JP6675094B2 - 非接触給電装置、プログラム、非接触給電装置の制御方法、及び非接触電力伝送システム - Google Patents

非接触給電装置、プログラム、非接触給電装置の制御方法、及び非接触電力伝送システム Download PDF

Info

Publication number
JP6675094B2
JP6675094B2 JP2016109055A JP2016109055A JP6675094B2 JP 6675094 B2 JP6675094 B2 JP 6675094B2 JP 2016109055 A JP2016109055 A JP 2016109055A JP 2016109055 A JP2016109055 A JP 2016109055A JP 6675094 B2 JP6675094 B2 JP 6675094B2
Authority
JP
Japan
Prior art keywords
phase difference
correction
frequency
switch elements
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016109055A
Other languages
English (en)
Other versions
JP2017216817A (ja
Inventor
佑介 丹治
佑介 丹治
田村 秀樹
秀樹 田村
貴大 大堀
貴大 大堀
伸吾 岡浦
伸吾 岡浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016109055A priority Critical patent/JP6675094B2/ja
Publication of JP2017216817A publication Critical patent/JP2017216817A/ja
Application granted granted Critical
Publication of JP6675094B2 publication Critical patent/JP6675094B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Inverter Devices (AREA)

Description

本発明は、一般に非接触給電装置、プログラム、非接触給電装置の制御方法、及び非接触電力伝送システムに関し、より詳細には負荷に非接触で給電を行う非接触給電装置、プログラム、非接触給電装置の制御方法、及び非接触電力伝送システムに関する。
従来、負荷へ電磁誘導を利用して非接触で電力を供給する非接触給電装置が提案されている(例えば特許文献1参照)。
特許文献1に記載の非接触給電装置は、磁界を発生させることで電力を供給する一次側コイル(給電コイル)を備えており、電気自動車などの移動体への給電に用いられる。電気自動車は非接触受電装置を備えている。非接触受電装置は、二次側コイル(受電コイル)及び蓄電池を備えており、非接触給電装置の一次側コイルから二次側コイルに供給された電力を蓄電池に蓄積する。
特開2013−243929号公報
ところで、上述したような非接触給電装置においては、非接触給電装置の一次側コイルと負荷(移動体)の二次側コイルとの相対的な位置関係によって、一次側コイルと二次側コイルとの間の結合係数が変化する。そのため、一次側コイルと二次側コイルとの相対的な位置関係によって、非接触給電装置から出力される出力電力が変動し、安定した電力供給ができない可能性がある。
本発明は上記事由に鑑みてなされており、一次側コイルと二次側コイルとの相対的な位置関係によらず、安定した電力の供給が可能な非接触給電装置、プログラム、非接触給電装置の制御方法、及び非接触電力伝送システムを提供することを目的とする。
本発明の一態様に係る非接触給電装置は、インバータ回路と、一次側コイルと、電力補正回路と、素子制御部と、周波数制御部と、位相差制御部と、取得部と、決定部と、を備える。前記インバータ回路は、一対の入力点と一対の出力点との間に電気的に接続された複数の変換用スイッチ素子を有する。前記インバータ回路は、前記複数の変換用スイッチ素子のスイッチングにより、前記一対の入力点に印加される直流電圧を交流電圧に変換して前記一対の出力点から出力する。前記一次側コイルは、前記一対の出力点間に電気的に接続され、前記交流電圧が印加されることにより二次側コイルに非接触で出力電力を供給する。前記電力補正回路は、前記一対の出力点の少なくとも一方と前記一次側コイルとの間に電気的に接続され、補正用コンデンサ及び複数の補正用スイッチ素子を有する。前記電力補正回路は、前記複数の補正用スイッチ素子のスイッチングにより、前記補正用コンデンサの充放電を行う。前記素子制御部は、第1駆動信号にて前記複数の変換用スイッチ素子を制御し、第2駆動信号にて前記複数の補正用スイッチ素子を制御する。前記周波数制御部は、前記第1駆動信号の周波数を離散的に変化させるように制御することにより、前記出力電力の大きさを目標値に近づけるように調節する。前記位相差制御部は、前記第1駆動信号に対する前記第2駆動信号の位相の遅れである位相差を離散的に変化させるように制御することにより、前記出力電力の大きさを前記目標値に近づけるように調節する。前記取得部は、前記目標値と前記出力電力の大きさとの差分値を取得する。前記決定部は、前記周波数制御部で制御される前記周波数と前記位相差制御部で制御される前記位相差との少なくとも一方からなる制御対象値の刻み幅を、前記差分値に応じて決定する。
本発明の一態様に係るプログラムは、非接触給電装置に用いられるコンピュータを、素子制御部、周波数制御部、位相差制御部、取得部、及び決定部として機能させる。前記非接触給電装置は、インバータ回路と、一次側コイルと、電力補正回路とを備える。前記インバータ回路は、一対の入力点と一対の出力点との間に電気的に接続された複数の変換用スイッチ素子を有する。前記インバータ回路は、前記複数の変換用スイッチ素子のスイッチングにより、前記一対の入力点に印加される直流電圧を交流電圧に変換して前記一対の出力点から出力する。前記一次側コイルは、前記一対の出力点間に電気的に接続され、前記交流電圧が印加されることにより二次側コイルに非接触で出力電力を供給する。前記電力補正回路は、前記一対の出力点の少なくとも一方と前記一次側コイルとの間に電気的に接続される。前記電力補正回路は、補正用コンデンサ及び複数の補正用スイッチ素子を有する。前記電力補正回路は、前記複数の補正用スイッチ素子のスイッチングにより、前記補正用コンデンサの充放電を行う。前記素子制御部は、第1駆動信号にて前記複数の変換用スイッチ素子を制御し、第2駆動信号にて前記複数の補正用スイッチ素子を制御する。前記周波数制御部は、前記第1駆動信号の周波数を離散的に変化させるように制御することにより、前記出力電力の大きさを目標値に近づけるように調節する。前記位相差制御部は、前記第1駆動信号に対する前記第2駆動信号の位相の遅れである位相差を離散的に変化させるように制御することにより、前記出力電力の大きさを前記目標値に近づけるように調節する。前記取得部は、前記目標値と前記出力電力の大きさとの差分値を取得する。前記決定部は、前記周波数制御部で制御される前記周波数と前記位相差制御部で制御される前記位相差との少なくとも一方からなる制御対象値の刻み幅を、前記差分値に応じて決定する。
本発明の一態様に係る非接触給電装置の制御方法は、素子制御ステップと、周波数制御ステップと、位相差制御ステップと、取得ステップと、決定ステップと、を有する。前記非接触給電装置は、インバータ回路と、一次側コイルと、電力補正回路とを備える。前記インバータ回路は、一対の入力点と一対の出力点との間に電気的に接続された複数の変換用スイッチ素子を有する。前記インバータ回路は、前記複数の変換用スイッチ素子のスイッチングにより、前記一対の入力点に印加される直流電圧を交流電圧に変換して前記一対の出力点から出力する。前記一次側コイルは、前記一対の出力点間に電気的に接続され、前記交流電圧が印加されることにより二次側コイルに非接触で出力電力を供給する。前記電力補正回路は、前記一対の出力点の少なくとも一方と前記一次側コイルとの間に電気的に接続される。前記電力補正回路は、補正用コンデンサ及び複数の補正用スイッチ素子を有する。前記電力補正回路は、前記複数の補正用スイッチ素子のスイッチングにより、前記補正用コンデンサの充放電を行う。前記素子制御ステップでは、第1駆動信号にて前記複数の変換用スイッチ素子を制御し、第2駆動信号にて前記複数の補正用スイッチ素子を制御する。前記周波数制御ステップでは、前記第1駆動信号の周波数を離散的に変化させるように制御することにより、前記出力電力の大きさを目標値に近づけるように調節する。前記位相差制御ステップでは、前記第1駆動信号に対する前記第2駆動信号の位相の遅れである位相差を離散的に変化させるように制御することにより、前記出力電力の大きさを前記目標値に近づけるように調節する。前記取得ステップでは、前記目標値と前記出力電力の大きさとの差分値を取得する。前記決定ステップでは、前記周波数制御ステップで制御される前記周波数と前記位相差制御ステップで制御される前記位相差との少なくとも一方からなる制御対象値の刻み幅を、前記差分値に応じて決定する。
本発明の一態様に係る非接触電力伝送システムは、上記の非接触給電装置と、前記二次側コイルを有する非接触受電装置とを備える。前記非接触受電装置は、前記非接触給電装置から非接触で前記出力電力が供給されるように構成されている。
本発明は、一次側コイルと二次側コイルとの相対的な位置関係によらず、安定した電力の供給が可能である、という利点がある。
図1は、本発明の一実施形態に係る非接触電力伝送システムを示す回路図である。 図2は、本発明の一実施形態に係る非接触給電装置の第1駆動信号及び第2駆動信号を示す波形図である。 図3は、同上の非接触給電装置における共振特性の例を示すグラフである。 図4A及び図4Bは、同上の非接触給電装置における共振特性の例を示すグラフである。 図5Aは同上の非接触給電装置における初期進相の場合の位相差特性の例を示すグラフ、図5Bは同上の非接触給電装置における初期遅相の場合の位相差特性の例を示すグラフである。 図6Aは、同上の非接触給電装置における電力補正回路の第1充電モードを示す説明図である。図6Bは、同上の非接触給電装置における電力補正回路の第1放電モードを示す説明図である。図6Cは、同上の非接触給電装置における電力補正回路の第2充電モードを示す説明図である。図6Dは、同上の非接触給電装置における電力補正回路の第2放電モードを示す説明図である。 図7は、同上の非接触給電装置における電圧電流位相差が90度である場合の第1駆動信号、一次側電流、及び第2駆動信号の波形図である。 図8は、同上の非接触給電装置における電圧電流位相差が45度である場合の第1駆動信号、一次側電流、及び第2駆動信号の波形図である。 図9は、同上の非接触給電装置における出力電力制御を示すフローチャートである。 図10は、同上の非接触給電装置における周波数刻み幅を決定する処理を示すフローチャートである。 図11は、同上の非接触給電装置における周波数制御時の出力電力の周波数特性を示すグラフである。 図12は、本発明の一実施形態の変形例に係る電力補正回路の構成を示す回路図である。
本実施形態に係る非接触給電装置は、負荷に対し非接触で給電を行う。非接触給電装置は、非接触給電装置に設けられた一次側コイルと負荷に設けられた二次側コイルとが電磁界結合(電界結合と磁界結合との少なくとも一方)された状態で、一次側コイルから二次側コイルへ電力の伝達を行うことにより、負荷への給電を行う。この種の非接触給電装置は、負荷に備わっている非接触受電装置と共に非接触電力伝送システムを構成する。
(1)非接触電力伝送システムの概要
まず、非接触電力伝送システムの概要について、図1を参照して説明する。
非接触電力伝送システム1は、一次側コイルL1を有する非接触給電装置2と、二次側コイルL2を有する非接触受電装置3とを備えている。非接触受電装置3は、非接触給電装置2から非接触で出力電力が供給されるように構成されている。ここでいう「出力電力」は、非接触給電装置2から出力される電力であって、一次側コイルL1に交流電圧が印加されることにより一次側コイルL1から二次側コイルL2に非接触で供給される電力である。
本実施形態では、負荷としての電動車両に非接触受電装置3が搭載されている場合を例に説明する。電動車両は、蓄電池4を備え、蓄電池4に蓄積された電気エネルギーを用いて走行する車両である。電動車両に搭載された非接触受電装置3は、蓄電池4の充電装置として用いられる。ここでは電動機で生じる駆動力によって走行する電気自動車を電動車両の例として説明するが、電動車両は電気自動車に限らず、例えば二輪車(電動バイク)、電動自転車などであってもよい。
非接触給電装置2は、商用電源(系統電源)や、太陽光発電設備等の発電設備から供給される電力を、非接触受電装置3に供給することで、電動車両の蓄電池4を充電する。非接触給電装置2に供給される電力は、交流電力と直流電力とのいずれであってもよいが、本実施形態では、非接触給電装置2が直流電源5に電気的に接続され、非接触給電装置2に直流電力が供給される場合を例に説明する。非接触給電装置2に交流電力が供給される場合、非接触給電装置2には交流を直流に変換するAC/DCコンバータが設けられる。
非接触給電装置2は、例えば商業施設や公共施設、又は集合住宅などの駐車場に設置される。非接触給電装置2は、少なくとも一次側コイルL1が床又は地面に設置されており、一次側コイルL1上に駐車された電動車両の非接触受電装置3に対して非接触で電力を供給する。このとき、非接触受電装置3の二次側コイルL2は、一次側コイルL1の上方に位置することで、一次側コイルL1と電磁界結合されている。そのため、一次側コイルL1からの出力電力が二次側コイルL2へ伝達(送電)されることになる。一次側コイルL1は、床又は地面から露出するように設置される構成に限らず、床又は地面に埋め込まれるように設置されていてもよい。
非接触受電装置3は、二次側コイルL2と、一対の二次側コンデンサC21,C22と、整流回路31と、平滑コンデンサC2とを有している。整流回路31は、一対の交流入力点と、一対の直流出力点とを有するダイオードブリッジからなる。二次側コイルL2の一端は、第1の二次側コンデンサC21を介して整流回路31の一方の交流入力点に電気的に接続され、二次側コイルL2の他端は、第2の二次側コンデンサC22を介して整流回路31の他方の交流入力点に電気的に接続されている。平滑コンデンサC2は、整流回路31の一対の直流出力点間に電気的に接続されている。さらに、平滑コンデンサC2の両端は一対の出力端子T21,T22に電気的に接続されている。一対の出力端子T21,T22には、蓄電池4が電気的に接続されている。
これにより、非接触受電装置3は、非接触給電装置2の一次側コイルL1からの出力電力を二次側コイルL2で受けることで二次側コイルL2の両端間に発生する交流電圧を、整流回路31にて整流し、更に平滑コンデンサC2にて平滑して直流電圧を得る。非接触受電装置3は、このようにして得られる直流電圧を、一対の出力端子T21,T22から蓄電池4に出力(印加)する。
本実施形態においては、非接触給電装置2は、一次側コイルL1と共に共振回路(以下、「一次側共振回路」という)を構成する電力補正回路22、及び一対の一次側コンデンサC11,C12を備えている。つまり、一次側共振回路は、一次側コイルL1、電力補正回路22、及び一対の一次側コンデンサC11,C12を含んでいる。また、非接触受電装置3においては、二次側コイルL2は一対の二次側コンデンサC21,C22と共に共振回路(以下、「二次側共振回路」という)を構成している。つまり、二次側共振回路は、二次側コイルL2、及び一対の二次側コンデンサC21,C22を含んでいる。本実施形態に係る非接触電力伝送システム1は、一次側共振回路と二次側共振回路とを共鳴させることにより電力の伝送を行う磁界共鳴方式(磁気共鳴方式)を採用している。すなわち、非接触電力伝送システム1では、一次側共振回路と二次側共振回路とで共振周波数を一致させることにより、一次側コイルL1と二次側コイルL2とが比較的離れた状態でも、非接触給電装置2の出力電力を高効率で伝送可能である。
本実施形態における一次側コイルL1及び二次側コイルL2は、コアに対して導線が螺旋状に巻き付けられたソレノイド型のコイルであってもよいが、平面上において導線が渦巻き状に巻かれたスパイラル型のコイルであることが好ましい。スパイラル型のコイル(サーキュラコイル)は、ソレノイド型のコイルに比べて、不要輻射ノイズが生じにくい、という利点がある。また、スパイラル型のコイルが用いられることで、不要輻射ノイズが低減される結果、インバータ回路において使用可能な動作周波数の範囲が拡大される、という利点もある。
(2)非接触給電装置の概要
次に、非接触給電装置の概要について、図1を参照して説明する。
本実施形態に係る非接触給電装置2は、インバータ回路21と、電力補正回路22と、制御回路23と、計測部24と、一次側コイルL1と、一対の一次側コンデンサC11,C12とを備えている。
インバータ回路21は、一対の入力点211,212と一対の出力点213,214との間に電気的に接続された複数(ここでは4つ)の変換用スイッチ素子Q1〜Q4を有している。インバータ回路21は、複数の変換用スイッチ素子Q1〜Q4のスイッチングにより、一対の入力点211,212に印加される直流電圧を交流電圧に変換して一対の出力点213,214から出力する。
一次側コイルL1は、一対の出力点213,214間に電気的に接続されている。一次側コイルL1は、交流電圧が印加されることにより二次側コイルL2に非接触で出力電力を供給する。
電力補正回路22は、出力点213と一次側コイルL1との間に電気的に接続され、補正用コンデンサC1及び複数(ここでは4つ)の補正用スイッチ素子Q5〜Q8を有している。電力補正回路22は、複数の補正用スイッチ素子Q5〜Q8のスイッチングにより、補正用コンデンサC1の充放電を行う。言い換えれば、電力補正回路22は、複数の補正用スイッチ素子Q5〜Q8のスイッチングにより、出力点213と一次側コイルL1との間における一次側共振回路の容量成分の大きさを調整する。これにより、一次側コイルL1を含む非接触給電装置2の一次側共振回路から、二次側コイルL2を含む非接触受電装置3の二次側共振回路へ伝送される出力電力の大きさが補正される。
制御回路23は、素子制御部231、周波数制御部232、位相差制御部233、取得部234、及び決定部235としての機能を有している。
素子制御部231は、第1駆動信号G1〜G4にて複数の変換用スイッチ素子Q1〜Q4を制御し、第2駆動信号G5〜G8にて複数の補正用スイッチ素子Q5〜Q8を制御する。
周波数制御部232は、第1駆動信号G1〜G4の周波数を離散的に変化させるように制御することにより、出力電力の大きさを目標値に近づけるように調節する。位相差制御部233は、第1駆動信号G1〜G4に対する第2駆動信号G5〜G8の位相の遅れである位相差を離散的に変化させるように制御することにより、出力電力の大きさを目標値に近づけるように調節する。つまり、周波数制御部232及び位相差制御部233は、出力電力の大きさを調節する際の制御対象が周波数か位相差かで異なるものの、いずれも出力電力が「目標値」に近づくように、出力電力の大きさを調節する。言い換えれば、周波数制御部232及び位相差制御部233にて周波数又は位相差が変化させられる度に、出力電力が徐々に目標値に近づくように出力電力の大きさが調節される。
ここでいう「位相差」は、第1駆動信号G1,G4に対する第2駆動信号G6,G7の位相の遅れ、又は第1駆動信号G2,G3に対する第2駆動信号G5,G8の位相の遅れである。この点については、後に「(4)基本動作」の「(4.2)電力補正回路あり」の欄で詳しく説明する。
取得部234は、目標値と出力電力の大きさとの差分値を取得する。ここでいう「差分値」は、周波数制御部232及び位相差制御部233による出力電力の調節時に目標となる「目標値」と、実際の「出力電力の大きさ」との差である。本実施形態では、取得部234は、目標値と、計測部24で計測された出力電力とに基づいて、差分値を求めている。計測部24は、一次側コイルL1を流れる電流を計測する電流センサ25の出力を受けて、計測値(出力電力の大きさ)の大きさを計測する。
決定部235は、周波数制御部232で制御される周波数と位相差制御部233で制御される位相差との少なくとも一方からなる制御対象値の刻み幅を、(目標値と出力電力の大きさとの)差分値に応じて決定する。つまり、決定部235は、制御対象値(周波数と位相差との少なくとも一方)の制御時において、取得部234で取得される差分値が変われば、これに伴って制御対象値の刻み幅が変わるように、差分値に応じて制御対象値の刻み幅を決定する。
ここでいう「刻み幅」は、離散的に変化する制御対象値(周波数と位相差との少なくとも一方)の最小の変化量を意味する。例えば、第1駆動信号G1〜G4の周波数は、周波数制御部232にて、離散的に変化するように制御されている。そのため、周波数制御部232にて出力電力の大きさが調節される際には、周波数制御部232での制御の対象である制御対象値(周波数)は、「刻み幅」を最小単位にして変化することになる。同様に、第1駆動信号G1,G4(G2,G3)に対する第2駆動信号G6,G7(G5,G8)の位相の遅れである位相差は、位相差制御部233にて、離散的に変化するように制御されている。そのため、位相差制御部233にて出力電力の大きさが調節される際には、位相差制御部233での制御の対象である制御対象値(位相差)は、「刻み幅」を最小単位にして変化することになる。
上記構成によれば、本実施形態に係る非接触給電装置2は、周波数制御部232での周波数の制御、及び位相差制御部233での位相差の制御の少なくとも一方により、出力電力の大きさを調節することが可能である。したがって、一次側コイルL1と二次側コイルL2との相対的な位置関係が変化して、一次側コイルL1と二次側コイルL2との間の結合係数が変化したとしても、非接触給電装置2は、出力電力の大きさを調節することで、安定した電力の供給が可能になる。
しかも、非接触給電装置2においては、出力電力を調節する際の制御の対象である制御対象値(周波数と位相差との少なくとも一方)の刻み幅が、決定部235により、(目標値と出力電力の大きさとの)差分値に応じて決定される。そのため、例えば、差分値が比較的大きい場合、つまり出力電力が目標値に程遠い場合には、制御対象値の刻み幅を比較的大きくすることで、出力電力を目標値に近づけるための処理に要する時間の短縮を図ることができる。差分値が比較的小さい場合、つまり出力電力が目標値に近づいた場合には、制御対象値の刻み幅を比較的小さくすることで、出力電力が目標値付近で変動することによるリプルの発生や、出力電力が目標値を大幅に超過することを抑制可能である。言い換えれば、非接触給電装置2では、出力電力を調節する際の制御の対象である制御対象値の分解能を、一定にするのではなく、差分値に応じて決定することにより、出力電力の調節に要する時間を短縮しながらも、出力電力を安定させることができる。したがって、非接触給電装置2は、一次側コイルL1と二次側コイルL2との相対的な位置関係によらず、安定した電力の供給が可能である、という利点がある。
(3)回路構成
次に、本実施形態に係る非接触給電装置2の具体的な回路構成について、図1を参照して説明する。
本実施形態に係る非接触給電装置2は、一対の入力端子T11,T12を備えている。一対の入力端子T11,T12には、直流電源5が電気的に接続されている。
インバータ回路21は、4つの変換用スイッチ素子Q1〜Q4がフルブリッジ接続されたフルブリッジインバータ回路である。つまり、インバータ回路21は、一対の入力点211,212間に電気的に並列に接続された第1アームと第2アームとを有し、これら第1アーム及び第2アームが4つの変換用スイッチ素子Q1〜Q4にて構成されている。第1アームは(第1の)変換用スイッチ素子Q1と(第2の)変換用スイッチ素子Q2との直列回路からなり、第2アームは(第3の)変換用スイッチ素子Q3と(第4の)変換用スイッチ素子Q4との直列回路からなる。第1アームの中点(変換用スイッチ素子Q1,Q2の接続点)及び第2アームの中点(変換用スイッチ素子Q3,Q4の接続点)は、一対の出力点213,214となる。本実施形態では、4つの変換用スイッチ素子Q1〜Q4は、それぞれnチャネルのデプレション型MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である。
さらに詳しく説明すると、一対の入力点211,212は、第1の入力点211が直流電源5の正極側となり、第2の入力点212が直流電源5の負極側となるように、一対の入力端子T11,T12に電気的に接続されている。第1の入力点211には、変換用スイッチ素子Q1,Q3のドレインが電気的に接続されている。また、第2の入力点212には、変換用スイッチ素子Q2,Q4のソースが電気的に接続されている。そして、変換用スイッチ素子Q1のソースと変換用スイッチ素子Q2のドレインとの接続点が、インバータ回路21の第1の出力点213となる。また、変換用スイッチ素子Q3のソースと変換用スイッチ素子Q4のドレインとの接続点が、インバータ回路21の第2の出力点214となる。
本実施形態でいう「入力点」や「出力点」は、電線等を接続するための部品(端子)として実体を有しなくてもよく、例えば電子部品のリードや、回路基板に含まれる導体の一部であってもよい。
4つの変換用スイッチ素子Q1〜Q4の各々のドレイン及びソース間には、4つのダイオードD1〜D4が4つの変換用スイッチ素子Q1〜Q4と一対一に対応するように電気的に接続されている。各ダイオードD1〜D4は、各変換用スイッチ素子Q1〜Q4のドレイン側をカソードとする向きで接続されている。ここでは、各ダイオードD1〜D4は各変換用スイッチ素子Q1〜Q4の寄生ダイオードである。
電力補正回路22は、補正用コンデンサC1と、4つの補正用スイッチ素子Q5〜Q8とを有している。この電力補正回路22は、インバータ回路21の一対の出力点213,214間において電気的に並列に接続された第3アームと第4アームとを有し、これら第3アーム及び第4アームが4つの補正用スイッチ素子Q5〜Q8にて構成されている。第3アームは(第1の)補正用スイッチ素子Q5と(第3の)補正用スイッチ素子Q7との直列回路からなり、第4アームは(第2の)補正用スイッチ素子Q6と(第4の)補正用スイッチ素子Q8との直列回路からなる。第3アームの中点(補正用スイッチ素子Q5,Q7の接続点)と、第4アームの中点(補正用スイッチ素子Q6,Q8の接続点)との間には、補正用コンデンサC1が電気的に接続されている。本実施形態では、4つの補正用スイッチ素子Q5〜Q8は、それぞれnチャネルのデプレション型MOSFETである。
さらに詳しく説明すると、インバータ回路21の第1の出力点213には、第1の一次側コンデンサC11を介して、補正用スイッチ素子Q5のソース及び補正用スイッチ素子Q6のドレインが電気的に接続されている。また、第2の出力点214には、第2の一次側コンデンサC12及び一次側コイルL1を介して、補正用スイッチ素子Q7のソース及び補正用スイッチ素子Q8のドレインが電気的に接続されている。そして、補正用コンデンサC1の一端は、補正用スイッチ素子Q5のドレインと補正用スイッチ素子Q7のドレインとの接続点に電気的に接続されている。補正用コンデンサC1の他端は、補正用スイッチ素子Q6のソースと補正用スイッチ素子Q8のソースとの接続点に電気的に接続されている。補正用コンデンサC1の容量は、一次側共振回路における一次側コンデンサC11,C12の容量よりも十分に大きく、例えば、一次側コンデンサC11,C12の容量が〔nF〕オーダであれば、補正用コンデンサC1の容量は〔μF〕オーダである。
4つの補正用スイッチ素子Q5〜Q8の各々のドレイン及びソース間には、4つのダイオードD5〜D8が4つの補正用スイッチ素子Q5〜Q8と一対一に対応するように電気的に接続されている。各ダイオードD5〜D8は、各補正用スイッチ素子Q5〜Q8のドレイン側をカソードとする向きで接続されている。ここでは、各ダイオードD5〜D8は各補正用スイッチ素子Q5〜Q8の寄生ダイオードである。
制御回路23は、素子制御部231、周波数制御部232、位相差制御部233、取得部234、及び決定部235としての機能を有している。制御回路23は、例えばマイクロコンピュータを主構成として備えている。マイクロコンピュータは、マイクロコンピュータのメモリに記録されているプログラムをCPU(Central Processing Unit)で実行することにより、制御回路23としての機能を実現する。つまり、マイクロコンピュータのプロセッサがプログラムを実行することにより、素子制御部231、周波数制御部232、位相差制御部233、取得部234、及び決定部235の機能が実現される。プログラムは、予めマイクロコンピュータのメモリに記録されていてもよいし、メモリカードのような記録媒体に記録されて提供されたり、電気通信回線を通して提供されたりしてもよい。
素子制御部231は、インバータ回路21の各変換用スイッチ素子Q1〜Q4のオンオフを切り替えるための第1駆動信号G1〜G4を出力する。4つの第1駆動信号G1〜G4は、4つの変換用スイッチ素子Q1〜Q4に一対一に対応する。ここでは、素子制御部231は、第1駆動信号G1〜G4を、それぞれ対応する変換用スイッチ素子Q1〜Q4のゲートに出力することで、対応する変換用スイッチ素子Q1〜Q4の制御を行っている。
また、素子制御部231は、電力補正回路22の4つの補正用スイッチ素子Q5〜Q8の各々のオンオフを切り替えるための第2駆動信号G5〜G8を出力する。4つの第2駆動信号G5〜G8は、4つの補正用スイッチ素子Q5〜Q8に一対一に対応する。ここでは、素子制御部231は、第2駆動信号G5〜G8を、それぞれ対応する補正用スイッチ素子Q5〜Q8のゲートに出力することで、対応する補正用スイッチ素子Q5〜Q8の制御を行っている。
本実施形態では、制御回路23(素子制御部231)が、変換用スイッチ素子Q1〜Q4及び補正用スイッチ素子Q5〜Q8の各々のゲートに対し、第1駆動信号G1〜G4及び第2駆動信号G5〜G8を直接出力しているが、この構成に限らない。例えば、非接触給電装置2は駆動回路を更に備え、駆動回路が、制御回路23(素子制御部231)からの第1駆動信号G1〜G4及び第2駆動信号G5〜G8を受けて、変換用スイッチ素子Q1〜Q4及び補正用スイッチ素子Q5〜Q8を駆動してもよい。
取得部234は、上述したように目標値と、計測部24で計測された出力電力とに基づいて、目標値と出力電力の大きさとの「差分値」を取得する。目標値は、例えば、非接触受電装置3にて決定され、給電の開始を指示する指令が非接触受電装置3から非接触給電装置2に対して送信されるときに、この指令と共に非接触受電装置3から非接触給電装置2に送信される。取得部234は、このようにして得られる目標値から、計測部24の計測値(出力電力の大きさ)を減算した値の絶対値を、「差分値」として求める。ここで、目標値及び出力電力の大きさのいずれの単位も〔kW〕であるとすれば、「差分値」も〔kW〕で表される。
制御回路23における素子制御部231及び取得部234以外の機能(周波数制御部232、位相差制御部233及び決定部235)については、「(6)出力電力制御」の欄で説明する。
一次側コイルL1は、インバータ回路21の一対の出力点213,214間において、一対の一次側コンデンサC11,C12及び電力補正回路22と電気的に直列に接続されている。一次側コイルL1の一端は、電力補正回路22及び第1の一次側コンデンサC11を介して、インバータ回路21の第1の出力点213に電気的に接続されている。一次側コイルL1の他端は、第2の一次側コンデンサC12を介して、インバータ回路21の第2の出力点214に電気的に接続されている。
計測部24は、上述したように非接触給電装置2の出力電力の大きさを、計測値として計測する機能を有している。計測部24は、一次側コイルL1に流れる電流と、例えば一次側コイルL1に印加される電圧とを計測する。一次側コイルL1と第2の一次側コンデンサC12との間には、例えば変流器からなる電流センサ25が設けられている。計測部24は、電流センサ25の出力を受けて、一次側コイルL1に流れる電流を計測する。計測部24は、計測した電流及び電圧に基づいて、非接触給電装置2の出力電力を演算する。これにより、計測部24は出力電力の大きさを計測値として計測することができる。計測部24は、計測値を制御回路23に出力するように構成されている。制御回路23は、計測部24で計測された計測値を用いて、一次側コイルL1から出力される出力電力の大きさを監視する。
(4)基本動作
次に、本実施形態の非接触給電装置2の基本動作について、図1及び図2を参照して説明する。図2では、横軸を時間軸として、上から順に第1駆動信号「G1,G4」、「G2,G3」、第2駆動信号「G5,G8」、「G6,G7」の信号波形を表している。なお、図2中の「オン」、「オフ」は、対応するスイッチ素子(変換用スイッチ素子、補正用スイッチ素子)のオン、オフを表している。
(4.1)電力補正回路なし
ここではまず、電力補正回路22がない場合、つまり一対の出力点213,214間に、一次側コイルL1及び一対の一次側コンデンサC11,C12のみが電気的に接続されている場合を想定し、非接触給電装置2の動作を説明する。この場合の非接触給電装置2の動作は、図1の回路構成において、電力補正回路22が動作を停止している場合、つまり電力補正回路22の全ての補正用スイッチ素子Q5〜Q8がオンに固定されている場合の非接触給電装置2の動作と等価である。
素子制御部231は、図2に示すように、変換用スイッチ素子Q1,Q4に対応する第1駆動信号G1,G4と、変換用スイッチ素子Q2,Q3に対応する第1駆動信号G2,G3として、互いに逆位相(位相差180度)の信号を発生する。これにより、インバータ回路21においては、第1の変換用スイッチ素子Q1及び第4の変換用スイッチ素子Q4のペアと、第2の変換用スイッチ素子Q2及び第3の変換用スイッチ素子Q3のペアとが交互にオンするように制御される。
その結果、インバータ回路21の一対の出力点213,214間には、周期的に極性(正・負)が反転する電圧(交流電圧)が発生する。要するに、インバータ回路21は、複数の変換用スイッチ素子Q1〜Q4のスイッチングにより、一対の入力点211,212に印加される直流電圧を交流電圧に変換して一対の出力点213,214から出力する。以下では、インバータ回路21の出力電圧について、一対の出力点213,214のうちの第1の出力点213が高電位となる電圧を「正極性」といい、第2の出力点214が高電位となる電圧を「負極性」という。つまり、インバータ回路21の出力電圧は、変換用スイッチ素子Q1,Q4がオンの状態で正極性となり、変換用スイッチ素子Q2,Q3がオンの状態で負極性となる。
このように、インバータ回路21が一対の出力点213,214から交流電圧を出力することで、一対の出力点213,214間に電気的に接続された一次側コイルL1に交流電流が流れ、一次側コイルL1が磁界を発生する。これにより、非接触給電装置2は、非接触受電装置3の二次側コイルL2に対し、一次側コイルL1から非接触で出力電力を供給することができる。
ところで、電力補正回路22がない場合、非接触給電装置2では、一次側コイルL1は一対の一次側コンデンサC11,C12と共に一次側共振回路を構成する。そのため、一次側コイルL1から出力される出力電力の大きさは、インバータ回路21の動作周波数(つまり第1駆動信号G1〜G4の周波数)に応じて変化し、インバータ回路21の動作周波数が一次側共振回路の共振周波数に一致するときにピークに達する。
ここにおいて、一次側コイルL1と二次側コイルL2との相対的な位置関係が変化して、一次側コイルL1と二次側コイルL2との間の結合係数が変化すると、非接触給電装置2の出力電力の周波数特性(以下、「共振特性」という)が変化する。図3は、一次側コイルL1と二次側コイルL2との相対的な位置関係が変化した場合の、非接触給電装置2の共振特性の変化を示している。図3では、横軸を周波数(インバータ回路21の動作周波数)、縦軸を非接触給電装置2の出力電力として、一次側コイルL1と二次側コイルL2との相対的な位置関係が異なる場合の非接触給電装置2の共振特性を「X1」、「X2」で示している。
ここで、図3に示すように、インバータ回路21の動作周波数として使用可能な周波数帯域(以下、「許可周波数帯F1」という)が制限されていると仮定する。許可周波数帯F1は、例えば電波法などの法律により規定される。この場合、許可周波数帯F1の下限値fmin未満、及び上限値fmaxを超える周波数については、インバータ回路21の動作周波数として使用することはできない。こうした場合において、非接触給電装置2の共振特性が、例えば図3に「X1」で示すような状態にあれば、インバータ回路21の動作周波数をどう調整しても、非接触給電装置2の出力電力が必要な大きさ(以下、「目標値」という)とならない可能性がある。
例えば図4Aに示すように、一次側共振回路の共振周波数fr0が許可周波数帯F1から外れていると、非接触給電装置2の出力電力の大きさがピークに届かず、結果的に、目標値P1に対して出力電力が不足する可能性がある。また、例えば図4Bに示すように、一次側共振回路の共振周波数fr0が許可周波数帯F1内にある場合でも、非接触給電装置2の出力電力のピークが目標値P1に届かず、結果的に、目標値P1に対して出力電力が不足する可能性がある。つまり、図4Aや図4Bの例では、ハッチング(斜線)部分の電力が目標値P1に対して不足することになる。
そこで、本実施形態に係る非接触給電装置2は、電力補正回路22を備えることにより、目標値P1を満たすように出力電力の大きさを補正する機能を有している。
(4.2)電力補正回路あり
次に、図1に示すように電力補正回路22がある場合、つまり一対の出力点213,214間に、一次側コイルL1、一対の一次側コンデンサC11,C12、及び電力補正回路22が電気的に接続されている場合における、非接触給電装置2の動作を説明する。
素子制御部231は、図2に示すように、補正用スイッチ素子Q6,Q7に対応する第2駆動信号G6,G7と、補正用スイッチ素子Q5,Q8に対応する第2駆動信号G5,G8として、互いに逆位相(位相差180度)の信号を発生する。これにより、電力補正回路22においては、第2の補正用スイッチ素子Q6及び第3の補正用スイッチ素子Q7のペアと、第1の補正用スイッチ素子Q5及び第4の補正用スイッチ素子Q8のペアとが交互にオンするように制御される。本実施形態では、素子制御部231は、第1駆動信号G1〜G4と、第2駆動信号G5〜G8との周波数を同一周波数としている。
そして、補正用スイッチ素子Q5,Q8がオン、補正用スイッチ素子Q6,Q7がオフの期間において、インバータ回路21の出力電圧が正極性であると、補正用スイッチ素子Q5,Q8を介して補正用コンデンサC1に電圧が印加される。つまり、インバータ回路21の一対の出力点213,214間に、一次側コイルL1が補正用コンデンサC1を介して電気的に接続された状態(以下、「第1の状態」ともいう)となる。
一方、補正用スイッチ素子Q5,Q8がオン、補正用スイッチ素子Q6,Q7がオフの期間において、インバータ回路21の出力電圧が負極性であると、ダイオードD7及び補正用スイッチ素子Q5を通して電流が流れる。つまり、インバータ回路21の一対の出力点213,214間に、一次側コイルL1が補正用コンデンサC1を介さずに電気的に接続された状態(以下、「第2の状態」ともいう)となる。言い換えれば、補正用コンデンサC1の両端間がダイオードD7及び補正用スイッチ素子Q5にてバイパスされた状態となる。
また、補正用スイッチ素子Q6,Q7がオン、補正用スイッチ素子Q5,Q8がオフの期間において、インバータ回路21の出力電圧が正極性であると、補正用スイッチ素子Q6及びダイオードD8を通して電流が流れる。つまり、インバータ回路21の一対の出力点213,214間に、一次側コイルL1が補正用コンデンサC1を介さずに電気的に接続された状態(以下、「第3の状態」ともいう)となる。言い換えれば、補正用コンデンサC1の両端間が補正用スイッチ素子Q6及びダイオードD8にてバイパスされた状態となる。
一方、補正用スイッチ素子Q6,Q7がオン、補正用スイッチ素子Q5,Q8がオフの期間において、インバータ回路21の出力電圧が負極性であると、補正用スイッチ素子Q6,Q7を介して補正用コンデンサC1に電圧が印加される。つまり、インバータ回路21の一対の出力点213,214間に、一次側コイルL1が補正用コンデンサC1を介して電気的に接続された状態となる(以下、「第4の状態」ともいう)。補正用コンデンサC1に印加される電圧の極性は、第1の状態と第4の状態とで同極性になる。つまり、第1の状態と第4の状態とのいずれであっても、補正用スイッチ素子Q5のドレイン及び補正用スイッチ素子Q7のドレインとの接続点が高電位となるような電圧が、補正用コンデンサC1に印加される。
このように、電力補正回路22は、一対の出力点213,214間に、一次側コイルL1が補正用コンデンサC1を介して電気的に接続された状態と、補正用コンデンサC1を介さず電気的に接続された状態とを切り替えている。これにより、一対の出力点213,214と一次側コイルL1との間における一次側共振回路の容量成分の大きさが、見かけ上、変化することになる。
したがって、本実施形態の非接触給電装置2は、一次側共振回路の容量成分の大きさを電力補正回路22にて調整することで、出力電力の大きさを変化させることが可能である。その結果、上述したように非接触給電装置2の出力電力が目標値P1に対して不足するような場合、電力補正回路22にて、目標値P1を満たすように出力電力の大きさを補正することが可能である。言い換えれば、電力補正回路22は、複数の補正用スイッチ素子Q5〜Q8のスイッチングにより、補正用コンデンサC1の充放電を行って、出力電力の大きさを補正することが可能である。
ところで、本実施形態では、上述したように、変換用スイッチ素子Q1,Q4に対応する第1駆動信号G1,G4と、変換用スイッチ素子Q2,Q3に対応する第1駆動信号G2,G3とは互いに逆位相(位相差180度)の信号になる。同様に、補正用スイッチ素子Q6,Q7に対応する第2駆動信号G6,G7と、補正用スイッチ素子Q5,Q8に対応する第2駆動信号G5,G8とは互いに逆位相(位相差180度)の信号になる。
ここにおいて、本実施形態でいう第1駆動信号と第2駆動信号との位相差θは、第1駆動信号G1,G4に対する第2駆動信号G6,G7の位相の遅れ、又は第1駆動信号G2,G3に対する第2駆動信号G5,G8の位相の遅れである(図2参照)。すなわち、第1駆動信号G1,G4に対する第2駆動信号G6,G7の位相の遅れと、第1駆動信号G1,G4に対する第2駆動信号G5,G8の位相の遅れとでは180度の開きがあるため、いずれの位相の遅れを位相差θとするかで位相差θの値が異なる。そこで、本実施形態では、第1駆動信号G1,G4に対する第2駆動信号G6,G7の位相の遅れ、又は第1駆動信号G2,G3に対する第2駆動信号G5,G8の位相の遅れを位相差θと定義する。
ここで、第1駆動信号G1,G4及び第2駆動信号G6,G7がいずれも「オン」であれば、電力補正回路22においては、一対の出力点213,214間に、一次側コイルL1が補正用コンデンサC1を介さずに電気的に接続された第3の状態となる。また、第1駆動信号G2,G3及び第2駆動信号G5,G8がいずれも「オン」であれば、電力補正回路22においては、一対の出力点213,214間に、一次側コイルL1が補正用コンデンサC1を介さずに電気的に接続された第2の状態となる。つまり、本実施形態では、一対の出力点213,214間に、一次側コイルL1が補正用コンデンサC1を介さずに電気的に接続された状態となるような、第1駆動信号と第2駆動信号との組み合わせについての位相の差を位相差θと定義している。
(5)進相モード及び遅相モード
次に、進相モード及び遅相モードについて説明する。
(5.1)電力補正回路なし
ここではまず、「(4)基本動作」の欄と同様に、電力補正回路22がない場合、つまり一対の出力点213,214間に、一次側コイルL1及び一対の一次側コンデンサC11,C12のみが電気的に接続されている場合について説明する。
この場合、インバータ回路21は、例えばインバータ回路21の動作周波数と一次側共振回路の共振周波数との関係に応じて、遅相モードと進相モードとのいずれかの動作モードで動作する。
進相モードは、インバータ回路21の出力電流(一次側コイルL1を流れる電流)の位相が、インバータ回路21の出力電圧の位相よりも進んだ状態で、インバータ回路21が動作するモードである。進相モードでは、インバータ回路21のスイッチング動作はハードスイッチングになる。したがって、進相モードでは、変換用スイッチ素子Q1〜Q4のスイッチング損失が増大しやすく、また、変換用スイッチ素子Q1〜Q4にストレスが加わりやすい。
一方、遅相モードは、インバータ回路21の出力電流(一次側コイルL1を流れる電流)の位相が、インバータ回路21の出力電圧の位相よりも遅れた状態で、インバータ回路21が動作するモードである。遅相モードでは、インバータ回路21のスイッチング動作はソフトスイッチングになる。したがって、遅相モードでは、変換用スイッチ素子Q1〜Q4のスイッチング損失を低減でき、また、変換用スイッチ素子Q1〜Q4にストレスが加わりにくい。そのため、インバータ回路21は、進相モードよりも遅相モードで動作することが好ましい。
(5.2)電力補正回路あり
次に、電力補正回路22がある場合、つまり一対の出力点213,214間に、一次側コイルL1、一対の一次側コンデンサC11,C12、及び電力補正回路22が電気的に接続されている場合について説明する。
この場合、電力補正回路22についても、インバータ回路21と同様に、進相モードと遅相モードとのいずれかの動作モードで動作する。電力補正回路22においても、進相モードでなく遅相モードで動作することが好ましい。
また、電力補正回路22がある場合には、インバータ回路21及び電力補正回路22の動作モード(遅相モード、進相モード)は、第1駆動信号G1〜G4と第2駆動信号G5〜G8との位相差θに応じて変化することが確認されている。さらに、インバータ回路21の動作モードと位相差θとの関係は、電力補正回路22がない状態、つまり上記「(5.1)電力補正回路なし」で説明した条件下における、インバータ回路21の動作モードによって変化する。言い換えれば、インバータ回路21の動作周波数と一次側共振回路の共振周波数との関係によって決まるインバータ回路21の動作モードが遅相モードか進相モードかによって、インバータ回路21の動作モードと位相差θとの関係は変化する。
図5A及び図5Bは、それぞれ電力補正回路22がない状態でインバータ回路21が進相モードにある場合、及び遅相モードにある場合の、非接触給電装置2の出力電力の位相差θに対する特性(位相差特性)を示している。図5A及び図5Bでは、横軸を第1駆動信号G1〜G4と第2駆動信号G5〜G8との位相差θ、縦軸を非接触給電装置2の出力電力とする。
すなわち、電力補正回路22がない状態でインバータ回路21が進相モードにある場合(以下、「初期進相」という)においては、非接触給電装置2の出力電力は、例えば図5Aに示すように位相差θに応じて変化する。図5Aの例では、非接触給電装置2の出力電力は、位相差θが90度のときに極大かつ最大となり、位相差θが180度のときに極小かつ最小となるように位相差θによって変化する。非接触給電装置2の出力電力が位相差θによって変化する原理については、下記「(6.2)位相差制御による出力電力制御の原理」の欄で説明する。ここで、位相差θ(0度〜360度)を4つの区分に分け、0度〜90度を第1区分Z1、90度〜180度を第2区分Z2、180度〜270度を第3区分Z3、270度〜360度を第4区分Z4とする。そうすると、インバータ回路21の動作モード(遅相モード、進相モード)と位相差θの各区分との関係は表1のようになる。
Figure 0006675094
要するに、「初期進相」の場合にあっては、インバータ回路21が遅相モードで動作するのは、第1区分Z1〜第4区分Z4のうち、位相差θが90度〜180度となる第2区分Z2のみである。
一方、電力補正回路22がない状態でインバータ回路21が遅相モードにある場合(以下、「初期遅相」という)においては、非接触給電装置2の出力電力は、例えば図5Bに示すように位相差θに応じて変化する。図5Bの例では、非接触給電装置2の出力電力は、位相差θが270度のときに極大かつ最大となり、位相差θが180度のときに極小かつ最小となるように位相差θによって変化する。この場合、インバータ回路21及び電力補正回路22のそれぞれの動作モード(遅相モード、進相モード)と位相差θの各区分との関係は表2のようになる。
Figure 0006675094
要するに、「初期遅相」の場合にあっては、インバータ回路21が遅相モードで動作するのは、第1区分Z1〜第4区分Z4のうち、位相差θが0度〜180度、270度〜360度となる第1区分Z1、第2区分Z2、及び第4区分Z4の3区分である。また、「初期遅相」の場合において、電力補正回路22が遅相モードで動作するのは、第1区分Z1〜第4区分Z4のうち、位相差θが0度〜90度、180度〜360度となる第1区分Z1、第3区分Z3、及び第4区分Z4の3区分である。つまり、「初期遅相」の場合に、インバータ回路21と電力補正回路22とのいずれもが遅相モードで動作するのは、第1区分Z1〜第4区分Z4のうち、位相差θが0度〜90度、270度〜360度となる第1区分Z1、及び第4区分Z4の2区分である。
(6)出力電力制御
次に、本実施形態の非接触給電装置2において、出力電力の大きさを調節する「出力電力制御」の動作について説明する。
(6.1)周波数制御及び位相差制御
制御回路23は、周波数制御部232にて行う「周波数制御」と、位相差制御部233にて行う「位相差制御」との2つの方法で、出力電力の大きさを調節するように構成されている。周波数制御は、第1駆動信号G1〜G4の周波数、つまりインバータ回路21の動作周波数f1を、離散的に変化させる制御である。これに対して、位相差制御は、第1駆動信号G1,G4(G2,G3)に対する第2駆動信号G6,G7(G5,G8)の位相の遅れである位相差θを、離散的に変化させる制御である。
すなわち、制御回路23は、周波数制御においては動作周波数f1を、位相差制御においては位相差θを、それぞれ制御対象値とし、制御対象値を離散的に変化させるように制御することで、出力電力の大きさを調節する。周波数制御においては、周波数制御部232が、動作周波数f1についての刻み幅を最小単位として、制御対象値である動作周波数f1を離散的に変化させる。位相差制御においては、位相差制御部233が、位相差θについての刻み幅を最小単位として、制御対象値である位相差θを離散的に変化させる。以下では、周波数制御における制御対象値(動作周波数f1)の刻み幅、つまり動作周波数f1の最小の変化量を「周波数刻み幅Δf」ともいう。また、位相差制御における制御対象値(位相差θ)の刻み幅、つまり位相差θの最小の変化量を「位相差刻み幅Δθ」ともいう。
本実施形態では、制御回路23は、まず周波数制御部232にて、第1駆動信号G1〜G4の周波数(動作周波数f1)を変化させるように制御することにより出力電力の大きさを調節する周波数制御を行う。つまり、上記「(4)基本動作」の「(4.1)電力補正回路なし」の欄で説明したように、一次側コイルL1から出力される出力電力の大きさは、インバータ回路21の動作周波数f1に応じて変化する(図3参照)。そのため、周波数制御部232は、第1駆動信号G1〜G4の周波数を調節することで、インバータ回路21の動作周波数f1を調節し、出力電圧の大きさを調節する。
ここで、インバータ回路21の動作周波数f1として使用可能な周波数帯域(許可周波数帯F1)が制限されている場合には、周波数制御で調節可能な動作周波数f1は、この許可周波数帯F1内に限定される。そして、周波数制御にて調節後の出力電力の大きさが所定の目標値P1未満である場合に、制御回路23は位相差制御部233にて位相差制御を行う。つまり、位相差制御部233は、周波数制御部232にて調節後の出力電力の大きさが所定の目標値P1未満である場合に、位相差θを制御する位相差制御を行うことにより、出力電力の大きさを目標値P1に近づけるように構成されている。このように、周波数制御だけでは目標値P1に対して出力電力が不足する場合(図4A、4B参照)には、制御回路23は位相差制御で不足分を補う。
位相差制御部233は、第1駆動信号G1,G4(G2,G3)に対する第2駆動信号G6,G7(G5,G8)の位相の遅れである位相差θを規定範囲内で変化させるように制御することにより、非接触給電装置2の出力電力の大きさを調節する。ここでいう「規定範囲」は、位相差制御における位相差θの制御範囲、つまり位相差制御において位相差θを変化させる範囲である。要するに、位相差制御部233は、位相差θの可動域を規定範囲に制限し、規定範囲内で位相差θを離散的に変化させるように制御する。ここでは、規定範囲は、270度〜360度と90度〜180度との少なくとも一方の範囲からなる。
すなわち、図5A及び図5Bから明らかなように、非接触給電装置2の出力電力は位相差θに応じて変化するので、位相差制御部233が位相差θを変化させることで出力電力の大きさの調節が可能である。ただし、第1駆動信号G1〜G4と第2駆動信号G5〜G8との位相差θは、上述したようにインバータ回路21及び電力補正回路22の動作モード(遅相モード、進相モード)にも影響する。そのため、インバータ回路21及び電力補正回路22を遅相モードで動作させるには、位相差θの範囲を制限する必要がある。
まず、「初期進相」の場合について、図5Aを参照して説明する。この場合、上述したようにインバータ回路21が遅相モードで動作するのは、第1区分Z1〜第4区分Z4のうち、位相差θが90度〜180度となる第2区分Z2のみである。そのため、「初期進相」の場合においては、位相差制御における位相差θの制御範囲となる規定範囲は90度〜180度の範囲であることが好ましい。これにより、位相差制御部233が、位相差θを規定範囲内で変化させるように制御して非接触給電装置2の出力電力の大きさを調節したときに、インバータ回路21は遅相モードで動作することができる。
次に、「初期遅相」の場合について、図5Bを参照して説明する。この場合、上述したようにインバータ回路21が遅相モードで動作するのは、第1区分Z1、第2区分Z2、及び第4区分Z4の3区分である。ただし、位相差θが0度〜90度となる第1区分Z1においては、位相差θが変化しても出力電力の大きさには殆ど変化がない。そこで、位相差θの調節により出力電力の大きさを調節するためには、位相差θが90度〜180度となる第2区分Z2、及び位相差θが270度〜360度となる第4区分Z4の2区分内で位相差θを調節する必要がある。よって、規定範囲が270度〜360度及び90度〜180度の範囲であれば、位相差制御部233が、位相差θを規定範囲内で変化させるように制御して出力電力の大きさを調節したときに、インバータ回路21は遅相モードで動作することができる。
さらに、「初期遅相」の場合、インバータ回路21と電力補正回路22とのいずれもが遅相モードで動作するのは、上述したように位相差θが0度〜90度、270度〜360度となる第1区分Z1、及び第4区分Z4の2区分である。上述したように第1区分Z1においては位相差θが変化しても出力電力の大きさには殆ど変化がないため、第1区分Z1及び第4区分Z4の2区分のうち、位相差θの調節により出力電力の大きさが調節可能であるのは第4区分Z4のみである。そのため、「初期遅相」の場合においては、位相差制御における位相差θの制御範囲となる規定範囲は、270度〜360度の範囲であることがより好ましい。これにより、位相差制御部233が、位相差θを規定範囲内で変化させるように制御して非接触給電装置2の出力電力の大きさを調節したときに、インバータ回路21及び電力補正回路22の両方が遅相モードで動作することができる。
要するに、「初期進相」の場合においては、規定範囲は90度〜180度の範囲(第2区分Z2)であることが好ましい。一方、「初期遅相」の場合においては、規定範囲は90度〜180度の範囲(第2区分Z2)又は270度〜360度の範囲(第4区分Z4)であることが好ましい。「初期遅相」の場合においては、規定範囲は270度〜360度の範囲(第4区分Z4)であることがより好ましい。
また、インバータ回路21が遅相モードで動作する区分(第2区分Z2と第4区分Z4との少なくとも一方)においては、図5A及び図5Bに示すように、位相差θが小さくなるに従って出力電力は大きくなる。そこで、例えば規定範囲が第2区分(90度〜180度)Z2であれば、規定範囲の上限値(180度)から下限値(90度)にかけて位相差θが徐々に小さくなるように、位相差制御部233は、位相差θを規定範囲内で徐々に小さくすることが好ましい。同様に、規定範囲が第4区分(270度〜360度)Z4であれば、規定範囲の上限値(360度)から下限値(270度)にかけて位相差θが徐々に小さくなるように、位相差制御部233は、位相差θを規定範囲内で徐々に小さくすることが好ましい。これにより、位相差制御部233が規定範囲内で位相差θを徐々に変化させる(小さくする)のに伴って、非接触給電装置2の出力電力が徐々に大きくなる。
(6.2)位相差制御による出力電力制御の原理
以下、位相差制御部233が位相差θを規定範囲内で変化させるように制御することにより、非接触給電装置2の出力電力の大きさが調節される原理について、図6A〜図8を参照して説明する。
非接触給電装置2の出力電力は、一次側共振回路の一次側コイルL1に印加される電圧によって変化する。一次側コイルL1に印加される電圧は、インバータ回路21の出力電圧と、電力補正回路22の両端電圧(補正用スイッチ素子Q5のソース、及び補正用スイッチ素子Q7のソース間の電圧)との合成電圧である。そのため、インバータ回路21の出力電圧と、電力補正回路22の両端電圧とが同極性であり、互いに強め合う場合に、一次側コイルL1に印加される電圧が大きくなり、非接触給電装置2の出力電力は大きくなる。この場合において、補正用コンデンサC1の両端電圧が大きくなる程、電力補正回路22の両端電圧が大きくなって、一次側コイルL1に印加される電圧が大きくなるので、非接触給電装置2の出力電力は大きくなる。そこで、位相差制御部233は、位相差θを調節することにより、補正用コンデンサC1の充電と放電とのバランスを変化させ、補正用コンデンサC1の両端電圧を変化させて、非接触給電装置2の出力電力を変化させる。
ここにおいて、補正用コンデンサC1が充電されるか放電されるかは、複数の補正用スイッチ素子Q5〜Q8のオンオフ、及びインバータ回路21の出力電流の向きによって決まる。インバータ回路21の出力電流は、一次側コイルL1を流れる電流であるから、以下「一次側電流I1」ともいう。第1の出力点213から、一次側コンデンサC11、電力補正回路22、一次側コイルL1、及び一次側コンデンサC12を通って第2の出力点214に流れる一次側電流I1の向き、つまり図1に矢印で示す一次側電流I1の向きを、「正方向」という。第2の出力点214から、一次側コンデンサC12、一次側コイルL1、電力補正回路22、及び一次側コンデンサC11を通って第1の出力点213に流れる一次側電流I1の向き、つまり図1に矢印で示す一次側電流I1とは逆の向きを、「負方向」という。
図6A〜6Dは、複数の補正用スイッチ素子Q5〜Q8のオンオフと、一次側電流I1の向きとの組み合わせパターンを示している。図6A〜6D中、太線矢印は電流経路を表し、点線の丸印が付された補正用スイッチ素子はオン状態の素子を表している。
図6Aは、電力補正回路22の状態として、補正用スイッチ素子Q6,Q7がオン、補正用スイッチ素子Q5,Q8がオフであって、負方向の一次側電流I1が流れている状態(以下、「第1充電モード」という)を表している。図6Bは、電力補正回路22の状態として、補正用スイッチ素子Q6,Q7がオン、補正用スイッチ素子Q5,Q8がオフであって、正方向の一次側電流I1が流れている状態(以下、「第1放電モード」という)を表している。図6Cは、電力補正回路22の状態として、補正用スイッチ素子Q5,Q8がオン、補正用スイッチ素子Q6,Q7がオフであって、正方向の一次側電流I1が流れている状態(以下、「第2充電モード」という)を表している。図6Dは、電力補正回路22の状態として、補正用スイッチ素子Q5,Q8がオン、補正用スイッチ素子Q6,Q7がオフであって、負方向の一次側電流I1が流れている状態(以下、「第2放電モード」という)を表している。図6Aに示す第1充電モード、及び図6Cに示す第2充電モードにおいて、補正用コンデンサC1は充電される。一方、図6Bに示す第1放電モード、及び図6Dに示す第2放電モードで、補正用コンデンサC1は放電される。
次に、図7及び図8を参照して、位相差θと、補正用コンデンサC1の充電及び放電のバランスとの関係について説明する。図7及び図8ではいずれも、横軸を時間軸として、上から順に第1駆動信号「G1,G4」、一次側電流「I1」、2種類の第2駆動信号「G6,G7」の波形を表している。ここでいう2種類の第2駆動信号は互いに位相差θが異なっている。なお、図7及び図8中の「オン」、「オフ」は、対応するスイッチ素子(変換用スイッチ素子、補正用スイッチ素子)のオン、オフを表している。
図7は、「初期遅相」の場合であって、インバータ回路21の出力電圧に対する一次側電流I1の位相の遅れ(以下、「電圧電流位相差」という)φが90度である場合を例示している。図7では、2種類の第2駆動信号「G6,G7」の波形として、上から順に位相差θが360度のときの波形、位相差θが320度のときの波形を表している。さらに、図7では、位相差θが360度の場合について、第1充電モードの期間を「Tca1」、第1放電モードの期間を「Tda1」、第2充電モードの期間を「Tca2」、第2放電モードの期間を「Tda2」で表している。同様に、位相差θが320度の場合について、第1充電モードの期間を「Tcb1」、第1放電モードの期間を「Tdb1」、第2充電モードの期間を「Tcb2」、第2放電モードの期間を「Tdb2」で表している。
図7から明らかなように、位相差θが360度であれば、第2駆動信号の1周期において、補正用コンデンサC1が充電される時間(以下、「充電時間」という)と、補正用コンデンサC1が放電される時間(以下、「放電時間」という)とは略均衡する。つまり、位相差θが360度であれば、「Tca1」及び「Tca2」の合計と、「Tda1」及び「Tda2」の合計とは、略同じ長さになる。一方、位相差θが320度であれば、第2駆動信号の1周期において、充電時間が放電時間を上回る。つまり、位相差θが320度であれば、「Tcb1」及び「Tcb2」の合計は、「Tdb1」及び「Tdb2」の合計よりも、長くなる。
上記より、位相差θが360度から270度に近づくように変化すると、第2駆動信号の1周期において、充電時間と放電時間との均衡が破れ、徐々に、充電時間の占める割合が大きくなる。図7では、説明の便宜上、電圧電流位相差φの変化についての表記は省略するが、実際には、位相差θが変化すると、位相差θの変化に伴って電圧電流位相差φも初期値(ここでは90度)から変化する。すなわち、充電時間が放電時間を上回ると、補正用コンデンサC1に電流が流れ込み、この電流位相が補正用コンデンサC1の両端電圧の位相に対して90度進むことになる。つまり、補正用コンデンサC1が進相コンデンサとして機能するため、インバータ回路21の出力電圧に対する一次側電流I1の位相の遅れである電圧電流位相差φは小さくなり、出力電力が大きくなる。その結果、位相差θが360度から270度に近づくにつれて、電圧電流位相差φが小さくなり、非接触給電装置2の出力電力が、徐々に大きくなる。
言い換えれば、位相差θが小さくなれば、充電時間と放電時間との均衡を維持するべく、電圧電流位相差φが小さくなる。つまり、充電時間が放電時間を上回る状態が継続すると、補正用コンデンサC1の両端電圧が発散することになる。このような発散が生じないように、実際には、位相差θが小さくなると、電圧電流位相差φが小さくなって、充電時間と放電時間との均衡が維持される。
また、図8は、「初期遅相」の場合であって、電圧電流位相差φが45度である場合を例示している。図8では、2種類の第2駆動信号「G6,G7」の波形として、上から順に位相差θが315度のときの波形、位相差θが290度のときの波形を表している。さらに、図8では、位相差θが315度の場合について、第1充電モードの期間を「Tca1」、第1放電モードの期間を「Tda1」、第2充電モードの期間を「Tca2」、第2放電モードの期間を「Tda2」で表している。同様に、位相差θが290度の場合について、第1充電モードの期間を「Tcb1」、第1放電モードの期間を「Tdb1」、第2充電モードの期間を「Tcb2」、第2放電モードの期間を「Tdb2」で表している。
電圧電流位相差φが45度であれば、図8から明らかなように、位相差θが315度であっても、第2駆動信号の1周期において、充電時間と放電時間とは略均衡する。つまり、位相差θが315度であっても、「Tca1」及び「Tca2」の合計と、「Tda1」及び「Tda2」の合計とは、略同じ長さになる。一方、位相差θが290度であれば、第2駆動信号の1周期において、充電時間が放電時間を上回る。つまり、位相差θが290度であれば、「Tcb1」及び「Tcb2」の合計は、「Tdb1」及び「Tdb2」の合計よりも、長くなる。
上記より、電圧電流位相差φが90度の場合に限らず、「初期遅相」の場合には、位相差θが360度から270度に近づくように変化すると、第2駆動信号の1周期において、充電時間と放電時間との均衡が破れ、徐々に、充電時間の占める割合が大きくなる。ただし、電圧電流位相差φが90度の場合は、位相差θが320度のときには充電時間が放電時間を上回るのに対し、電圧電流位相差φが45度の場合は、位相差θが315度のときでも充電時間と放電時間とは均衡する。このように、位相差θを360度から徐々に小さくした場合に、充電時間と放電時間との均衡が破れて出力電力が増加し始める変曲点に相当する位相差θ(以下、「変化開始点」という)は、電圧電流位相差φによって異なる。変化開始点は、電圧電流位相差φが90度のときよりも45度のときの方が、つまり電圧電流位相差φが小さいほど、270度に近づく向きにシフトする。
すなわち、「初期遅相」の場合、電圧電流位相差φによる違いはあるとしても、規定範囲(例えば270度〜360度)内に変化開始点が存在する。そのため、位相差制御部233が、規定範囲の上限値(360度)から下限値(270度)にかけて位相差θを徐々に小さくすれば、位相差θが変化開始点に達した以降は、非接触給電装置2の出力電力は徐々に大きくなる。なお、実際には、上述したように位相差θの変化に伴って電圧電流位相差φも変化しており、位相差θが変化開始点に達した以降は、電圧電流位相差φが小さくなることで、充電時間と放電時間との均衡は維持されている。
また、図7及び図8では「初期遅相」の場合を例示したが、「初期進相」の場合は、「初期遅相」の例を基準にして一次側電流I1の位相を180度ずらした場合と等価である。つまり、図7及び図8の例において、一次側電流I1の位相を180度ずらせば、「初期進相」の例となる。したがって、「初期進相」の場合でも、電圧電流位相差φによる違いはあるとしても、規定範囲(180度〜90度)内に変化開始点が存在する。そのため、位相差制御部233が、規定範囲の上限値(180度)から下限値(90度)にかけて位相差θを徐々に小さくすれば、位相差θが変化開始点に達した以降は、非接触給電装置2の出力電力は徐々に大きくなる。
以上説明したような原理で、「初期遅相」及び「初期進相」のいずれの場合でも、位相差制御部233が位相差θを規定範囲内で変化させるように制御することにより、非接触給電装置2の出力電力の大きさが調節される。
(6.3)出力電力制御の全体的な流れ
以下、本実施形態の「出力電力制御」の全体的な流れについて、制御回路23の処理を表す図9のフローチャートを参照して説明する。
出力電力制御が開始すると、制御回路23は、まず所定の目標値P1と出力電力の大きさとを比較する(S1)。出力電力が目標値P1の許容誤差範囲(±数%)内にあれば(S1:定格)、出力電力制御を終了する。目標値P1は、上述したように、例えば非接触受電装置3にて決定され、給電の開始を指示する指令が非接触受電装置3から非接触給電装置2に対して送信されるときに、この指令と共に非接触受電装置3から非接触給電装置2に送信される。
一方、出力電力が目標値P1の許容誤差範囲の下限を下回っていれば(S1:不足)、制御回路23は、まず周波数制御部232にて出力電力の調節を行う。具体的には、周波数制御部232はインバータ回路21の動作周波数(つまり第1駆動信号G1〜G4の周波数)f1と、許可周波数帯F1の下限値fminとを比較する(S11)。動作周波数f1が下限値fminより高ければ(S11:Yes)、周波数制御部232はインバータ回路21の動作周波数f1を低下させるように制御する。このとき、周波数制御部232で制御される制御対象値(動作周波数f1)の刻み幅である周波数刻み幅Δfは、決定部235にて決定される(S12)。決定部235は、基本的には、目標値と出力電力の大きさとの差分値が所定の条件を満たす場合に周波数刻み幅Δfを変更する。周波数刻み幅Δfを決定する処理S12については、「(6.4)分解能」の欄で詳しく説明する。周波数制御部232は、インバータ回路21の動作周波数f1を、処理S12で決定された周波数刻み幅Δfだけ低くして(S13)、処理S1の動作に戻る。これらの処理(S11〜S13)を繰り返すことにより、制御回路23は、動作周波数f1を、周波数刻み幅Δfずつ低下させて、出力電力を徐々に大きく、つまり目標値P1に近づけることができる。動作周波数f1の初期値は、例えば許可周波数帯F1の上限値fmaxである。
動作周波数f1が下限値fmin以下になると(S11:No)、次に制御回路23は位相差制御部233にて出力電力の調節を行う。具体的には、位相差制御部233は位相差θと規定範囲の下限値とを比較する(S14)。ここで、規定範囲が270度〜360度の範囲であれば、位相差θの初期値は360(度)、規定範囲の下限値は270(度)となる。規定範囲が90度〜180度の範囲であれば、位相差θの初期値は180(度)、規定範囲の下限値は90(度)となる。位相差θが下限値以上であれば(S14:No)、位相差制御部233は位相差θを小さくなるように制御する。このとき、位相差制御部233で制御される制御対象値(位相差θ)の刻み幅である位相差刻み幅Δθは、決定部235にて決定される(S15)。決定部235は、基本的には、目標値と出力電力の大きさとの差分値が所定の条件を満たす場合に周波数刻み幅Δfを変更する。位相差刻み幅Δθを決定する処理S15については、「(6.4)分解能」の欄で詳しく説明する。位相差制御部233は、位相差θを、処理S15で決定された位相差刻み幅Δθだけ小さくして(S16)、処理S1の動作に戻る。これらの処理(S14〜S16)を繰り返すことにより、制御回路23は、位相差θを、位相差刻み幅Δθずつ小さくして、出力電力を徐々に大きく、つまり目標値P1に近づけることができる。
位相差制御において位相差θが下限値未満になると(S14:Yes)、制御回路23は、エラーと判断して(S17)、出力電力制御を終了する。
また、出力電力が目標値P1の許容誤差範囲の上限を上回っていれば(S1:超過)、制御回路23は、まず位相差制御部233にて出力電力の調節を行う。具体的には、位相差制御部233は位相差θと規定範囲の上限値とを比較する(S21)。ここで、規定範囲が270度〜360度の範囲であれば規定範囲の上限値は360(度)、規定範囲が90度〜180度の範囲であれば規定範囲の上限値は180(度)となる。位相差θが上限値以下であれば(S21:No)、位相差制御部233は位相差θを大きくなるように制御する。このとき、位相差制御部233で制御される制御対象値(位相差θ)の刻み幅である位相差刻み幅Δθは、決定部235にて決定される(S22)。位相差刻み幅Δθを決定する処理S22については、「(6.4)分解能」の欄で詳しく説明する。位相差制御部233は、位相差θを、処理S22で決定された位相差刻み幅Δθだけ大きくして(S23)、処理S1の動作に戻る。これらの処理(S21〜S23)を繰り返すことにより、制御回路23は、位相差θを位相差刻み幅Δθずつ大きくして、出力電力を徐々に小さく、つまり目標値P1に近づけることができる。
位相差θが上限値を超えると(S21:Yes)、次に制御回路23は周波数制御部232にて出力電力の調節を行う。具体的には、周波数制御部232はインバータ回路21の動作周波数(つまり第1駆動信号G1〜G4の周波数)f1と、許可周波数帯F1の上限値fmaxとを比較する(S24)。動作周波数f1が上限値fmaxより低ければ(S24:Yes)、周波数制御部232はインバータ回路21の動作周波数f1を上昇させるように制御する。このとき、周波数制御部232で制御される制御対象値(動作周波数f1)の刻み幅である周波数刻み幅Δfは、決定部235にて決定される(S25)。周波数刻み幅Δfを決定する処理S25については、「(6.4)分解能」の欄で詳しく説明する。周波数制御部232は、インバータ回路21の動作周波数f1を、処理S25で決定された周波数刻み幅Δfだけ高くして(S26)、処理S1の動作に戻る。これらの処理(S24〜S26)を繰り返すことにより、制御回路23は、動作周波数f1を周波数刻み幅Δfずつ上昇させて、出力電力を徐々に小さく、つまり目標値P1に近づけることができる。
周波数制御において動作周波数f1が上限値fmax以上になると(S24:No)、制御回路23は、エラーと判断して(S27)、出力電力制御を終了する。
以上説明したように、周波数制御部232及び位相差制御部233は、制御対象値(動作周波数f1及び位相差θ)を刻み幅ずつ変化させることにより、出力電力が目標値P1に近づくように、出力電力の大きさを調節する。言い換えれば、周波数制御部232又は位相差制御部233にて制御対象値(動作周波数f1又は位相差θ)が制御されると、出力電力は徐々に目標値P1に近づくことになり、目標値P1と出力電力の大きさとの差分値は徐々に小さくなる。
ところで、制御回路23が周波数制御部232にて出力電力の調節を行う期間、つまり周波数制御が行われる期間には、電力補正回路22に関しては全ての補正用スイッチ素子Q5〜Q8がオンに固定し、電力補正回路22の機能を無効にすることが好ましい。これにより、非接触給電装置2は、「(4.1)電力補正回路なし」(「(4)基本動作」の欄参照)と等価の状態となる。この場合、制御回路23は、位相差制御による出力電力の調節を開始する前に、初期値である360(度)に位相差θを設定し、電力補正回路22の動作を開始させる。この構成によれば、周波数制御のみで出力電力の大きさが目標値P1に達する場合には、制御回路23は、電力補正回路22を動作させないので、電力補正回路22による効率(電力変換効率)の低下を避けることができる。
また、制御回路23が位相差制御にて出力電力の調節を行う際、規定範囲の上限値を初期値として、位相差θを初期値(規定範囲の上限値)から徐々に小さくすることは、非接触給電装置2に必須の構成ではない。例えば、規定範囲が270度〜360度の範囲である場合、制御回路23は、規定範囲の上限値を超える値(例えば370度)を初期値として、位相差θをこの初期値から徐々に小さくしてもよい。又は、規定範囲が270度〜360度の範囲である場合、制御回路23は、規定範囲の上限値よりも小さな値(例えば315度)を初期値として、位相差θをこの初期値から徐々に小さくしてもよい。いずれの場合でも、規定範囲内に存在する変化開始点と規定範囲の下限値との間の領域では、位相差θの変化に応じて非接触給電装置2の出力電力が変化する。
(6.4)分解能
仮に、出力電力を調節する際の制御の対象である制御対象値の刻み幅(周波数刻み幅Δf、位相差刻み幅Δθ)が一定であるとすると、以下のような問題がある。
1つ目の問題として、非接触給電装置2の出力電力が目標値P1に程遠い場合に、出力電力を目標値P1に近づけるための処理に要する時間が長くなる可能性がある。つまり、制御対象値の刻み幅が一定であると、非接触給電装置2の出力電力が目標値P1に程遠い場合でも、制御対象値を刻み幅ずつ変化させて、出力電力を徐々に目標値P1に近づける必要があるため、その処理に時間が掛かることがある。とくに、非接触受電装置3が、出力電力が目標値P1に到達してから蓄電池4の充電を行うような場合には、蓄電池4の充電開始までに要する時間が長くなる。
2つ目の問題として、1つ目の問題を解決するべく、制御対象値の刻み幅を比較的大きな値とした場合に、出力電力が目標値P1付近で変動することによりリプルが発生したり、出力電力が目標値P1を大幅に超過したりする可能性がある。つまり、制御対象値の刻み幅が比較的大きな値であれば、出力電力を目標値P1に近づけるための処理に要する時間の短縮を図ることはできるものの、リプルの発生や出力電力における目標値P1の大幅な超過に繋がることがある。
要するに、制御対象値の刻み幅が比較的大きいと、1回の周波数制御又は位相差制御による出力電力の変化量も比較的大きくなる。このときの出力電力の変化量が、目標値P1の許容誤差範囲(±数%)の幅よりも大きな場合、出力電力が、許容誤差範囲の上限を上回る状態と、許容誤差範囲の下限を下回る状態とを繰り返すことがある。その結果、出力電力が目標値P1付近で変動し続けることになって、非接触受電装置3が受ける電力に「リプル」が発生することがある。とくに、非接触受電装置3が直流電圧を蓄電池4に印加するような場合には、蓄電池4の充電制御への影響や蓄電池4の寿命などの観点から、非接触受電装置3でのリプルの発生は、極力抑制することが望まれる。
同様に、制御対象値の刻み幅が比較的大きいと、1回の周波数制御又は位相差制御による出力電力の変化量も比較的大きくなるため、出力電力を大きくする際に出力電力が急激に変動して、出力電力が目標値P1を大幅に超過することがある。とくに、非接触受電装置3が直流電圧を蓄電池4に印加するような場合には、蓄電池4の充電回路へのストレスなどの観点から、出力電力における目標値P1の大幅な超過は、極力抑制することが望まれる。
そこで、本実施形態に係る非接触給電装置2では、これらの問題を解決するべく、出力電力を調節する際の制御の対象である制御対象値の刻み幅(周波数刻み幅Δf、位相差刻み幅Δθ)が、目標値P1と出力電力の大きさとの差分値に応じて決定される。つまり、「(6.3)出力電力制御の全体的な流れ」の欄でも説明したように、周波数刻み幅Δf及び位相差刻み幅Δθは決定部235にて決定される。そのため、周波数刻み幅Δf及び位相差刻み幅Δθは、それぞれ一定ではなく、適宜変化する。言い換えれば、非接触給電装置2では、制御対象値の分解能(解像度)を、一定にするのではなく適宜変更することが可能である。分解能の変更は、例えばハイレゾリューション(High Resolution)処理によって実現可能である。制御対象値の分解能が高くなれば、制御対象値の刻み幅(周波数刻み幅Δf、位相差刻み幅Δθ)は小さくなる。
以下、制御対象値の刻み幅(周波数刻み幅Δf、位相差刻み幅Δθ)を決定する処理(図9のS12,S15,S22,S25)について、図10を参照して詳しく説明する。図10は、一例として、制御対象値が動作周波数f1である場合、つまり周波数刻み幅Δfを決定する場合の処理を示すフローチャートである。
まず、決定部235は、取得部234にて取得された差分値Dpと第1の閾値Th1とを比較する(S31)。すなわち、周波数制御時においては、周波数制御部232は、制御対象値としての動作周波数f1を周波数刻み幅Δfずつ変化させる。このとき、動作周波数f1が実際に周波数刻み幅Δfだけ変化することによって出力電力は随時変化する。取得部234は、このようにして周波数制御に伴って随時変化する出力電力と目標値との差分値Dpを取得し、決定部235では、この差分値Dpが第1の閾値Th1以下か否かを判定する(S31)。
差分値Dpが第1の閾値Th1以下でなければ(S31:No)、決定部235は、周波数刻み幅Δfとして第1の値α1を適用する(S32)。言い換えれば、差分値Dpが第1の閾値Th1よりも大きい、という条件を満たせば、決定部235は、周波数刻み幅Δfを第1の値α1に設定する。
一方、差分値Dpが第1の閾値Th1以下であれば(S31:Yes)、決定部235は、第1の閾値Th1よりも小さな第2の閾値Th2と、差分値Dpとを比較する(S33)。つまり、決定部235は、差分値Dpが第2の閾値Th2(<Th1)以下か否かを判定する(S33)。差分値Dpが第2の閾値Th2以下でなければ(S33:No)、決定部235は、第1の値α1よりも小さな第2の値α2を周波数刻み幅Δfとして適用する(S34)。言い換えれば、差分値Dpが第1の閾値Th1以下でかつ第2の閾値Th2よりも大きい、という条件を満たせば、決定部235は、周波数刻み幅Δfを第2の値α2(<α1)に設定する。
差分値Dpが第2の閾値Th2以下であれば(S33:Yes)、決定部235は、第2の値α2よりも小さな第3の値α3を周波数刻み幅Δfとして適用する(S35)。言い換えれば、差分値Dpが第2の閾値Th2以下である、という条件を満たせば、決定部235は、周波数刻み幅Δfを第3の値α3(<α2)に設定する。
つまり、決定部235は、差分値Dpが小さくなる程、周波数刻み幅Δfが小さくなるように、差分値Dpに応じて周波数刻み幅Δfを決定する。言い換えれば、動作周波数f1の離散的な変化に伴って出力電力が徐々に目標値に近づくように調節される周波数制御時において、出力電力の大きさが目標値に近づく程、決定部235は、周波数刻み幅Δfを小さくする。これにより、周波数制御時においては、少なくとも2値(ここでは3値)の周波数刻み幅Δf間で、周波数刻み幅Δfが切り替わることになる。
ここで、第1の閾値Th1、第2の閾値Th2、第1の値α1、第2の値α2、及び第3の値α3は、制御回路23(マイクロコンピュータ)のメモリに記憶されている。さらに、例えば周波数制御の開始直後などで差分値Dpが求まらない場合には、決定部235は、差分値Dpを所定値に設定して刻み幅を決定してもよいし、刻み幅を所定値(例えば第1の値α1)に設定してもよい。
図11は、周波数制御時において、周波数刻み幅Δfが第1の値α1から第2の値α2に切り替わる例を示している。図11では、横軸を周波数(インバータ回路21の動作周波数f1)、縦軸を非接触給電装置2の出力電力として、周波数制御時における、動作周波数f1と出力電力との関係を表している。図11の例では、切替周波数fc1以上の周波数帯域Faにおいては、差分値Dpは、第1の閾値Th1よりも大きい。一方、切替周波数fc1以下の周波数帯域Fbにおいては、差分値Dpは、第1の閾値Th1以下でかつ第2の閾値Th2よりも大きい。そのため、周波数制御部232は、動作周波数f1を徐々に低下させるに当たり、切替周波数fc1までは周波数刻み幅Δfとして第1の値α1を適用し、切替周波数fc1以下では第1の値α1よりも小さな第2の値α2を周波数刻み幅Δfとして適用する。要するに、周波数制御部232は、図11中の点p1〜p8に関しては、動作周波数f1を第1の値α1ずつ低下させ、点p8〜p15に関しては、動作周波数f1を第2の値α2(<α1)ずつ低下させる。その結果、切替周波数fc1以下の周波数帯域Fbでは、切替周波数fc1以上の周波数帯域Faに比べて、周波数刻み幅Δfが小さくなり、動作周波数f1の変化に対する出力電力の大きさの変化率(ΔP/Δf)の急激な変動が抑制される。
例えば、制御回路23(マイクロコンピュータ)は、PWM(Pulse Width Modulation)タイマの機能を有しており、PWMタイマの周期レジスタに設定された値(周期レジスタ値)に応じた動作周波数f1のPWM信号を出力する。このとき、周期レジスタ値の刻み幅を「n/255」(nは整数)とすれば「n」を「1」〜「255」の範囲で調節することによって、動作周波数f1の刻み幅(周波数刻み幅Δf)は変化する。一例として、制御回路23(マイクロコンピュータ)のCPUのクロック周波数が80〔MHz〕、動作周波数f1の初期値が90〔kHz〕である場合を想定する。この場合、周期レジスタ値が「444」から「1」(=255/255)刻みで変化するとすれば、周期レジスタ値が「445」になると動作周波数f1は89.7976〔kHz〕になる。このとき、周波数刻み幅Δfは202.4〔Hz〕であり、分解能は最低となる。一方、周期レジスタ値が「444」から「1/255」刻みで変化するとすれば、周期レジスタ値が「444+1/255」になると動作周波数f1は89.9992〔kHz〕になる。このとき、周波数刻み幅Δfは0.8〔Hz〕であり、分解能は最高となる。つまり、分解能が最高の場合の周波数刻み幅Δf(0.8〔Hz〕)は、分解能が最低の場合の周波数刻み幅Δf(202.4〔Hz〕)の1/255となる。
また、ここまでは制御対象値が動作周波数f1である場合、つまり周波数制御時の決定部235の動作について説明したが、制御対象値が位相差θである場合、つまり位相差制御時も同様に、決定部235は制御対象値の刻み幅(位相差刻み幅Δθ)を決定する。すなわち、決定部235は、差分値Dpが小さくなる程、位相差刻み幅Δθが小さくなるように、差分値Dpに応じて位相差刻み幅Δθを決定する。これにより、位相差制御時においても、少なくとも2値の位相差刻み幅Δθ間で、位相差刻み幅Δθが切り替わることになる。
一例として、決定部235は、差分値Dpが閾値よりも大きい場合に、位相差刻み幅Δθを0.4054〔度〕とし、分解能を最低とする。この場合、位相差θは0.4054〔度〕刻みで変化する。一方、差分値Dpが閾値以下である場合に、決定部235は、位相差刻み幅Δθを0.0016〔度〕とし、分解能を最高とする。この場合、位相差θは0.0016〔度〕刻みで変化する。つまり、分解能が最高の場合の位相差刻み幅Δθ(0.0016〔度〕)は、分解能が最低の場合の位相差刻み幅Δθ(0.4054〔度〕)の1/255となる。
(7)起動処理
本実施形態の非接触給電装置2は、インバータ回路21及び電力補正回路22が動作を開始する起動時において、以下に説明するようにインバータ回路21をソフトスタートさせる。
制御回路23は、インバータ回路21の起動時、変換用スイッチ素子Q1〜Q4を制御するための第1駆動信号G1〜G4のデューティ比を、0(ゼロ)から所定値(例えば0.5)まで徐々に上げることで、インバータ回路21のソフトスタートを実現する。これにより、非接触給電装置2に入力される電圧や電流の急変が抑制され、回路素子に加わるストレスを低減できる。以下では、このように制御回路23が第1駆動信号G1〜G4のデューティ比を変化させてインバータ回路21をソフトスタートさせる処理を、「起動処理」という。
本実施形態の非接触給電装置2は、制御回路23が起動処理を行っている間、電力補正回路22に関しては全ての補正用スイッチ素子Q5〜Q8がオンに固定し、電力補正回路22の機能を無効にする。これにより、非接触給電装置2は、「(4.1)電力補正回路なし」(「(4)基本動作」の欄参照)と等価の状態となる。
制御回路23は、起動処理が終了すると、つまり第1駆動信号G1〜G4のデューティ比が所定値(例えば0.5)に達すると、電力補正回路22についても動作を開始させる。要するに、制御回路23は、起動処理の終了後、第2駆動信号G5〜G8にて補正用スイッチ素子Q5〜Q8の制御を開始する。これにより、非接触給電装置2は、「(4.2)電力補正回路あり」(「(4)基本動作」の欄参照)と等価の状態となる。このとき、規定範囲が270度〜360度の範囲であれば、制御回路23は、初期値である360(度)に位相差θを設定し、電力補正回路22の動作を開始させる。
(8)変形例
上記実施形態は本発明の一例に過ぎず、本発明は、上記実施形態に限定されることはなく、上記実施形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。以下に、上記実施形態の変形例を列挙する。
電力補正回路22は、上記実施形態のように4つの補正用スイッチ素子Q5〜Q8を用いた構成に限らず、例えば図12に示すように、2つの補正用スイッチ素子Q9,Q10を用いて構成されていてもよい。図12に示す電力補正回路22において、各補正用スイッチ素子Q9,Q10は、ゲートを2つ有するダブルゲート構造の半導体スイッチ素子である。また、第1の補正用スイッチ素子Q9は、補正用コンデンサC1と電気的に直列に接続されている。第2の補正用スイッチ素子Q10は、補正用スイッチ素子Q9及び補正用コンデンサC1の直列回路に対して、電気的に並列に接続されている。補正用スイッチ素子Q9の2つのゲートには、それぞれ第2駆動信号G7及び第2駆動信号G8が入力される。また、補正用スイッチ素子Q10の2つのゲートには、それぞれ第2駆動信号G5及び第2駆動信号G6が入力される。図12に示す電力補正回路22は、第2駆動信号G5〜G8によって2つの補正用スイッチ素子Q9,Q10が制御され、図1に示す電力補正回路22と等価に機能する。
また、非接触給電装置2から非接触で出力電力が供給される(つまり給電される)負荷は、電動車両に限らず、例えば携帯電話機やスマートフォンなどの蓄電池を備えた電気機器、又は蓄電池を備えない照明器具などの電気機器であってもよい。
また、非接触給電装置2から非接触受電装置3への出力電力の伝送方式は、上述した磁界共鳴方式に限らず、例えば電磁誘導方式、マイクロ波伝送方式などであってもよい。
また、各変換用スイッチ素子Q1〜Q4や各補正用スイッチ素子Q5〜Q8は、バイポーラトランジスタやIGBT(Insulated Gate Bipolar Transistor)等の他の半導体スイッチング素子で構成されていてもよい。
また、各ダイオードD1〜D4は、各変換用スイッチ素子Q1〜Q4の寄生ダイオードに限らず、各変換用スイッチ素子Q1〜Q4に外付けされていてもよい。同様に、各ダイオードD5〜D8は、各補正用スイッチ素子Q5〜Q8の寄生ダイオードに限らず、各補正用スイッチ素子Q5〜Q8に外付けされていてもよい。
また、計測部24は、制御回路23と別に設けられる構成に限らず、制御回路23と一体に設けられていてもよい。さらに、計測部24は出力電力を計測できればよい。そのため、例えば電流センサ25は、一次側コイルL1と第2の一次側コンデンサC12との間に限らず、一次側コイルL1に流れる電流の経路上にあればよい。さらにまた、計測部24は、一次側コイルL1に流れる電流(一次側電流I1)から、出力電力を直接的に計測する構成に限らず、例えば、非接触受電装置3にて計測される電流(二次側電流)又は電力(二次側電力)から、出力電力を間接的に計測してもよい。すなわち、非接触受電装置3の二次側共振回路には、一次側コイルL1に流れる電流に対応する二次側電流が流れ、かつ非接触給電装置2の出力電力に対応する二次側電力が供給される。そこで、例えば非接触受電装置3にて、これらの二次側電流又は二次側電力を計測し、その値を非接触受電装置3から非接触給電装置2に送信し、計測部24にて出力電力を間接的に計測してもよい。
また、インバータ回路21は、直流電圧を交流電圧に変換して出力可能な電圧形インバータであればよく、4つの変換用スイッチ素子Q1〜Q4がフルブリッジ接続されたフルブリッジインバータ回路に限らない。インバータ回路21は、例えばハーフブリッジインバータ回路であってもよい。
また、制御回路23は、上述したような出力電力制御を行う通常モード(起動処理を含む)の他に、一次側コイルL1と二次側コイルL2との間の結合係数を推定するサーチモードを有していてもよい。サーチモードにおいては、制御回路23は、位相差θを規定範囲内で徐々に変化させ、位相差θの変化に伴うコイル電流の大きさの変化に基づいて、結合係数を推定するように構成されている。ここでいう「コイル電流」は、一次側コイルL1を流れる電流(つまり一次側電流I1)であって、計測部24で計測される。
すなわち、位相差θとコイル電流との関係は、一次側コイルL1と二次側コイルL2との間の結合係数によって変わることが確認されている。具体的には、位相差θを規定範囲の上限値(ここでは360度)から徐々に小さくした場合に、コイル電流が増加に転じる変曲点に相当する位相差θが、結合係数によって異なっている。一次側コイルL1と二次側コイルL2との間の結合係数が大きくなる程、コイル電流が増加に転じる位相差θは小さくなる。したがって、位相差θとコイル電流との関係を用いれば、制御回路23は、位相差θの変化に伴う計測値(コイル電流の大きさ)の変化から、結合係数を推定することが可能である。
さらに、制御回路23は、結合係数から、共振特性をさらに推定することができる。その結果、制御回路23では、例えばインバータ回路21の動作周波数f1について、インバータ回路21が遅相モードで動作する(つまり進相モードにならない)周波数範囲を推定できる。これにより、制御回路23は、通常モードでの動作を開始する際の動作周波数f1の初期値を、インバータ回路21が遅相モードで動作する周波数範囲内に設定することができる。
また、制御回路23が周波数制御部232にて出力電力の調節を行う期間、つまり周波数制御が行われる期間において、電力補正回路22が動作していてもよい。この場合、位相差θは初期値である360(度)に設定される。この場合には、周波数制御部232は、第1駆動信号G1〜G4の周波数と共に第2駆動信号G5〜G8の周波数を変化させる。
また、電力補正回路22は、一対の出力点213,214の少なくとも一方と一次側コイルL1との間に電気的に接続されていればよく、出力点213と一次側コイルL1との間に代えて、出力点214と一次側コイルL1との間に電気的に接続されていてもよい。
また、素子制御部231、周波数制御部232、位相差制御部233、取得部234及び決定部235の機能が全て制御回路23に実装される構成に限らず、これらの機能の少なくとも一部が、制御回路23と別に設けられていてもよい。
また、決定部235は、出力電力を調節する際の制御の対象である制御対象値である動作周波数f1と位相差θとのいずれか一方についてのみ、刻み幅を決定するように構成されていてもよい。すなわち、決定部235は、周波数制御部232で制御される周波数と位相差制御部233で制御される位相差θとの少なくとも一方からなる制御対象値の刻み幅を、差分値Dpに応じて決定すればよい。例えば、決定部235が、動作周波数f1についての刻み幅(周波数刻み幅Δf)のみ決定する場合には、位相差θについての刻み幅(位相差刻み幅Δθ)は固定値になる。
また、決定部235は、刻み幅を2値の刻み幅間で切り替える構成に限らず、3値以上の刻み幅間で切り替えてもよい。さらに、決定部235は、例えば、差分値Dpに所定の係数を掛けた値を刻み幅としてもよい。この場合、刻み幅は、無段階に、つまり連続的に調節されることになる。
さらにまた、決定部235は、位相差θについての刻み幅(位相差刻み幅Δθ)を決定する際、位相差刻み幅Δθを直接的に決定(指定)してもよいし、間接的に位相差刻み幅Δθを決定してもよい。すなわち、位相差θは、第1駆動信号G1〜G4に対する第2駆動信号G5〜G8の位相の遅れである。そのため、例えば、第1駆動信号G1〜G4の周波数(動作周波数f1)と、第1駆動信号G1〜G4に対する第2駆動信号G5〜G8の遅延時間とのいずれか一方が変化すれば、位相差刻み幅Δθは変化する。そこで、決定部235は、位相差刻み幅Δθを直接的に変更してもよいが、これに限らず、例えば第1駆動信号G1〜G4に対する第2駆動信号G5〜G8の遅延時間を変更することで、間接的に位相差刻み幅Δθを変更してもよい。
(9)まとめ
以上説明したように、非接触給電装置2は、インバータ回路21と、一次側コイルL1と、電力補正回路22と、素子制御部231と、周波数制御部232と、位相差制御部233と、取得部234と、決定部235と、を備える。インバータ回路21は、一対の入力点211,212と一対の出力点213,214との間に電気的に接続された複数の変換用スイッチ素子Q1〜Q4を有する。インバータ回路21は、複数の変換用スイッチ素子Q1〜Q4のスイッチングにより、一対の入力点211,212に印加される直流電圧を交流電圧に変換して一対の出力点213,214から出力する。一次側コイルL1は、一対の出力点213,214間に電気的に接続され、交流電圧が印加されることにより二次側コイルL2に非接触で出力電力を供給する。電力補正回路22は、一対の出力点213,214の少なくとも一方と一次側コイルL1との間に電気的に接続され、補正用コンデンサC1及び複数の補正用スイッチ素子Q5〜Q8を有する。電力補正回路22は、複数の補正用スイッチ素子Q5〜Q8のスイッチングにより、補正用コンデンサC1の充放電を行う。素子制御部231は、第1駆動信号G1〜G4にて複数の変換用スイッチ素子Q1〜Q4を制御し、第2駆動信号G5〜G8にて複数の補正用スイッチ素子Q5〜Q8を制御する。周波数制御部232は、第1駆動信号G1〜G4の周波数を離散的に変化させるように制御することにより、出力電力の大きさを目標値P1に近づけるように調節する。位相差制御部233は、第1駆動信号G1〜G4に対する第2駆動信号G5〜G8の位相の遅れである位相差θを離散的に変化させるように制御することにより、出力電力の大きさを目標値P1に近づけるように調節する。取得部234は、目標値P1と出力電力の大きさとの差分値Dpを取得する。決定部235は、周波数制御部232で制御される周波数と位相差制御部233で制御される位相差θとの少なくとも一方からなる制御対象値の刻み幅を、差分値Dpに応じて決定する。
この構成によれば、非接触給電装置2は、周波数制御部232での周波数の制御、及び位相差制御部233での位相差θの制御の少なくとも一方により、出力電力の大きさを調節することが可能である。したがって、一次側コイルL1と二次側コイルL2との相対的な位置関係が変化して、一次側コイルL1と二次側コイルL2との間の結合係数が変化したとしても、非接触給電装置2は、出力電力の大きさを調節することで、安定した電力の供給が可能になる。しかも、非接触給電装置2においては、出力電力を調節する際の制御の対象である制御対象値(周波数と位相差との少なくとも一方)の刻み幅が、決定部235により、(目標値P1と出力電力の大きさとの)差分値Dpに応じて決定される。そのため、例えば、差分値Dpが比較的大きい場合、つまり出力電力が目標値P1に程遠い場合には、制御対象値の刻み幅を比較的大きくすることで、出力電力を目標値P1に近づけるための処理に要する時間を短縮できる。差分値Dpが比較的小さい場合、つまり出力電力が目標値P1に近づいた場合には、制御対象値の刻み幅を比較的小さくすることで、出力電力が目標値P1付近で変動することによるリプルの発生や、出力電力が目標値P1を大幅に超過することを抑制できる。したがって、非接触給電装置2は、一次側コイルL1と二次側コイルL2との相対的な位置関係によらず、安定した電力の供給が可能である、という利点がある。
また、決定部235は、差分値Dpが小さくなる程、刻み幅が小さくなるように、差分値Dpに応じて刻み幅を決定するように構成されていることが好ましい。この構成によれば、差分値Dpが比較的大きい場合には、制御対象値の刻み幅が比較的大きくなり、出力電力を目標値P1に近づけるための処理に要する時間の短縮を図ることが可能である。一方、差分値Dpが比較的小さい場合には、制御対象値の刻み幅が比較的小さくなり、リプルの発生や、出力電力が目標値P1を大幅に超過することを抑制可能である。ただし、この構成は非接触給電装置2に必須の構成ではなく、例えば、決定部235は、差分値Dpが大きくなる程、制御対象値の刻み幅を小さくしてもよい。
また、位相差制御部233は、周波数制御部232にて調節後の出力電力の大きさが目標値P1未満である場合に、位相差θを制御することにより、出力電力の大きさを目標値P1に近づけるように構成されていることが好ましい。この構成によれば、非接触給電装置2は、周波数制御と位相差制御との2段階で出力電力を調節することができるので、出力電力の調節幅を広くとることができる。ただし、この構成は非接触給電装置2に必須の構成ではなく、例えば、周波数制御部232が出力電力の大きさを調節する前に、位相差制御部233が、位相差θを制御することによって出力電力の大きさを調節してもよい。
また、非接触電力伝送システム1は、非接触給電装置2と、二次側コイルL2を有する非接触受電装置3とを備えている。非接触受電装置3は、非接触給電装置2から非接触で出力電力が供給されるように構成されている。この構成によれば、一次側コイルL1と二次側コイルL2との相対的な位置関係によらず、安定した電力の供給が可能である、という利点がある。
また、本実施形態のように、制御回路23がマイクロコンピュータを主構成とする場合、マイクロコンピュータのメモリに記録されるプログラムは、制御回路23を、制御回路23として機能させる。つまり、プログラムは、非接触給電装置2に用いられるコンピュータを、素子制御部231、周波数制御部232、位相差制御部233、取得部234、及び決定部235として機能させるためのプログラムである。ここでいう非接触給電装置2は、インバータ回路21と、一次側コイルL1と、電力補正回路22とを備えている。
インバータ回路21は、一対の入力点211,212と一対の出力点213,214との間に電気的に接続された複数の変換用スイッチ素子Q1〜Q4を有する。インバータ回路21は、複数の変換用スイッチ素子Q1〜Q4のスイッチングにより、一対の入力点211,212に印加される直流電圧を交流電圧に変換して一対の出力点213,214から出力する。一次側コイルL1は、一対の出力点213,214間に電気的に接続され、交流電圧が印加されることにより二次側コイルL2に非接触で出力電力を供給する。電力補正回路22は、一対の出力点213,214の少なくとも一方と一次側コイルL1との間に電気的に接続され、補正用コンデンサC1及び複数の補正用スイッチ素子Q5〜Q8を有する。電力補正回路22は、複数の補正用スイッチ素子Q5〜Q8のスイッチングにより、補正用コンデンサC1の充放電を行う。素子制御部231は、第1駆動信号G1〜G4にて複数の変換用スイッチ素子Q1〜Q4を制御し、第2駆動信号G5〜G8にて複数の補正用スイッチ素子Q5〜Q8を制御する。周波数制御部232は、第1駆動信号G1〜G4の周波数を離散的に変化させるように制御することにより、出力電力の大きさを目標値P1に近づけるように調節する。位相差制御部233は、第1駆動信号G1〜G4に対する第2駆動信号G5〜G8の位相の遅れである位相差θを離散的に変化させるように制御することにより、出力電力の大きさを目標値P1に近づけるように調節する。取得部234は、目標値P1と出力電力の大きさとの差分値Dpを取得する。決定部235は、周波数制御部232で制御される周波数と位相差制御部233で制御される位相差θとの少なくとも一方からなる制御対象値の刻み幅を、差分値Dpに応じて決定する。このプログラムによれば、専用の制御回路23を用いなくても、上記非接触給電装置2と同等の機能を実現でき、一次側コイルL1と二次側コイルL2との相対的な位置関係によらず、安定した電力の供給が可能である、という利点がある。
また、インバータ回路21と、一次側コイルL1と、電力補正回路22とを備えた非接触給電装置2を、以下の制御方法により制御することで、専用の制御回路23を用いなくても上記非接触給電装置2と同等の機能を実現できる。つまり、非接触給電装置2の制御方法は、素子制御ステップと、周波数制御ステップと、位相差制御ステップと、取得ステップと、決定ステップと、を有する。ここでいう非接触給電装置2は、インバータ回路21と、一次側コイルL1と、電力補正回路22とを備えている。
インバータ回路21は、一対の入力点211,212と一対の出力点213,214との間に電気的に接続された複数の変換用スイッチ素子Q1〜Q4を有する。インバータ回路21は、複数の変換用スイッチ素子Q1〜Q4のスイッチングにより、一対の入力点211,212に印加される直流電圧を交流電圧に変換して一対の出力点213,214から出力する。一次側コイルL1は、一対の出力点213,214間に電気的に接続され、交流電圧が印加されることにより二次側コイルL2に非接触で出力電力を供給する。電力補正回路22は、一対の出力点213,214の少なくとも一方と一次側コイルL1との間に電気的に接続され、補正用コンデンサC1及び複数の補正用スイッチ素子Q5〜Q8を有する。電力補正回路22は、複数の補正用スイッチ素子Q5〜Q8のスイッチングにより、補正用コンデンサC1の充放電を行う。素子制御部231は、第1駆動信号G1〜G4にて複数の変換用スイッチ素子Q1〜Q4を制御し、第2駆動信号G5〜G8にて複数の補正用スイッチ素子Q5〜Q8を制御する。周波数制御ステップでは、第1駆動信号G1〜G4の周波数を離散的に変化させるように制御することにより、出力電力の大きさを目標値P1に近づけるように調節する。位相差制御ステップでは、第1駆動信号G1〜G4に対する第2駆動信号G5〜G8の位相の遅れである位相差θを離散的に変化させるように制御することにより、出力電力の大きさを目標値P1に近づけるように調節する。取得ステップでは、目標値P1と出力電力の大きさとの差分値Dpを取得する。決定ステップでは、周波数制御ステップで制御される周波数と位相差制御ステップで制御される位相差θとの少なくとも一方からなる制御対象値の刻み幅を、差分値Dpに応じて決定する。この制御方法によれば、一次側コイルL1と二次側コイルL2との相対的な位置関係によらず、安定した電力の供給が可能である、という利点がある。
1 非接触電力伝送システム
2 非接触給電装置
3 非接触受電装置
21 インバータ回路
211,212 一対の入力点
213,214 一対の出力点
22 電力補正回路
231 素子制御部
232 周波数制御部
233 位相差制御部
234 取得部
235 決定部
C1 補正用コンデンサ
Dp 差分値
G1〜G4 第1駆動信号
G5〜G8 第2駆動信号
L1 一次側コイル
L2 二次側コイル
Q1〜Q4 変換用スイッチ素子
Q5〜Q8 補正用スイッチ素子
Q9,Q10 補正用スイッチ素子
f1 (動作)周波数
θ 位相差
Δf (周波数)刻み幅
Δθ (位相差)刻み幅

Claims (6)

  1. 一対の入力点と一対の出力点との間に電気的に接続された複数の変換用スイッチ素子を有し、前記複数の変換用スイッチ素子のスイッチングにより、前記一対の入力点に印加される直流電圧を交流電圧に変換して前記一対の出力点から出力するインバータ回路と、
    前記一対の出力点間に電気的に接続され、前記交流電圧が印加されることにより二次側コイルに非接触で出力電力を供給する一次側コイルと、
    前記一対の出力点の少なくとも一方と前記一次側コイルとの間に電気的に接続され、補正用コンデンサ及び複数の補正用スイッチ素子を有し、前記複数の補正用スイッチ素子のスイッチングにより、前記補正用コンデンサの充放電を行う電力補正回路と、
    第1駆動信号にて前記複数の変換用スイッチ素子を制御し、第2駆動信号にて前記複数の補正用スイッチ素子を制御する素子制御部と、
    前記第1駆動信号の周波数を離散的に変化させるように制御することにより、前記出力電力の大きさを目標値に近づけるように調節する周波数制御部と、
    前記第1駆動信号に対する前記第2駆動信号の位相の遅れである位相差を離散的に変化させるように制御することにより、前記出力電力の大きさを前記目標値に近づけるように調節する位相差制御部と、
    前記目標値と前記出力電力の大きさとの差分値を取得する取得部と、
    前記周波数制御部で制御される前記周波数と前記位相差制御部で制御される前記位相差との少なくとも一方からなる制御対象値の刻み幅を、前記差分値に応じて決定する決定部と、を備える
    ことを特徴とする非接触給電装置。
  2. 前記決定部は、
    前記差分値が小さくなる程、前記刻み幅が小さくなるように、前記差分値に応じて前記刻み幅を決定するように構成されている
    ことを特徴とする請求項1に記載の非接触給電装置。
  3. 前記位相差制御部は、
    前記周波数制御部にて調節後の前記出力電力の大きさが前記目標値未満である場合に、前記位相差を制御することにより、前記出力電力の大きさを前記目標値に近づけるように構成されている
    ことを特徴とする請求項1又は2に記載の非接触給電装置。
  4. 一対の入力点と一対の出力点との間に電気的に接続された複数の変換用スイッチ素子を有し、前記複数の変換用スイッチ素子のスイッチングにより、前記一対の入力点に印加される直流電圧を交流電圧に変換して前記一対の出力点から出力するインバータ回路と、
    前記一対の出力点間に電気的に接続され、前記交流電圧が印加されることにより二次側コイルに非接触で出力電力を供給する一次側コイルと、
    前記一対の出力点の少なくとも一方と前記一次側コイルとの間に電気的に接続され、補正用コンデンサ及び複数の補正用スイッチ素子を有し、前記複数の補正用スイッチ素子のスイッチングにより、前記補正用コンデンサの充放電を行う電力補正回路とを備えた非接触給電装置に用いられるコンピュータを、
    第1駆動信号にて前記複数の変換用スイッチ素子を制御し、第2駆動信号にて前記複数の補正用スイッチ素子を制御する素子制御部、
    前記第1駆動信号の周波数を離散的に変化させるように制御することにより、前記出力電力の大きさを目標値に近づけるように調節する周波数制御部、
    前記第1駆動信号に対する前記第2駆動信号の位相の遅れである位相差を離散的に変化させるように制御することにより、前記出力電力の大きさを前記目標値に近づけるように調節する位相差制御部、
    前記目標値と前記出力電力の大きさとの差分値を取得する取得部、
    及び、前記周波数制御部で制御される前記周波数と前記位相差制御部で制御される前記位相差との少なくとも一方からなる制御対象値の刻み幅を、前記差分値に応じて決定する決定部、
    として機能させるためのプログラム。
  5. 一対の入力点と一対の出力点との間に電気的に接続された複数の変換用スイッチ素子を有し、前記複数の変換用スイッチ素子のスイッチングにより、前記一対の入力点に印加される直流電圧を交流電圧に変換して前記一対の出力点から出力するインバータ回路と、
    前記一対の出力点間に電気的に接続され、前記交流電圧が印加されることにより二次側コイルに非接触で出力電力を供給する一次側コイルと、
    前記一対の出力点の少なくとも一方と前記一次側コイルとの間に電気的に接続され、補正用コンデンサ及び複数の補正用スイッチ素子を有し、前記複数の補正用スイッチ素子のスイッチングにより、前記補正用コンデンサの充放電を行う電力補正回路とを備えた非接触給電装置の制御方法であって、
    第1駆動信号にて前記複数の変換用スイッチ素子を制御し、第2駆動信号にて前記複数の補正用スイッチ素子を制御する素子制御ステップと、
    前記第1駆動信号の周波数を離散的に変化させるように制御することにより、前記出力電力の大きさを目標値に近づけるように調節する周波数制御ステップと、
    前記第1駆動信号に対する前記第2駆動信号の位相の遅れである位相差を離散的に変化させるように制御することにより、前記出力電力の大きさを前記目標値に近づけるように調節する位相差制御ステップと、
    前記目標値と前記出力電力の大きさとの差分値を取得する取得ステップと、
    前記周波数制御ステップで制御される前記周波数と前記位相差制御ステップで制御される前記位相差との少なくとも一方からなる制御対象値の刻み幅を、前記差分値に応じて決定する決定ステップと、
    を有することを特徴とする非接触給電装置の制御方法。
  6. 請求項1〜3のいずれか1項に記載の非接触給電装置と、前記二次側コイルを有する非接触受電装置とを備え、
    前記非接触受電装置は、前記非接触給電装置から非接触で前記出力電力が供給されるように構成されている
    ことを特徴とする非接触電力伝送システム。
JP2016109055A 2016-05-31 2016-05-31 非接触給電装置、プログラム、非接触給電装置の制御方法、及び非接触電力伝送システム Active JP6675094B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016109055A JP6675094B2 (ja) 2016-05-31 2016-05-31 非接触給電装置、プログラム、非接触給電装置の制御方法、及び非接触電力伝送システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016109055A JP6675094B2 (ja) 2016-05-31 2016-05-31 非接触給電装置、プログラム、非接触給電装置の制御方法、及び非接触電力伝送システム

Publications (2)

Publication Number Publication Date
JP2017216817A JP2017216817A (ja) 2017-12-07
JP6675094B2 true JP6675094B2 (ja) 2020-04-01

Family

ID=60575907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016109055A Active JP6675094B2 (ja) 2016-05-31 2016-05-31 非接触給電装置、プログラム、非接触給電装置の制御方法、及び非接触電力伝送システム

Country Status (1)

Country Link
JP (1) JP6675094B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7109670B2 (ja) * 2019-06-28 2022-07-29 三菱電機株式会社 電力変換装置および電力変換装置の駆動方法
CN116505623B (zh) * 2023-06-27 2023-12-26 广州汇电云联数科能源有限公司 一种储能电站放电功率分配方法、装置、设备及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140037894A (ko) * 2011-06-02 2014-03-27 가부시키가이샤 어드밴티스트 무선 수전 장치, 무선 급전 장치 및 무선 급전 시스템, 자동 튜닝 보조 회로
JP2017123699A (ja) * 2014-05-07 2017-07-13 パナソニックIpマネジメント株式会社 非接触給電装置及びそれを用いた非接触給電システム
WO2015182097A1 (ja) * 2014-05-27 2015-12-03 パナソニックIpマネジメント株式会社 非接触給電装置およびそれを用いた非接触給電システム
JP6049669B2 (ja) * 2014-10-23 2016-12-21 株式会社ダイヘン 直流電力供給装置および直流電力供給方法
EP3270487B1 (en) * 2015-03-12 2020-04-29 Panasonic Intellectual Property Management Co., Ltd. Non-contact power supply apparatus, program, method for controlling non-contact power supply apparatus, and non-contact power transmission system
WO2016157758A1 (ja) * 2015-03-31 2016-10-06 パナソニックIpマネジメント株式会社 非接触給電装置、プログラム、非接触給電装置の制御方法、および非接触電力伝送システム

Also Published As

Publication number Publication date
JP2017216817A (ja) 2017-12-07

Similar Documents

Publication Publication Date Title
JP6395096B2 (ja) 非接触給電装置、プログラム、非接触給電装置の制御方法、および非接触電力伝送システム
US9287790B2 (en) Electric power converter
JP6440080B2 (ja) 非接触給電装置、プログラム、非接触給電装置の制御方法、および非接触電力伝送システム
US10277082B2 (en) Power-transmitting device and wireless power-supplying system
US8488346B2 (en) Power conversion apparatus and method
US9024613B2 (en) Switching power supply apparatus and semiconductor device
WO2018043297A1 (ja) 送電装置
US12057710B2 (en) System and methods of a non-contact feeding device providing constant output voltage to a power receiving device
JP6675094B2 (ja) 非接触給電装置、プログラム、非接触給電装置の制御方法、及び非接触電力伝送システム
JP6111625B2 (ja) ワイヤレス電力伝送装置
JP6675093B2 (ja) 非接触給電装置、プログラム、非接触給電装置の制御方法、及び非接触電力伝送システム
JP6685016B2 (ja) 非接触給電装置、プログラム、非接触給電装置の制御方法、及び非接触電力伝送システム
US20200083719A1 (en) Power transmission device and power reception device
JP2020120494A (ja) 非接触給電装置及び送電装置
JP6678325B2 (ja) 非接触給電装置、非接触電力伝送システム、プログラムおよび非接触給電装置の制御方法
JP6685015B2 (ja) 非接触給電装置、非接触電力伝送システム、プログラムおよび非接触給電装置の制御方法
JP6715476B2 (ja) 非接触給電装置、プログラム、非接触給電装置の制御方法、及び非接触電力伝送システム
JPWO2017061093A1 (ja) 非接触給電装置および非接触給電システム
JP2009060003A (ja) 着磁電源
JP2021035077A (ja) 無線給電装置
JP2021035266A (ja) 非接触給電装置及び送電装置
JP2020092472A (ja) 非接触給電装置
WO2016157853A1 (ja) 非接触給電装置及び非接触給電システム
JP2014197949A (ja) 電力変換回路
JP2021002902A (ja) 充電装置

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200221

R151 Written notification of patent or utility model registration

Ref document number: 6675094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151