JP6688440B1 - プラズマ処理装置、プラズマ処理方法、プログラムおよびメモリ媒体 - Google Patents

プラズマ処理装置、プラズマ処理方法、プログラムおよびメモリ媒体 Download PDF

Info

Publication number
JP6688440B1
JP6688440B1 JP2019563646A JP2019563646A JP6688440B1 JP 6688440 B1 JP6688440 B1 JP 6688440B1 JP 2019563646 A JP2019563646 A JP 2019563646A JP 2019563646 A JP2019563646 A JP 2019563646A JP 6688440 B1 JP6688440 B1 JP 6688440B1
Authority
JP
Japan
Prior art keywords
electrode
plasma processing
processing apparatus
reactance
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019563646A
Other languages
English (en)
Other versions
JPWO2020003557A1 (ja
Inventor
正治 田名部
正治 田名部
一成 関谷
一成 関谷
忠 井上
忠 井上
浩 笹本
浩 笹本
辰憲 佐藤
辰憲 佐藤
信昭 土屋
信昭 土屋
竹田 敦
敦 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2018/024148 external-priority patent/WO2019004186A1/ja
Priority claimed from PCT/JP2018/024147 external-priority patent/WO2019004185A1/ja
Priority claimed from PCT/JP2018/024149 external-priority patent/WO2019004187A1/ja
Priority claimed from PCT/JP2018/024146 external-priority patent/WO2019004184A1/ja
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Application granted granted Critical
Publication of JP6688440B1 publication Critical patent/JP6688440B1/ja
Publication of JPWO2020003557A1 publication Critical patent/JPWO2020003557A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32541Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32577Electrical connecting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • H03H7/40Automatic matching of load impedance to source impedance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/42Networks for transforming balanced signals into unbalanced signals and vice versa, e.g. baluns
    • H03H7/425Balance-balance networks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2242/00Auxiliary systems
    • H05H2242/20Power circuits
    • H05H2242/26Matching networks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

プラズマ処理装置は、インピーダンス整合回路と、前記インピーダンス整合回路に接続された第1不平衡端子、接地された第2不平衡端子、第1平衡端子および第2平衡端子を有するバランと、接地された真空容器と、前記第1平衡端子に電気的に接続された第1電極と、前記第2平衡端子に電気的に接続された第2電極と、前記第1電極に印加される第1電圧と前記第2電極に印加される第2電圧との関係に影響を与える調整リアクタンスと、前記インピーダンス整合回路を介して前記第1不平衡端子と前記第2不平衡端子との間に供給される高周波を発生する高周波電源と、前記インピーダンス整合回路のインピーダンスおよび前記調整リアクタンスのリアクタンスを制御する制御部と、を備える。

Description

本発明は、プラズマ処理装置、プラズマ処理方法、プログラムおよびメモリ媒体に関する。
特許文献1には、高周波トランス(Tr7)と、マッチングボックス(MB7)と、真空容器(10)と、第1のターゲット(T5)と、第2のターゲット(T6)と、高周波電圧発生器(OSC5)と、電圧増幅器(PA5)と、基板ホルダ(21)と、モータ(22)とを備えるスパッタ装置が記載されている。特開平2−156080号公報に記載されたスパッタ装置では、2つのターゲット(T5、T6)の電圧は、プラズマの発生条件等によって定まるものであり、調整不能なパラメータである。
特開平2−156080号公報
本発明は、上記の課題認識に基づいてなされたものであり、プラズマを発生さるための2つの電極の電圧を調整するために有利な技術を提供する。
本発明の第1の側面は、プラズマ処理装置に係り、前記プラズマ処理装置は、インピーダンス整合回路と、前記インピーダンス整合回路に接続された第1不平衡端子、接地された第2不平衡端子、第1平衡端子および第2平衡端子を有するバランと、接地された真空容器と、前記第1平衡端子に電気的に接続された第1電極と、前記第2平衡端子に電気的に接続された第2電極と、前記第1電極に印加される第1電圧と前記第2電極に印加される第2電圧との関係に影響を与える調整リアクタンスと、前記インピーダンス整合回路を介して前記第1不平衡端子と前記第2不平衡端子との間に供給される高周波を発生する高周波電源と、前記インピーダンス整合回路のインピーダンスおよび前記調整リアクタンスのリアクタンスを制御する制御部と、を備える。
本発明の第2の側面は、プラズマ処理装置において基板を処理するプラズマ処理方法に係り、前記プラズマ処理装置は、インピーダンス整合回路と、前記インピーダンス整合回路に接続された第1不平衡端子、接地された第2不平衡端子、第1平衡端子および第2平衡端子を有するバランと、接地された真空容器と、前記第1平衡端子に電気的に接続された第1電極と、前記第2平衡端子に電気的に接続された第2電極と、前記第1電極に印加される第1電圧と前記第2電極に印加される第2電圧との関係に影響を与える調整リアクタンスと、前記インピーダンス整合回路を介して前記第1不平衡端子と前記第2不平衡端子との間に供給される高周波を発生する高周波電源と、を備え、前記プラズマ処理方法は、前記第1平衡端子および前記第2平衡端子の側から前記第1電極および前記第2電極の側を見たときのインピーダンスに整合するように前記インピーダンス整合回路のインピーダンスを制御する整合工程と、前記関係が調整されるように前記調整リアクタンスを調整する調整工程と、前記調整工程の後に、前記基板を処理する処理工程と、を含む。
本発明の第3の側面は、プラズマ処理装置に係り、前記プラズマ処理装置は、インピーダンス整合回路と、前記インピーダンス整合回路に接続された第1不平衡端子、接地された第2不平衡端子、第1平衡端子および第2平衡端子を有するバランと、接地された真空容器と、前記第1平衡端子に電気的に接続された第1電極と、前記第2平衡端子に電気的に接続された第2電極と、前記第1電極に印加される第1電圧と前記第2電極に印加される第2電圧との関係に影響を与える調整リアクタンスと、前記インピーダンス整合回路を介して前記第1不平衡端子と前記第2不平衡端子との間に供給される高周波を発生する高周波電源と、前記第1電極の電圧および前記第2電極の電圧を測定する測定部と、を備え、前記測定部で測定された前記第1電極の電圧と前記第2電極の電圧に応じて、前記調整リアクタンスのリアクタンスが調整される。
本発明の第1実施形態のプラズマ処理装置1の構成を模式的に示す図。 バランの構成例を示す図。 バランの他の構成例を示す図。 バラン103の機能を説明する図。 電流I1(=I2)、I2’、I3、ISO、α(=X/Rp)の関係を例示する図。 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位およびカソード電位をシミュレーションした結果を示す図。 Rp−jXpの確認方法を例示する図。 本発明の第2実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第3実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第4実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第5実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第6実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第7実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第7実施形態のバランの機能を説明する図。 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。 1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位および2つのカソード電位をシミュレーションした結果を示す図。 本発明の第8実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第9実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第10実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第11実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第12実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第13実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第14実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第9実施形態のプラズマ処理装置1の機能を説明する図。 本発明の第9実施形態のプラズマ処理装置1の機能を説明する図。 本発明の第15実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第16実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第17実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第18実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第19実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第20実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第21実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第23実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第24実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第25実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第26実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第27実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第28実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第29実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第23実施形態のプラズマ処理装置1の動作を例示するフローチャート。 リアクタンスと第1電極および第2電極の電圧との関係を例示する図。 本発明の第30実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第31実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第32実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第33実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第34実施形態のプラズマ処理装置1の構成を模式的に示す図。 高周波電源が発生する高周波の周波数を12.56MHzに設定した場合に基板に形成された膜の正規化された厚さ分布を例示する図。 高周波電源が発生する高周波の周波数を変化させた場合における第1電極の電圧(第1電圧)および第2電極の電圧(第2電圧)を例示する図。 本発明の第35実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第36実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第37実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第38実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第39実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第41実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第42実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第43実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第44実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第45実施形態のプラズマ処理装置1の構成を模式的に示す図。 高周波電源が発生する高周波の周波数と第1電極および第2電極の電圧との関係を例示する図。 本発明の第46実施形態のプラズマ処理装置1の構成を模式的に示す図。 本発明の第47実施形態のプラズマ処理装置1の構成を模式的に示す図。
以下、添付図面を参照しながら本発明をその例示的な実施形態を通して説明する。
図1には、本発明の第1実施形態のプラズマ処理装置1の構成が模式的に示されている。第1実施形態のプラズマ処理装置は、スパッタリングによって基板112に膜を形成するスパッタリング装置として動作しうる。プラズマ処理装置1は、バラン(平衡不平衡変換回路)103と、真空容器110と、第1電極106と、第2電極111とを備えている。あるいは、プラズマ処理装置1は、バラン103と、本体10とを備え、本体10が、真空容器110と、第1電極106と、第2電極111とを備えているものとして理解されてもよい。本体10は、第1端子251および第2端子252を有する。第1電極106は、真空容器110と協働して真空空間と外部空間とを分離するように(即ち、真空隔壁の一部を構成するように)配置されてもよいし、真空容器110の中に配置されてもよい。第2電極111は、真空容器110と協働して真空空間と外部空間とを分離するように(即ち、真空隔壁の一部を構成するように)配置されてもよいし、真空容器110の中に配置されてもよい。
バラン103は、第1不平衡端子201、第2不平衡端子202、第1平衡端子211および第2平衡端子212を有する。バラン103の第1不平衡端子201および第2不平衡端子202の側には、不平衡回路が接続され、バラン103の第1平衡端子211および第2平衡端子212の側には、平衡回路が接続される。真空容器110は、導体で構成され、接地されている。
第1実施形態では、第1電極106は、カソードであり、ターゲット109を保持する。ターゲット109は、例えば、絶縁体材料または導電体材料でありうる。また、第1実施形態では、第2電極111は、アノードであり、基板112を保持する。第1実施形態のプラズマ処理装置1は、ターゲット109のスパッタリングによって基板112に膜を形成するスパッタリング装置として動作しうる。第1電極106は、第1平衡端子211に電気的に接続され、第2電極111は、第2平衡端子212に電気的に接続されている。第1電極106と第1平衡端子211とが電気的に接続されていることは、第1電極106と第1平衡端子211との間で電流が流れるように第1電極106と第1平衡端子211との間に電流経路が構成されていることを意味する。同様に、この明細書において、aとbとが電気的に接続されているとは、aとbとの間で電流が流れるようにaとbとの間に電流経路が構成されることを意味する。
上記の構成は、第1電極106が第1端子251に電気的に接続され、第2電極111が第2端子252に電気的に接続され、第1端子251が第1平衡端子211に電気的に接続され、第2端子252が第2平衡端子212に電気的に接続された構成としても理解されうる。
第1実施形態では、第1電極106と第1平衡端子211(第1端子251)とがブロッキングキャパシタ104を介して電気的に接続されている。ブロッキングキャパシタ104は、第1平衡端子211と第1電極106との間(あるいは、第1平衡端子211と第2平衡端子212との間)で直流電流を遮断する。ブロッキングキャパシタ104を設ける代わりに、後述のインピーダンス整合回路102が、第1不平衡端子201と第2不平衡端子202との間を流れる直流電流を遮断するように構成されてもよい。第1電極106は、絶縁体107を介して真空容器110によって支持されうる。第2電極111は、絶縁体108を介して真空容器110によって支持されうる。あるいは、第2電極111と真空容器110との間に絶縁体108が配置されうる。
プラズマ処理装置1は、高周波電源101と、高周波電源101とバラン103との間に配置されたインピーダンス整合回路102とを更に備えうる。高周波電源101は、インピーダンス整合回路102を介してバラン103の第1不平衡端子201と第2不平衡端子202との間に高周波(高周波電流、高周波電圧、高周波電力)を供給する。換言すると、高周波電源101は、インピーダンス整合回路102、バラン103およびブロッキングキャパシタ104を介して、第1電極106と第2電極111との間に高周波(高周波電流、高周波電圧、高周波電力)を供給する。あるいは、高周波電源101は、インピーダンス整合回路102およびバラン103を介して、本体10の第1端子251と第2端子252との間に高周波を供給するものとしても理解されうる。
真空容器110の内部空間には、真空容器110に設けられた不図示のガス供給部を通してガス(例えば、Ar、KrまたはXeガス)が供給される。また、第1電極106と第2電極111との間には、インピーダンス整合回路102、バラン103およびブロッキングキャパシタ104を介して高周波電源101によって高周波が供給される。これにより、第1電極106と第2電極111との間にプラズマが生成され、ターゲット109の表面にセルフバイアス電圧が発生し、プラズマ中のイオンがターゲット109の表面に衝突し、ターゲット109からそれを構成する材料の粒子が放出される。そして、この粒子によって基板112の上に膜が形成される。
図2Aには、バラン103の一構成例が示されている。図2Aに示されたバラン103は、第1不平衡端子201と第1平衡端子211とを接続する第1コイル221と、第2不平衡端子202と第2平衡端子212とを接続する第2コイル222とを有する。第1コイル221および第2コイル222は、同一巻き数のコイルであり、鉄心を共有する。
図2Bには、バラン103の他の構成例が示されている。図2Bに示されたバラン103は、第1不平衡端子201と第1平衡端子211とを接続する第1コイル221と、第2不平衡端子202と第2平衡端子212とを接続する第2コイル222とを有する。第1コイル221および第2コイル222は、同一巻き数のコイルであり、鉄心を共有する。また、図2Bに示されたバラン103は、第1平衡端子211と第2平衡端子212との間に接続された第3コイル223および第4コイル224を更に有し、第3コイル223および第4コイル224は、第3コイル223と第4コイル224との接続ノード213の電圧を第1平衡端子211の電圧と第2平衡端子212の電圧との中点とするように構成されている。第3コイル223および第4コイル224は、同一巻き数のコイルであり、鉄心を共有する。接続ノード213は、接地されてもよいし、真空容器110に接続されてもよいし、フローティングにされてもよい。
図3を参照しながらバラン103の機能を説明する。第1不平衡端子201を流れる電流をI1、第1平衡端子211を流れる電流をI2、第2不平衡端子202を流れる電流をI2’、電流I2のうち接地に流れる電流をI3とする。I3=0、即ち、平衡回路の側で接地に電流が流れない場合、接地に対する平衡回路のアイソレーション性能が最も良い。I3=I2、即ち、第1平衡端子211を流れる電流I2の全てが接地に対して流れる場合、接地に対する平衡回路のアイソレーション性能が最も悪い。このようなアイソレーション性能の程度を示す指標ISOは、以下の式で与えられうる。この定義の下では、ISOの値の絶対値が大きい方が、アイソレーション性能が良い。
ISO[dB]=20log(I3/I2’)
図3において、Rp−jXpは、真空容器110の内部空間にプラズマが発生している状態で第1平衡端子211および第2平衡端子212の側から第1電極106および第2電極111の側(本体10の側)を見たときのインピーダンス(ブロッキングキャパシタ104のリアクタンスを含む)を示している。Rpは抵抗成分、−Xpはリアクタンス成分を示している。また、図3において、Xは、バラン103の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)を示している。ISOは、X/Rpに対して相関を有する。
図4には、電流I1(=I2)、I2’、I3、ISO、α(=X/Rp)の関係が例示されている。本発明者は、バラン103を介して高周波電源101から第1電極106と第2電極111との間に高周波を供給する構成、特に、該構成において1.5≦X/Rp≦5000を満たすことが、真空容器110の内部空間(第1電極106と第2電極111との間の空間)に形成されるプラズマの電位(プラズマ電位)を真空容器110の内面の状態に対して鈍感にするために有利であることを見出した。ここで、プラズマ電位が真空容器110の内面の状態に対して鈍感になることは、プラズマ処理装置1を長期間にわたって使用した場合においてもプラズマ電位を安定させることができることを意味する。1.5≦X/Rp≦5000は、−10.0dB≧ISO≧−80dBに相当する。
図5A〜5Dには、1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位および第1電極106の電位(カソード電位)をシミュレーションした結果が示されている。図5Aは、真空容器110の内面に膜が形成されていない状態でのプラズマ電位およびカソード電位を示している。図5Bは、真空容器110の内面に抵抗性の膜(1000Ω)が形成された状態でのプラズマ電位およびカソード電位を示している。図5Cは、真空容器110の内面に誘導性の膜(0.6μH)が形成された状態でのプラズマ電位およびカソード電位を示している。図5Dは、真空容器110の内面に容量性の膜(0.1nF)が形成された状態でのプラズマ電位およびカソード電位を示している。図5A〜5Dより、1.5≦X/Rp≦5000を満たすことが、真空容器110の内面が種々の状態においてプラズマ電位を安定させるために有利であることが理解される。
図6A〜6Dには、1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位および第1電極106の電位(カソード電位)をシミュレーションした結果が示されている。図6Aは、真空容器110の内面に膜が形成されていない状態でのプラズマ電位およびカソード電位を示している。図6Bは、真空容器110の内面に抵抗性の膜(1000Ω)が形成された状態でのプラズマ電位およびカソード電位を示している。図6Cは、真空容器110の内面に誘導性の膜(0.6μH)が形成された状態でのプラズマ電位およびカソード電位を示している。図6Dは、真空容器110の内面に容量性の膜(0.1nF)が形成された状態でのプラズマ電位およびカソード電位を示している。図6A〜6Dより、1.5≦X/Rp≦5000を満たさない場合は、真空容器110の内面の状態に依存してプラズマ電位が変化しうることが理解される。
ここで、X/Rp>5000(例えば、X/Rp=∞)である場合とX/Rp<1.5である場合(例えば、X/Rp=1.0、X/Rp=0.5)との双方において、真空容器110の内面の状態に依存してプラズマ電位が変化しやすい。X/Rp>5000である場合は、真空容器110の内面に膜が形成されていない状態では、第1電極106と第2電極111との間でのみ放電が起こる。しかし、X/Rp>5000である場合、真空容器110の内面に膜が形成され始めると、それに対してプラズマ電位が敏感に反応し、図6A〜6Dに例示されるような結果となる。一方、X/Rp<1.5である場合は、真空容器110を介して接地に流れ込む電流が大きいので、真空容器110の内面の状態(内面に形成される膜の電気的な特性)による影響が顕著となり、膜の形成に依存してプラズマ電位が変化する。したがって、前述のように、1.5≦X/Rp≦5000を満たすようにプラズマ処理装置1を構成することが有利である。
図7を参照しながらRp−jXp(実際に知りたいものはRpのみ)の決定方法を例示する。まず、プラズマ処理装置1からバラン103を取り外し、インピーダンス整合回路102の出力端子230を本体10の第1端子251(ブロッキングキャパシタ104)に接続する。また、本体10の第2端子252(第2電極111)を接地する。この状態で高周波電源101からインピーダンス整合回路102を通して本体10の第1端子251に高周波を供給する。図7に示された例では、インピーダンス整合回路102は、等価的に、コイルL1、L2および可変キャパシタVC1、VC2で構成される。可変キャパシタVC1、VC2の容量値を調整することによってプラズマを発生させることができる。プラズマが安定した状態において、インピーダンス整合回路102のインピーダンスは、プラズマが発生しているときの本体10の側(第1電極106および第2電極111の側)のインピーダンスRp−jXpに整合している。このときのインピーダンス整合回路102のインピーダンスは、Rp+jXpである。
よって、インピーダンスが整合したときのインピーダンス整合回路102のインピーダンスRp+jXpに基づいて、Rp−jXp(実際に知りたいものはRpのみ)を得ることができる。Rp−jXpは、その他、例えば、設計データに基づいてシミュレーションによって求めることができる。
このようにして得られたRpに基づいて、X/Rpを特定することができる。例えば、1.5≦X/Rp≦5000を満たすように、Rpに基づいて、バラン103の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)Xを決定することができる。
図8には、本発明の第2実施形態のプラズマ処理装置1の構成が模式的に示されている。第2実施形態のプラズマ処理装置1は、基板112をエッチングするエッチング装置として動作しうる。第2実施形態では、第1電極106は、カソードであり、基板112を保持する。また、第2実施形態では、第2電極111は、アノードである。第2実施形態のプラズマ処理装置1では、第1電極106と第1平衡端子211とがブロッキングキャパシタ104を介して電気的に接続されている。換言すると、第2実施形態のプラズマ処理装置1では、ブロッキングキャパシタ104が第1電極106と第1平衡端子211との電気的な接続経路に配置されている。
図9には、本発明の第3実施形態のプラズマ処理装置1の構成が模式的に示されている。第3実施形態のプラズマ処理装置1は、第1実施形態のプラズマ処理装置1の変形例であり、第2電極111を昇降させる機構および第2電極111を回転させる機構の少なくとも一方を更に備える。図9に示された例では、プラズマ処理装置1は、第2電極111を昇降させる機構および第2電極111を回転させる機構の双方を含む駆動機構114を備える。真空容器110と駆動機構114との間には、真空隔壁を構成するベローズ113が設けられうる。
同様に、第2実施形態のプラズマ処理装置1も、第1電極106を昇降させる機構および第2電極106を回転させる機構の少なくとも一方を更に備えうる。
図10には、本発明の第4実施形態のプラズマ処理装置1の構成が模式的に示されている。第4実施形態のプラズマ処理装置は、スパッタリングによって基板112に膜を形成するスパッタリング装置として動作しうる。第4実施形態のプラズマ処理装置1として言及しない事項は、第1乃至第3実施形態に従いうる。プラズマ処理装置1は、第1バラン103と、第2バラン303と、真空容器110と、第1組を構成する第1電極106および第2電極135と、第2組を構成する第1電極141および第2電極145とを備えている。あるいは、プラズマ処理装置1は、第1バラン103と、第2バラン303と、本体10とを備え、本体10が、真空容器110と、第1組を構成する第1電極106および第2電極135と、第2組を構成する第1電極141および第2電極145とを備えているものとして理解されてもよい。本体10は、第1端子251、第2端子252、第3端子451、第4端子452を有する。
第1バラン103は、第1不平衡端子201、第2不平衡端子202、第1平衡端子211および第2平衡端子212を有する。第1バラン103の第1不平衡端子201および第2不平衡端子202の側には、不平衡回路が接続され、第1バラン103の第1平衡端子211および第2平衡端子212の側には、平衡回路が接続される。第2バラン303は、第1バラン103と同様の構成を有しうる。第2バラン303は、第1不平衡端子401、第2不平衡端子402、第1平衡端子411および第2平衡端子412を有する。第2バラン303の第1不平衡端子401および第2不平衡端子402の側には、不平衡回路が接続され、第2バラン303の第1平衡端子411および第2平衡端子412の側には、平衡回路が接続される。真空容器110は、接地されている。
第1組の第1電極106は、ターゲット109を保持する。ターゲット109は、例えば、絶縁体材料または導電体材料でありうる。第1組の第2電極135は、第1電極106の周囲に配置される。第1組の第1電極106は、第1バラン103の第1平衡端子211に電気的に接続され、第1組の第2電極135は、第1バラン103の第2平衡端子212に電気的に接続されている。第2組の第1電極141は、基板112を保持する。第2組の第2電極145は、第1電極141の周囲に配置される。第2組の第1電極141は、第2バラン303の第1平衡端子411に電気的に接続され、第2組の第2電極145は、第2バラン303の第2平衡端子412に電気的に接続されている。
上記の構成は、第1組の第1電極106が第1端子251に電気的に接続され、第1組の第2電極135が第2端子252に電気的に接続され、第1端子251が第1バラン103の第1平衡端子211に電気的に接続され、第2端子252が第1バラン103の第2平衡端子212に電気的に接続された構成として理解されうる。また、上記の構成は、第2組の第1電極141が第3端子451に電気的に接続され、第2組の第2電極145が第4端子452に電気的に接続され、第3端子451が第2バラン303の第1平衡端子411に電気的に接続され、第4端子452が第2バラン303の第2平衡端子412に電気的に接続されているものとして理解されうる。
第1組の第1電極106と第1バラン103の第1平衡端子211(第1端子251)とは、ブロッキングキャパシタ104を介して電気的に接続されうる。ブロッキングキャパシタ104は、第1バラン103の第1平衡端子211と第1組の第1電極106との間(あるいは、第1バラン103の第1平衡端子211と第2平衡端子212との間)で直流電流を遮断する。ブロッキングキャパシタ104を設ける代わりに、第1インピーダンス整合回路102が、第1バラン103の第1不平衡端子201と第2不平衡端子202との間を流れる直流電流を遮断するように構成されてもよい。第1組の第1電極106および第2電極135は、絶縁体132を介して真空容器110によって支持されうる。
第2組の第1電極141と第2バラン303の第1平衡端子411(第3端子451)とは、ブロッキングキャパシタ304を介して電気的に接続されうる。ブロッキングキャパシタ304は、第2バラン303の第1平衡端子411と第2組の第1電極141との間(あるいは、第2バラン303の第1平衡端子411と第2平衡端子412との間)で直流電流を遮断する。ブロッキングキャパシタ304を設ける代わりに、第2インピーダンス整合回路302が、第2バラン303の第1不平衡端子201と第2不平衡端子202との間を流れる直流電流を遮断するように構成されてもよい。第2組の第1電極141および第2電極145は、絶縁体142を介して真空容器110によって支持されうる。
プラズマ処理装置1は、第1高周波電源101と、第1高周波電源101と第1バラン103との間に配置された第1インピーダンス整合回路102とを備えうる。第1高周波電源101は、第1インピーダンス整合回路102を介して第1バラン103の第1不平衡端子201と第2不平衡端子202との間に高周波を供給する。換言すると、第1高周波電源101は、第1インピーダンス整合回路102、第1バラン103およびブロッキングキャパシタ104を介して、第1電極106と第2電極135との間に高周波を供給する。あるいは、第1高周波電源101は、第1インピーダンス整合回路102、第1バラン103を介して、本体10の第1端子251と第2端子252との間に高周波を供給する。第1バラン103並びに第1組の第1電極106および第2電極135は、真空容器110の内部空間に高周波を供給する第1高周波供給部を構成する。
プラズマ処理装置1は、第2高周波電源301と、第2高周波電源301と第2バラン303との間に配置された第2インピーダンス整合回路302とを備えうる。第2高周波電源301は、第2インピーダンス整合回路302を介して第2バラン303の第1不平衡端子401と第2不平衡端子402との間に高周波を供給する。換言すると、第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303およびブロッキングキャパシタ304を介して、第2組の第1電極141と第2電極145との間に高周波を供給する。あるいは、第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303を介して、本体10の第3端子451と第4端子452との間に高周波を供給する。第2バラン303並びに第2組の第1電極141および第2電極145は、真空容器110の内部空間に高周波を供給する第2高周波供給部を構成する。
第1高周波電源101からの高周波の供給によって真空容器110の内部空間にプラズマが発生している状態で第1バラン103の第1平衡端子211および第2平衡端子212の側から第1組の第1電極106および第2電極135の側(本体10の側)を見たときのインピーダンスをRp1−jXp1とする。また、第1バラン103の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)をX1とする。この定義において、1.5≦X1/Rp1≦5000を満たすことは、真空容器110の内部空間に形成されるプラズマの電位を安定させるために有利である。
また、第2高周波電源301からの高周波の供給によって真空容器110の内部空間にプラズマが発生している状態で第2バラン303の第1平衡端子411および第2平衡端子412の側から第2組の第1電極141および第2電極145の側(本体10の側)を見たときのインピーダンスをRp2−jXp2とする。また、第2バラン303の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)をX2とする。この定義において、1.5≦X2/Rp2≦5000を満たすことは、真空容器110の内部空間に形成されるプラズマの電位を安定させるために有利である。
図11には、本発明の第5実施形態のプラズマ処理装置1の構成が模式的に示されている。第5実施形態の装置1は、第4実施形態のプラズマ処理装置1に対して駆動機構114、314を追加した構成を有する。駆動機構114は、第1電極141を昇降させる機構および第1電極141を回転させる機構の少なくとも一方を備えうる。駆動機構314は、第2電極145を昇降させる機構を備えうる。
図12には、本発明の第6実施形態のプラズマ処理装置1の構成が模式的に示されている。第6実施形態のプラズマ処理装置は、スパッタリングによって基板112に膜を形成するスパッタリング装置として動作しうる。第6実施形態として言及しない事項は、第1乃至第5実施形態に従いうる。第6実施形態のプラズマ処理装置1は、複数の第1高周波供給部と、少なくとも1つの第2高周波供給部とを備えている。複数の第1高周波供給部のうちの1つは、第1電極106aと、第2電極135aと、第1バラン103aとを含みうる。複数の第1高周波供給部のうちの他の1つは、第1電極106bと、第2電極135bと、第1バラン103bとを含みうる。ここでは、複数の第1高周波供給部が2つの高周波供給部で構成される例を説明する。また、2つの高周波供給部およびそれに関連する構成要素を添え字a、bで相互に区別する。同様に、2つのターゲットについても、添え字a、bで相互に区別する。
他の観点において、プラズマ処理装置1は、複数の第1バラン103a、103bと、第2バラン303と、真空容器110と、第1電極106aおよび第2電極135aと、第1電極106bおよび第2電極135bと、第1電極141および第2電極145とを備えている。あるいは、プラズマ処理装置1は、複数の第1バラン103a、103bと、第2バラン303と、本体10とを備え、本体10が、真空容器110と、第1電極106aおよび第2電極135aと、第1電極106bおよび第2電極135bと、第1電極141および第2電極145とを備えているものとして理解されてもよい。本体10は、第1端子251a、251b、第2端子252a、252b、第3端子451、第4端子452を有する。
第1バラン103aは、第1不平衡端子201a、第2不平衡端子202a、第1平衡端子211aおよび第2平衡端子212aを有する。第1バラン103aの第1不平衡端子201aおよび第2不平衡端子202aの側には、不平衡回路が接続され、第1バラン103aの第1平衡端子211aおよび第2平衡端子212aの側には、平衡回路が接続される。第1バラン103bは、第1不平衡端子201b、第2不平衡端子202b、第1平衡端子211bおよび第2平衡端子212bを有する。第1バラン103bの第1不平衡端子201bおよび第2不平衡端子202bの側には、不平衡回路が接続され、第1バラン103bの第1平衡端子211bおよび第2平衡端子212bの側には、平衡回路が接続される。
第2バラン303は、第1バラン103a、103bと同様の構成を有しうる。第2バラン303は、第1不平衡端子401、第2不平衡端子402、第1平衡端子411および第2平衡端子412を有する。第2バラン303の第1不平衡端子401および第2不平衡端子402の側には、不平衡回路が接続され、第2バラン303の第1平衡端子411および第2平衡端子412の側には、平衡回路が接続される。真空容器110は、接地されている。
第1電極106a、106bは、それぞれターゲット109a、109bを保持する。ターゲット109a、109bは、例えば、絶縁体材料または導電体材料でありうる。第2電極135a、135bは、それぞれ第1電極106a、106bの周囲に配置される。第1電極106a、106bは、それぞれ第1バラン103a、103bの第1平衡端子211a、211bに電気的に接続され、第2電極135a、135bは、それぞれ第1バラン103a、103bの第2平衡端子212a、212bに電気的に接続されている。
第1電極141は、基板112を保持する。第2電極145は、第1電極141の周囲に配置される。第1電極141は、第2バラン303の第1平衡端子411に電気的に接続され、第2電極145は、第2バラン303の第2平衡端子412に電気的に接続されている。
上記の構成は、第1電極106a、106bがそれぞれ第1端子251a、251bに電気的に接続され、第2電極135a、135bがそれぞれ第2端子252a、252bに電気的に接続され、第1端子251a、251bがそれぞれ第1バラン103a、103bの第1平衡端子211a、111bに電気的に接続され、第2端子252a、252bがそれぞれ第1バラン103a、103bの第2平衡端子212a、212bに電気的に接続された構成として理解されうる。また、上記の構成は、第1電極141が第3端子451に電気的に接続され、第2電極145が第4端子452に電気的に接続され、第3端子451が第2バラン303の第1平衡端子411に電気的に接続され、第4端子452が第2バラン303の第2平衡端子412に電気的に接続されているものとして理解されうる。
第1電極106a、106bと第1バラン103a、103bの第1平衡端子211a、211b(第1端子251a、251b)とは、それぞれブロッキングキャパシタ104a、104bを介して電気的に接続されうる。ブロッキングキャパシタ104a、104bは、第1バラン103a、103bの第1平衡端子211a、211bと第1電極106a、106bとの間(あるいは、第1バラン103a、103bの第1平衡端子211a、211bと第2平衡端子212a、212bとの間)で直流電流を遮断する。ブロッキングキャパシタ104a、104bを設ける代わりに、第1インピーダンス整合回路102a、102bが、第1バラン103a、103bの第1不平衡端子201a、201bと第2不平衡端子202a、202bとの間を流れる直流電流を遮断するように構成されてもよい。あるいは、ブロッキングキャパシタ104a、104bは、第2電極135a、135bと第1バラン103a、103bの第2平衡端子212a、212b(第2端子252a、252b)との間に配置されてもよい。第1電極106a、106bおよび第2電極135a、135bは、それぞれ絶縁体132a、132bを介して真空容器110によって支持されうる。
第1電極141と第2バラン303の第1平衡端子411(第3端子451)とは、ブロッキングキャパシタ304を介して電気的に接続されうる。ブロッキングキャパシタ304は、第2バラン303の第1平衡端子411と第1電極141との間(あるいは、第2バラン303の第1平衡端子411と第2平衡端子412との間)で直流電流を遮断する。ブロッキングキャパシタ304を設ける代わりに、第2インピーダンス整合回路302が、第2バラン303の第1不平衡端子201と第2不平衡端子202との間を流れる直流電流を遮断するように構成されてもよい。あるいは、ブロッキングキャパシタ304は、第2電極145と第2バラン303の第2平衡端子412(第4端子452)との間に配置されてもよい。第1電極141および第2電極145は、絶縁体142を介して真空容器110によって支持されうる。
プラズマ処理装置1は、複数の第1高周波電源101a、101bと、複数の第1高周波電源101a、101bと複数の第1バラン103a、103bとの間にそれぞれ配置された第1インピーダンス整合回路102a、102bとを備えうる。第1高周波電源101a、101bは、それぞれ第1インピーダンス整合回路102a、102bを介して第1バラン103a、103bの第1不平衡端子201a、201bと第2不平衡端子202a、202bとの間に高周波を供給する。換言すると、第1高周波電源101a、101bは、それぞれ第1インピーダンス整合回路102a、102b、第1バラン103a、103bおよびブロッキングキャパシタ104a、104bを介して、第1電極106a、106bと第2電極135a、135bとの間に高周波を供給する。あるいは、第1高周波電源101a、101bは、第1インピーダンス整合回路102a、102b、第1バラン103a、103bを介して、本体10の第1端子251a、251bと第2端子252a、252bとの間に高周波を供給する。
プラズマ処理装置1は、第2高周波電源301と、第2高周波電源301と第2バラン303との間に配置された第2インピーダンス整合回路302とを備えうる。第2高周波電源301は、第2インピーダンス整合回路302を介して第2バラン303の第1不平衡端子401と第2不平衡端子402との間に高周波を供給する。換言すると、第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303およびブロッキングキャパシタ304を介して、第1電極141と第2電極145との間に高周波を供給する。あるいは、第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303を介して、本体10の第3端子451と第4端子452との間に高周波を供給する。
図13には、本発明の第7実施形態のプラズマ処理装置1の構成が模式的に示されている。第7実施形態のプラズマ処理装置は、スパッタリングによって基板112に膜を形成するスパッタリング装置として動作しうる。第7実施形態のプラズマ処理装置1として言及しない事項は、第1乃至第6実施形態に従いうる。プラズマ処理装置1は、第1バラン103と、第2バラン303と、真空容器110と、第1組を構成する第1電極105aおよび第2電極105bと、第2組を構成する第1電極141および第2電極145とを備えている。あるいは、プラズマ処理装置1は、第1バラン103と、第2バラン303と、本体10とを備え、本体10が、真空容器110と、第1組を構成する第1電極105aおよび第2電極105bと、第2組を構成する第1電極141および第2電極145とを備えているものとして理解されてもよい。本体10は、第1端子251、第2端子252、第3端子451、第4端子452を有する。
第1バラン103は、第1不平衡端子201、第2不平衡端子202、第1平衡端子211および第2平衡端子212を有する。第1バラン103の第1不平衡端子201および第2不平衡端子202の側には、不平衡回路が接続され、第1バラン103の第1平衡端子211および第2平衡端子212の側には、平衡回路が接続される。第2バラン303は、第1バラン103と同様の構成を有しうる。第2バラン303は、第1不平衡端子401、第2不平衡端子402、第1平衡端子411および第2平衡端子412を有する。第2バラン303の第1不平衡端子401および第2不平衡端子402の側には、不平衡回路が接続され、第2バラン303の第1平衡端子411および第2平衡端子412の側には、平衡回路が接続される。真空容器110は、接地されている。
第1組の第1電極105aは、第1ターゲット109aを保持し、第1ターゲット109aを介して基板112の側の空間と対向する。第1組の第2電極105bは、第1電極105aの隣に配置され、第2ターゲット109bを保持し、第2ターゲット109bを介して基板112の側の空間と対向する。ターゲット109aおよび109bは、例えば、絶縁体材料または導電体材料でありうる。第1組の第1電極105aは、第1バラン103の第1平衡端子211に電気的に接続され、第1組の第2電極105bは、第1バラン103の第2平衡端子212に電気的に接続されている。
第2組の第1電極141は、基板112を保持する。第2組の第2電極145は、第1電極141の周囲に配置される。第2組の第1電極141は、第2バラン303の第1平衡端子411に電気的に接続され、第2組の第2電極145は、第2バラン303の第2平衡端子412に電気的に接続されている。
上記の構成は、第1組の第1電極105aが第1端子251に電気的に接続され、第1組の第2電極105bが第2端子252に電気的に接続され、第1端子251が第1バラン103の第1平衡端子211に電気的に接続され、第2端子252が第1バラン103の第2平衡端子212に接続された構成として理解されうる。また、上記の構成は、第2組の第1電極141が第3端子451に電気的に接続され、第2組の第2電極145が第4端子452に電気的に接続され、第3端子451が第2バラン303の第1平衡端子411に電気的に接続され、第4端子452が第2バラン303の第2平衡端子412に接続されているものとして理解されうる。
第1組の第1電極105aと第1バラン103の第1平衡端子211(第1端子251)とは、ブロッキングキャパシタ104aを介して電気的に接続されうる。ブロッキングキャパシタ104aは、第1バラン103の第1平衡端子211と第1組の第1電極105aとの間(あるいは、第1バラン103の第1平衡端子211と第2平衡端子212との間)で直流電流を遮断する。第1組の第2電極105bと第1バラン103の第2平衡端子212(第2端子252)とは、ブロッキングキャパシタ104bを介して電気的に接続されうる。ブロッキングキャパシタ104bは、第1バラン103の第2平衡端子212と第1組の第2電極105bとの間(あるいは、第1バラン103の第1平衡端子211と第2平衡端子212との間)で直流電流を遮断する。第1組の第1電極105a、第2電極105bは、それぞれ絶縁体132a、132bを介して真空容器110によって支持されうる。
第2組の第1電極141と第2バラン303の第1平衡端子411(第3端子451)とは、ブロッキングキャパシタ304を介して電気的に接続されうる。ブロッキングキャパシタ304は、第2バラン303の第1平衡端子411と第2組の第1電極141との間(あるいは、第2バラン303の第1平衡端子411と第2平衡端子412との間)で直流電流を遮断する。ブロッキングキャパシタ304を設ける代わりに、第2インピーダンス整合回路302が、第2バラン303の第1不平衡端子401と第2不平衡端子402との間を流れる直流電流を遮断するように構成されてもよい。第2組の第1電極141、第2電極145は、それぞれ絶縁体142、146を介して真空容器110によって支持されうる。
プラズマ処理装置1は、第1高周波電源101と、第1高周波電源101と第1バラン103との間に配置された第1インピーダンス整合回路102とを備えうる。第1高周波電源101は、第1インピーダンス整合回路102、第1バラン103、およびブロッキングキャパシタ104a、104bを介して、第1電極105aと第2電極105bとの間に高周波を供給する。あるいは、第1高周波電源101は、第1インピーダンス整合回路102、第1バラン103を介して、本体10の第1端子251と第2端子252との間に高周波を供給する。第1バラン103並びに第1組の第1電極105aおよび第2電極105bは、真空容器110の内部空間に高周波を供給する第1高周波供給部を構成する。
プラズマ処理装置1は、第2高周波電源301と、第2高周波電源301と第2バラン303との間に配置された第2インピーダンス整合回路302とを備えうる。第2高周波電源301は、第2インピーダンス整合回路302を介して第2バラン303の第1不平衡端子401と第2不平衡端子402との間に高周波を供給する。第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303およびブロッキングキャパシタ304を介して、第2組の第1電極141と第2電極145との間に高周波を供給する。あるいは、第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303を介して、本体10の第3端子451と第4端子452との間に高周波を供給する。第2バラン303並びに第2組の第1電極141および第2電極145は、真空容器110の内部空間に高周波を供給する第2高周波供給部を構成する。
第1高周波電源101からの高周波の供給によって真空容器110の内部空間にプラズマが発生している状態で第1バラン103の第1平衡端子211および第2平衡端子212の側から第1組の第1電極105aおよび第2電極105bの側(本体10の側)を見たときのインピーダンスをRp1−jXp1とする。また、第1バラン103の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)をX1とする。この定義において、1.5≦X1/Rp1≦5000を満たすことは、真空容器110の内部空間に形成されるプラズマの電位を安定させるために有利である。
また、第2高周波電源301からの高周波の供給によって真空容器110の内部空間にプラズマが発生している状態で第2バラン303の第1平衡端子411および第2平衡端子412の側から第2組の第1電極127および第2電極130の側(本体10の側)を見たときのインピーダンスをRp2−jXp2とする。また、第2バラン303の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)をX2とする。この定義において、1.5≦X2/Rp2≦5000を満たすことは、真空容器110の内部空間に形成されるプラズマの電位を安定させるために有利である。
第7実施形態のプラズマ処理装置1は、第2組を構成する第1電極141を昇降させる機構および第2組を構成する第1電極141を回転させる機構の少なくとも一方を更に備えうる。図13に示された例では、プラズマ処理装置1は、第1電極141を昇降させる機構および第1電極141を回転させる機構の双方を含む駆動機構114を備える。また、図13に示された例では、プラズマ処理装置1は、第2組を構成する第2電極145を昇降させる機構314を備える。真空容器110と駆動機構114、314との間には、真空隔壁を構成するベローズが設けられうる。
図14を参照しながら、図13に示された第7実施形態のプラズマ処理装置1における第1バラン103の機能を説明する。第1不平衡端子201を流れる電流をI1、第1平衡端子211を流れる電流をI2、第2不平衡端子202を流れる電流をI2’、電流I2のうち接地に流れる電流をI3とする。I3=0、即ち、平衡回路の側で接地に電流が流れない場合、接地に対する平衡回路のアイソレーション性能が最も良い。I3=I2、即ち、第1平衡端子211を流れる電流I2の全てが接地に対して流れる場合、接地に対する平衡回路のアイソレーション性能が最も悪い。このようなアイソレーション性能の程度を示す指標ISOは、第1乃至第5実施形態と同様に、以下の式で与えられうる。この定義の下では、ISOの値の絶対値が大きい方が、アイソレーション性能が良い。
ISO[dB]=20log(I3/I2’)
図14において、Rp−jXp(=Rp/2−jXp/2+Rp/2−jXp/2)は、真空容器110の内部空間にプラズマが発生している状態で第1平衡端子211および第2平衡端子212の側から第1電極105aおよび第2電極105bの側(本体10の側)を見たときのインピーダンス(ブロッキングキャパシタ104a及び104bのリアクタンスを含む)を示している。Rpは抵抗成分、−Xpはリアクタンス成分を示している。また、図14において、Xは、第1バラン103の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)を示している。ISOは、X/Rpに対して相関を有する。
第1実施形態の説明において参照した図4には、電流I1(=I2)、I2’、I3、ISO、α(=X/Rp)の関係が例示されている。図4の関係は、第7実施形態においても成り立つ。本発明者は、第7実施形態においても、1.5≦X/Rp≦5000を満たすことが、真空容器110の内部空間(第1電極105aと第2電極105bとの間の空間)に形成されるプラズマの電位(プラズマ電位)を真空容器110の内面の状態に対して鈍感にするために有利であることを見出した。ここで、プラズマ電位が真空容器110の内面の状態に対して鈍感になることは、プラズマ処理装置1を長期間にわたって使用した場合においてもプラズマ電位を安定させることができることを意味する。1.5≦X/Rp≦5000は、−10.0dB≧ISO≧−80dBに相当する。
図15A〜15Dには、1.5≦X/Rp≦5000を満たす場合におけるプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)をシミュレーションした結果が示されている。図15Aは、真空容器110の内面に抵抗性の膜(1mΩ)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。図15Bは、真空容器110の内面に抵抗性の膜(1000Ω)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。図15Cは、真空容器110の内面に誘導性の膜(0.6μH)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。図15Dは、真空容器110の内面に容量性の膜(0.1nF)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。図15A〜15Dより、1.5≦X/Rp≦5000を満たすことが、真空容器110の内面が種々の状態においてプラズマ電位を安定させるために有利であることが理解される。
図16A〜16Dには、1.5≦X/Rp≦5000を満たさない場合におけるプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)をシミュレーションした結果が示されている。図16Aは、真空容器110の内面に抵抗性の膜(1mΩ)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。図16Bは、真空容器110の内面に抵抗性の膜(1000Ω)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。図16Cは、真空容器110の内面に誘導性の膜(0.6μH)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。図16Dは、真空容器110の内面に容量性の膜(0.1nF)が形成された状態でのプラズマ電位、第1電極105aの電位(カソード1電位)および第2電極105bの電位(カソード2電位)を示している。図16A〜16Dより、1.5≦X/Rp≦5000を満たさない場合は、真空容器110の内面の状態に依存してプラズマ電位が変化することが理解される。
ここで、X/Rp>5000(例えば、X/Rp=∞)である場合とX/Rp<1.5である場合(例えば、X/Rp=1.16、X/Rp=0.87)との双方において、真空容器110の内面の状態に依存してプラズマ電位が変化しやすい。X/Rp>5000である場合は、真空容器110の内面に膜が形成されていない状態では、第1電極105aと第2電極105bの間でのみ放電が起こる。しかし、X/Rp>5000である場合、真空容器110の内面に膜が形成され始めると、それに対してプラズマ電位が敏感に反応し、図16A〜16Dに例示されるような結果となる。一方、X/Rp<1.5である場合は、真空容器110を介して接地に流れ込む電流が大きいので、真空容器110の内面の状態(内面に形成される膜の電気的な特性)による影響が顕著となり、膜の形成に依存してプラズマ電位が変化する。したがって、前述のように、1.5≦X/Rp≦5000を満たすようにプラズマ処理装置1を構成することが有利である。
図17には、本発明の第8実施形態のプラズマ処理装置1の構成が模式的に示されている。第8実施形態のプラズマ処理装置は、スパッタリングによって基板112に膜を形成するスパッタリング装置として動作しうる。第8実施形態のプラズマ処理装置1として言及しない事項は、第1乃至第7実施形態に従いうる。第8実施形態のプラズマ処理装置1は、バラン(第1バラン)103と、真空容器110と、第1電極105aと、第2電極105bとを備えている。あるいは、プラズマ処理装置1は、バラン103と、本体10とを備え、本体10が、真空容器110と、第1電極105aと、第2電極105bとを備えているものとして理解されてもよい。本体10は、第1端子251および第2端子252を有する。
第1電極105aは、第1部材としての第1ターゲット109aを保持する第1保持面HS1を有し、第2電極105bは、第2部材としての第2ターゲット109bを保持する第2保持面HS2を有しうる。第1保持面HS1および第2保持面HS2は、1つの平面PLに属しうる。
第8実施形態のプラズマ処理装置1は、更に、第2バラン303と、第3電極141と、第4電極145とを備えてもよい。換言すると、プラズマ処理装置1は、第1バラン103と、第2バラン303と、真空容器110と、第1電極105aと、第2電極105bと、第3電極141と、第4電極145とを備えうる。あるいは、プラズマ処理装置1は、第1バラン103と、第2バラン303と、本体10とを備え、本体10が、真空容器110と、第1電極105aと、第2電極105bと、第3電極141と、第4電極145とを備えているものとして理解されてもよい。本体10は、第1端子251、第2端子252、第3端子451、第4端子452を有する。
第1バラン103は、第1不平衡端子201、第2不平衡端子202、第1平衡端子211および第2平衡端子212を有する。第1バラン103の第1不平衡端子201および第2不平衡端子202の側には、不平衡回路が接続され、第1バラン103の第1平衡端子211および第2平衡端子212の側には、平衡回路が接続される。第2バラン303は、第1バラン103と同様の構成を有しうる。第2バラン303は、第3不平衡端子401、第4不平衡端子402、第3平衡端子411および第4平衡端子412を有する。第2バラン303の第3不平衡端子401および第4不平衡端子402の側には、不平衡回路が接続され、第2バラン303の第3平衡端子411および第4平衡端子412の側には、平衡回路が接続される。真空容器110は、接地されている。バラン103、303は、例えば、図2A、2B(図14)に記載された構成を有しうる。
第1電極105aは、第1ターゲット109aを保持し、第1ターゲット109aを介して処理対象の基板112の側の空間と対向する。第2電極105bは、第1電極105aの隣なりに配置され、第2ターゲット109bを保持し、第2ターゲット109bを介して処理対象の基板112の側の空間と対向する。ターゲット109aおよび109bは、例えば、絶縁体材料または導電体材料でありうる。第1電極105aは、第1バラン103の第1平衡端子211に電気的に接続され、第2電極105bは、第1バラン103の第2平衡端子212に電気的に接続されている。
第3電極141は、基板112を保持する。第4電極145は、第3電極141の周囲に配置されうる。第3電極141は、第2バラン303の第1平衡端子411に電気的に接続され、第4電極145は、第2バラン303の第2平衡端子412に電気的に接続されている。
上記の構成は、第1電極105aが第1端子251に電気的に接続され、第2電極105bが第2端子252に電気的に接続され、第1端子251が第1バラン103の第1平衡端子211に電気的に接続され、第2端子252が第1バラン103の第2平衡端子212に接続された構成として理解されうる。また、上記の構成は、第3電極141が第3端子451に電気的に接続され、第4電極145が第4端子452に電気的に接続され、第3端子451が第2バラン303の第1平衡端子411に電気的に接続され、第4端子452が第2バラン303の第2平衡端子412に接続されているものとして理解されうる。
第1電極105aと第1バラン103の第1平衡端子211(第1端子251)とは、第1経路PTH1によって電気的に接続されうる。第1経路PTH1には、可変リアクタンス511aが配置されうる。換言すると、第1電極105aと第1バラン103の第1平衡端子211(第1端子251)とは、可変リアクタンス511aを介して電気的に接続されうる。可変リアクタンス511aは、キャパシタを含むことができ、該キャパシタは、第1バラン103の第1平衡端子211と第1電極105aとの間(あるいは、第1バラン103の第1平衡端子211と第2平衡端子212との間)で直流電流を遮断するブロッキングキャパシタとして機能しうる。第2電極105bと第1バラン103の第2平衡端子212(第2端子252)とは、第2経路PTH2によって電気的に接続されうる。第2経路PTH2には、可変リアクタンス511bが配置されうる。換言すると、第2電極105bと第1バラン103の第2平衡端子212(第3端子252)とは、可変リアクタンス511bを介して電気的に接続されうる。可変リアクタンス511bは、キャパシタを含むことができ、該キャパシタは、第1バラン103の第2平衡端子212と第2電極105bとの間(あるいは、第1バラン103の第1平衡端子211と第2平衡端子212との間)で直流電流を遮断するブロッキングキャパシタとして機能しうる。第1電極105a、第2電極105bは、それぞれ絶縁体132a、132bを介して真空容器110によって支持されうる。
プラズマ処理装置1は、第1電極105aと接地との間に配置された可変リアクタンス521aを備えうる。プラズマ処理装置1は、第2電極105bと接地との間に配置された可変リアクタンス521bを備えうる。プラズマ処理装置1は、第1経路PTH1と第2経路PTH2とを接続する可変リアクタンス530を備えうる。
1つの構成例において、プラズマ処理装置1は、第1電極105aに印加される第1電圧と第2電極105bに印加される第2電圧との関係に影響を与える調整リアクタンスとして、(a)第1平衡端子211と第1電極105aとを接続する第1経路PTH1に配置された可変リアクタンス511a、(b)第1電極105aと接地との間に配置された可変リアクタンス521a、(c)第2平衡端子212と第2電極105bとを接続する第2経路PTH2に配置された可変リアクタンス511b、(d)第2電極105bと接地との間に配置された可変リアクタンス521b、および、(e)第1経路PTH1と第2経路PTH2とを接続する可変リアクタンス530、の少なくとも1つを含む。
第1電極105aに印加される第1電圧と第2電極105bに印加される第2電圧との関係に影響を与える調整リアクタンスの値を調整することによって、第1ターゲット109aがスパッタリングされる量と第2ターゲット109bがスパッタリングされる量との関係を調整することができる。あるいは、調整リアクタスの値を調整することによって、第1ターゲット109aがスパッタリングされる量と第2ターゲット109bがスパッタリングされる量とのバランスを調整することができる。これにより、第1ターゲット109aの消費量と第2ターゲット109bの消費量との関係を調整することができる。あるいは、第1ターゲット109aの消費量と第2ターゲット109bの消費量とのバランスを調整することができる。このような構成は、例えば、第1ターゲット109aの交換タイミングと第2ターゲット109bの交換タイミングとを同じタイミングにし、プラズマ処理装置1のダウンタイムを低減するために有利である。また、基板112に形成される膜の厚さ分布を調整することもできる。
第3電極141と第2バラン303の第1平衡端子411(第3端子451)とは、ブロッキングキャパシタ304を介して電気的に接続されうる。ブロッキングキャパシタ304は、第2バラン303の第1平衡端子411と第3電極141との間(あるいは、第2バラン303の第1平衡端子411と第2平衡端子412との間)で直流電流を遮断する。ブロッキングキャパシタ304を設ける代わりに、第2インピーダンス整合回路302が、第2バラン303の第1不平衡端子401と第2不平衡端子402との間を流れる直流電流を遮断するように構成されてもよい。第3電極141、第4電極145は、それぞれ絶縁体142、146を介して真空容器110によって支持されうる。
プラズマ処理装置1は、第1高周波電源101と、第1高周波電源101と第1バラン103との間に配置された第1インピーダンス整合回路102とを備えうる。第1高周波電源101は、第1インピーダンス整合回路102、第1バラン103および第1経路PTH1を介して、第1電極105aと第2電極105bとの間に高周波を供給する。あるいは、第1高周波電源101は、第1インピーダンス整合回路102、第1バラン103を介して、本体10の第1端子251と第2端子252との間に高周波を供給する。第1バラン103並びに第1電極105aおよび第2電極105bは、真空容器110の内部空間に高周波を供給する第1高周波供給部を構成する。
プラズマ処理装置1は、第2高周波電源301と、第2高周波電源301と第2バラン303との間に配置された第2インピーダンス整合回路302とを備えうる。第2高周波電源301は、第2インピーダンス整合回路302を介して第2バラン303の第1不平衡端子401と第2不平衡端子402との間に高周波を供給する。第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303およびブロッキングキャパシタ304を介して、第3電極141と第4電極145との間に高周波を供給する。あるいは、第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303を介して、本体10の第3端子451と第4端子452との間に高周波を供給する。第2バラン303並びに第3電極141および第4電極145は、真空容器110の内部空間に高周波を供給する第2高周波供給部を構成する。
第1高周波電源101からの高周波の供給によって真空容器110の内部空間にプラズマが発生している状態で第1バラン103の第1平衡端子211および第2平衡端子212の側から第1電極105aおよび第2電極105bの側(本体10の側)を見たときのインピーダンスをRp1−jXp1とする。また、第1バラン103の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)をX1とする。この定義において、1.5≦X1/Rp1≦5000を満たすことは、真空容器110の内部空間に形成されるプラズマの電位を安定させるために特に有利である。ただし、1.5≦X/Rp1≦5000という条件を満たすことは、第8実施形態において必須ではなく、有利な条件であることに留意されたい。第8実施形態では、バラン103を設けることによって、バラン103を設けない場合よりも、プラズマの電位を安定させることができる。また、調整リアクタンスを設けることによって、第1ターゲット109aがスパッタリングされる量と第2ターゲット109bがスパッタリングされる量との関係を調整することができる。
また、第2高周波電源301からの高周波の供給によって真空容器110の内部空間にプラズマが発生している状態で第2バラン303の第1平衡端子411および第2平衡端子412の側から第3電極141および第4電極145の側(本体10の側)を見たときのインピーダンスをRp2−jXp2とする。また、第2バラン303の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)をX2とする。この定義において、1.5≦X2/Rp2≦5000を満たすことは、真空容器110の内部空間に形成されるプラズマの電位を安定させるために特に有利である。ただし、1.5≦X/Rp2≦5000という条件を満たすことは、第8実施形態において必須ではなく、有利な条件であることに留意されたい。
以下、図18〜図25を参照しながら、第8実施形態のプラズマ処理装置1を具体化した第9乃至第14実施形態を説明する。図18には、本発明の第9実施形態のプラズマ処理装置1の構成が模式的に示されている。第9実施形態として言及しない事項は、第8実施形態に従いうる。第9実施形態のプラズマ処理装置1は、第1経路PTH1に配置された可変リアクタンス511a、および、第2経路PTH2に配置された可変リアクタンス511b、の少なくとも1つを含む。ここで、プラズマ処理装置1は、第1経路PTH1に配置された可変リアクタンス511a、および、第2経路PTH2に配置された可変リアクタンス511bの双方を含むことが好ましいが、いずれか一方は、値が固定のリアクタンスであってもよい。
第1可変リアクタンス511aは、少なくとも可変インダクタ601aを含み、好ましくは、可変インダクタ601aおよびキャパシタ602aを含みうる。可変インダクタ601aは、第1平衡端子211(第1端子251)とキャパシタ602aとの間に配置されてもよいし、キャパシタ602aと第1電極105aとの間に配置されてもよい。第2可変リアクタンス511bは、少なくとも可変インダクタ601bを含み、好ましくは、可変インダクタ601bおよびキャパシタ602bを含みうる。可変インダクタ601bは、第2平衡端子212(第2端子252)とキャパシタ602bとの間に配置されてもよいし、キャパシタ602bと第2電極105bとの間に配置されてもよい。
図24には、第9実施形態のプラズマ処理装置1において、第1経路PTH1の可変インダクタ601aおよび第2経路PTH2の可変インダクタ601bの値を200nHに設定した場合に基板112に形成された膜の厚さ分布が示されている。また、図24には、第9実施形態のプラズマ処理装置1において、第1経路PTH1の可変インダクタ601aおよび第2経路PTH2の可変インダクタ601bの値を400nHに設定した場合に基板112に形成された膜の厚さ分布が示されている。横軸は、図18における横方向(基板112の表面に平行な方向)の位置であり、基板112の中心からの距離を示している。可変インダクタ601a、601bの値が400nHであるときは、基板112の中心の左側と右側とで膜の厚さ分布が大きく異なっている。一方、可変インダクタ601a、601bの値が200nHであるときは、基板112の中心の左側と右側とで膜の厚さ分布の対称性が高い。可変インダクタ601a、601bの値が200nHである場合の方が、可変インダクタ601a、601bの値が400nHである場合よりも、第1電極105aに与えられる第1電圧と第2電極105bに与えられる第2電圧とのバランスが良い。
図25には、第9実施形態のプラズマ処理装置1において、第1経路PTH1の可変インダクタ601aおよび第2経路PTH2の可変インダクタ601bの値を変更したときの第1電極105a、第2電極105bの電圧が示されている。可変インダクタ601a、601bの値が約225nHである場合に、第1電極105aに与えられる電圧と第2電極105bに与えられる電圧とが略等しくなっている。
図19には、本発明の第10実施形態のプラズマ処理装置1の構成が模式的に示されている。第10実施形態として言及しない事項は、第8実施形態に従いうる。第10実施形態のプラズマ処理装置1は、第1経路PTH1に配置された可変リアクタンス511a、および、第2経路PTH2に配置された可変リアクタンス511b、の少なくとも1つを含む。ここで、プラズマ処理装置1は、第1経路PTH1に配置された可変リアクタンス511a、および、第2経路PTH2に配置された可変リアクタンス511bの双方を含むことが好ましいが、いずれか一方は、値が固定のリアクタンスであってもよい。
第1可変リアクタンス511aは、少なくとも可変キャパシタ604aを含み、好ましくは、可変キャパシタ604aおよびインダクタ603aを含みうる。可変キャパシタ604aは、インダクタ603aと第1電極105aとの間に配置されてもよいし、第1平衡端子211(第1端子251)とインダクタ603aとの間に配置されてもよい。第2可変リアクタンス511bは、少なくとも可変キャパシタ604bを含み、好ましくは、可変キャパシタ604bおよびインダクタ603bを含みうる。可変キャパシタ604bは、インダクタ603bと第2電極105bとの間に配置されてもよいし、第2平衡端子212(第2端子252)とインダクタ603bとの間に配置されてもよい。
図20には、本発明の第11実施形態のプラズマ処理装置1の構成が模式的に示されている。第11実施形態として言及しない事項は、第8実施形態に従いうる。第11実施形態のプラズマ処理装置1は、第1電極105aと接地との間に配置された可変リアクタンス521aとしての可変キャパシタ605a、および、第2電極105bと接地との間に配置された可変リアクタンス521bとしての可変キャパシタ605bの少なくとも1つを備えている。プラズマ処理装置1は、更に、第1経路PTH1に配置されたリアクタンス(この例では、インダクタ603a、キャパシタ602a)と、第2経路PTH2に配置されたリアクタンス(この例では、インダクタ603b、キャパシタ602b)とを備えうる。
図21には、本発明の第12実施形態のプラズマ処理装置1の構成が模式的に示されている。第12実施形態として言及しない事項は、第8実施形態に従いうる。第12実施形態のプラズマ処理装置1は、第1電極105aと接地との間に配置された可変リアクタンス521a、および、第2電極105bと接地との間に配置された可変リアクタンス521bの少なくとも1つを備えている。可変リアクタンス521aは、少なくとも可変インダクタ607aを含み、例えば、可変インダクタ607aおよびキャパシタ606aを含みうる。可変リアクタンス521bは、少なくとも可変インダクタ607bを含み、例えば、可変インダクタ607bおよびキャパシタ606bを含みうる。
プラズマ処理装置1は、更に、第1経路PTH1に配置されたリアクタンス(この例では、インダクタ603a、キャパシタ602a)と、第2経路PTH2に配置されたリアクタンス(この例では、インダクタ603b、キャパシタ602b)とを備えうる。
図22には、本発明の第13実施形態のプラズマ処理装置1の構成が模式的に示されている。第13実施形態として言及しない事項は、第8実施形態に従いうる。第13実施形態のプラズマ処理装置1は、第1経路PTH1と第2経路PTH2とを接続する可変リアクタンス530としての可変インダクタ608を備えている。プラズマ処理装置1は、更に、第1経路PTH1に配置されたリアクタンス(この例では、インダクタ603a、キャパシタ602a)と、第2経路PTH2に配置されたリアクタンス(この例では、インダクタ603b、キャパシタ602b)とを備えうる。
図23には、本発明の第14実施形態のプラズマ処理装置1の構成が模式的に示されている。第14実施形態として言及しない事項は、第8実施形態に従いうる。第14実施形態のプラズマ処理装置1は、第1経路PTH1と第2経路PTH2とを接続する可変リアクタンス530としての可変キャパシタ609を備えている。プラズマ処理装置1は、更に、第1経路PTH1に配置されたリアクタンス(この例では、インダクタ603a、キャパシタ602a)と、第2経路PTH2に配置されたリアクタンス(この例では、インダクタ603b、キャパシタ602b)とを備えうる。
なお、図18〜25を参照して説明した第9乃至第14実施形態では、ターゲット109a、109bの対向面に電極が配置されているが、電極に限定されず、所謂カルーセル型と呼ばれるタイプのプラズマ装置における円筒形の基板回転ホルダー(例えば、特開2003−1555526、特開昭62−133065)や、所謂インライン型と呼ばれるタイプのプラズマ装置における矩形形状等の基板トレイ(例えば、特許5824072、特開2011−144450)が配置されるよう構成されてもよい。
以下、図26〜図31を参照しながら、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて調整リアクタンスの値を調整する動作を説明する。図26には、本発明の第15実施形態のプラズマ処理装置1の構成が模式的に示されている。第15実施形態のプラズマ処理装置1は、図18に示された第9実施形態のプラズマ処理装置1に対して制御部700を追加した構成を有する。制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、例えば、第1電圧V1と第2電圧V2とが等しくなるように、調整リアクタンスの値を調整する。例えば、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、調整リアクタンスとしての可変インダクタ601a、601bの値をそれぞれ調整する第1指令値CNT1、第2指令値CNT2を発生する。第1指令値CNT1、第2指令値CNT2は、それぞれ可変インダクタ601a、601bに供給される。可変インダクタ601a、601bは、それぞれ第1指令値CNT1、第2指令値CNT2に応じて自己のインダクタンスを変更する。
図27には、本発明の第16実施形態のプラズマ処理装置1の構成が模式的に示されている。第16実施形態のプラズマ処理装置1は、図19に示された第10実施形態のプラズマ処理装置1に対して制御部700を追加した構成を有する。制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、例えば、第1電圧V1と第2電圧V2とが等しくなるように、調整リアクタンスの値を調整する。例えば、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、調整リアクタンスとしての可変キャパシタ604a、604bの値をそれぞれ調整する第1指令値CNT1、第2指令値CNT2を発生する。第1指令値CNT1、第2指令値CNT2は、それぞれ可変キャパシタ604a、604bに供給される。可変キャパシタ604a、604bは、それぞれ第1指令値CNT1、第2指令値CNT2に応じて自己のキャパシタンスを変更する。
図28には、本発明の第17実施形態のプラズマ処理装置1の構成が模式的に示されている。第17実施形態のプラズマ処理装置1は、図20に示された第11実施形態のプラズマ処理装置1に対して制御部700を追加した構成を有する。制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、例えば、第1電圧V1と第2電圧V2とが等しくなるように、調整リアクタンスの値を調整する。例えば、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、調整リアクタンスとしての可変キャパシタ605a、605bの値をそれぞれ調整する第1指令値CNT1、第2指令値CNT2を発生する。第1指令値CNT1、第2指令値CNT2は、それぞれ可変キャパシタ605a、605bに供給される。可変キャパシタ605a、605bは、それぞれ第1指令値CNT1、第2指令値CNT2に応じて自己のキャパシタンスを変更する。
図29には、本発明の第18実施形態のプラズマ処理装置1の構成が模式的に示されている。第18実施形態のプラズマ処理装置1は、図21に示された第12実施形態のプラズマ処理装置1に対して制御部700を追加した構成を有する。制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、例えば、第1電圧V1と第2電圧V2とが等しくなるように、調整リアクタンスの値を調整する。例えば、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、調整リアクタンスとしての可変インダクタ607a、607bの値をそれぞれ調整する第1指令値CNT1、第2指令値CNT2を発生する。第1指令値CNT1、第2指令値CNT2は、それぞれ可変インダクタ607a、607bに供給される。可変インダクタ607a、607bは、それぞれ第1指令値CNT1、第2指令値CNT2に応じて自己のインダクタンスを変更する。
図30には、本発明の第19実施形態のプラズマ処理装置1の構成が模式的に示されている。第19実施形態のプラズマ処理装置1は、図22に示された第13実施形態のプラズマ処理装置1に対して制御部700を追加した構成を有する。制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、例えば、第1電圧V1と第2電圧V2とが等しくなるように、調整リアクタンスの値を調整する。例えば、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、調整リアクタンスとしての可変インダクタ608の値を調整する指令値CNTを発生する。指令値CNTは、可変インダクタ608に供給される。可変インダクタ608は、指令値に応じて自己のインダクタンスを変更する。
図31には、本発明の第20実施形態のプラズマ処理装置1の構成が模式的に示されている。第20実施形態のプラズマ処理装置1は、図23に示された第14実施形態のプラズマ処理装置1に対して制御部700を追加した構成を有する。制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、例えば、第1電圧V1と第2電圧V2とが等しくなるように、調整リアクタンスの値を調整する。例えば、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、調整リアクタンスとしての可変キャパシタ609の値を調整する指令値CNTを発生する。指令値CNTは、可変キャパシタ609に供給される。可変キャパシタ609は、指令値CNTに応じて自己のキャパシタンスを変更する。
図32には、本発明の第21実施形態のプラズマ処理装置1の構成が模式的に示されている。第21実施形態のプラズマ処理装置1は、基板112a、112bをエッチングするエッチング装置として動作しうる。第21実施形態のプラズマ処理装置1は、第1電極105a、第2電極105bがエッチング対象の第1基板112a、第2基板112bをそれぞれ保持し、第3電極141が基板を保持しない点で、第8実施形態のプラズマ処理装置1と異なり、他の点では第8実施形態のプラズマ処理装置1と同様の構成を有しうる。
1つの構成例において、プラズマ処理装置1は、第1電極105aに印加される第1電圧と第2電極105bに印加される第2電圧との関係に影響を与える調整リアクタンスとして、(a)第1平衡端子211と第1電極105aとを接続する第1経路PTH1に配置された可変リアクタンス511a、(b)第1電極105aと接地との間に配置された可変リアクタンス521a、(c)第2平衡端子212と第2電極105bとを接続する第2経路PTH2に配置された可変リアクタンス511b、(d)第2電極105bと接地との間に配置された可変リアクタンス521b、および、(e)第1経路PTH1と第2経路PTH2とを接続する可変リアクタンス530、の少なくとも1つを含む。
第1電極105aに印加される第1電圧と第2電極105bに印加される第2電圧との関係に影響を与える調整リアクタンスの値を調整することによって、第1基板112aのエッチング量分布と第2基板112bのエッチング量分布とを調整することができる。あるいは、第1電極105aに印加される第1電圧と第2電極105bに印加される第2電圧との関係に影響を与える調整リアクタンスの値を調整することによって、第1基板112aのエッチング量分布と第2基板112bのエッチング量分布とを同じにすることができる。
なお、図26〜31を参照して説明した第15乃至第20実施形態では、ターゲット109a、109bの対向面に電極が配置されているが、電極に限定されず、所謂カルーセル型と呼ばれるタイプのプラズマ装置における円筒形の基板回転ホルダー(例えば、特開2003−1555526、特開昭62−133065)や、所謂インライン型と呼ばれるタイプのプラズマ装置における矩形形状等の基板トレイ(例えば、特許5824072、特開2011−144450)が配置されるよう構成されてもよい。
図26〜図31を参照して説明した第15乃至第20実施形態では、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて調整リアクタンスの値を調整する。このような構成に代えて、制御部700は、第1電極105aの近傍におけるプラズマ強度と第2電極105bの近傍におけるプラズマ強度とに基づいて調整リアクタンスを調整するように構成されてもよい。第1電極105aの近傍におけるプラズマ強度は、例えば、光電変換装置によって検出されうる。同様に、第2電極105bの近傍におけるプラズマ強度は、例えば、光電変換装置によって検出されうる。制御部700は、第1電極105aの近傍におけるプラズマ強度と第2電極105bの近傍におけるプラズマ強度とに基づいて、例えば、第1電極105aの近傍におけるプラズマ強度と第2電極105bの近傍におけるプラズマ強度とが等しくなるように、調整リアクタンスの値を調整するように構成されうる。
次に、本発明の第22実施形態としてのプラズマ処理方法を説明する。第22実施形態としてのプラズマ処理方法は、第8乃至第21実施形態のいずれかのプラズマ処理装置1において基板112を処理する。該プラズマ処理方法は、第1電極105aに印加される第1電圧と第2電極105bに印加される第2電圧との関係が調整されるように調整リアクタンスを調整する工程と、該工程の後に、基板112を処理する工程と、を含みうる。該処理は、基板112にスパッタリングによって膜を形成する工程、または、基板112をエッチングする工程を含みうる。
図33には、本発明の第23実施形態のプラズマ処理装置1の構成が模式的に示されている。第23実施形態のプラズマ処理装置1は、図18に示された第9実施形態のプラズマ処理装置1に対して制御部700を追加した構成を有する。制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、例えば、第1電圧V1が第1目標値になり、第2電圧V2が第2目標値になるように、調整リアクタンスの値を調整する。例えば、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、第1電圧V1が第1目標値になり、第2電圧V2が第2目標値になるように、調整リアクタンスとしての可変インダクタ601a、601bの値をそれぞれ調整する第1指令値CNT1、第2指令値CNT2を発生する。ここで、第1目標値と第2目標値は、互いに等しい値であってもよいし、第1目標値と第2目標値との差分が目標差分値に一致するように定められてもよい。制御部700は、第1電極105aの電圧である第1電圧V1および第2電極105bの電圧である第2電圧V2を測定する測定部を含みうる。あるいは、そのような測定には、制御部700とは別に設けられてもよい。
制御部700は、インピーダンス整合回路102を制御する指令値CNT3を発生する。制御部700は、プラズマを着火するときは、インピーダンス整合回路102がプラズマの着火用のインピーダンスとなるようにインピーダンス整合回路102を制御する。また、制御部700は、プラズマの着火後にプラズマが安定するように、インピーダンス整合回路102のインピーダンスを変更する。プラズマが安定した状態において、インピーダンス整合回路102のインピーダンスは、プラズマが発生しているときの本体10の側のインピーダンスRp−jXp(第1平衡端子211および第2平衡端子212の側から第1電極105aおよび第2電極105bの側(本体10の側)を見たときのインピーダンス)に整合する。このときのインピーダンス整合回路102のインピーダンスは、Rp+jXpである。
制御部700は、例えば、FPGA(Field Programmable Gate Arrayの略。)などのPLD(Programmable Logic Deviceの略。)、又は、ASIC(Application Specific Integrated Circuitの略。)、又は、プログラムが組み込まれた汎用又は専用のコンピュータ、又は、これらの全部または一部の組み合わせによって構成されうる。該プログラムは、メモリ媒体(コンピュータ可読メモリ媒体)に格納されて、または、通信回線を介して提供されうる。
図40には、第23実施形態のプラズマ処理装置1の動作が例示されている。この動作は、制御部700によって制御されうる。工程S401では、制御部700は、インピーダンス整合回路102のインピーダンス(Rpi+jXpi)がプラズマの着火用のインピーダンス(Rpi−jXpi)に設定あるいは変更されるように指令値CNT3を決定し、その指令値CNT3をインピーダンス整合回路102に供給する。インピーダンス整合回路102は、指令値CNT3に応じて自己のインピーダンスを設定あるいは変更する。
その後、工程S402(着火工程)では、制御部700は、インピーダンス整合回路102のインピーダンスがプラズマの着火用のインピーダンスに設定された状態で、高周波電源402を起動(ON)し、高周波を発生させる。高周波電源402が発生する高周波は、インピーダンス整合回路102、バラン103、調整リアクタンス(可変インダクタ601a、601b、キャパシタ602a、602b)を介して第1電極105aおよび第2電極105bに供給される。これにより、プラズマが着火される。
工程S403(整合工程)では、制御部700は、プラズマの着火後にプラズマが安定するように、インピーダンス整合回路102のインピーダンスを変更する。具体的には、工程S403では、制御部700は、プラズマが安定するインピーダンスがインピーダンス整合回路700に設定されるように指令値CNT3を決定し、その指令値CNT3をインピーダンス整合回路700に供給する。プラズマが安定した状態において、インピーダンス整合回路102のインピーダンスは、プラズマが発生しているときの本体10の側(第1電極106および第2電極111の側)のインピーダンスRp−jXpに整合している。このときのインピーダンス整合回路102のインピーダンスは、Rp+jXpである。なお、Rpの値はRpiと異なり、Xpの値はXpiと異なる。
その後、工程S404では、制御部700は、第1電極105aの電圧V1および第2電極105bの第2電圧V2を取得する。その後、工程S405(調整工程)では、制御部700は、第1電極105aの電圧V1および第2電極105bの第2電圧V2に基づいて、第1電圧V1が第1目標値になり、第2電圧V2が第2目標値になるように可変リアクタンスとしての可変インダクタ601a、601bの値をそれぞれ調整する第1指令値CNT1、第2指令値CNT2を発生する。第1指令値CNT1、第2指令値CNT2は、それぞれ可変インダクタ601a、601bに供給される。可変インダクタ601a、601bは、それぞれ第1指令値CNT1、第2指令値CNT2に応じて自己のインダクタンスを調整あるいは変更する。
図41には、真空容器110の内部空間にプラズマが発生している状態で第1平衡端子211および第2平衡端子212の側から第1電極105aおよび第2電極105bの側(本体10の側)を見たときのリアクタンスと、第1電極105aおよび第2電極105bの電圧との関係が例示されている。このリアクタンスは、前述の−XPに相当する。図41に例示されるように、第1電極105aおよび第2電極105bの電圧は、調整リアクタンスのリアクタンスを変更することによって、それらの間の大小関係が入れ替わる。換言すると、リアクタンスの変化に対する第1電極105aおよび第2電極105bの電圧の変化曲線は、相互に交差する特性を示す。
図41に例示される特性は、例えば、予め実験あるいは計算によって決定されうる。この場合、工程S405において、制御部700は、この特性と、第1電極105aの電圧V1および第2電極105bの電圧V2とに基づいて、第1電圧V1が第1目標値になり、第2電圧V2が第2目標値になるように可変インダクタ601a、601bの値をそれぞれ調整する第1指令値CNT1、第2指令値CNT2を発生しうる。図41に例示される特性が予め決定されていない場合には、工程S405において、制御部700は、第1電極105aの電圧V1および第2電極105bの電圧V2に基づいて、第1指令値CNT1、第2指令値CNT2を微調整しうる。
その後、工程S407では、制御部700は、第1電極105aの電圧V1および第2電極105bの第2電圧V2を取得する。その後、工程S408では、制御部700は、第1電圧V1が第1目標値になり、第2電圧V2が第2目標値になったかどうかを判断し、第1電圧V1が第1目標値になり、第2電圧V2が第2目標値になった場合には工程S409に進み、そうでない場合には工程S405に戻る。工程S409(処理工程)では、制御部700は、基板112が処理されるように制御を行う。該制御は、例えば、ターゲット109aと基板112との間に配置されたシャッタ(不図示)およびターゲット109bと基板112との間に配置されたシャッタ(不図示)の開閉を制御することを含みうる。図40に示される処理は、手動で実行されてもよい。
特開平2−156080号公報の図3には、高周波トランス(Tr7)と、マッチングボックス(MB7)と、真空容器(10)と、第1のターゲット(T5)と、第2のターゲット(T6)と、高周波電圧発生器(OSC5)と、電圧増幅器(PA5)と、基板ホルダ(21)と、モータ(22)とを備えるスパッタ装置が記載されている。特開平2−156080号公報に記載されたスパッタ装置は、高周波トランス(Tr7)と第1のターゲット(T5)との間、および、高周波トランス(Tr7)と第2のターゲット(T7)との間に配置されたマッチングボックス(MB7)は、調整可能なリアクタンスを有する。
しかしながら、特開平2−156080号公報に記載されたスパッタ装置におけるマッチングボックス(MB7)は、上記の第23実施形態における調整リアクタンス(可変インダクタ601a、601b)のように動作させることはできない。何故なら、マッチングボックス(MB7)は、インピーダンス整合のために不可欠であり、マッチングボックス(MB7)のリアクタンスを自由に調整することを許容すると、マッチングボックス(MB7)をインピーダンス整合のために使用することができず、プラズマを発生させることも、プラズマを安定させることもできないからである。
ここで、特開平2−156080号公報に記載されたスパッタ装置において生成されるプラズマ(P5)は、ターゲット(T5、T6)の近傍にシースと呼ばれるイオン過多の領域と、それに接するバルクプラズマの領域とを有するであろうと理解される。シースは、キャパシタと同様に負のリアクタンス成分を有し、バルクプラズマは、インダクタと同様に正のリアクタンス成分を有するであろう。これらのリアクタンス成分は、プラズマを生成する条件である印加電力、放電圧力、電極材料等に依存しうる。したがって、プラズマのリアクタンスは、正の値をとったり、負の値をとったりし、また、その絶対値も変化しうる。特開平2−156080号公報に記載されたスパッタ装置は、第23実施形態に例示されるような調整リアクタンスを有しないので、2つのターゲット(T5、T6)、換言すると、2つの電極の電圧の間の関係を制御することはでいない。
図34には、本発明の第24実施形態のプラズマ処理装置1の構成が模式的に示されている。第24実施形態のプラズマ処理装置1は、図19に示された第10実施形態のプラズマ処理装置1に対して制御部700を追加した構成を有する。第24実施形態として言及しない事項は、第23実施形態に従いうる。制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、例えば、第1電圧V1が第1目標値になり、第2電圧V2が第2目標値になるように調整リアクタンスの値を調整する。例えば、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、第1電圧V1が第1目標値になり、第2電圧V2が第2目標値になるように調整リアクタンスとしての可変キャパシタ604a、604bの値をそれぞれ調整する第1指令値CNT1、第2指令値CNT2を発生する。第1指令値CNT1、第2指令値CNT2は、それぞれ可変キャパシタ604a、604bに供給される。可変キャパシタ604a、604bは、それぞれ第1指令値CNT1、第2指令値CNT2に応じて自己のキャパシタンスを変更する。また、制御部700は、インピーダンス整合回路102を制御する指令値CNT3を発生する。制御部700は、第1電極105aの電圧である第1電圧V1および第2電極105bの電圧である第2電圧V2を測定する測定部を含みうる。あるいは、そのような測定には、制御部700とは別に設けられてもよい。
図35には、本発明の第25実施形態のプラズマ処理装置1の構成が模式的に示されている。第25実施形態のプラズマ処理装置1は、図20に示された第25実施形態のプラズマ処理装置1に対して制御部700を追加した構成を有する。制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、例えば、第1電圧V1が第1目標値になり、第2電圧V2が第2目標値になるように、調整リアクタンスの値を調整する。例えば、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、第1電圧V1が第1目標値になり、第2電圧V2が第2目標値になるように、調整リアクタンスとしての可変キャパシタ605a、605bの値をそれぞれ調整する第1指令値CNT1、第2指令値CNT2を発生する。ここで、第1目標値と第2目標値は、互いに等しい値であってもよいし、第1目標値と第2目標値との差分が目標差分値に一致するように定められてもよい。第1指令値CNT1、第2指令値CNT2は、それぞれ可変キャパシタ605a、605bに供給される。可変キャパシタ605a、605bは、それぞれ第1指令値CNT1、第2指令値CNT2に応じて自己のキャパシタンスを変更する。制御部700は、第1電極105aの電圧である第1電圧V1および第2電極105bの電圧である第2電圧V2を測定する測定部を含みうる。あるいは、そのような測定には、制御部700とは別に設けられてもよい。
図36には、本発明の第26実施形態のプラズマ処理装置1の構成が模式的に示されている。第26実施形態のプラズマ処理装置1は、図21に示された第12実施形態のプラズマ処理装置1に対して制御部700を追加した構成を有する。第26実施形態として言及しない事項は、第23実施形態に従いうる。制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、例えば、第1電圧V1が第1目標値になり、第2電圧V2が第2目標値になるように調整リアクタンスの値を調整する。例えば、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、第1電圧V1が第1目標値になり、第2電圧V2が第2目標値になるように調整リアクタンスとしての可変インダクタ607a、607bの値をそれぞれ調整する第1指令値CNT1、第2指令値CNT2を発生する。第1指令値CNT1、第2指令値CNT2は、それぞれ可変インダクタ607a、607bに供給される。可変インダクタ607a、607bは、それぞれ第1指令値CNT1、第2指令値CNT2に応じて自己のインダクタンスを変更する。また、制御部700は、インピーダンス整合回路102を制御する指令値CNT3を発生する。制御部700は、第1電極105aの電圧である第1電圧V1および第2電極105bの電圧である第2電圧V2を測定する測定部を含みうる。あるいは、そのような測定には、制御部700とは別に設けられてもよい。
図37には、本発明の第27実施形態のプラズマ処理装置1の構成が模式的に示されている。第27実施形態のプラズマ処理装置1は、図22に示された第13実施形態のプラズマ処理装置1に対して制御部700を追加した構成を有する。第27実施形態として言及しない事項は、第23実施形態に従いうる。制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、例えば、第1電圧V1が第1目標値になり、第2電圧V2が第2目標値になるように調整リアクタンスの値を調整する。例えば、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、第1電圧V1が第1目標値になり、第2電圧V2が第2目標値になるように調整リアクタンスとしての可変インダクタ608の値を調整する指令値CNTを発生する。指令値CNTは、可変インダクタ608に供給される。可変インダクタ608は、指令値に応じて自己のインダクタンスを変更する。また、制御部700は、インピーダンス整合回路102を制御する指令値CNT3を発生する。制御部700は、第1電極105aの電圧である第1電圧V1および第2電極105bの電圧である第2電圧V2を測定する測定部を含みうる。あるいは、そのような測定には、制御部700とは別に設けられてもよい。
図38には、本発明の第28実施形態のプラズマ処理装置1の構成が模式的に示されている。第28実施形態のプラズマ処理装置1は、図23に示された第14実施形態のプラズマ処理装置1に対して制御部700を追加した構成を有する。第28実施形態として言及しない事項は、第23実施形態に従いうる。制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、例えば、第1電圧V1が第1目標値になり、第2電圧V2が第2目標値になるように調整リアクタンスの値を調整する。例えば、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、第1電圧V1が第1目標値になり、第2電圧V2が第2目標値になるように調整リアクタンスとしての可変キャパシタ609の値を調整する指令値CNTを発生する。指令値CNTは、可変キャパシタ609に供給される。可変キャパシタ609は、指令値CNTに応じて自己のキャパシタンスを変更する。また、制御部700は、インピーダンス整合回路102を制御する指令値CNT3を発生する。制御部700は、第1電極105aの電圧である第1電圧V1および第2電極105bの電圧である第2電圧V2を測定する測定部を含みうる。あるいは、そのような測定には、制御部700とは別に設けられてもよい。
図39には、本発明の第29実施形態のプラズマ処理装置1の構成が模式的に示されている。第29実施形態のプラズマ処理装置1は、基板112a、112bをエッチングするエッチング装置として動作しうる。第29実施形態のプラズマ処理装置1は、制御部700以外については、第21実施形態のプラズマ処理装置1と同様の構成を有しうる。第29実施形態として言及しない事項は、第23実施形態に従いうる。
1つの構成例において、プラズマ処理装置1は、第1電極105aに印加される第1電圧と第2電極105bに印加される第2電圧との関係に影響を与える調整リアクタンスとして、(a)第1平衡端子211と第1電極105aとを接続する第1経路PTH1に配置された可変リアクタンス511a、(b)第1電極105aと接地との間に配置された可変リアクタンス521a、(c)第2平衡端子212と第2電極105bとを接続する第2経路PTH2に配置された可変リアクタンス511b、(d)第2電極105bと接地との間に配置された可変リアクタンス521b、および、(e)第1経路PTH1と第2経路PTH2とを接続する可変リアクタンス530、の少なくとも1つを含む。
第1電極105aに印加される第1電圧と第2電極105bに印加される第2電圧との関係に影響を与える調整リアクタンスの値を調整することによって、第1基板112aのエッチング量分布と第2基板112bのエッチング量分布とを調整することができる。あるいは、第1電極105aに印加される第1電圧と第2電極105bに印加される第2電圧との関係に影響を与える調整リアクタンスの値を調整することによって、第1基板112aのエッチング量分布と第2基板112bのエッチング量分布とを同じにすることができる。
なお、図33〜39を参照して説明した第23乃至第29実施形態では、ターゲット109a、109bの対向面に電極が配置されているが、電極に限定されず、所謂カルーセル型と呼ばれるタイプのプラズマ装置における円筒形の基板回転ホルダー(例えば、特開2003−1555526、特開昭62−133065)や、所謂インライン型と呼ばれるタイプのプラズマ装置における矩形形状等の基板トレイ(例えば、特許5824072、特開2011−144450)が配置されるよう構成されてもよい。
図33〜図39を参照して説明した第23乃至第29実施形態では、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて調整リアクタンスの値を調整する。このような構成に代えて、制御部700は、第1電極105aの近傍におけるプラズマ強度と第2電極105bの近傍におけるプラズマ強度とに基づいて調整リアクタンスを調整するように構成されてもよい。第1電極105aの近傍におけるプラズマ強度は、例えば、光電変換装置によって検出されうる。同様に、第2電極105bの近傍におけるプラズマ強度は、例えば、光電変換装置によって検出されうる。制御部700は、第1電極105aの近傍におけるプラズマ強度と第2電極105bの近傍におけるプラズマ強度とに基づいて、例えば、第1電極105aの近傍におけるプラズマ強度と第2電極105bの近傍におけるプラズマ強度とが等しくなるように、調整リアクタンスの値を調整するように構成されうる。
図42には、本発明の第30実施形態のプラズマ処理装置1の構成が模式的に示されている。第30実施形態のプラズマ処理装置は、スパッタリングによって基板112に膜を形成するスパッタリング装置として動作しうる。第30実施形態のプラズマ処理装置1として言及しない事項は、第1乃至第29実施形態に従いうる。第30実施形態のプラズマ処理装置1は、バラン(第1バラン)103と、真空容器110と、第1電極105aと、第2電極105bとを備えている。あるいは、プラズマ処理装置1は、バラン103と、本体10とを備え、本体10が、真空容器110と、第1電極105aと、第2電極105bとを備えているものとして理解されてもよい。本体10は、第1端子251および第2端子252を有する。
第1電極105aは、第1部材としての第1ターゲット109aを保持する第1保持面HS1を有し、第2電極105bは、第2部材としての第2ターゲット109bを保持する第2保持面HS2を有しうる。第1保持面HS1および第2保持面HS2は、1つの平面PLに属しうる。
第30実施形態のプラズマ処理装置1は、更に、第2バラン303と、第3電極141と、第4電極145とを備えてもよい。換言すると、プラズマ処理装置1は、第1バラン103と、第2バラン303と、真空容器110と、第1電極105aと、第2電極105bと、第3電極141と、第4電極145とを備えうる。あるいは、プラズマ処理装置1は、第1バラン103と、第2バラン303と、本体10とを備え、本体10が、真空容器110と、第1電極105aと、第2電極105bと、第3電極141と、第4電極145とを備えているものとして理解されてもよい。本体10は、第1端子251、第2端子252、第3端子451、第4端子452を有する。
第1バラン103は、第1不平衡端子201、第2不平衡端子202、第1平衡端子211および第2平衡端子212を有する。第1バラン103の第1不平衡端子201および第2不平衡端子202の側には、不平衡回路が接続され、第1バラン103の第1平衡端子211および第2平衡端子212の側には、平衡回路が接続される。第2バラン303は、第1バラン103と同様の構成を有しうる。第2バラン303は、第3不平衡端子401、第4不平衡端子402、第3平衡端子411および第4平衡端子412を有する。第2バラン303の第3不平衡端子401および第4不平衡端子402の側には、不平衡回路が接続され、第2バラン303の第3平衡端子411および第4平衡端子412の側には、平衡回路が接続される。真空容器110は、接地されている。バラン103、303は、例えば、図2A、2B(図14)に記載された構成を有しうる。
第1電極105aは、第1ターゲット109aを保持し、第1ターゲット109aを介して処理対象の基板112の側の空間と対向する。第2電極105bは、第1電極105aの隣に配置され、第2ターゲット109bを保持し、第2ターゲット109bを介して処理対象の基板112の側の空間と対向する。ターゲット109aおよび109bは、例えば、絶縁体材料または導電体材料でありうる。第1電極105aは、第1バラン103の第1平衡端子211に電気的に接続され、第2電極105bは、第1バラン103の第2平衡端子212に電気的に接続されている。
第3電極141は、基板112を保持する。第4電極145は、第3電極141の周囲に配置されうる。第3電極141は、第2バラン303の第1平衡端子411に電気的に接続され、第4電極145は、第2バラン303の第2平衡端子412に電気的に接続されている。
上記の構成は、第1電極105aが第1端子251に電気的に接続され、第2電極105bが第2端子252に電気的に接続され、第1端子251が第1バラン103の第1平衡端子211に電気的に接続され、第2端子252が第1バラン103の第2平衡端子212に接続された構成として理解されうる。また、上記の構成は、第3電極141が第3端子451に電気的に接続され、第4電極145が第4端子452に電気的に接続され、第3端子451が第2バラン303の第1平衡端子411に電気的に接続され、第4端子452が第2バラン303の第2平衡端子412に接続されているものとして理解されうる。
第1電極105aと第1バラン103の第1平衡端子211(第1端子251)とは、第1経路PTH1によって電気的に接続されうる。第1経路PTH1には、リアクタンス511aが配置されうる。換言すると、第1電極105aと第1バラン103の第1平衡端子211(第1端子251)とは、リアクタンス511aを介して電気的に接続されうる。リアクタンス511aは、キャパシタを含むことができ、該キャパシタは、第1バラン103の第1平衡端子211と第1電極105aとの間(あるいは、第1バラン103の第1平衡端子211と第2平衡端子212との間)で直流電流を遮断するブロッキングキャパシタとして機能しうる。第2電極105bと第1バラン103の第2平衡端子212(第2端子252)とは、第2経路PTH2によって電気的に接続されうる。第2経路PTH2には、リアクタンス511bが配置されうる。換言すると、第2電極105bと第1バラン103の第2平衡端子212(第3端子252)とは、リアクタンス511bを介して電気的に接続されうる。リアクタンス511bは、キャパシタを含むことができ、該キャパシタは、第1バラン103の第2平衡端子212と第2電極105bとの間(あるいは、第1バラン103の第1平衡端子211と第2平衡端子212との間)で直流電流を遮断するブロッキングキャパシタとして機能しうる。第1電極105a、第2電極105bは、それぞれ絶縁体132a、132bを介して真空容器110によって支持されうる。
プラズマ処理装置1は、第1電極105aと接地との間に配置されたリアクタンス521aを備えうる。プラズマ処理装置1は、第2電極105bと接地との間に配置されたリアクタンス521bを備えうる。プラズマ処理装置1は、第1経路PTH1と第2経路PTH2とを接続するリアクタンス530を備えうる。
1つの構成例において、プラズマ処理装置1は、第1電極105aに印加される第1電圧と第2電極105bに印加される第2電圧との関係に影響を与える調整リアクタンスとして、(a)第1平衡端子211と第1電極105aとを接続する第1経路PTH1に配置されたリアクタンス511a、(b)第1電極105aと接地との間に配置されたリアクタンス521a、(c)第2平衡端子212と第2電極105bとを接続する第2経路PTH2に配置されたリアクタンス511b、(d)第2電極105bと接地との間に配置されたリアクタンス521b、および、(e)第1経路PTH1と第2経路PTH2とを接続するリアクタンス530、の少なくとも1つを含む。
第3電極141と第2バラン303の第1平衡端子411(第3端子451)とは、ブロッキングキャパシタ304を介して電気的に接続されうる。ブロッキングキャパシタ304は、第2バラン303の第1平衡端子411と第3電極141との間(あるいは、第2バラン303の第1平衡端子411と第2平衡端子412との間)で直流電流を遮断する。ブロッキングキャパシタ304を設ける代わりに、第2インピーダンス整合回路302が、第2バラン303の第1不平衡端子401と第2不平衡端子402との間を流れる直流電流を遮断するように構成されてもよい。第3電極141、第4電極145は、それぞれ絶縁体142、146を介して真空容器110によって支持されうる。
プラズマ処理装置1は、第1不平衡端子と201と第2不平衡端子202との間に供給される高周波を発生する第1高周波電源101を備えうる。高周波電源101は、第1不平衡端子と201と第2不平衡端子202との間に供給される高周波の周波数を変更可能である。該周波数を変更することによって、第1電極105aに印加される第1電圧および第2電極105bに印加される第2電圧を調整することができる。あるいは、該周波数を変更することによって、第1電極105aに印加される第1電圧と第2電極105bに印加される第2電圧との関係を調整することができる。
したがって、該周波数を調整することによって、第1ターゲット109aがスパッタリングされる量と第2ターゲット109bがスパッタリングされる量との関係を調整することができる。あるいは、該周波数を調整することによって、第1ターゲット109aがスパッタリングされる量と第2ターゲット109bがスパッタリングされる量とのバランスを調整することができる。これにより、第1ターゲット109aの消費量と第2ターゲット109bの消費量との関係を調整することができる。あるいは、第1ターゲット109aの消費量と第2ターゲット109bの消費量とのバランスを調整することができる。このような構成は、例えば、第1ターゲット109aの交換タイミングと第2ターゲット109bの交換タイミングとを同じタイミングにし、プラズマ処理装置1のダウンタイムを低減するために有利である。また、該周波数を調整することによって、基板112に形成される膜の厚さ分布を調整することもできる。
プラズマ処理装置1は、第1高周波電源101と第1バラン103との間に配置された第1インピーダンス整合回路102を更に備えうる。第1高周波電源101は、第1インピーダンス整合回路102、第1バラン103および第1経路PTH1を介して、第1電極105aと第2電極105bとの間に高周波を供給する。あるいは、第1高周波電源101は、第1インピーダンス整合回路102、第1バラン103を介して、本体10の第1端子251と第2端子252との間に高周波を供給する。第1バラン103並びに第1電極105aおよび第2電極105bは、真空容器110の内部空間に高周波を供給する第1高周波供給部を構成する。
プラズマ処理装置1は、第2高周波電源301と、第2高周波電源301と第2バラン303との間に配置された第2インピーダンス整合回路302とを備えうる。第2高周波電源301は、第2インピーダンス整合回路302を介して第2バラン303の第1不平衡端子401と第2不平衡端子402との間に高周波を供給する。第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303およびブロッキングキャパシタ304を介して、第3電極141と第4電極145との間に高周波を供給する。あるいは、第2高周波電源301は、第2インピーダンス整合回路302、第2バラン303を介して、本体10の第3端子451と第4端子452との間に高周波を供給する。第2バラン303並びに第3電極141および第4電極145は、真空容器110の内部空間に高周波を供給する第2高周波供給部を構成する。
第1高周波電源101からの高周波の供給によって真空容器110の内部空間にプラズマが発生している状態で第1バラン103の第1平衡端子211および第2平衡端子212の側から第1電極105aおよび第2電極105bの側(本体10の側)を見たときのインピーダンスをRp1−jXp1とする。また、第1バラン103の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)をX1とする。この定義において、1.5≦X1/Rp1≦5000を満たすことは、真空容器110の内部空間に形成されるプラズマの電位を安定させるために特に有利である。ただし、1.5≦X/Rp1≦5000という条件を満たすことは、第30実施形態において必須ではなく、有利な条件であることに留意されたい。第30実施形態では、バラン103を設けることによって、バラン103を設けない場合よりも、プラズマの電位を安定させることができる。また、発生する高周波の周波数を変更可能な高周波電源101を設けることによって、第1ターゲット109aがスパッタリングされる量と第2ターゲット109bがスパッタリングされる量との関係を調整することができる。
また、第2高周波電源301からの高周波の供給によって真空容器110の内部空間にプラズマが発生している状態で第2バラン303の第1平衡端子411および第2平衡端子412の側から第3電極141および第4電極145の側(本体10の側)を見たときのインピーダンスをRp2−jXp2とする。また、第2バラン303の第1コイル221のインピーダンスのリアクタンス成分(インダクタンス成分)をX2とする。この定義において、1.5≦X2/Rp2≦5000を満たすことは、真空容器110の内部空間に形成されるプラズマの電位を安定させるために特に有利である。ただし、1.5≦X/Rp2≦5000という条件を満たすことは、第30実施形態において必須ではなく、有利な条件であることに留意されたい。
以下、図43〜図48を参照しながら、第29実施形態のプラズマ処理装置1を具体化した第31乃至第34実施形態を説明する。図43には、本発明の第31実施形態のプラズマ処理装置1の構成が模式的に示されている。第31実施形態として言及しない事項は、第30実施形態に従いうる。第31実施形態のプラズマ処理装置1は、第1経路PTH1に配置されたリアクタンス511a、および、第2経路PTH2に配置されたリアクタンス511b、の少なくとも1つを含む。ここで、プラズマ処理装置1は、第1経路PTH1に配置されたリアクタンス511a、および、第2経路PTH2に配置されたリアクタンス511bの双方を含むことが好ましい。
第1リアクタンス511aは、インダクタ601aおよびキャパシタ602aを含みうる。インダクタ601aは、第1平衡端子211(第1端子251)とキャパシタ602aとの間に配置されてもよいし、キャパシタ602aと第1電極105aとの間に配置されてもよい。第2リアクタンス511bは、インダクタ601bおよびキャパシタ602bを含みうる。インダクタ601bは、第2平衡端子212(第2端子252)とキャパシタ602bとの間に配置されてもよいし、キャパシタ602bと第2電極105bとの間に配置されてもよい。
図47には、第31実施形態のプラズマ処理装置1において、高周波電源101が発生する高周波の周波数を12.56MHzに設定した場合に基板112に形成された膜の正規化された厚さ分布が示されている。また、図47には、第31実施形態のプラズマ処理装置1において、高周波電源101が発生する高周波の周波数を13.56MHzに設定した場合に基板112に形成された膜の正規化された厚さ分布が示されている。横軸は、図43における横方向(基板112の表面に平行な方向)の位置であり、基板112の中心からの距離を示している。高周波電源101が発生する高周波の周波数が12.56MHzであるときは、基板112の中心の左側と右側とで膜の厚さ分布が大きく異なっている。一方、高周波電源101が発生する高周波の周波数が13.56MHzであるときは、基板112の中心の左側と右側とで膜の厚さ分布の対称性が高い。高周波電源101が発生する高周波の周波数が13.56MHzである場合の方が、高周波電源101が発生する高周波の周波数が12.56MHzである場合よりも、第1電極105aに与えられる第1電圧と第2電極105bに与えられる第2電圧とのバランスが良い。
図48には、第30実施形態のプラズマ処理装置1において、高周波電源101が発生する高周波の周波数を変化させた場合における第1電極105aの電圧(第1電圧)および第2電極105bの電圧(第2電圧)が例示されている。高周波電源101が発生する高周波の周波数を変化させることによって第1電極105aの電圧(第1電圧)および第2電極105bの電圧(第2電圧)を調整することができる。あるいは、高周波電源101が発生する高周波の周波数を変化させることによって第1電極105aの電圧(第1電圧)と第2電極105bの電圧(第2電圧)との関係を調整することができる。例えば、高周波電源101が発生する高周波の周波数は、第1電極105aの電圧(第1電圧)と第2電極105bの電圧(第2電圧)とが等しくなるように調整されうる。これにより、第1ターゲット109aがスパッタリングされる量と第2ターゲット109bがスパッタリングされる量とを同じにすることができる。これは、例えば、第1ターゲット109aの交換タイミングと第2ターゲット109bの交換タイミングとを同じタイミングにし、プラズマ処理装置1のダウンタイムを低減するために有利である。
図44には、本発明の第32実施形態のプラズマ処理装置1の構成が模式的に示されている。第32実施形態として言及しない事項は、第30実施形態に従いうる。第32実施形態のプラズマ処理装置1は、第1電極105aと接地との間に配置されたリアクタンス521a、および、第2電極105bと接地との間に配置されたリアクタンス521bの少なくとも1つを備えている。リアクタンス521aは、例えば、インダクタ607aおよびキャパシタ606aを含みうる。リアクタンス521bは、例えば、インダクタ607bおよびキャパシタ606bを含みうる。
プラズマ処理装置1は、更に、第1経路PTH1に配置されたリアクタンス511a(この例では、インダクタ603a、キャパシタ602a)と、第2経路PTH2に配置されたリアクタンス511b(この例では、インダクタ603b、キャパシタ602b)とを備えうる。
図45には、本発明の第33実施形態のプラズマ処理装置1の構成が模式的に示されている。第33実施形態として言及しない事項は、第30実施形態に従いうる。第33実施形態のプラズマ処理装置1は、第1経路PTH1と第2経路PTH2とを接続するリアクタンス530としてのインダクタ608を備えている。プラズマ処理装置1は、更に、第1経路PTH1に配置されたリアクタンス511a(この例では、インダクタ603a、キャパシタ602a)と、第2経路PTH2に配置されたリアクタンス511b(この例では、インダクタ603b、キャパシタ602b)とを備えうる。
図46には、本発明の第33実施形態のプラズマ処理装置1の構成が模式的に示されている。第33実施形態として言及しない事項は、第30実施形態に従いうる。第33実施形態のプラズマ処理装置1は、第1経路PTH1と第2経路PTH2とを接続する可変リアクタンス530としてのキャパシタ609を備えている。プラズマ処理装置1は、更に、第1経路PTH1に配置されたリアクタンス511a(この例では、インダクタ603a、キャパシタ602a)と、第2経路PTH2に配置されたリアクタンス511b(この例では、インダクタ603b、キャパシタ602b)とを備えうる。
なお、図43〜図48を参照して説明した第30乃至第33実施形態では、ターゲット109a、109bの対向面に電極が配置されているが、電極に限定されず、所謂カルーセル型と呼ばれるタイプのプラズマ装置における円筒形の基板回転ホルダー(例えば、特開2003−1555526、特開昭62−133065)や、所謂インライン型と呼ばれるタイプのプラズマ装置における矩形形状等の基板トレイ(例えば、特許5824072、特開2011−144450)が配置されるよう構成されてもよい。
以下、図49〜図53を参照しながら、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、高周波電源101が発生する高周波の周波数調整する動作を説明する。図49には、本発明の第35実施形態のプラズマ処理装置1の構成が模式的に示されている。第35実施形態のプラズマ処理装置1は、図43に示された第31実施形態のプラズマ処理装置1に対して制御部700を追加した構成を有する。制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、例えば、第1電圧V1と第2電圧V2とが等しくなるように、高周波電源101が発生する高周波の周波数を調整する。例えば、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、調整リアクタンスの値が変化するように、高周波電源101が発生する高周波の周波数を調整する指令値CNTを発生する。指令値CNTは、高周波電源101に供給される。高周波電源101は、指令値CNTに応じて自己が発生する高周波の周波数を変更する。制御部700は、第1電極105aの電圧である第1電圧V1および第2電極105bの電圧である第2電圧V2を測定する測定部を含みうる。あるいは、そのような測定には、制御部700とは別に設けられてもよい。
図50には、本発明の第36実施形態のプラズマ処理装置1の構成が模式的に示されている。第36実施形態のプラズマ処理装置1は、図44に示された第32実施形態のプラズマ処理装置1に対して制御部700を追加した構成を有する。制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、例えば、第1電圧V1と第2電圧V2とが等しくなるように、高周波電源101が発生する高周波の周波数を調整する。例えば、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、調整リアクタンスの値が変化するように、高周波電源101が発生する高周波の周波数を調整する指令値CNTを発生する。指令値CNTは、高周波電源101に供給される。高周波電源101は、指令値CNTに応じて自己が発生する高周波の周波数を変更する。制御部700は、第1電極105aの電圧である第1電圧V1および第2電極105bの電圧である第2電圧V2を測定する測定部を含みうる。あるいは、そのような測定には、制御部700とは別に設けられてもよい。
図51には、本発明の第37実施形態のプラズマ処理装置1の構成が模式的に示されている。第37実施形態のプラズマ処理装置1は、図45に示された第33実施形態のプラズマ処理装置1に対して制御部700を追加した構成を有する。制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、例えば、第1電圧V1と第2電圧V2とが等しくなるように、高周波電源101が発生する高周波の周波数を調整する。例えば、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、調整リアクタンスの値が変化するように、高周波電源101が発生する高周波の周波数を調整する指令値CNTを発生する。指令値CNTは、高周波電源101に供給される。高周波電源101は、指令値CNTに応じて自己が発生する高周波の周波数を変更する。制御部700は、第1電極105aの電圧である第1電圧V1および第2電極105bの電圧である第2電圧V2を測定する測定部を含みうる。あるいは、そのような測定には、制御部700とは別に設けられてもよい。
図52には、本発明の第38実施形態のプラズマ処理装置1の構成が模式的に示されている。第38実施形態のプラズマ処理装置1は、図46に示された第34実施形態のプラズマ処理装置1に対して制御部700を追加した構成を有する。制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、例えば、第1電圧V1と第2電圧V2とが等しくなるように、高周波電源101が発生する高周波の周波数を調整する。例えば、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、調整リアクタンスの値が変化するように、高周波電源101が発生する高周波の周波数を調整する指令値CNTを発生する。指令値CNTは、高周波電源101に供給される。高周波電源101は、指令値CNTに応じて自己が発生する高周波の周波数を変更する。制御部700は、第1電極105aの電圧である第1電圧V1および第2電極105bの電圧である第2電圧V2を測定する測定部を含みうる。あるいは、そのような測定には、制御部700とは別に設けられてもよい。
図53には、本発明の第39実施形態のプラズマ処理装置1の構成が模式的に示されている。第39実施形態のプラズマ処理装置1は、基板112a、112bをエッチングするエッチング装置として動作しうる。第39実施形態のプラズマ処理装置1は、第1電極105a、第2電極105bがエッチング対象の第1基板112a、第2基板112bをそれぞれ保持し、第3電極141が基板を保持しない点で、第30実施形態のプラズマ処理装置1と異なり、他の点では第30実施形態のプラズマ処理装置1と同様の構成を有しうる。
1つの構成例において、プラズマ処理装置1は、第1電極105aに印加される第1電圧と第2電極105bに印加される第2電圧との関係に影響を与える調整リアクタンスとして、(a)第1平衡端子211と第1電極105aとを接続する第1経路PTH1に配置されたリアクタンス511a、(b)第1電極105aと接地との間に配置されたリアクタンス521a、(c)第2平衡端子212と第2電極105bとを接続する第2経路PTH2に配置されたリアクタンス511b、(d)第2電極105bと接地との間に配置されたリアクタンス521b、および、(e)第1経路PTH1と第2経路PTH2とを接続するリアクタンス530、の少なくとも1つを含む。
高周波電源101が発生する高周波の周波数を調整することによって、第1基板112aのエッチング量分布と第2基板112bのエッチング量分布とを調整することができる。あるいは、高周波電源101が発生する高周波の周波数を調整することによって、第1基板112aのエッチング量分布と第2基板112bのエッチング量分布とを同じにすることができる。
なお、図49〜図53を参照して説明した第35乃至第39実施形態では、ターゲット109a、109bの対向面に電極が配置されているが、電極に限定されず、所謂カルーセル型と呼ばれるタイプのプラズマ装置における円筒形の基板回転ホルダー(例えば、特開2003−1555526、特開昭62−133065)や、所謂インライン型と呼ばれるタイプのプラズマ装置における矩形形状等の基板トレイ(例えば、特許5824072、特開2011−144450)が配置されるよう構成されてもよい。
図49〜図53を参照して説明した第35乃至第39実施形態では、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて高周波電源101が発生する高周波の周波数を調整する。このような構成に代えて、制御部700は、第1電極105aの近傍におけるプラズマ強度と第2電極105bの近傍におけるプラズマ強度とに基づいて高周波電源101が発生する高周波の周波数を調整するように構成されてもよい。第1電極105aの近傍におけるプラズマ強度は、例えば、光電変換装置によって検出されうる。同様に、第2電極105bの近傍におけるプラズマ強度は、例えば、光電変換装置によって検出されうる。制御部700は、第1電極105aの近傍におけるプラズマ強度と第2電極105bの近傍におけるプラズマ強度とに基づいて、例えば、第1電極105aの近傍におけるプラズマ強度と第2電極105bの近傍におけるプラズマ強度とが等しくなるように、高周波電源101が発生する高周波の周波数するように構成されうる。
次に、本発明の第40実施形態としてのプラズマ処理方法を説明する。第40実施形態としてのプラズマ処理方法は、第30乃至第39実施形態のいずれかのプラズマ処理装置1において基板112を処理する。該プラズマ処理方法は、第1電極105aに印加される第1電圧と第2電極105bに印加される第2電圧との関係が調整されるように高周波電源101が発生する高周波の周波数を調整する工程と、該工程の後に、基板112を処理する工程と、を含みうる。該処理は、基板112にスパッタリングによって膜を形成する工程、または、基板112をエッチングする工程を含みうる。
図54には、本発明の第41実施形態のプラズマ処理装置1の構成が模式的に示されている。第41実施形態のプラズマ処理装置1は、図43に示された第31実施形態のプラズマ処理装置1に対して制御部700を追加した構成を有する。制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、例えば、第1電圧V1が第1目標値になり、第2電圧V2が第2目標値になるように、高周波電源101が発生する高周波の周波数を調整する。例えば、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、第1電圧V1が第1目標値になり、第2電圧V2が第2目標値になるように調整リアクタンスの値が変化するように、高周波電源101が発生する高周波の周波数を調整する指令値CNToscを発生する。指令値CNToscは、高周波電源101に供給される。高周波電源101は、指令値CNToscに応じて自己が発生する高周波の周波数を変更する。制御部700は、第1電極105aの電圧である第1電圧V1および第2電極105bの電圧である第2電圧V2を測定する測定部を含みうる。あるいは、そのような測定には、制御部700とは別に設けられてもよい。
制御部700は、インピーダンス整合回路102を制御する指令値CNTmbを発生する。制御部700は、プラズマを着火するときは、インピーダンス整合回路102がプラズマの着火用のインピーダンスとなるようにインピーダンス整合回路102を制御する。また、制御部700は、プラズマの着火後にプラズマが安定するように、インピーダンス整合回路102のインピーダンスを変更する。プラズマが安定した状態において、インピーダンス整合回路102のインピーダンスは、プラズマが発生しているときの本体10の側のインピーダンスRp−jXp(第1平衡端子211および第2平衡端子212の側から第1電極105aおよび第2電極105bの側(本体10の側)を見たときのインピーダンス)に整合する。このときのインピーダンス整合回路102のインピーダンスは、Rp+jXpである。
制御部700は、例えば、FPGA(Field Programmable Gate Arrayの略。)などのPLD(Programmable Logic Deviceの略。)、又は、ASIC(Application Specific Integrated Circuitの略。)、又は、プログラムが組み込まれた汎用又は専用のコンピュータ、又は、これらの全部または一部の組み合わせによって構成されうる。該プログラムは、メモリ媒体(コンピュータ可読メモリ媒体)に格納されて、または、通信回線を介して提供されうる。
図40には、第39実施形態のプラズマ処理装置1の動作が例示されている。この動作は、制御部700によって制御されうる。工程S401では、制御部700は、インピーダンス整合回路102のインピーダンスがプラズマの着火用のインピーダンスに設定あるいは変更されるように指令値CNTmbをインピーダンス整合回路102に供給する。インピーダンス整合回路102は、指令値CNTmbに応じて自己のインピーダンスを設定あるいは変更する。
その後、工程S402(着火工程)では、制御部700は、インピーダンス整合回路102のインピーダンスがプラズマの着火用のインピーダンスに設定された状態で、高周波電源402を起動(ON)し、高周波を発生させる。高周波電源402が発生する高周波は、インピーダンス整合回路102、バラン103、調整リアクタンス(可変インダクタ601a、601b、キャパシタ602a、602b)を介して第1電極105aおよび第2電極105bに供給される。これにより、プラズマが着火される。
工程S403(整合工程)では、制御部700は、プラズマの着火後にプラズマが安定するように、インピーダンス整合回路102のインピーダンスを変更する。具体的には、工程S403では、制御部700は、プラズマが安定するインピーダンスがインピーダンス整合回路700に設定されるように指令値CNTmbを決定し、指令値CNTmbをインピーダンス整合回路700に供給する。インピーダンス整合回路102は、指令値CNTmbに応じて自己のインピーダンスを設定あるいは変更する。
その後、工程S404では、制御部700は、第1電極105aの電圧V1および第2電極105bの第2電圧V2を取得する。その後、工程S405(調整工程)では、制御部700は、第1電極105aの電圧V1および第2電極105bの第2電圧V2に基づいて、第1電圧V1が第1目標値になり、第2電圧V2が第2目標値になるように可変リアクタンスとしての可変インダクタ601a、601bの値がそれぞれ調整されるように、指令値CNToscを発生する。指令値CNToscは、高周波電源402に供給される。高周波電源101は、指令値CNToscに応じて自己が発生する高周波の周波数を変更する。
図59には、高周波電源101が発生する高周波の周波数と第1電極105aおよび第2電極105bの電圧との関係が例示されている。このリアクタンスは、前述の−XPに相当する。図59に例示されるように、第1電極105aおよび第2電極105bの電圧は、高周波電源101が発生する高周波の周波数の変更によって調整リアクタンスのリアクタンスが変化することによって、それらの間の大小関係が入れ替わる。換言すると、高周波電源101が発生する高周波の周波数の変化に対する第1電極105aおよび第2電極105bの電圧の変化曲線は、相互に交差する特性を示す。
図59に例示される特性は、例えば、予め実験あるいは計算によって決定されうる。この場合、工程S405において、制御部700は、この特性と、第1電極105aの電圧V1および第2電極105bの電圧V2とに基づいて、第1電圧V1が第1目標値になり、第2電圧V2が第2目標値になるように高周波電源101が発生する高周波の周波数を調整する指令値CNToscを発生しうる。図59に例示される特性が予め決定されていない場合には、工程S405において、制御部700は、第1電極105aの電圧V1および第2電極105bの電圧V2に基づいて、指令値CNToscを微調整しうる。
その後、工程S407では、制御部700は、第1電極105aの電圧V1および第2電極105bの第2電圧V2を取得する。その後、工程S408では、制御部700は、第1電圧V1が第1目標値になり、第2電圧V2が第2目標値になったかどうかを判断し、第1電圧V1が第1目標値になり、第2電圧V2が第2目標値になった場合には工程S409に進み、そうでない場合には工程S405に戻る。工程S409(処理工程)では、制御部700は、基板112が処理されるように制御を行う。該制御は、例えば、ターゲット109aと基板112との間に配置されたシャッタ(不図示)およびターゲット109bと基板112との間に配置されたシャッタ(不図示)の開閉を制御することを含みうる。図40に示される処理は、手動で実行されてもよい。
図55には、本発明の第42実施形態のプラズマ処理装置1の構成が模式的に示されている。第42実施形態のプラズマ処理装置1は、図44に示された第32実施形態のプラズマ処理装置1に対して制御部700を追加した構成を有する。第42実施形態として言及しない事項は、第41実施形態に従いうる。制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、例えば、第1電圧V1が第1目標値になり、第1電圧V1が第1目標値になり、第2電圧V2が第2目標値になるように、高周波電源101が発生する高周波の周波数を調整する。例えば、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、調整リアクタンスの値が変化するように、高周波電源101が発生する高周波の周波数を調整する指令値CNToscを発生する。指令値CNToscは、高周波電源101に供給される。高周波電源101は、指令値CNToscに応じて自己が発生する高周波の周波数を変更する。
図56には、本発明の第43実施形態のプラズマ処理装置1の構成が模式的に示されている。第43実施形態のプラズマ処理装置1は、図45に示された第33実施形態のプラズマ処理装置1に対して制御部700を追加した構成を有する。第43実施形態として言及しない事項は、第41実施形態に従いうる。制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、例えば、第1電圧V1が第1目標値になり、第1電圧V1が第1目標値になり、第2電圧V2が第2目標値になるように、高周波電源101が発生する高周波の周波数を調整する。例えば、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、調整リアクタンスの値が変化するように、高周波電源101が発生する高周波の周波数を調整する指令値CNToscを発生する。指令値CNToscは、高周波電源101に供給される。高周波電源101は、指令値CNToscに応じて自己が発生する高周波の周波数を変更する。制御部700は、第1電極105aの電圧である第1電圧V1および第2電極105bの電圧である第2電圧V2を測定する測定部を含みうる。あるいは、そのような測定には、制御部700とは別に設けられてもよい。
図57には、本発明の第44実施形態のプラズマ処理装置1の構成が模式的に示されている。第44実施形態のプラズマ処理装置1は、図46に示された第34実施形態のプラズマ処理装置1に対して制御部700を追加した構成を有する。第42実施形態として言及しない事項は、第41実施形態に従いうる。制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、例えば、第1電圧V1が第1目標値になり、第1電圧V1が第1目標値になり、第2電圧V2が第2目標値になるように、高周波電源101が発生する高周波の周波数を調整する。例えば、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて、調整リアクタンスの値が変化するように、高周波電源101が発生する高周波の周波数を調整する指令値CNToscを発生する。指令値CNToscは、高周波電源101に供給される。高周波電源101は、指令値CNToscに応じて自己が発生する高周波の周波数を変更する。制御部700は、第1電極105aの電圧である第1電圧V1および第2電極105bの電圧である第2電圧V2を測定する測定部を含みうる。あるいは、そのような測定には、制御部700とは別に設けられてもよい。
図58には、本発明の第45実施形態のプラズマ処理装置1の構成が模式的に示されている。第45実施形態のプラズマ処理装置1は、基板112a、112bをエッチングするエッチング装置として動作しうる。第45実施形態のプラズマ処理装置1は、制御部700以外については、第30実施形態のプラズマ処理装置1と同様の構成を有しうる。第45実施形態として言及しない事項は、第41実施形態に従いうる。
1つの構成例において、プラズマ処理装置1は、第1電極105aに印加される第1電圧と第2電極105bに印加される第2電圧との関係に影響を与える調整リアクタンスとして、(a)第1平衡端子211と第1電極105aとを接続する第1経路PTH1に配置されたリアクタンス511a、(b)第1電極105aと接地との間に配置されたリアクタンス521a、(c)第2平衡端子212と第2電極105bとを接続する第2経路PTH2に配置されたリアクタンス511b、(d)第2電極105bと接地との間に配置されたリアクタンス521b、および、(e)第1経路PTH1と第2経路PTH2とを接続するリアクタンス530、の少なくとも1つを含む。
高周波電源101が発生する高周波の周波数を調整することによって、第1基板112aのエッチング量分布と第2基板112bのエッチング量分布とを調整することができる。あるいは、高周波電源101が発生する高周波の周波数を調整することによって、第1基板112aのエッチング量分布と第2基板112bのエッチング量分布とを同じにすることができる。
なお、図54〜図58を参照して説明した第41乃至第45実施形態では、ターゲット109a、109bの対向面に電極が配置されているが、電極に限定されず、所謂カルーセル型と呼ばれるタイプのプラズマ装置における円筒形の基板回転ホルダー(例えば、特開2003−1555526、特開昭62−133065)や、所謂インライン型と呼ばれるタイプのプラズマ装置における矩形形状等の基板トレイ(例えば、特許5824072、特開2011−144450)が配置されるよう構成されてもよい。
図54〜図58を参照して説明した第41乃至第45実施形態では、制御部700は、第1電極105aの第1電圧V1および第2電極105bの第2電圧V2に基づいて高周波電源101が発生する高周波の周波数を調整する。このような構成に代えて、制御部700は、第1電極105aの近傍におけるプラズマ強度と第2電極105bの近傍におけるプラズマ強度とに基づいて高周波電源101が発生する高周波の周波数を調整するように構成されてもよい。第1電極105aの近傍におけるプラズマ強度は、例えば、光電変換装置によって検出されうる。同様に、第2電極105bの近傍におけるプラズマ強度は、例えば、光電変換装置によって検出されうる。制御部700は、第1電極105aの近傍におけるプラズマ強度と第2電極105bの近傍におけるプラズマ強度とに基づいて、例えば、第1電極105aの近傍におけるプラズマ強度と第2電極105bの近傍におけるプラズマ強度とが等しくなるように、高周波電源101が発生する高周波の周波数するように構成されうる。
図60には、本発明の第46実施形態のプラズマ処理装置1の構成が模式的に示されている。第46実施形態のプラズマ処理装置1は、図33〜図41を参照して説明された第23乃至第29実施形態のプラズマ処理装置1の変形例である。第46実施形態のプラズマ処理装置1は、基板112を保持する第1電極141を昇降させる機構および第1電極141を回転させる機構の少なくとも一方を更に備える。図60に示された例では、プラズマ処理装置1は、第1電極141を昇降させる機構および第1電極141を回転させる機構の双方を含む駆動機構114を備える。真空容器110と駆動機構114との間には、真空隔壁を構成するベローズ113が設けられうる。
図61には、本発明の第47実施形態のプラズマ処理装置1の構成が模式的に示されている。第47実施形態のプラズマ処理装置1は、図42〜図59を参照して説明された第30乃至第45実施形態のプラズマ処理装置1の変形例である。第47実施形態のプラズマ処理装置1は、基板112を保持する第1電極141を昇降させる機構および第1電極141を回転させる機構の少なくとも一方を更に備える。図61に示された例では、プラズマ処理装置1は、第1電極141を昇降させる機構および第1電極141を回転させる機構の双方を含む駆動機構114を備える。真空容器110と駆動機構114との間には、真空隔壁を構成するベローズ113が設けられうる。
本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
1:プラズマ処理装置、10:本体、101:高周波電源、102:インピーダンス整合回路、103:バラン、104:ブロッキングキャパシタ、106:第1電極、107、108:絶縁体、109:ターゲット、110:真空容器、111:第2電極、112:基板、201:第1不平衡端子、202:第2不平衡端子、211:第1平衡端子、212:第2平衡端子、251:第1端子、252:第2端子、221:第1コイル、222:第2コイル、223:第3コイル、224:第4コイル、511a、511b、521a、521b、530:可変リアクタンス、700:制御部

Claims (27)

  1. インピーダンス整合回路と、
    前記インピーダンス整合回路に接続された第1不平衡端子、接地された第2不平衡端子、第1平衡端子および第2平衡端子を有するバランと、
    接地された真空容器と、
    前記第1平衡端子に電気的に接続された第1電極と、
    前記第2平衡端子に電気的に接続された第2電極と、
    前記第1電極に印加される第1電圧と前記第2電極に印加される第2電圧との関係に影響を与える調整リアクタンスと、
    前記インピーダンス整合回路を介して前記第1不平衡端子と前記第2不平衡端子との間に供給される高周波を発生する高周波電源と、
    前記インピーダンス整合回路のインピーダンスおよび前記調整リアクタンスのリアクタンスを制御する制御部と、を備え、
    前記第1電極は、第1ターゲットを保持し、前記第2電極は、第2ターゲットを保持し、前記第1電極は前記第1ターゲットを介して処理対象の基板の側の空間と対向し、前記第2電極は前記第2ターゲットを介して前記空間と対向し、
    前記調整リアクタンスは、前記第1電極と接地とを接続する経路に配置されたキャパシタと、前記第2電極と接地とを接続する経路に配置されたキャパシタと、を含む、
    ことを特徴とするプラズマ処理装置。
  2. 前記制御部は、前記第1平衡端子および前記第2平衡端子の側から前記第1電極および前記第2電極の側を見たときのインピーダンスに整合するように前記インピーダンス整合回路のインピーダンスを制御する、
    ことを特徴とする請求項1に記載のプラズマ処理装置。
  3. 前記制御部は、プラズマの着火用のインピーダンスに前記インピーダンス整合回路のインピーダンスを制御してプラズマが着火された後に、前記第1平衡端子および前記第2平衡端子の側から前記第1電極および前記第2電極の側を見たときのインピーダンスに整合するように前記インピーダンス整合回路のインピーダンスを制御する、
    ことを特徴とする請求項1に記載のプラズマ処理装置。
  4. 前記制御部は、前記第1電極の電圧が第1目標値になり、前記第2電極の電圧が第2目標値になるように、前記調整リアクタンスのリアクタンスを制御する、
    ことを特徴とする請求項1乃至3のいずれか1項に記載のプラズマ処理装置。
  5. インピーダンス整合回路と、
    前記インピーダンス整合回路に接続された第1不平衡端子、接地された第2不平衡端子、第1平衡端子および第2平衡端子を有するバランと、
    接地された真空容器と、
    前記第1平衡端子に電気的に接続された第1電極と、
    前記第2平衡端子に電気的に接続された第2電極と、
    前記第1電極に印加される第1電圧と前記第2電極に印加される第2電圧との関係に影響を与える調整リアクタンスと、
    前記インピーダンス整合回路を介して前記第1不平衡端子と前記第2不平衡端子との間に供給される高周波を発生する高周波電源と、
    前記インピーダンス整合回路のインピーダンスおよび前記調整リアクタンスのリアクタンスを制御する制御部と、を備え、
    前記制御部は、プラズマの着火用のインピーダンスに前記インピーダンス整合回路のインピーダンスを制御してプラズマが着火された後に、前記第1平衡端子および前記第2平衡端子の側から前記第1電極および前記第2電極の側を見たときのインピーダンスに整合するように前記インピーダンス整合回路のインピーダンスを制御し、
    前記第1電極の電圧と前記第2電極の電圧との大小関係は、前記調整リアクタンスのリアクタンスを変更することによって入れ替え可能であり、
    前記制御部は、前記第1電極の電圧と前記第2電極の電圧との差分が目標差分値になるように、前記調整リアクタンスのリアクタンスを制御する、
    ことを特徴とするプラズマ処理装置。
  6. 前記制御部は、前記調整リアクタンスのリアクタンスを制御するための指令値を前記調整リアクタンスに供給し、前記調整リアクタンスは、前記指令値に従って自己のリアクタンスを変更する、
    ことを特徴とする請求項1乃至5のいずれか1項に記載のプラズマ処理装置。
  7. 前記高周波電源は、前記高周波の周波数を変更可能であり、前記制御部は、前記周波数の変更によって前記関係が調整されるように、前記高周波電源の周波数を制御するための指令値を前記高周波電源に供給する、
    ことを特徴とする請求項1乃至5のいずれか1項に記載のプラズマ処理装置。
  8. 前記第1電極は、第1部材を保持する第1保持面を有し、前記第2電極は、第2部材を保持する第2保持面を有し、前記第1保持面および前記第2保持面は、1つの平面に属している、
    ことを特徴とする請求項1乃至7のいずれか1項に記載のプラズマ処理装置。
  9. 前記調整リアクタンスは、前記第1平衡端子と前記第1電極とを接続する第1経路に配置されたリアクタンス、前記第2平衡端子と前記第2電極とを接続する第2経路に配置されたリアクタンス、および、前記第1経路と前記第2経路とを接続するリアクタンス、の少なくとも1つを更に含む、
    ことを特徴とする請求項1乃至8のいずれか1項に記載のプラズマ処理装置。
  10. 前記調整リアクタンスは、前記第1平衡端子と前記第1電極とを接続する第1経路に配置された第1リアクタンス、および、前記第2平衡端子と前記第2電極とを接続する第2経路に配置された第2リアクタンス、の少なくとも1つを更に含む、
    ことを特徴とする請求項1乃至8のいずれか1項に記載のプラズマ処理装置。
  11. 前記第1リアクタンスは、インダクタを含み、
    前記第2リアクタンスは、インダクタを含む、
    ことを特徴とする請求項10に記載のプラズマ処理装置。
  12. 前記第1リアクタンスは、キャパシタを含み、
    前記第2リアクタンスは、キャパシタを含む、
    ことを特徴とする請求項10に記載のプラズマ処理装置。
  13. 前記制御部は、前記第1電極の電圧と前記第2電極の電圧とに基づいて前記調整リアクタンスを制御する、
    ことを特徴とする請求項1乃至12のいずれか1項に記載のプラズマ処理装置。
  14. 基板を保持する基板保持部と、
    前記基板保持部を回転させる駆動機構と、
    を更に備えることを特徴とする請求項1乃至13のいずれか1項に記載のプラズマ処理装置。
  15. 前記第1平衡端子および前記第2平衡端子の側から前記第1電極および前記第2電極の側を見たときの前記第1平衡端子と前記第2平衡端子との間の抵抗成分をRpとし、前記第1不平衡端子と前記第1平衡端子との間のインダクタンスをXとしたときに、1.5≦X/Rp≦5000を満たす、
    ことを特徴とする請求項1乃至14のいずれか1項に記載のプラズマ処理装置。
  16. 前記バランは、前記第1不平衡端子と前記第1平衡端子とを接続する第1コイルと、前記第2不平衡端子と前記第2平衡端子とを接続する第2コイルとを有する、
    ことを特徴とする請求項1乃至15のいずれか1項に記載のプラズマ処理装置。
  17. 前記バランは、前記第1平衡端子と前記第2平衡端子との間に接続された第3コイルおよび第4コイルを更に有し、前記第3コイルおよび前記第4コイルは、前記第3コイルと前記第4コイルとの接続ノードの電圧を前記第1平衡端子の電圧と前記第2平衡端子の電圧との中点とするように構成されている、
    ことを特徴とする請求項16に記載のプラズマ処理装置。
  18. インピーダンス整合回路と、前記インピーダンス整合回路に接続された第1不平衡端子、接地された第2不平衡端子、第1平衡端子および第2平衡端子を有するバランと、接地された真空容器と、前記第1平衡端子に電気的に接続された第1電極と、前記第2平衡端子に電気的に接続された第2電極と、前記第1電極に印加される第1電圧と前記第2電極に印加される第2電圧との関係に影響を与える調整リアクタンスと、前記インピーダンス整合回路を介して前記第1不平衡端子と前記第2不平衡端子との間に供給される高周波を発生する高周波電源と、を備え、前記第1電極は、第1ターゲットを保持し、前記第2電極は、第2ターゲットを保持し、前記第1電極は前記第1ターゲットを介して処理対象の基板の側の空間と対向し、前記第2電極は前記第2ターゲットを介して前記空間と対向し、前記調整リアクタンスは、前記第1電極と接地とを接続する経路に配置されたキャパシタと、前記第2電極と接地とを接続する経路に配置されたキャパシタと、を含む、プラズマ処理装置において基板を処理するプラズマ処理方法であって、
    前記第1平衡端子および前記第2平衡端子の側から前記第1電極および前記第2電極の側を見たときのインピーダンスに整合するように前記インピーダンス整合回路のインピーダンスを制御する整合工程と、
    前記関係が調整されるように前記調整リアクタンスを調整する調整工程と、
    前記調整工程の後に、前記基板を処理する処理工程と、
    を含むことを特徴とするプラズマ処理方法。
  19. プラズマの着火用のインピーダンスに前記インピーダンス整合回路のインピーダンスが設定された状態でプラズマを着火する着火工程を更に含み、前記着火工程の後に前記整合工程が実施される、
    ことを特徴とする請求項18に記載のプラズマ処理方法。
  20. 前記調整工程は、前記第1電極の電圧が第1目標値になり、前記第2電極の電圧が第2目標値になるように、前記調整リアクタンスのリアクタンスを制御することを含む、
    ことを特徴とする請求項18又は19に記載のプラズマ処理方法。
  21. インピーダンス整合回路と、前記インピーダンス整合回路に接続された第1不平衡端子、接地された第2不平衡端子、第1平衡端子および第2平衡端子を有するバランと、接地された真空容器と、前記第1平衡端子に電気的に接続された第1電極と、前記第2平衡端子に電気的に接続された第2電極と、前記第1電極に印加される第1電圧と前記第2電極に印加される第2電圧との関係に影響を与える調整リアクタンスと、前記インピーダンス整合回路を介して前記第1不平衡端子と前記第2不平衡端子との間に供給される高周波を発生する高周波電源と、を備えるプラズマ処理装置において基板を処理するプラズマ処理方法であって、
    プラズマの着火用のインピーダンスに前記インピーダンス整合回路のインピーダンスが設定された状態でプラズマを着火する着火工程と、
    前記第1平衡端子および前記第2平衡端子の側から前記第1電極および前記第2電極の側を見たときのインピーダンスに整合するように前記インピーダンス整合回路のインピーダンスを制御する整合工程と、
    前記関係が調整されるように前記調整リアクタンスを調整する調整工程と、
    前記調整工程の後に、前記基板を処理する処理工程と、を含み、
    前記第1電極の電圧と前記第2電極の電圧との大小関係は、前記調整リアクタンスのリアクタンスを変更することによって入れ替え可能であり、
    前記調整工程は、前記第1電極の電圧と前記第2電極の電圧との差分が目標差分値になるように、前記調整リアクタンスのリアクタンスを制御することを含む、
    ことを特徴とするプラズマ処理方法。
  22. 前記調整工程は、前記調整リアクタンスのリアクタンスを制御するための指令値を前記調整リアクタンスに供給し、前記調整リアクタンスが前記指令値に従って自己のリアクタンスを変更することを含む、
    ことを特徴とする請求項18乃至21のいずれか1項に記載のプラズマ処理方法。
  23. 前記高周波電源は、前記高周波の周波数を変更可能であり、前記調整工程は、前記周波数の変更によって前記関係が調整されるように、前記高周波電源の周波数を制御するための指令値を前記高周波電源に供給することを含む、
    ことを特徴とする請求項18乃至21のいずれか1項に記載のプラズマ処理方法。
  24. 請求項18乃至21のいずれか1項に記載のプラズマ処理方法をコンピュータに実行させるためのプログラム。
  25. 請求項18乃至21のいずれか1項に記載のプラズマ処理方法をコンピュータに実行させるためのプログラムが格納されたメモリ媒体。
  26. インピーダンス整合回路と、
    前記インピーダンス整合回路に接続された第1不平衡端子、接地された第2不平衡端子、第1平衡端子および第2平衡端子を有するバランと、
    接地された真空容器と、
    前記第1平衡端子に電気的に接続された第1電極と、
    前記第2平衡端子に電気的に接続された第2電極と、
    前記第1電極に印加される第1電圧と前記第2電極に印加される第2電圧との関係に影響を与える調整リアクタンスと、
    前記インピーダンス整合回路を介して前記第1不平衡端子と前記第2不平衡端子との間に供給される高周波を発生する高周波電源と、
    前記第1電極の電圧および前記第2電極の電圧を測定する測定部と、を備え、
    前記第1電極は、第1ターゲットを保持し、前記第2電極は、第2ターゲットを保持し、前記第1電極は前記第1ターゲットを介して処理対象の基板の側の空間と対向し、前記第2電極は前記第2ターゲットを介して前記空間と対向し、
    前記調整リアクタンスは、前記第1電極と接地とを接続する経路に配置されたキャパシタと、前記第2電極と接地とを接続する経路に配置されたキャパシタと、を含み、
    前記測定部で測定された前記第1電極の電圧と前記第2電極の電圧に応じて、前記調整リアクタンスのリアクタンスが調整される、
    ことを特徴とするプラズマ処理装置。
  27. 前記調整リアクタンスは、可変インダクタおよび可変キャパシタを含む、
    ことを特徴とする請求項26に記載のプラズマ処理装置。
JP2019563646A 2018-06-26 2018-12-21 プラズマ処理装置、プラズマ処理方法、プログラムおよびメモリ媒体 Active JP6688440B1 (ja)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
PCT/JP2018/024148 WO2019004186A1 (ja) 2017-06-27 2018-06-26 プラズマ処理装置
JPPCT/JP2018/024148 2018-06-26
PCT/JP2018/024147 WO2019004185A1 (ja) 2017-06-27 2018-06-26 プラズマ処理装置
JPPCT/JP2018/024146 2018-06-26
JPPCT/JP2018/024149 2018-06-26
JPPCT/JP2018/024147 2018-06-26
PCT/JP2018/024149 WO2019004187A1 (ja) 2017-06-27 2018-06-26 プラズマ処理装置
PCT/JP2018/024146 WO2019004184A1 (ja) 2017-06-27 2018-06-26 プラズマ処理装置
PCT/JP2018/047319 WO2020003557A1 (ja) 2018-06-26 2018-12-21 プラズマ処理装置、プラズマ処理方法、プログラムおよびメモリ媒体

Publications (2)

Publication Number Publication Date
JP6688440B1 true JP6688440B1 (ja) 2020-04-28
JPWO2020003557A1 JPWO2020003557A1 (ja) 2020-07-02

Family

ID=68987641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019563646A Active JP6688440B1 (ja) 2018-06-26 2018-12-21 プラズマ処理装置、プラズマ処理方法、プログラムおよびメモリ媒体

Country Status (7)

Country Link
US (1) US11600466B2 (ja)
EP (1) EP3817517A4 (ja)
JP (1) JP6688440B1 (ja)
KR (1) KR102439024B1 (ja)
CN (1) CN112292911A (ja)
SG (1) SG11202009122YA (ja)
WO (1) WO2020003557A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102421625B1 (ko) 2017-06-27 2022-07-19 캐논 아네르바 가부시키가이샤 플라스마 처리 장치
CN110800377B (zh) 2017-06-27 2022-04-29 佳能安内华股份有限公司 等离子体处理装置
SG11201912566WA (en) * 2017-06-27 2020-01-30 Canon Anelva Corp Plasma processing apparatus
JP6595002B2 (ja) 2017-06-27 2019-10-23 キヤノンアネルバ株式会社 スパッタリング装置
SG11202009122YA (en) * 2018-06-26 2020-10-29 Canon Anelva Corp Plasma processing apparatus, plasma processing method, program, and memory medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300322A (ja) * 2007-06-04 2008-12-11 Canon Anelva Corp プラズマ処理装置、プラズマ処理方法、整合器、及び整合器の動作方法
JP2010045664A (ja) * 2008-08-14 2010-02-25 Tokyo Electron Ltd マッチング装置、マッチング方法、プラズマ処理装置、及び記憶媒体
JP2012174682A (ja) * 2011-02-18 2012-09-10 Samsung Electronics Co Ltd プラズマ処理装置
US20160289837A1 (en) * 2012-06-19 2016-10-06 Aixtron, Inc. Apparatus and method for forming thin protective and optical layers on substrates
JP6280677B1 (ja) * 2017-06-27 2018-02-14 キヤノンアネルバ株式会社 プラズマ処理装置

Family Cites Families (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4025339A (en) 1974-01-18 1977-05-24 Coulter Information Systems, Inc. Electrophotographic film, method of making the same and photoconductive coating used therewith
US4014779A (en) 1974-11-01 1977-03-29 Coulter Information Systems, Inc. Sputtering apparatus
JPS53141937U (ja) 1977-04-15 1978-11-09
US4170475A (en) 1977-05-12 1979-10-09 Coulter Information Systems, Inc. High speed electrophotographic method
JPS5824072B2 (ja) 1977-07-14 1983-05-19 日本放送協会 カラ−画像信号合成回路
US4131533A (en) 1977-12-30 1978-12-26 International Business Machines Corporation RF sputtering apparatus having floating anode shield
US4284489A (en) * 1978-09-28 1981-08-18 Coulter Systems Corporation Power transfer network
US4284490A (en) 1978-09-28 1981-08-18 Coulter Systems Corporation R.F. Sputtering apparatus including multi-network power supply
JPS57106216A (en) 1980-12-24 1982-07-02 Fujitsu Ltd Switched capacitor filter
US4584079A (en) 1983-10-11 1986-04-22 Honeywell Inc. Step shape tailoring by phase angle variation RF bias sputtering
JPH0639693B2 (ja) 1985-12-05 1994-05-25 日電アネルバ株式会社 誘電体バイアススパツタリング装置
US4887005A (en) 1987-09-15 1989-12-12 Rough J Kirkwood H Multiple electrode plasma reactor power distribution system
US5121067A (en) 1987-10-06 1992-06-09 Board Of Regents Of Leland Stanford University Directional sampling bridge
US4802080A (en) 1988-03-18 1989-01-31 American Telephone And Telegraph Company, At&T Information Systems Power transfer circuit including a sympathetic resonator
US4956582A (en) * 1988-04-19 1990-09-11 The Boeing Company Low temperature plasma generator with minimal RF emissions
US4871421A (en) 1988-09-15 1989-10-03 Lam Research Corporation Split-phase driver for plasma etch system
JPH02156081A (ja) * 1988-12-09 1990-06-15 Tokuda Seisakusho Ltd スパッタ装置
JPH02156080A (ja) 1988-12-09 1990-06-15 Tokuda Seisakusho Ltd スパッタ装置
JPH02156082A (ja) 1988-12-09 1990-06-15 Tokuda Seisakusho Ltd スパッタ装置
JPH02156083A (ja) 1988-12-09 1990-06-15 Tokuda Seisakusho Ltd スパッタ装置
JP3016821B2 (ja) 1990-06-15 2000-03-06 東京エレクトロン株式会社 プラズマ処理方法
US5316645A (en) * 1990-08-07 1994-05-31 Canon Kabushiki Kaisha Plasma processing apparatus
DE4106770C2 (de) 1991-03-04 1996-10-17 Leybold Ag Verrichtung zum reaktiven Beschichten eines Substrats
US5330578A (en) 1991-03-12 1994-07-19 Semiconductor Energy Laboratory Co., Ltd. Plasma treatment apparatus
JPH04317325A (ja) 1991-04-17 1992-11-09 Nec Corp 半導体装置の製造装置
US5415757A (en) * 1991-11-26 1995-05-16 Leybold Aktiengesellschaft Apparatus for coating a substrate with electrically nonconductive coatings
US5286297A (en) * 1992-06-24 1994-02-15 Texas Instruments Incorporated Multi-electrode plasma processing apparatus
JP3073360B2 (ja) * 1993-03-31 2000-08-07 三菱重工業株式会社 高圧噴霧燃焼装置
US5698082A (en) * 1993-08-04 1997-12-16 Balzers Und Leybold Method and apparatus for coating substrates in a vacuum chamber, with a system for the detection and suppression of undesirable arcing
JP2642849B2 (ja) * 1993-08-24 1997-08-20 株式会社フロンテック 薄膜の製造方法および製造装置
AU2003195A (en) 1994-06-21 1996-01-04 Boc Group, Inc., The Improved power distribution for multiple electrode plasma systems using quarter wavelength transmission lines
US5830331A (en) * 1994-09-23 1998-11-03 Seagate Technology, Inc. Apparatus and method for sputtering carbon
DE19537212A1 (de) * 1994-10-06 1996-04-11 Leybold Ag Vorrichtung zum Beschichten von Substraten im Vakuum
US5989999A (en) 1994-11-14 1999-11-23 Applied Materials, Inc. Construction of a tantalum nitride film on a semiconductor wafer
DE4441206C2 (de) * 1994-11-19 1996-09-26 Leybold Ag Einrichtung für die Unterdrückung von Überschlägen in Kathoden-Zerstäubungseinrichtungen
US5932116A (en) 1995-06-05 1999-08-03 Tohoku Unicom Co., Ltd. Power supply for multi-electrode discharge
DE19540543A1 (de) * 1995-10-31 1997-05-07 Leybold Ag Vorrichtung zum Beschichten eines Substrats mit Hilfe des Chemical-Vapor-Deposition-Verfahrens
DE19540794A1 (de) * 1995-11-02 1997-05-07 Leybold Ag Vorrichtung zum Beschichten eines Substrats von einem elektrisch leitfähigen Target
US5830272A (en) * 1995-11-07 1998-11-03 Sputtered Films, Inc. System for and method of providing a controlled deposition on wafers
US6017221A (en) * 1995-12-04 2000-01-25 Flamm; Daniel L. Process depending on plasma discharges sustained by inductive coupling
US6252354B1 (en) * 1996-11-04 2001-06-26 Applied Materials, Inc. RF tuning method for an RF plasma reactor using frequency servoing and power, voltage, current or DI/DT control
DE19651811B4 (de) * 1996-12-13 2006-08-31 Unaxis Deutschland Holding Gmbh Vorrichtung zum Belegen eines Substrats mit dünnen Schichten
KR100252210B1 (ko) 1996-12-24 2000-04-15 윤종용 반도체장치 제조용 건식식각장치
JP3598717B2 (ja) 1997-03-19 2004-12-08 株式会社日立製作所 プラズマ処理装置
DE19713637C2 (de) 1997-04-02 1999-02-18 Max Planck Gesellschaft Teilchenmanipulierung
GB9714142D0 (en) 1997-07-05 1997-09-10 Surface Tech Sys Ltd An arrangement for the feeding of RF power to one or more antennae
JP3356043B2 (ja) * 1997-12-26 2002-12-09 三菱電機株式会社 レーザ加工装置用距離検出器
US6273022B1 (en) 1998-03-14 2001-08-14 Applied Materials, Inc. Distributed inductively-coupled plasma source
JP3148177B2 (ja) 1998-04-27 2001-03-19 ニチメン電子工研株式会社 プラズマ処理装置
JP2000030896A (ja) 1998-07-10 2000-01-28 Anelva Corp プラズマ閉込め装置
US6046641A (en) 1998-07-22 2000-04-04 Eni Technologies, Inc. Parallel HV MOSFET high power stable amplifier
JP3166745B2 (ja) 1998-12-25 2001-05-14 日本電気株式会社 プラズマ処理装置ならびにプラズマ処理方法
US20020022836A1 (en) * 1999-03-05 2002-02-21 Gyrus Medical Limited Electrosurgery system
JP2000294543A (ja) 1999-04-08 2000-10-20 Hitachi Ltd エッチング方法およびエッチング装置ならびに半導体装置の製造方法
US7537672B1 (en) 1999-05-06 2009-05-26 Tokyo Electron Limited Apparatus for plasma processing
KR20020040875A (ko) 1999-10-15 2002-05-30 로버트 엠. 포터 다중 전극 스퍼터링 시스템에서 기판 바이어싱을 위한방법 및 장치
US6818103B1 (en) 1999-10-15 2004-11-16 Advanced Energy Industries, Inc. Method and apparatus for substrate biasing in multiple electrode sputtering systems
JP2001122690A (ja) 1999-10-26 2001-05-08 Toyo Kohan Co Ltd マイクロ波プラズマcvd装置及びダイヤモンド薄膜を形成する方法
JP4727111B2 (ja) * 1999-11-16 2011-07-20 ハイドロ−ケベック アーク炉の再点弧を促進する方法および装置
JP4601104B2 (ja) 1999-12-20 2010-12-22 キヤノンアネルバ株式会社 プラズマ処理装置
KR100554426B1 (ko) * 2000-05-12 2006-02-22 동경 엘렉트론 주식회사 플라즈마 처리시스템에서의 전극의 두께 조정방법
JP4656697B2 (ja) 2000-06-16 2011-03-23 キヤノンアネルバ株式会社 高周波スパッタリング装置
US7294563B2 (en) 2000-08-10 2007-11-13 Applied Materials, Inc. Semiconductor on insulator vertical transistor fabrication and doping process
JP3911555B2 (ja) 2000-08-15 2007-05-09 独立行政法人産業技術総合研究所 シリコン系薄膜の製造法
JP3807598B2 (ja) 2001-07-23 2006-08-09 東京エレクトロン株式会社 エッチング方法
DE10154229B4 (de) * 2001-11-07 2004-08-05 Applied Films Gmbh & Co. Kg Einrichtung für die Regelung einer Plasmaimpedanz
JP2003155556A (ja) 2001-11-16 2003-05-30 Canon Inc ウエッジ形状膜の製造法
JP2003155526A (ja) 2001-11-21 2003-05-30 Kowa Kinzoku Kk 集塵ダストの処理方法
KR100557842B1 (ko) 2001-12-10 2006-03-10 동경 엘렉트론 주식회사 고주파 전원 및 그 제어 방법 및 플라즈마 처리 장치
US7298091B2 (en) 2002-02-01 2007-11-20 The Regents Of The University Of California Matching network for RF plasma source
US6703080B2 (en) * 2002-05-20 2004-03-09 Eni Technology, Inc. Method and apparatus for VHF plasma processing with load mismatch reliability and stability
DE10326135B4 (de) * 2002-06-12 2014-12-24 Ulvac, Inc. Entladungsplasma-Bearbeitungsanlage
US7445690B2 (en) 2002-10-07 2008-11-04 Tokyo Electron Limited Plasma processing apparatus
US7032536B2 (en) * 2002-10-11 2006-04-25 Sharp Kabushiki Kaisha Thin film formation apparatus including engagement members for support during thermal expansion
US7309998B2 (en) 2002-12-02 2007-12-18 Burns Lawrence M Process monitor for monitoring an integrated circuit chip
DE10306347A1 (de) 2003-02-15 2004-08-26 Hüttinger Elektronik GmbH & Co. KG Leistungszufuhrregeleinheit
US6876205B2 (en) * 2003-06-06 2005-04-05 Advanced Energy Industries, Inc. Stored energy arc detection and arc reduction circuit
US6972079B2 (en) 2003-06-25 2005-12-06 Advanced Energy Industries Inc. Dual magnetron sputtering apparatus utilizing control means for delivering balanced power
JP3575011B1 (ja) 2003-07-04 2004-10-06 村田 正義 プラズマ表面処理装置およびプラズマ表面処理方法
JP2005130376A (ja) 2003-10-27 2005-05-19 Sony Corp バラン
US7126346B2 (en) 2003-12-18 2006-10-24 Agilent Technologies, Inc. Method, apparatus, and article of manufacture for manufacturing high frequency balanced circuits
US7241361B2 (en) * 2004-02-20 2007-07-10 Fei Company Magnetically enhanced, inductively coupled plasma source for a focused ion beam system
JP4658506B2 (ja) 2004-03-31 2011-03-23 浩史 滝川 パルスアークプラズマ生成用電源回路及びパルスアークプラズマ処理装置
JP2005303257A (ja) 2004-10-01 2005-10-27 Masayoshi Murata 高周波プラズマ生成用平衡不平衡変換装置と、該平衡不平衡変換装置により構成されたプラズマ表面処理装置およびプラズマ表面処理方法
JP4909523B2 (ja) 2005-03-30 2012-04-04 株式会社ユーテック スパッタリング装置及びスパッタリング方法
EP1720195B1 (de) * 2005-05-06 2012-12-12 HÜTTINGER Elektronik GmbH + Co. KG Arcunterdrückungsanordnung
JP2006336084A (ja) 2005-06-03 2006-12-14 Canon Inc スパッタ成膜方法
CN2907173Y (zh) 2006-02-24 2007-05-30 苏州大学 大面积并联高密度感应耦合等离子体源
US7517437B2 (en) 2006-03-29 2009-04-14 Applied Materials, Inc. RF powered target for increasing deposition uniformity in sputtering systems
US8932430B2 (en) * 2011-05-06 2015-01-13 Axcelis Technologies, Inc. RF coupled plasma abatement system comprising an integrated power oscillator
US10083817B1 (en) 2006-08-22 2018-09-25 Valery Godyak Linear remote plasma source
WO2008024392A2 (en) 2006-08-22 2008-02-28 Valery Godyak Inductive plasma source with high coupling efficiency
JP4768699B2 (ja) 2006-11-30 2011-09-07 キヤノンアネルバ株式会社 電力導入装置及び成膜方法
US7777567B2 (en) * 2007-01-25 2010-08-17 Mks Instruments, Inc. RF power amplifier stability network
US20170213734A9 (en) 2007-03-30 2017-07-27 Alexei Marakhtanov Multifrequency capacitively coupled plasma etch chamber
US8450635B2 (en) 2007-03-30 2013-05-28 Lam Research Corporation Method and apparatus for inducing DC voltage on wafer-facing electrode
US20090075597A1 (en) * 2007-09-18 2009-03-19 Ofir Degani Device, system, and method of low-noise amplifier
TWI440405B (zh) 2007-10-22 2014-06-01 New Power Plasma Co Ltd 電容式耦合電漿反應器
JP2009135448A (ja) 2007-11-01 2009-06-18 Semiconductor Energy Lab Co Ltd 半導体基板の作製方法及び半導体装置の作製方法
ES2688300T3 (es) * 2007-11-06 2018-10-31 Creo Medical Limited Aplicador para esterilización por plasma mediante microondas
JP5371238B2 (ja) 2007-12-20 2013-12-18 東京エレクトロン株式会社 プラズマ処理装置およびプラズマ処理方法
CN101478857A (zh) 2008-01-04 2009-07-08 北京北方微电子基地设备工艺研究中心有限责任公司 等离子体处理装置
JP5294669B2 (ja) 2008-03-25 2013-09-18 東京エレクトロン株式会社 プラズマ処理装置
JP2008294465A (ja) 2008-07-31 2008-12-04 Masayoshi Murata 電流導入端子と、該電流導入端子を備えたプラズマ表面処理装置及びプラズマ表面処理方法
JP2008300873A (ja) 2008-08-26 2008-12-11 Masayoshi Murata プラズマ表面処理方法及びプラズマ表面処理装置
US8438990B2 (en) 2008-09-30 2013-05-14 Applied Materials, Inc. Multi-electrode PECVD source
JP4547711B2 (ja) 2008-10-10 2010-09-22 村田 正義 高周波プラズマcvd装置及び高周波プラズマcvd法
JP5305287B2 (ja) 2008-10-30 2013-10-02 芝浦メカトロニクス株式会社 半導体製造装置
CN102203317A (zh) 2008-11-12 2011-09-28 株式会社爱发科 电极电路、成膜装置、电极单元以及成膜方法
CN201425456Y (zh) 2009-01-07 2010-03-17 钱潮轴承有限公司 一种水泵轴连轴承沟径测量检具
CN102365906B (zh) * 2009-02-13 2016-02-03 应用材料公司 用于等离子体腔室电极的rf总线与rf回流总线
JP2010255061A (ja) 2009-04-27 2010-11-11 Canon Anelva Corp スパッタリング装置及びスパッタリング処理方法
JP2009302566A (ja) 2009-09-16 2009-12-24 Masayoshi Murata トランス型平衡不平衡変換装置を備えたプラズマ表面処理装置
WO2011041332A2 (en) * 2009-09-29 2011-04-07 Applied Materials, Inc. Off-center ground return for rf-powered showerhead
US8755204B2 (en) 2009-10-21 2014-06-17 Lam Research Corporation RF isolation for power circuitry
US8501631B2 (en) 2009-11-19 2013-08-06 Lam Research Corporation Plasma processing system control based on RF voltage
EP2326151A1 (fr) 2009-11-24 2011-05-25 AGC Glass Europe Procédé et dispositif de polarisation d'une électrode DBD
JP2011144450A (ja) 2009-12-16 2011-07-28 Canon Anelva Corp スパッタリング装置及びスパッタリング方法
JP5606063B2 (ja) * 2009-12-28 2014-10-15 東京エレクトロン株式会社 プラズマ処理装置
DE102010031568B4 (de) * 2010-07-20 2014-12-11 TRUMPF Hüttinger GmbH + Co. KG Arclöschanordnung und Verfahren zum Löschen von Arcs
CN102479657A (zh) 2010-11-26 2012-05-30 沈阳拓荆科技有限公司 一种多段式匹配器
JP5642531B2 (ja) 2010-12-22 2014-12-17 東京エレクトロン株式会社 基板処理装置及び基板処理方法
JP2012142332A (ja) 2010-12-28 2012-07-26 Canon Anelva Corp 電子部品の製造方法
JP5655865B2 (ja) 2011-01-12 2015-01-21 日新電機株式会社 プラズマ装置
US10553406B2 (en) 2011-03-30 2020-02-04 Jusung Engineering Co., Ltd. Plasma generating apparatus and substrate processing apparatus
US20130017315A1 (en) 2011-07-15 2013-01-17 Applied Materials, Inc. Methods and apparatus for controlling power distribution in substrate processing systems
JP2013098177A (ja) 2011-10-31 2013-05-20 Semes Co Ltd 基板処理装置及びインピーダンスマッチング方法
CN103091042B (zh) 2011-11-07 2016-11-16 泰州市宏华冶金机械有限公司 重心测量装置及重心测量方法
JP5824072B2 (ja) 2011-12-27 2015-11-25 キヤノンアネルバ株式会社 スパッタリング装置
US9171699B2 (en) 2012-02-22 2015-10-27 Lam Research Corporation Impedance-based adjustment of power and frequency
US10325759B2 (en) 2012-02-22 2019-06-18 Lam Research Corporation Multiple control modes
US10157729B2 (en) 2012-02-22 2018-12-18 Lam Research Corporation Soft pulsing
US9197196B2 (en) 2012-02-22 2015-11-24 Lam Research Corporation State-based adjustment of power and frequency
KR20140135202A (ko) 2012-03-15 2014-11-25 도쿄엘렉트론가부시키가이샤 성막 장치
DE102012103938A1 (de) 2012-05-04 2013-11-07 Reinhausen Plasma Gmbh Plasmamodul für eine Plasmaerzeugungsvorrichtung und Plasmaerzeugungsvorrichtung
SG2014009930A (en) 2012-07-24 2014-05-29 Ev Group E Thallner Gmbh Method and device for permanent bonding of wafers
JP2014049541A (ja) 2012-08-30 2014-03-17 Mitsubishi Heavy Ind Ltd 薄膜製造装置及びその電極電圧調整方法
JP2014049667A (ja) 2012-09-03 2014-03-17 Tokyo Electron Ltd プラズマ処理装置及びこれを備えた基板処理装置
US9779196B2 (en) 2013-01-31 2017-10-03 Lam Research Corporation Segmenting a model within a plasma system
US9620337B2 (en) 2013-01-31 2017-04-11 Lam Research Corporation Determining a malfunctioning device in a plasma system
US9875881B2 (en) 2013-02-20 2018-01-23 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
WO2014141601A1 (ja) 2013-03-14 2014-09-18 キヤノンアネルバ株式会社 成膜方法、半導体発光素子の製造方法、半導体発光素子、照明装置
JP2013139642A (ja) 2013-04-02 2013-07-18 Canon Anelva Corp スパッタ成膜応用のためのプラズマ処理装置
JP6574547B2 (ja) * 2013-12-12 2019-09-11 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP6028110B2 (ja) 2013-12-25 2016-11-16 キヤノンアネルバ株式会社 基板加工方法及び半導体装置の製造方法
JP6316017B2 (ja) 2014-02-13 2018-04-25 Nissha株式会社 製品検出装置
US10081869B2 (en) 2014-06-10 2018-09-25 Lam Research Corporation Defect control in RF plasma substrate processing systems using DC bias voltage during movement of substrates
US10410889B2 (en) * 2014-07-25 2019-09-10 Applied Materials, Inc. Systems and methods for electrical and magnetic uniformity and skew tuning in plasma processing reactors
WO2016113707A1 (en) 2015-01-16 2016-07-21 PAVARIN, Daniele A device intrinsically designed to resonate, suitable for rf power transfer as well as group including such device and usable for the production of plasma
GB201502453D0 (en) 2015-02-13 2015-04-01 Spts Technologies Ltd Plasma producing apparatus
US10049862B2 (en) 2015-04-17 2018-08-14 Lam Research Corporation Chamber with vertical support stem for symmetric conductance and RF delivery
WO2016183388A1 (en) 2015-05-12 2016-11-17 Laguardia & Associates, Llc Systems and methods for nuclear reactor vessel segmenting
JP6539113B2 (ja) 2015-05-28 2019-07-03 株式会社日立ハイテクノロジーズ プラズマ処理装置およびプラズマ処理方法
US9960009B2 (en) 2015-07-17 2018-05-01 Lam Research Corporation Methods and systems for determining a fault in a gas heater channel
JP6678886B2 (ja) 2016-05-26 2020-04-15 株式会社サムソン 給水予熱装置の製造方法
US10403476B2 (en) 2016-11-09 2019-09-03 Lam Research Corporation Active showerhead
JP2018129224A (ja) * 2017-02-09 2018-08-16 東京エレクトロン株式会社 プラズマ処理装置
US10544505B2 (en) * 2017-03-24 2020-01-28 Applied Materials, Inc. Deposition or treatment of diamond-like carbon in a plasma reactor
GB2562110A (en) * 2017-05-05 2018-11-07 Creo Medical Ltd Apparatus for sterilising an instrument channel of a surgical scoping device
CN110800377B (zh) * 2017-06-27 2022-04-29 佳能安内华股份有限公司 等离子体处理装置
TWI678425B (zh) 2017-06-27 2019-12-01 日商佳能安內華股份有限公司 電漿處理裝置
JP6595002B2 (ja) * 2017-06-27 2019-10-23 キヤノンアネルバ株式会社 スパッタリング装置
KR102421625B1 (ko) * 2017-06-27 2022-07-19 캐논 아네르바 가부시키가이샤 플라스마 처리 장치
CN110800378B (zh) * 2017-06-27 2021-12-28 佳能安内华股份有限公司 等离子体处理装置
JP6309683B1 (ja) * 2017-10-31 2018-04-11 キヤノンアネルバ株式会社 プラズマ処理装置
EP3785494A4 (en) * 2018-06-14 2022-01-26 MKS Instruments, Inc. REMOTE PLASMA SOURCE RADICAL OUTPUT MONITOR AND METHOD OF USE
SG11202009122YA (en) * 2018-06-26 2020-10-29 Canon Anelva Corp Plasma processing apparatus, plasma processing method, program, and memory medium
US10354838B1 (en) 2018-10-10 2019-07-16 Lam Research Corporation RF antenna producing a uniform near-field Poynting vector
US11013075B2 (en) * 2018-12-20 2021-05-18 Nxp Usa, Inc. RF apparatus with arc prevention using non-linear devices
US11232931B2 (en) 2019-10-21 2022-01-25 Mks Instruments, Inc. Intermodulation distortion mitigation using electronic variable capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300322A (ja) * 2007-06-04 2008-12-11 Canon Anelva Corp プラズマ処理装置、プラズマ処理方法、整合器、及び整合器の動作方法
JP2010045664A (ja) * 2008-08-14 2010-02-25 Tokyo Electron Ltd マッチング装置、マッチング方法、プラズマ処理装置、及び記憶媒体
JP2012174682A (ja) * 2011-02-18 2012-09-10 Samsung Electronics Co Ltd プラズマ処理装置
US20160289837A1 (en) * 2012-06-19 2016-10-06 Aixtron, Inc. Apparatus and method for forming thin protective and optical layers on substrates
JP6280677B1 (ja) * 2017-06-27 2018-02-14 キヤノンアネルバ株式会社 プラズマ処理装置

Also Published As

Publication number Publication date
US11600466B2 (en) 2023-03-07
EP3817517A4 (en) 2022-03-16
WO2020003557A1 (ja) 2020-01-02
KR20210012000A (ko) 2021-02-02
KR102439024B1 (ko) 2022-09-02
JPWO2020003557A1 (ja) 2020-07-02
SG11202009122YA (en) 2020-10-29
US20210005429A1 (en) 2021-01-07
EP3817517A1 (en) 2021-05-05
CN112292911A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
JP6688440B1 (ja) プラズマ処理装置、プラズマ処理方法、プログラムおよびメモリ媒体
JP6280677B1 (ja) プラズマ処理装置
JP6458206B1 (ja) プラズマ処理装置
JP6309683B1 (ja) プラズマ処理装置
JP6595002B2 (ja) スパッタリング装置
JP2019133930A (ja) プラズマ処理装置
JP7145832B2 (ja) プラズマ処理装置およびプラズマ処理方法
TWI716796B (zh) 電漿處理裝置、電漿處理方法、程式及記憶媒體
JP7145136B2 (ja) プラズマ処理装置およびプラズマ処理方法
JP6656480B2 (ja) プラズマ処理装置および方法
JP2019133929A (ja) プラズマ処理装置
JPWO2019004189A1 (ja) プラズマ処理装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191115

A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20191115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191115

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191115

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200403

R150 Certificate of patent or registration of utility model

Ref document number: 6688440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250