR−300)0.88gを加えて30分間撹拌した。このようにして、実施例3−1に係る赤外線吸収層用組成物を得た。
(赤外線カットフィルタの作製)
76mm×76mm×0.21mmの寸法を有するホウケイ酸ガラスでできた透明ガラス基板(Schott社製、製品名:D263)の表面の30mm×30mmの範囲にディスペンサを用いて実施例3−1に係る赤外線吸収層用組成物を0.1〜0.2g塗布して透明ガラス基板上に塗膜を形成した。85℃で3時間、次に125℃で3時間、次に150℃で1時間、次に170℃で4時間の条件で塗膜に対して加熱処理を行い、塗膜を硬化させ、実施例3−1に係る赤外線カットフィルタを作製した。
<実施例3−2>
プライサーフA208Fの添加量を0.190g(0.57mmol)に変更した以外は、実施例3−1と同様にして、実施例3−2に係る赤外線吸収層用組成物を調製し、実施例3−2に係る赤外線カットフィルタを作製した。
<実施例3−3>
プライサーフA208Fの添加量を0.215g(0.65mmol)に変更した以外は、実施例3−1と同様にして、実施例3−3に係る赤外線吸収層用組成物を調製し、実施例3−3に係る赤外線カットフィルタを作製した。
<比較例3−1>
プライサーフA208Fの添加量を0.120g(0.36mmol)に変更した以外は、実施例3−1と同様にして赤外線吸収層用組成物の調製を試みたところ、分散液中で凝集が発生し、透明性の高い液状の組成物を得ることができなかった。
<評価>
実施例3−1〜実施例3−3及び比較例3−1における組成物の調製条件を表4に示す。また、実施例3−1、実施例3−2、及び実施例3−3に係る赤外線カットフィルタそれぞれの、分光透過率スペクトルを図12に示す。
また、実施例3−1〜実施例3−3の赤外線カットフィルタの波長400nmにおける分光透過率と、ホスホン酸(エチルホスホン酸)の含有量Caとリン酸エステルの含有量Ceとのモル比(Ca/Ce)との関係を図13に示す。図13における丸印のプロットが実施例の結果を示す。参考のために、比較例3−1におけるホスホン酸(エチルホスホン酸)の含有量Caとリン酸エステルの含有量Ceとのモル比(Ca/Ce)の値を図13の横軸上に三角印のプロットで示す。
実施例3−1〜実施例3−3赤外線カットフィルタの波長400nmにおける分光透過率と、反応性水酸基の含有量Chと銅イオンの含有量Ccとのモル比(Ch/Cc)との関係を図14に示す。図14における丸印のプロットが実施例の結果を示す。参考のために、比較例3−1における反応性水酸基の含有量Chと銅イオンの含有量Ccとのモル比(Ch/Cc)の値を図14の横軸上に三角印のプロットで示す。
表4及び図13に示すように、Ca/Ceが2.5を超えると、液中で微粒子が凝集して微粒子が液中で適切に分散できず、赤外線吸収層を形成することが困難であった。また、図14に示すように、Ch/Ccが2.2に近いほど赤外線カットフィルタの波長400nmにおける分光透過率が高い傾向があることが示唆された。Ch/Ccが2.2に近いと、ホスホン酸及びリン酸エステルが、それらの分子内に存在する水酸基を介して銅イオンに安定的に配位すると考えられる。Ch/Ccが2.08〜2.3の範囲であれば、波長400nmにおける分光透過率が高い赤外線カットフィルタが得られ、さらにCh/Ccが2.1〜2.3の範囲であれば、波長400nmにおける分光透過率が75%を超え、Ch/Ccが2.1〜2.3の範囲であることが特に望ましいことが示唆された。一方、Ch/Ccが2.1より小さいとき、銅イオン及びホスホン酸によって形成された微粒子が凝集して微粒子の分散性が悪化し、赤外線吸収層を形成することが困難であることが示唆された。
<実施例4−1>
76mm×76mm×0.21mmの寸法を有するホウケイ酸ガラスでできた透明ガラス基板(Schott社製、製品名:D263)の表面の特定の範囲にディスペンサを用いて実施例1−4に係る赤外線吸収層用組成物を約1.6g塗布して透明ガラス基板上に塗膜を形成した。85℃で3時間、次に125℃で3時間、次に150℃で1時間の条件で塗膜に対して加熱処理を行い、塗膜を硬化させ赤外線カットフィルタAを得た。赤外線カットフィルタAの一部を25mm×25mmに切断して、実施例4−1−Aに係る赤外線カットフィルタを得た。次に、切断後に残った赤外線カットフィルタAについて、170℃で4時間の条件でさらに加熱処理し、赤外線カットフィルタBを得た。赤外線カットフィルタBの一部を25mm×25mmに切断して、実施例4−1−Bに係る赤外線カットフィルタを得た。次に、切断後に残った赤外線カットフィルタBについて、170℃で5時間の条件でさらに加熱処理し、赤外線カットフィルタCを得た。赤外線カットフィルタCの一部を25mm×25mmに切断して、実施例4−1−Cに係る赤外線カットフィルタを得た。すなわち、実施例4−1−Aに係る赤外線カットフィルタは、85℃で3時間、次に125℃で3時間、次に150℃で1時間の加熱処理を経て作製され、実施例4−1−Bに係る赤外線カットフィルタは、85℃で3時間、次に125℃で3時間、次に150℃で1時間、次に170℃で4時間の加熱処理を経て作製され、実施例4−1−Cに係る赤外線カットフィルタは、85℃で3時間、次に125℃で3時間、次に150℃で1時間、次に170℃で9時間の加熱処理を経て作製された。
<評価>
実施例4−1−A、実施例4−1−B、及び実施例4−1−Cに係る赤外線カットフィルタの分光透過率スペクトルを図15A及び図15Bに示す。実施例4−1−A、実施例4−1−B、及び実施例4−1−Cに係る赤外線カットフィルタの、波長400nmにおける分光透過率は、それぞれ、83.4%、85.8%、及び86.1%であった。高い加熱温度での加熱時間を長くすることによって、波長400nmにおける分光透過率を含む可視光域の分光透過率が向上することが示唆された。
<実施例4−2>
76mm×76mm×0.21mmの寸法を有するホウケイ酸ガラスでできた透明ガラス基板(Schott社製、製品名:D263)の表面の特定の範囲にディスペンサを用いて実施例1−5に係る赤外線吸収層用組成物を約1.6g塗布して透明ガラス基板上に塗膜を形成した。85℃で3時間、次に125℃で3時間、次に150℃で1時間の条件で塗膜に対して加熱処理を行い、塗膜を硬化させ、赤外線カットフィルタDを得た。赤外線カットフィルタDの一部を25mm×25mmに切断して、実施例4−2−Aに係る赤外線カットフィルタを得た。次に、切断後に残った赤外線カットフィルタDを170℃で4時間の条件でさらに加熱処理し、赤外線カットフィルタEを得た。赤外線カットフィルタEの一部を25mm×25mmに切断して、実施例4−2−Bに係る赤外線カットフィルタを得た。すなわち、実施例4−2−Aに係る赤外線カットフィルタは、85℃で3時間、次に125℃で3時間、次に150℃で1時間の加熱処理を経て作製され、実施例4−2−Bに係る赤外線カットフィルタは、85℃で3時間、次に125℃で3時間、次に150℃で1時間、次に170℃で4時間の加熱処理を経て作製された。
<評価>
実施例4−2−A及び実施例4−2−Bに係る赤外線カットフィルタの分光透過率スペクトルを図16A及び図16Bに示す。実施例4−2−A及び実施例4−2−Bに係る赤外線カットフィルタの波長400nmにおける分光透過率は、それぞれ、86.5%及び87.8%であった。高い加熱温度での加熱時間を長くすることによって、波長400nmにおける分光透過率を含む可視光域の分光透過率が向上することが示唆された。
<実施例4−3>
76mm×76mm×0.21mmの寸法を有するホウケイ酸ガラスでできた透明ガラス基板(Schott社製、製品名:D263)の表面の特定の範囲にディスペンサを用いて実施例1−6に係る赤外線吸収層用組成物を約1.6g塗布して透明ガラス基板上に塗膜を形成した。85℃で3時間、次に125℃で3時間、次に150℃で1時間の条件で塗膜に対して加熱処理を行い、塗膜を硬化させ、赤外線カットフィルタFを得た。赤外線カットフィルタFの一部を25mm×25mmに切断して、実施例4−3−Aに係る赤外線カットフィルタを得た。次に、切断後に残った赤外線カットフィルタFを170℃で4時間の条件でさらに加熱処理し、赤外線カットフィルタGを得た。赤外線カットフィルタGの一部を25mm×25mmに切断して、実施例4−3−Bに係る赤外線カットフィルタを得た。すなわち、実施例4−3−Aに係る赤外線カットフィルタは、85℃で3時間、次に125℃で3時間、次に150℃で1時間の加熱処理を経て作製され、実施例4−3−Bに係る赤外線カットフィルタは、85℃で3時間、次に125℃で3時間、次に150℃で1時間、次に170℃で4時間の加熱処理を経て作製された。
<評価>
実施例4−3−A及び実施例4−3−Bに係る赤外線カットフィルタの分光透過率スペクトルを図17A及び図17Bに示す。実施例4−3−A及び実施例4−3−Bに係る赤外線カットフィルタの波長400nmにおける分光透過率は、それぞれ、84.9%及び87.5%であった。高い加熱温度での加熱時間を長くすることによって、波長400nmにおける分光透過率を含む可視光域の分光透過率が向上することが示唆された。
<実施例5>
実施例5に係る赤外線吸収層用組成物を以下のように調整した。酢酸銅一水和物0.675g(3.38mmol)とテトラヒドロフラン(THF)36.0gとを混合して1時間撹拌し酢酸銅溶液を得た。次に、得られた酢酸銅溶液に、リン酸エステル化合物であるプライサーフA208F(第一工業製薬社製)を0.669g(2.02mmol)を加えて30分間撹拌し、A5液を得た。また、ブチルホスホン酸0.375g(2.72mmol)にTHF6.0gを加えて30分間撹拌し、B液を得た。次に、A5液を撹拌しながらA5液にB液を加え、室温で3時間撹拌した。次に、この溶液にトルエン12.0gを加えた後、85℃の環境で4.5時間かけて溶媒を揮発させた。このようにして得られたホスホン酸銅分散液に対して、シリコーン樹脂(信越化学工業社製、製品名:KR−300)2.64gを加えて30分間撹拌した。このようにして、実施例5に係る赤外線吸収層用組成物を得た。実施例5に係る赤外線吸収層用組成物において、Ca/Ce=1.35、Ch/Cc=2.20であった。
エタノール4.58gに、グリシドキシプロピルトリメトキシシラン1.43g、テトラエトキシシラン1.51g、硝酸のエタノール希釈液(硝酸の濃度:10重量%)0.03g、及び水2.17gをこの順番に加え、約1時間撹拌した。このようにして、中間保護層用の塗布液を得た。
76mm×76mm×0.21mmの寸法を有するホウケイ酸ガラスでできた透明ガラス基板(Schott社製、製品名:D263)の表面の30mm×30mmの範囲にディスペンサを用いて実施例5に係る赤外線吸収層用組成物を含有する塗布液を0.45g塗布して塗膜を形成した。85℃で3時間、次に125℃で3時間、次に150℃で1時間、次に170℃で4時間の条件で塗膜に対して加熱処理を行い、塗膜を硬化させ、第一赤外線吸収層を形成した。次に、第一赤外線吸収層の表面に、中間保護層用の塗布液をスピンコーティング(回転数:300rpm)によって塗布し、塗膜を形成した。この塗膜に対して、150℃で30分間の条件で加熱処理を行い、塗膜を硬化させた。このようにして、中間保護層を形成した。
第一赤外線吸収層の形成された領域に対応する中間保護層の表面の30mm×30mmの範囲にディスペンサを用いて実施例5に係る赤外線吸収層用組成物を含有する塗布液を0.45g塗布して塗膜を形成した。85℃で3時間、次に125℃で3時間、次に150℃で1時間、次に170℃で4時間の条件で塗膜に対して加熱処理を行い、塗膜を硬化させ、第二赤外線吸収層を形成した。このようにして、図4に示すような構造を有する、実施例5に係る赤外線カットフィルタを作製した。実施例5に係る赤外線カットフィルタの外観を観察したところ、クラック又は層の剥離は確認されなかった。また、実施例5に係る赤外線カットフィルタにおける第一赤外線吸収層及び第二赤外線吸収層は良好な平滑性を有していた。実施例5に係る赤外線カットフィルタの厚みは396μmであり、第一赤外線吸収層及び第二赤外線吸収層と中間保護層とからなる積層体の厚みは186μmであった。実施例5に係る赤外線カットフィルタの分光透過率スペクトルを図18に示す。実施例5に係る赤外線カットフィルタは、可視光域(波長400nm〜600nm)においては、80%を超える高い透過率を示すとともに、800nm以上の赤外線域において2%以下の非常に高い赤外線遮蔽性能を有していた。
<実施例6>
実施例5に係る赤外線カットフィルタにおいて、第一赤外線吸収層及び第二赤外線吸収層並びに中間保護層からなる積層体を透明ガラス基板から剥離させ、シート状の赤外線カットフィルタを得た。具体的には、実施例5に係る赤外線カットフィルタを、塗布面側からスライサーにより碁盤目状に切断し、9.0×8.4mmサイズのチップ基板を得た。得られたチップ基板について−40℃の環境下で48時間放置した後室温まで戻した。このようにして得られたチップ基板において、第一赤外線吸収層及び第二赤外線吸収層並びに中間保護層からなる積層体が透明ガラス基板からほぼ剥離した状態となっていた。その積層体を、ピンセットを用いて透明ガラス基板から完全に剥離させ、シート状の赤外線カットフィルタを得た。得られたシート状の赤外線カットフィルタについて、分光透過率スペクトルを計測したところ、図18に示した実施例5に係る赤外線カットフィルタの分光透過率スペクトルと同一であった。
Figure 0006695887
Figure 0006695887
Figure 0006695887
Figure 0006695887

Claims (15)

  1. 銅イオンと、下記式(a)で表されるホスホン酸とによって形成された化合物と、
    下記式(b1)で表されるリン酸ジエステル及び下記式(b2)で表されるリン酸モノエステルの少なくとも一方と、を含有し、
    少なくとも前記化合物を含む微粒子が分散しており、
    前記ホスホン酸の含有量は、前記リン酸ジエステルの含有量と前記リン酸モノエステルの含有量との合計量に対してモル基準で0.85倍以上2.5倍未満である、
    赤外線吸収層用組成物。
    Figure 0006695887
    [式中、R1は、2〜4の炭素数を有するアルキル基であり、R21、R22、及びR3は、それぞれ、−(CH2CH2O)n4で表される1価の官能基であり、nは、1〜25の整数であり、R4は、炭素数6〜25のアルキル基を示し、R21、R22、及びR3は、互いに同一又は異なる種類の官能基である。]
  2. 前記微粒子の平均粒子径は、5nm〜200nmである、請求項1に記載の赤外線吸収層用組成物。
  3. 前記微粒子は、少なくとも、前記銅イオンと、前記ホスホン酸と、前記リン酸ジエステル及び前記リン酸モノエステルの少なくとも一方とによって形成されている、請求項1又は2に記載の赤外線吸収層用組成物。
  4. リン酸をさらに含有している、請求項1〜3のいずれか1項に記載の赤外線吸収層用組成物。
  5. 前記微粒子は、少なくとも、前記銅イオンと、前記ホスホン酸と、前記リン酸ジエステル及び前記リン酸モノエステルの少なくとも一方と、前記リン酸とによって形成されている、請求項4に記載の赤外線吸収層用組成物。
  6. 前記ホスホン酸の1分子中に含まれる2つの水酸基、前記リン酸ジエステルの1分子中に含まれる1つの水酸基、前記リン酸モノエステルの1分子中に含まれる1つの水酸基、及びリン酸を含有している場合にはさらに前記リン酸の1分子中に含まれる2つの水酸基を反応性水酸基と定義したとき、前記反応性水酸基の含有量は、前記銅イオンの含有量に対してモル基準で2.08倍〜2.5倍である、請求項1〜5のいずれか1項に記載の赤外線吸収層用組成物。
  7. 前記ホスホン酸の前記R1は、ブチル基であり、
    前記ホスホン酸の1分子中に含まれる2つの水酸基、前記リン酸ジエステルの1分子中に含まれる1つの水酸基、前記リン酸モノエステルの1分子中に含まれる1つの水酸基、及び前記リン酸の1分子中に含まれる2つの水酸基を反応性水酸基と定義したとき、前記反応性水酸基の含有量は、前記銅イオンの含有量に対してモル基準で1.95倍〜2.5倍である、請求項4又は5に記載の赤外線吸収層用組成物。
  8. リン酸を含有しておらず、
    前記ホスホン酸の前記R1は、ブチル基であり、
    前記ホスホン酸の1分子中に含まれる2つの水酸基、前記リン酸ジエステルの1分子中に含まれる1つの水酸基、及び前記リン酸モノエステルの1分子中に含まれる1つの水酸基を反応性水酸基と定義したとき、
    前記反応性水酸基の含有量は、前記銅イオンの含有量に対してモル基準で2.08倍〜2.3倍である、請求項1〜3のいずれか1項に記載の赤外線吸収層用組成物。
  9. 前記ホスホン酸の前記R1は、エチル基である、請求項6に記載の赤外線吸収層用組成物。
  10. マトリクス成分をさらに含有している、請求項1〜9のいずれか1項に記載の赤外線吸収層用組成物。
  11. 前記マトリクス成分はポリシロキサンである、請求項10に記載の赤外線吸収層用組成物。
  12. 請求項1〜11のいずれか1項に記載の赤外線吸収層用組成物を用いて形成された赤外線吸収層を備えた、赤外線カットフィルタ。
  13. 請求項1〜11のいずれか1項に記載の赤外線吸収層用組成物を用いて形成された第一赤外線吸収層及び第二赤外線吸収層と、
    前記第一赤外線吸収層と前記第二赤外線吸収層との間に配置された中間保護層と、を備えた、
    赤外線カットフィルタ。
  14. 前記中間保護層は、主成分としてアルコキシシランの加水分解縮合生成物を含む、請求項13に記載の赤外線カットフィルタ。
  15. 請求項12〜14のいずれか1項に記載の赤外線カットフィルタと、
    前記赤外線カットフィルタを透過した光が入射する撮像素子と、を備えた、
    撮像装置。
JP2017541227A 2015-09-24 2016-09-13 赤外線吸収層用組成物、赤外線カットフィルタ、及び撮像装置 Active JP6695887B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015187295 2015-09-24
JP2015187295 2015-09-24
PCT/JP2016/004163 WO2017051512A1 (ja) 2015-09-24 2016-09-13 赤外線吸収層用組成物、赤外線カットフィルタ、及び撮像装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020029438A Division JP6878637B2 (ja) 2015-09-24 2020-02-25 赤外線吸収層用組成物、赤外線カットフィルタ、及び撮像装置

Publications (2)

Publication Number Publication Date
JPWO2017051512A1 JPWO2017051512A1 (ja) 2018-08-30
JP6695887B2 true JP6695887B2 (ja) 2020-05-20

Family

ID=58385908

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017541227A Active JP6695887B2 (ja) 2015-09-24 2016-09-13 赤外線吸収層用組成物、赤外線カットフィルタ、及び撮像装置
JP2020029438A Active JP6878637B2 (ja) 2015-09-24 2020-02-25 赤外線吸収層用組成物、赤外線カットフィルタ、及び撮像装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020029438A Active JP6878637B2 (ja) 2015-09-24 2020-02-25 赤外線吸収層用組成物、赤外線カットフィルタ、及び撮像装置

Country Status (6)

Country Link
US (3) US10745541B2 (ja)
JP (2) JP6695887B2 (ja)
KR (1) KR102153205B1 (ja)
CN (1) CN108027465B (ja)
TW (1) TWI706029B (ja)
WO (1) WO2017051512A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108027465B (zh) * 2015-09-24 2020-09-22 日本板硝子株式会社 红外线吸收层用组合物、红外线截止滤光片及摄像装置
JP6267823B1 (ja) * 2017-07-27 2018-01-24 日本板硝子株式会社 光学フィルタ、カメラモジュール、及び情報端末
JP6232161B1 (ja) 2017-07-27 2017-11-15 日本板硝子株式会社 光学フィルタ
JP6273063B1 (ja) * 2017-10-03 2018-01-31 日本板硝子株式会社 光学フィルタ及び撮像装置
JP6259155B1 (ja) * 2017-10-03 2018-01-10 日本板硝子株式会社 光学フィルタ及び撮像装置
JP6273064B1 (ja) 2017-10-03 2018-01-31 日本板硝子株式会社 光学フィルタ及び撮像装置
JP6368417B1 (ja) * 2017-10-20 2018-08-01 日本板硝子株式会社 光学フィルタ
JP7099251B2 (ja) * 2017-10-31 2022-07-12 コニカミノルタ株式会社 近赤外線吸収性組成物、近赤外線吸収性膜及び固体撮像素子用イメージセンサー
KR102465624B1 (ko) * 2017-11-07 2022-11-10 니혼 이타가라스 가부시키가이샤 광흡수성 조성물 및 광학 필터
KR20200095518A (ko) * 2017-12-06 2020-08-10 니혼 이타가라스 가부시키가이샤 광학 필터 및 촬상 장치
JP6545780B2 (ja) * 2017-12-22 2019-07-17 日本板硝子株式会社 光学フィルタ及びカメラ付き情報端末
JP6368444B1 (ja) * 2018-01-24 2018-08-01 日本板硝子株式会社 光学フィルタの製造方法
WO2019244589A1 (ja) * 2018-06-19 2019-12-26 コニカミノルタ株式会社 近赤外線吸収性組成物、近赤外線吸収性膜及び固体撮像素子用イメージセンサー
WO2020195701A1 (ja) * 2019-03-26 2020-10-01 コニカミノルタ株式会社 近赤外線吸収性組成物、近赤外線吸収性膜及び固体撮像素子用イメージセンサー
JP2020057009A (ja) * 2019-12-16 2020-04-09 日本板硝子株式会社 光学フィルタ及びカメラ付き情報端末
TWI717187B (zh) * 2020-01-09 2021-01-21 白金科技股份有限公司 有機金屬錯合物分散液、使用其所製備而成的近紅外線吸收膜以及近紅外線截止濾光片
US11960110B2 (en) * 2020-04-07 2024-04-16 Canon Kabushiki Kaisha Optical filter having differing reflectance depending on light incident side
JP2022053617A (ja) * 2020-09-25 2022-04-06 コニカミノルタ株式会社 近赤外線吸収性組成物、近赤外線カットフィルター、固体撮像素子用イメージセンサー及びカメラモジュール
JPWO2022244703A1 (ja) * 2021-05-17 2022-11-24

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193819A (ja) 1998-12-24 2000-07-14 Mitsubishi Chemicals Corp プラズマディスプレイパネル用フィルター
JP2001042230A (ja) 1999-07-27 2001-02-16 Olympus Optical Co Ltd 撮像光学系
JP4422866B2 (ja) 1999-09-16 2010-02-24 株式会社クレハ 光学フィルタ及びその製造方法
JP2001264532A (ja) 2000-03-15 2001-09-26 Toyobo Co Ltd 赤外線吸収フィルター
JP2001174627A (ja) 1999-12-20 2001-06-29 Toyobo Co Ltd 赤外線吸収フィルター
KR100444332B1 (ko) 1999-12-20 2004-08-16 도요 보세키 가부시키가이샤 적외선 흡수필터
JP4500417B2 (ja) * 2000-08-25 2010-07-14 株式会社クレハ 光学材料及びその製造方法
JP2002156521A (ja) * 2000-11-22 2002-05-31 Sumitomo Chem Co Ltd 近赤外線吸収性フィルム
US7332257B2 (en) 2003-07-11 2008-02-19 Asahi Glass Company, Limited Composition for optical film, and optical film
JP2008165215A (ja) 2003-07-16 2008-07-17 Asahi Glass Co Ltd 光学フィルム及びプラズマディスプレイ用光学フィルタ
AU2004276119A1 (en) * 2003-09-26 2005-04-07 Kureha Corporation Absorptive composition for infrared ray and absorptive resin composition for infrared ray
JP4926712B2 (ja) * 2004-09-29 2012-05-09 株式会社クレハ 近赤外光吸収材料及び積層体
JP5331361B2 (ja) * 2008-03-31 2013-10-30 株式会社クレハ 銅塩組成物、並びに、これを用いた樹脂組成物、赤外吸収膜及び光学部材
US8553180B2 (en) * 2008-09-30 2013-10-08 Dai Nippon Printing Co., Ltd. Ink-jet ink composition for color filter, color filter, method for producing a color filter, and liquid crystal display device
EP2213690B1 (en) * 2009-01-30 2015-11-11 Agfa Graphics N.V. A new alkali soluble resin
US20120019906A1 (en) * 2009-02-09 2012-01-26 Van Nuffel Claude T E Transparent Multilayered Carbonate Articles and Method to Manufacture Thereof
JP5490475B2 (ja) * 2009-09-24 2014-05-14 富士フイルム株式会社 近赤外吸収性色素を含有する硬化性組成物、インク用組成物および近赤外線吸収フィルタの製造方法
JP5554048B2 (ja) * 2009-11-05 2014-07-23 株式会社クレハ 近赤外線吸収剤及びその製造方法、並びに光学材料
JP5611631B2 (ja) * 2010-03-25 2014-10-22 株式会社クレハ 近赤外線吸収フィルターおよびその製造方法
EP2584385A4 (en) 2010-06-18 2014-02-26 Daishinku Corp INFRARED BARRIER FILTER
JP5881096B2 (ja) * 2011-03-30 2016-03-09 株式会社タムロン 反射防止膜及び光学素子
JP6127974B2 (ja) * 2011-09-15 2017-05-17 Jsr株式会社 近赤外線カットフィルターおよび近赤外線カットフィルターを用いた装置
JP5829641B2 (ja) * 2012-05-08 2015-12-09 富士フイルム株式会社 近赤外線吸収性液状組成物、これを用いた近赤外線カットフィルタ及びその製造方法、並びに、カメラモジュール及びその製造方法
JP2015131928A (ja) 2014-01-15 2015-07-23 株式会社クレハ 近赤外線硬化型組成物およびその用途
CN108027465B (zh) * 2015-09-24 2020-09-22 日本板硝子株式会社 红外线吸收层用组合物、红外线截止滤光片及摄像装置
US10809427B2 (en) * 2016-04-21 2020-10-20 Nippon Sheet Glass Company, Limited Infrared-absorbing composition, infrared-cut filter, and imaging optical system

Also Published As

Publication number Publication date
US10745541B2 (en) 2020-08-18
WO2017051512A1 (ja) 2017-03-30
CN108027465A (zh) 2018-05-11
KR102153205B1 (ko) 2020-09-07
TW201726879A (zh) 2017-08-01
US20200332084A1 (en) 2020-10-22
US20240117151A1 (en) 2024-04-11
JP6878637B2 (ja) 2021-05-26
US11873385B2 (en) 2024-01-16
JP2020112802A (ja) 2020-07-27
JPWO2017051512A1 (ja) 2018-08-30
KR20180059494A (ko) 2018-06-04
TWI706029B (zh) 2020-10-01
US20180282521A1 (en) 2018-10-04
CN108027465B (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
JP6695887B2 (ja) 赤外線吸収層用組成物、赤外線カットフィルタ、及び撮像装置
JP6343378B2 (ja) 赤外線カットフィルタ及び撮像光学系
JP6823143B2 (ja) 赤外線カットフィルタ及び撮像装置
JP6449511B1 (ja) 光学フィルタ用光吸収性組成物及び光学フィルタ
KR20200074118A (ko) 광흡수성 조성물 및 광학 필터

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200225

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200422

R150 Certificate of patent or registration of utility model

Ref document number: 6695887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250