JP6694108B2 - メタンの二酸化炭素改質用カプセル化触媒、及びそれを用いた合成ガスの製造方法 - Google Patents

メタンの二酸化炭素改質用カプセル化触媒、及びそれを用いた合成ガスの製造方法 Download PDF

Info

Publication number
JP6694108B2
JP6694108B2 JP2019502362A JP2019502362A JP6694108B2 JP 6694108 B2 JP6694108 B2 JP 6694108B2 JP 2019502362 A JP2019502362 A JP 2019502362A JP 2019502362 A JP2019502362 A JP 2019502362A JP 6694108 B2 JP6694108 B2 JP 6694108B2
Authority
JP
Japan
Prior art keywords
catalyst
carbon dioxide
methane
supported
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019502362A
Other languages
English (en)
Other versions
JPWO2018158883A1 (ja
Inventor
範立 椿
範立 椿
国輝 楊
国輝 楊
中村 典彦
典彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire Corp filed Critical Toyo Tire Corp
Publication of JPWO2018158883A1 publication Critical patent/JPWO2018158883A1/ja
Application granted granted Critical
Publication of JP6694108B2 publication Critical patent/JP6694108B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J33/00Protection of catalysts, e.g. by coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明の実施形態は、メタンの二酸化炭素改質用触媒に関する。二酸化炭素改質用触媒は、二酸化炭素を用いてメタンを改質する際に用いられる触媒である。本発明の実施形態は、また、二酸化炭素改質用触媒を用いて、メタンから水素と一酸化炭素を含む合成ガスを製造する方法に関する。
メタンを主成分とする天然ガスの二酸化炭素改質反応は、メタンと二酸化炭素を触媒の存在下に反応させて一酸化炭素と水素に変換する反応である。この反応は、FT(Fischer-Tropsch)反応やメタノール合成において原料となる、一酸化炭素と水素を含む合成ガスを製造するために利用されている。また、二酸化炭素改質反応は、温室効果ガスとされる二酸化炭素を消費・変換する環境負荷低減技術として注目されている。原料となる天然ガス(例えば、シェールガス)は価格が安く、低コストで二酸化炭素を転換することができる。
メタンの二酸化炭素改質用触媒としては、アルミナなどの酸化物担体に、ニッケルやルテニウムなどの触媒金属を担持させた金属担持触媒が知られている(例えば、特許文献1参照)。
メタンと二酸化炭素から一酸化炭素と水素を合成する反応は、下記反応式(1)で示される。
CO2+CH4→2CO+2H2 ΔH298K=247kJmol-1 (1)
この反応により生成される気体は、H2/CO比が1.0であり、FT反応に適している。その一方で、この反応は吸熱反応であり外部から大きなエネルギーが必要になる。また、原料となるメタン及び二酸化炭素はともに炭素を含むため、反応過程で触媒表面に炭素が析出する。触媒上に析出する炭素は徐々に蓄積して触媒活性を低下させる。また、担体に金属粒子を分散させた金属触媒の場合、金属粒子が高温で凝集(シンタリング)を起こし、触媒活性が低下する。
これらの問題点を解決するため、二酸化炭素とメタンの混合ガスに酸素を加える方法がある(特許文献2参照)。酸素を加えることにより、メタンと酸素が反応して下記反応式(2)及び(3)の2種類の酸化反応が起きる。また、式(3)の反応により生成したスチームが下記反応式(4)で示すようにメタンと反応する。
CH4+1/2O2→CO+2H2 ΔH298K=-36kJmol-1 (2)
CH4+2O2→CO2+2H2O ΔH298K=-213kJmol-1 (3)
CH4+H2O→CO+3H2 ΔH298K=206kJmol-1 (4)
式(2)と式(3)の反応はどちらも発熱反応であり、式(1)と式(4)の反応に熱を利用することができるため、必要な外部エネルギーが小さくなる。また、式(3)の反応により生成した二酸化炭素とスチームは、式(1)と式(4)の反応の原料となる。また、触媒表面に析出する炭素が酸素と燃焼して少なくなり、触媒の高寿命化に資する。
しかしながら、一般的な二酸化炭素改質用触媒を用いて、メタン及び二酸化炭素とともに酸素を供給して反応させると、次のような点が問題になることがある。
すなわち、図3に示すように、反応管に二酸化炭素改質用触媒を詰めて触媒床を形成し、これに原料ガスとしてメタン、二酸化炭素及び酸素を流して、天然ガスの二酸化炭素改質を行う。触媒としては、例えばシリカ担体にニッケルを担持させたNi/SiO2触媒を用いる。すると、反応管における原料ガスの注入口付近では酸素含有量が多いため、式(2)と式(3)で表されるメタンの酸化反応がまず起きる。その後、反応管の半ばの酸素が無くなった部分から式(1)で表されるメタンの二酸化炭素改質反応が起きるようになる。
このように酸化反応が起きる場所とメタンの二酸化炭素改質反応が起きる場所が離れているため、原料ガスの注入口付近と合成ガスの排気口付近では大きな温度勾配が生じる。そのため、酸化反応により生じる熱を、二酸化炭素改質反応に効果的に利用できないという問題がある。また、酸化反応(燃焼反応)の起きる注入口付近にはホットスポットが生じ、高温のためシンタリングが起きて触媒が失活するという問題がある。
ところで、特許文献3及び非特許文献1には、アルミナ等の酸化物担体にコバルトなどの金属を担持させた金属担持触媒に、ゼオライトの皮膜を設けた触媒が開示され、該ゼオライト上に白金などの金属を担持させてもよいことも開示されている。しかしながら、これらの文献の触媒は、一酸化炭素と水素を含む合成ガスから液体炭化水素を合成するFT反応に使用されるものであり、メタンの二酸化炭素改質反応に使用されることは開示されていない。
WO2008/084785A1 特開平7−89701号公報 特開2007−197628号公報
Applied Catalysis A: General 394 (2011) 195-200
本発明の実施形態は、メタンの二酸化炭素改質用触媒として、メタンの酸化反応により生じる熱を効果的に利用することができる触媒を提供することを目的とする。
本発明の実施形態によれば、二酸化炭素によりメタンを改質する触媒活性を持つ触媒金属を酸化物担体に担持させた金属担持触媒と、前記金属担持触媒の表面を被覆するゼオライトからなる外皮であって、当該ゼオライトに白金を担持させた外皮と、を備える、メタンの二酸化炭素改質用カプセル化触媒が提供される。
前記金属担持触媒は、酸化物担体にニッケルを担持したニッケル担持触媒でもよい。前記金属担持触媒は、シリカ担体にニッケルを担持したNi/SiO2触媒でもよい。
本発明の実施形態によれば、また、前記二酸化炭素改質用カプセル化触媒の存在下、メタンと二酸化炭素を反応させて水素と一酸化炭素を含む合成ガスを製造する、合成ガスの製造方法が提供される。
前記製造方法においては、前記二酸化炭素改質用カプセル化触媒に、メタン及び二酸化炭素とともに酸素を供給してもよい。
本実施形態に係るメタンの二酸化炭素改質用カプセル触媒であると、メタンの酸化反応により生じる熱を効果的に利用することができる。また、触媒床におけるホットスポットの発生を抑えて、シンタリングを起きにくくすることができる。
実施形態に係る二酸化炭素改質用カプセル化触媒の概念図 同二酸化炭素改質用カプセル化触媒を用いた反応床の概念図 比較例に係る二酸化炭素改質用触媒を用いた反応床の概念図 実施例のカプセル化触媒のSEM断面写真と元素分析結果のグラフ 触媒試験1(転化率の測定)の結果を示すグラフ 触媒試験2(触媒床の温度分布)の結果を示すグラフ 触媒試験3(安定性試験)の結果を示すグラフ 触媒試験4(長期安定性試験)の結果を示すグラフ
本実施形態に係るメタンの二酸化炭素改質用カプセル化触媒(以下、単にカプセル化触媒ということがある。)は、触媒金属を酸化物担体に担持させた金属担持触媒と、該金属担持触媒の表面を被覆するゼオライトからなる外皮(shell)と、を備えるものであり、ゼオライトに白金を担持させたものである。図1は、実施形態に係るカプセル化触媒を概念的に示した図であり、該カプセル化触媒は、金属担持触媒をコアとして、白金を担持させたゼオライト膜を、金属担持触媒の表面に被覆してなる、コア−シェル構造を有する。
コアとなる金属担持触媒に用いられる触媒金属としては、二酸化炭素によりメタンを改質する触媒活性を持つ金属が用いられる。すなわち、触媒金属は、上記式(1)の反応を促進する触媒活性を持ち、また通常は式(1)とともに上記式(4)の反応を促進する触媒活性も持つ。かかる触媒金属としては、例えば、Ni,Rh,Ru,Ir,Co,Ih,Pt,及びPdからなる群から選択される少なくとも1種が挙げられる。触媒金属として、好ましくはNi,Rh,及びRuからなる群から選択される少なくとも1種であり、より好ましくはNiを用いることである。従って、好ましい一実施形態に係る金属担持触媒は、酸化物担体にニッケルを担持したニッケル担持触媒である。なお、触媒金属は、二酸化炭素改質反応時に触媒活性を有するものであればよく、例えば、NiOのような酸化された状態で含まれたものであっても、二酸化炭素改質反応時にNi0に還元されて触媒として機能するものであればよい。
触媒金属を担持する酸化物担体としては、特に限定されず、種々の無機酸化物を用いることができ、例えば、シリカ、アルミナ、ジルコニア、チタニア、及びマグネシアからなる群から選択される少なくとも1種が挙げられる。金属担持触媒は、一実施形態として、多孔質シリカなどのシリカ担体にニッケルを担持したNi/SiO2触媒でもよい。
酸化物担体に触媒金属を担持させた金属担持触媒の調製方法は特に限定されず、公知の担持方法を用いて調製することができる。例えば、触媒金属の水溶液を酸化物担体に含浸させ、乾燥後、焼成することにより、金属担持触媒を得ることができる。触媒金属の担持量は、特に限定されず、金属担持触媒に対して金属あたり1〜50質量%でもよく、3〜30質量%でもよく、5〜15質量%でもよい。
金属担持触媒は、粒子状の固体であり、その平均粒径は、特に限定されないが、例えば0.1〜15mmでもよく、0.3〜10mmでもよく、0.5〜5mmでもよい。金属担持触媒の平均粒径は、顕微鏡観察により画像を得て、この画像を用いて、粒子の長径と短径(長径と短径が同じ場合には、ある軸方向の長さとこれに直交する軸方向の長さ)を無作為抽出した10個の粒子について測定し、その平均値を算出することで求められる。
金属担持触媒の表面に被覆されるゼオライトとしては、特に限定されず、様々な結晶構造をもつゼオライトを用いることができる。例えば、ゼオライトとしては、シリカライト1、H−ZSM−5、H−betaなどが挙げられる。
金属担持触媒の表面に被覆されるゼオライトの量は、特に限定されず、例えば最終的に得られるカプセル化触媒に対して1〜40質量%でもよく、5〜30質量%でもよく、10〜30質量%でもよい。
カプセル化触媒の外皮を構成するゼオライトにはナノレベルの細孔(pore)があり、白金は細孔の中に分散した状態に担持されてもよい。ここで、白金が担持されるゼオライトの細孔としては、結晶構造内の細孔でもよく、結晶間の隙間でもよい。細孔の大きさは、特に限定されず、例えば平均細孔径が0.3〜2nmでもよく、0.3〜0.9nmでもよい。平均細孔径は、窒素吸着法(定容量法ガス吸着法)により測定することができ、例えばユアサアイオニクス株式会社「定容法化学吸着測定装置AUTOSORB−1−C」を用い、前処理条件:200℃真空排気処理、サンプル量:50mg、測定プログラム:吸脱着等温線測定、比表面積の算出法:BET法、細孔径分布の算出法:BJH法、測定相対圧範囲:10-7〜1.0にて測定することができる。平均細孔径は、比表面積(A)と全細孔容積(V)を用いて、4V/Aで算出される値である。
金属担持触媒表面にゼオライトからなる外皮を形成する方法としては、特に限定されず、例えば水熱合成により形成することができる。水熱合成は、例えば、金属担持触媒をゼオライトの前駆体溶液とともにリアクターに入れ、反応温度100〜200℃、反応時間1〜5日の範囲で反応させることにより行うことができる。
カプセル化触媒の外皮を構成するゼオライトには、上記式(2)及び/又は式(3)で表されるメタンの酸化反応を促進する触媒活性を持つ白金Ptが担持される。詳細には、Ptは、ゼオライトの細孔にPt粒子を分散させた状態に担持されてもよい。Ptの担持量は特に限定されず、カプセル化触媒に対して0.05〜5質量%でもよく、0.1〜3質量%でもよい。
ゼオライトにPtを担持させる方法は、特に限定されず、例えばPtの水溶液をゼオライト膜に含浸させ、乾燥後、焼成することにより、カプセル化触媒を得ることができる。
カプセル化触媒の大きさは特に限定されず、例えば平均粒径が0.1〜15mmでもよく、0.5〜10mmでもよく、0.5〜5mmでもよい。また、外皮の厚みも特に限定されず、例えば2〜100μmでもよく、2〜50μmでもよい。カプセル化触媒の平均粒径は、顕微鏡観察により画像を得て、この画像を用いて、粒子の長径と短径(長径と短径が同じ場合には、ある軸方向の長さとこれに直交する軸方向の長さ)を無作為抽出した10個の粒子について測定し、その平均値を算出することで求められる。外皮の厚みは、電子顕微鏡の断面写真から測定され、任意の5個のカプセル化触媒についての平均値である。
本実施形態に係るカプセル化触媒は、二酸化炭素を用いてメタンを改質する際に用いられ、メタンから水素と一酸化炭素を含む合成ガスを製造することができる。本実施形態に係る合成ガスの製造方法は、上記二酸化炭素改質用カプセル化触媒の存在下、メタン(CH4ガス)と二酸化炭素(CO2ガス)を反応させて水素(H2ガス)と一酸化炭素(COガス)を含む合成ガスを製造する方法である。
より好ましくは、上記二酸化炭素改質用カプセル化触媒に、メタン及び二酸化炭素とともに酸素(O2ガス)を供給することである。このように酸素を追加供給することにより、酸化反応による発熱によって必要な外部エネルギーが低くなり、また、触媒表面に析出する炭素を燃焼により少なくして触媒の高寿命化を図ることができる。
合成ガスを製造する際に用いる原料ガスにおいて、メタンと二酸化炭素と酸素の供給比率は特に限定されない。例えば、メタン/二酸化炭素のモル比は、0.5〜10でもよく、1〜5でもよい。また、メタン/酸素のモル比は、1〜20でもよく、2〜10でもよい。反応温度(触媒床の温度)は特に限定されず、例えば200〜900℃でもよく、300〜800℃でもよい。反応圧力は特に限定されず、例えば0.1〜5MPaでもよく、0.3〜3MPaでもよい。なお、原料ガスに用いるメタンとしては、天然ガスを用いることが好ましい。原料ガスには、エタン、プロパン、ブタンなどの炭化水素や、その他のガスが含まれてもよい。
合成ガスの製造方法における反応方式としては、連続流通式、回分式のいずれの方式でもよいが、連続流通式が好ましい。連続流通式を採用する場合、ガス空間速度(GHSV)は特に限定されず、例えば、カプセル化触媒1g当たり、1,000〜100,000mLgcat -1-1でもよく、10,000〜50,000mLgcat -1-1でもよい。また、反応形式としては、特に制限はなく、固定床式,移動床式,流動床式いずれも採用でき、固定床式が好ましい。反応器の形式としても特に制限はなく、例えば管型反応器等を用いることができる。
一実施形態に係る合成ガスの製造方法において、上記カプセル化触媒は、図2に示すように反応管に充填され、これにより触媒床が形成される。ここで、触媒床を形成する際には、石英砂などの不活性な無機粒子(希釈材)を加えることでカプセル化触媒を希釈して充填してもよい。該無機粒子の充填量は特に限定されないが、例えばカプセル化触媒の質量の3〜10倍の質量で用いてもよい。この反応管に、原料ガスとしてメタン、二酸化炭素及び酸素を流して、メタンの二酸化炭素改質を行うことができる。
本実施形態に係るカプセル化触媒は、上記のように、外皮であるゼオライト膜にPtが担持されている(Pt/ゼオライト)。図1に示すように、上記式(2)及び式(3)のメタンの酸化反応は、この外皮(ゼオライト膜)中の金属Pt上で起きる。すなわち、カプセル化触媒に供給された原料ガスであるメタン、二酸化炭素及び酸素のうち、酸素は外皮で消費される。酸素を消費した後の二酸化炭素とメタンは、コアとなる金属担持触媒(Ni/SiO2)触媒に到達して、上記式(1)のメタンの二酸化炭素改質反応が起きる。なお、式(3)の反応で生じたスチーム(水蒸気)により上記式(4)で表される改質反応も起きる。
このようにカプセル化触媒の外皮とコアのそれぞれの触媒で、メタンの酸化(燃焼)反応と二酸化炭素改質反応が起きるため、酸化反応により外皮で生じた熱がコアに移動しやすく、この熱を効果的に利用して、吸熱反応である二酸化炭素改質反応をコアで行うことができる。そのため、メタン及び二酸化炭素の転化率を高めることができる。
また、外皮で生じた熱をコアで効果的に利用することができるため、図2に示すように、触媒床全体での温度を均質化することができる。すなわち、カプセル化触媒の各粒子内で、メタンの酸化反応による発熱と二酸化炭素改質反応による吸熱を行うことができるので、触媒床全体としての局部的な温度上昇を抑えることができ、温度が平準化される。そのため、触媒床でのホットスポットの発生を抑制することができ、シンタリングが起きにくくなるため、触媒の高寿命化を図ることができる。
また、外皮で酸素が消費され、コアへの酸素の進入を抑えることができるため、コアの触媒金属が酸化されることを防いで還元状態のまま保持することができる。例えば、コア触媒がニッケル担持触媒の場合、酸化によりNi2+になるのを抑えて、Ni0のまま存在する比率を高めることができる。そのため、触媒活性を高めることができる。
以下、実施例を示すが、本発明はこれらの実施例に限定されるものではない。
[Ni/SiO2触媒の調製]
酸化物担体としては、シリカペレット(富士シリシア化学(株)製「CARiACT Q−10」、平均粒径:0.5mm、細孔容積:1.18mL/g)を用いた。硝酸ニッケル六水和物を、Ni/SiO2触媒での金属(Ni)担持量が9質量%となるように測りとり、シリカペレットの細孔容積に対して同じ体積のイオン交換水に溶解させた。得られたNi水溶液を、超音波のもとIW(Incipient Wetness)法で、シリカペレットに含浸した。この時の溶液のpHはおよそ5であった。その後さらに30分超音波を当て続け、1時間の減圧処理を行い、120℃で一晩乾燥した後、350℃での焼成を行った。焼成の際は、2℃/分で昇温し、空気中で2時間350℃を保持した。これにより、コアとなるNi/SiO2触媒を得た。
[Pt/シリカライト1−Ni/SiO2カプセル化触媒の調製]
上記で得られたNi/SiO2触媒にシリカライト1 ゼオライト膜の被覆を行った。用いた試薬は、テトラプロピルアンモニウム水酸化物(TPAOH)とエタノール(EtOH)と水とテトラエトキシシラン(TEOS)と硝酸(HNO3)とを混合してなる前駆体溶液であり、そのモル比はTPAOH:EtOH:H2O:TEOS:HNO3=0.48:8:120:2:0.24とし、4時間攪拌して調製した。
コアであるNi/SiO2触媒0.6gを、20mLの前駆体溶液とともにリアクターに投入し、水熱合成を行った。水熱合成の条件は、温度180℃、回転速度2rpm、合成時間24時間とした。水熱合成の後、反応生成物をpHが7になるまでイオン交換水で洗浄し、120℃で一晩乾燥を行った。水熱合成により形成されたゼオライト膜の質量は、最終的に得られたカプセル化触媒全体の20質量%であった。
次いで、ジニトロアンミン白金硝酸溶液([Pt(NH3)2(NO2)2]HNO3、Pt濃度10質量%)を最終的に得られるカプセル化触媒全体に対して0.2質量%となるように測りとり、上記乾燥後の反応生成物を、焼成段階を経ずに、硝酸ニッケル六水和物の場合と同様に、超音波のもとIW法で含浸させ、30分の超音波処理、1時間の減圧処理、120℃での乾燥後、550℃での焼成を行った。焼成の際は、2℃/分で昇温し、5時間500℃を保持した。これにより、白金を担持したゼオライト膜でNi/SiO2触媒を被覆してなる、Pt/シリカライト1−Ni/SiO2カプセル化触媒を得た。
得られたカプセル化触媒中のPt量は0.2質量%であり、Ni量は7.2質量%であった。カプセル化触媒の大きさは、平均粒径で1.28mmであった。また、ゼオライトの平均細孔径は0.5nmであった。
図4は、得られたカプセル化触媒のSEM断面写真である。写真の下のグラフは、点線Xに沿ってリニアスキャンし元素分析した結果を示すグラフであり、横軸は距離(μm)、縦軸は強度(任意単位)である。
図4に示されるように、コア部分であるNi/SiO2触媒の表面に、外皮として厚み10μmほどのゼオライト膜が形成されており、コア部分にはNi0が存在し、ゼオライト膜にはPt0が集中していることが確認できた。
[触媒試験1:転化率の測定]
上記で得られた実施例のカプセル化触媒(Pt/S1−Ni/SiO2)と、比較例に係るシリカ担持ニッケル触媒(Ni/SiO2)を用いて、メタンの二酸化炭素改質を行って合成ガスを生成した。比較例のシリカ担持ニッケル触媒としては、上記「Ni/SiO2触媒の調製」により調製した、外皮のないNi/SiO2触媒をそのままを用いた。
メタンの二酸化炭素改質反応は、次のように実施した。
内径4mmの反応管の長さ16mm〜24mmの位置に触媒を詰めて触媒床を形成した。用いる触媒の量は、0.1〜0.5gとし、触媒床に含まれるNi量が実施例と比較例とで同じ値(0.03g)になるように調整した。触媒床の形成に際しては、上記16mm〜24mmの範囲全体で触媒床が形成されるように、石英砂を用いて触媒を希釈して充填した。反応管を750℃に加熱した状態で水素還元処理(水素流速:30〜150mL/分)を2時間行った後、メタンの二酸化炭素改質反応へ移った。
原料ガスを所定の流速で反応管に導入、昇温し、所定反応温度に到達したら、反応開始とした。オンライン・ガスクロマトグラフ((株)島津製作所製「GC−2014」)で出口ガスを随時追跡分析した。
反応条件は、設定温度750℃、圧力0.1MPa、GHSV=25,000mLgcat -1-1とした。原料ガスについては、メタン:二酸化炭素:酸素の混合比(モル比)を、8:8:0、8:6:1、8:4:2、8:2:3、8:0:4と変えて実験した。
設定温度は、反応管の外壁に付着した熱電対により温度を測定しながら、反応管を加熱するヒータへの供給電力を調節することにより制御した。なお、混合比がメタン:二酸化炭素:酸素=8:8:0の場合、酸素を供給していないので、メタンの酸化反応による発熱がなく、そのため、二酸化炭素改質反応中は常にヒータに電力を供給して触媒床を加熱した(すなわち、外部エネルギー投入により加熱した)。これに対し、酸素を供給する場合、メタンの酸化反応による発熱があるため、ヒータへの電力供給は停止した。
図5(a)はメタンの転化率を示すグラフであり、図5(b)は二酸化炭素の転化率を示すグラフであり、図5(c)は得られた合成ガス中の水素と一酸化炭素のモル比を示すグラフである。
転化率の算出方法は以下の通りである。原料ガス中、約3体積%前後のアルゴンガス(反応に参加しない内部標準物)を同伴して、触媒ないときの出口メタン/アルゴン面積比(オンライン・ガスクロマトグラフのチャートピーク面積積分値)を測り、触媒を搭載した反応中の出口メタン/アルゴン面積比も測り、この比の減少の割合をメタン転化率(%)とした。二酸化炭素についても同様であり、ガスクロマトグラフの二酸化炭素/アルゴンの面積比の減少割合を二酸化炭素転化率(%)とした。
結果は図5(a)及び図5(b)に示す通りであり、いずれの混合比においても、本実施例に係るカプセル化触媒を用いた方が高い転化率を示した。
[触媒試験2:触媒床の温度分布]
触媒試験1と同様に、実施例のカプセル化触媒(Pt/S1−Ni/SiO2)と、比較例のシリカ担持ニッケル触媒(Ni/SiO2)を用いて、メタンの二酸化炭素改質を行い、その時の触媒床の温度分布を調べた。温度は、触媒床内部の実際の温度を測定するために、反応管の内部に熱電対用内管(さや管)を挿入し、さや管内に熱電対を入れて、反応管の長手方向に沿って熱電対を移動させ、反応管の各位置での実際の温度を測定した。
図6は、触媒床の温度分布を示すグラフであり、(a)が比較例のシリカ担持ニッケル触媒の場合の結果で、(b)が実施例のカプセル化触媒の場合の結果である。温度分布は、触媒試験1と同様の5種類の混合比の原料ガスを用いた場合の結果とともに、反応前の測定結果も示している。触媒床は、上記の通り反応管位置の16mm〜24mmにある。
図6(a)に示すように、比較例のシリカ担持ニッケル触媒の場合、原料ガスの注入口付近の酸素含有量が多い部分では温度が高く(即ち、ホットスポットが生じ)、大きな温度勾配が見られた。特に、原料ガス中の酸素の含有比が高いものほど、注入口付近の温度が高く、温度勾配は大きかった。これに対し、図6(b)に示すように、実施例のカプセル化触媒の場合、温度勾配はほとんど見られず、ホットスポットも見なれなかった。
[触媒試験3:安定性試験]
実施例のカプセル化触媒(Pt/S1−Ni/SiO2)を用いて、触媒試験1と同様のメタンの二酸化炭素改質を行った。触媒試験3では、原料ガスとしてメタン:二酸化炭素:酸素の混合比(モル比)が8:8:0、8:6:1、8:4:2、8:2:3の4種類を用い、反応開始から10時間までのメタン及び二酸化炭素の転化率と、生成ガス中の水素と一酸化炭素のモル比を1時間毎に測定した。その他は触媒試験1と同様に行った。
図7(a)はメタンの転化率の経時変化、図7(b)は二酸化炭素の転化率の経時変化、図7(c)は水素と一酸化炭素のモル比の経時変化をそれぞれ示すグラフである。図7(a)及び図7(b)に示すように、実施例のカプセル化触媒は、いずれの混合比においても、触媒活性は安定しており、失活は見られなかった。
[触媒試験4:長期安定性試験]
触媒試験1と同様に、実施例のカプセル化触媒(Pt/S1−Ni/SiO2)と、比較例のシリカ担持ニッケル触媒(Ni/SiO2)を用いて、メタンの二酸化炭素改質を行った。触媒試験4では、原料ガスとしてメタン:二酸化炭素:酸素=8:2:3(モル比)を用い、反応開始から100時間までのメタン及び二酸化炭素の転化率と、生成ガス中の水素と一酸化炭素のモル比を測定した。その他は触媒試験1と同様に行った。
図8(a)はメタンの転化率の経時変化、図8(b)は二酸化炭素の転化率の経時変化、図8(c)は水素と一酸化炭素のモル比の経時変化をそれぞれ示すグラフである。図8(a)及び図8(b)に示すように、比較例のシリカ担持ニッケル触媒は早期に失活したのに対し、実施例のカプセル化触媒の触媒活性は安定しており、失活は見られなかった。
以上のように、本実施形態に係るカプセル化触媒であると、メタンの二酸化炭素改質反応においてメタンの酸化反応熱を効果的に利用し、メタン及び二酸化炭素の転化率を高めることができる。また、触媒床内の熱が平準化するため、シンタリングが起きにくくなり、触媒の高寿命化を図ることができる。
以上、本発明のいくつかの実施形態を説明したが、これら実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその省略、置き換え、変更などは、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (5)

  1. 二酸化炭素によりメタンを改質する触媒活性を持つ触媒金属を酸化物担体に担持させた金属担持触媒と、
    前記金属担持触媒の表面を被覆するゼオライトからなる外皮であって、当該ゼオライトに白金を担持させた外皮と、
    を備える、メタンの二酸化炭素改質用カプセル化触媒。
  2. 前記金属担持触媒が、酸化物担体にニッケルを担持したニッケル担持触媒である、
    請求項1に記載の二酸化炭素改質用カプセル化触媒。
  3. 前記金属担持触媒が、シリカ担体にニッケルを担持したNi/SiO2触媒である、
    請求項1に記載の二酸化炭素改質用カプセル化触媒。
  4. 請求項1〜3のいずれか1項に記載の二酸化炭素改質用カプセル化触媒の存在下、メタンと二酸化炭素を反応させて水素と一酸化炭素を含む合成ガスを製造する、
    合成ガスの製造方法。
  5. 前記二酸化炭素改質用カプセル化触媒に、メタン及び二酸化炭素とともに酸素を供給する、
    請求項4に記載の合成ガスの製造方法。
JP2019502362A 2017-03-01 2017-03-01 メタンの二酸化炭素改質用カプセル化触媒、及びそれを用いた合成ガスの製造方法 Active JP6694108B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/008126 WO2018158883A1 (ja) 2017-03-01 2017-03-01 メタンの二酸化炭素改質用カプセル化触媒、及びそれを用いた合成ガスの製造方法

Publications (2)

Publication Number Publication Date
JPWO2018158883A1 JPWO2018158883A1 (ja) 2019-11-07
JP6694108B2 true JP6694108B2 (ja) 2020-05-13

Family

ID=63370290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019502362A Active JP6694108B2 (ja) 2017-03-01 2017-03-01 メタンの二酸化炭素改質用カプセル化触媒、及びそれを用いた合成ガスの製造方法

Country Status (2)

Country Link
JP (1) JP6694108B2 (ja)
WO (1) WO2018158883A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7246040B2 (ja) * 2018-10-23 2023-03-27 Eneos株式会社 触媒、触媒の製造方法、及び合成ガスの製造方法
CN114308042B (zh) * 2022-01-04 2023-11-21 安徽理工大学 一种凹凸棒石基有序微孔沸石催化剂及其制备方法与应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4460704A (en) * 1980-06-15 1984-07-17 Imperial Chemical Industries Plc Catalyst for the production of hydrogen
JPH1147607A (ja) * 1997-08-07 1999-02-23 Nissan Gaadoraa Shokubai Kk 二酸化炭素による炭化水素改質触媒、その製造法、及び水素,一酸化炭素の分離製造法
JP2003112052A (ja) * 2001-10-03 2003-04-15 Toyota Motor Corp 水素生成触媒
JP2005144402A (ja) * 2003-11-19 2005-06-09 Sangaku Renkei Kiko Kyushu:Kk 炭化水素の部分酸化用触媒およびそれを用いた合成ガスの製造法
JP2006167501A (ja) * 2004-12-13 2006-06-29 Matsushita Electric Ind Co Ltd 改質触媒、水素生成装置および燃料電池システム
JP4889307B2 (ja) * 2006-01-30 2012-03-07 Jx日鉱日石エネルギー株式会社 カプセル触媒を用いた液体燃料の製造方法

Also Published As

Publication number Publication date
WO2018158883A1 (ja) 2018-09-07
JPWO2018158883A1 (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
Zou et al. Core–shell NiO@ PdO nanoparticles supported on alumina as an advanced catalyst for methane oxidation
Wang et al. Thermally stable Ir/Ce 0.9 La 0.1 O 2 catalyst for high temperature methane dry reforming reaction
Palma et al. Enhancing Pt-Ni/CeO2 performances for ethanol reforming by catalyst supporting on high surface silica
Michorczyk et al. Activity of chromium oxide deposited on different silica supports in the dehydrogenation of propane with CO2–A comparative study
Kim et al. Activity and stability of NiCe@ SiO2 multi–yolk–shell nanotube catalyst for tri-reforming of methane
Li et al. A novel oxygen carrier for chemical looping reforming: LaNiO3 perovskite supported on montmorillonite
CN102781574B (zh) 费托合成催化剂及其制造方法、以及烃的制造方法
Dai et al. Catalytic activity of mesoporous Ni/CNT, Ni/SBA-15 and (Cu, Ca, Mg, Mn, Co)–Ni/SBA-15 catalysts for CO 2 reforming of CH 4
Gao et al. Structural features and catalytic performance in CO preferential oxidation of CuO–CeO 2 supported on multi-walled carbon nanotubes
Shah et al. The effects of stoichiometry on the properties of exsolved Ni‐Fe alloy nanoparticles for dry methane reforming
WO2013075559A1 (zh) 基于多孔材料限域的费托合成钴基纳米催化剂及其制备方法
JP2007069151A (ja) 炭化水素の接触部分酸化用の触媒及び合成ガスの製造方法
Wang et al. Atomically dispersed Au catalysts supported on CeO 2 foam: controllable synthesis and CO oxidation reaction mechanism
Li et al. Ceria-modified nickel supported on porous silica as highly active and stable catalyst for dry reforming of methane
CN105828938A (zh) 用于氧化废气流中的甲烷的含钛沸石催化剂
JP2020033280A (ja) メタンを製造する方法、及び製造システム
Ibrahim et al. Influence of promoted 5% Ni/MCM‐41 catalysts on hydrogen yield in CO2 reforming of CH4
JP6694108B2 (ja) メタンの二酸化炭素改質用カプセル化触媒、及びそれを用いた合成ガスの製造方法
Cho et al. Magnesium-promoted Ni/USY catalysts prepared via surfactant-assisted melt infiltration for ammonia decomposition
Sepehri et al. Preparation of Highly Active Nickel Catalysts Supported on Mesoporous Nanocrystalline γ‐Al2O3 for Methane Autothermal Reforming
Chaparro-Garnica et al. Sponge-like carbon monoliths: porosity control of 3D-printed carbon supports and its influence on the catalytic performance
KR102105934B1 (ko) 코어-쉘 구조를 갖는 메탄 산화용 촉매, 이의 제조방법 및 이를 이용한 메탄의 산화 방법
Guo et al. Direct synthesis of CuO–ZnO–CeO2 catalyst on Al2O3/cordierite monolith for methanol steam reforming
Lee et al. Hydrogen‐rich gas production from ethanol steam‐reforming reaction using NiZr‐loaded MCM‐48 catalysts at mild temperature
JP6802353B2 (ja) メタンの二酸化炭素改質用触媒及びその製造方法、並びに合成ガスの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200416

R150 Certificate of patent or registration of utility model

Ref document number: 6694108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250