JP2020120494A - 非接触給電装置及び送電装置 - Google Patents

非接触給電装置及び送電装置 Download PDF

Info

Publication number
JP2020120494A
JP2020120494A JP2019009596A JP2019009596A JP2020120494A JP 2020120494 A JP2020120494 A JP 2020120494A JP 2019009596 A JP2019009596 A JP 2019009596A JP 2019009596 A JP2019009596 A JP 2019009596A JP 2020120494 A JP2020120494 A JP 2020120494A
Authority
JP
Japan
Prior art keywords
power
circuit
power supply
switching element
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019009596A
Other languages
English (en)
Other versions
JP7238423B2 (ja
Inventor
悟朗 中尾
Goro Nakao
悟朗 中尾
篤司 野村
Tokuji Nomura
篤司 野村
佑介 河合
Yusuke Kawai
佑介 河合
雅暢 中條
Masanobu Nakajo
雅暢 中條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2019009596A priority Critical patent/JP7238423B2/ja
Priority to US17/416,710 priority patent/US11652368B2/en
Priority to PCT/JP2019/047247 priority patent/WO2020152999A1/ja
Publication of JP2020120494A publication Critical patent/JP2020120494A/ja
Application granted granted Critical
Publication of JP7238423B2 publication Critical patent/JP7238423B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0038Circuits or arrangements for suppressing, e.g. by masking incorrect turn-on or turn-off signals, e.g. due to current spikes in current mode control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • H02M3/015Resonant DC/DC converters with means for adaptation of resonance frequency, e.g. by modification of capacitance or inductance of resonance circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】簡単な制御によって電力伝送が停止されるときのエネルギー消費を抑制できる非接触給電装置を提供する。【解決手段】非接触給電装置1の送電装置2は、受電装置3へ電力を供給する送信コイル14と、直流電源(11、12)と送信コイル14との間にフルブリッジ状またはハーフブリッジ状に接続される複数のスイッチング素子(13−1〜13−4)を介して直流電源11から供給される直流電力を交流電力に変換して送信コイル14へ供給する電力供給回路10と、送信コイル14と並列に接続されるLC直列回路及びLC直列回路と直列に接続されるスイッチング素子を有する位相調整回路16と、電流検出回路17による、電力供給回路10の複数のスイッチング素子の何れかがターンオフされるときの電流量の測定値に応じて、位相調整回路16のスイッチング素子のオンとオフとの切り替えを制御する制御回路18とを有する。【選択図】図1

Description

本発明は、非接触給電装置、及び、非接触給電装置で用いられる送電装置に関する。
従来より、金属の接点などを介さずに、空間を通じて電力を伝送する、いわゆる非接触給電(ワイヤレス給電とも呼ばれる)技術が研究されている。
このような非接触給電技術を利用して、移動する物体に給電することが研究されている(例えば、非特許文献1を参照)。非特許文献1に記載された技術では、いわゆる一次直列二次直列コンデンサ方式(SS方式)にしたがって、送電設備から受電側の電気自動車(EV)へ電力が伝送される。その際、送電設備は、入力インピーダンスに着目して車両検知を実現する。すなわち、送電設備は、サーチモードにおいて、送受電器の共振周波数と同じ周波数を持つサーチパルスをサーチ周期ごとに送電器に印加する。そして受電器の接近によって入力インピーダンスが大きくなり、その結果としてサーチパルスを送電器に印加して一定時間が経過しても送電側電流実効値が閾値に達しなくなると送電モードへ移行する。一方、送電器上にEVが進入するまでは、EVは、待機モードとなり、ハーフアクティブ整流器(HAF)の半導体スイッチをON状態として受電器を短絡して待機する。そしてEVは、送電設備から電力を受給していることを検知すると、充電モードへ移行して、HAFの半導体スイッチをOFF状態として、HAFをダイオード整流回路と同様に動作させてエネルギーを受電する。
畑他、「走行中ワイヤレス給電における送電設備とEVシステムの制御実装および実験検証」、自動車技術会2017年春季大会、pp.2444-2449、2017年
しかしながら、上記の技術では、送電側と受電側のそれぞれにおいて、電力伝送が行われているときと電力伝送が行われていないときとを切り替えるための制御が必要となるので、制御全体が煩雑化する。また、適用される用途によっては、受電器を短絡することが困難なことがある。
そこで、本発明は、簡単な制御によって電力伝送が停止されるときのエネルギー消費を抑制することが可能な非接触給電装置を提供することを目的とする。
本発明の一つの形態として、送電装置と、送電装置から非接触で電力伝送される受電装置とを有する非接触給電装置が提供される。この非接触給電装置において、送電装置は、受電装置へ電力を供給する送信コイルと、直流電源と送信コイルとの間にフルブリッジ状またはハーフブリッジ状に接続される複数のスイッチング素子を有し、複数のスイッチング素子のオンとオフとがスイッチング周波数にて切り替えられることで直流電源から供給される直流電力を、スイッチング周波数を持つ交流電力に変換して送信コイルへ供給する電力供給回路と、送信コイルと並列に接続されるLC直列回路と、LC直列回路と直列に接続されるスイッチング素子とを有する位相調整回路と、電力供給回路の複数のスイッチング素子に流れる電流量の測定値を求める電流検出回路と、電力供給回路の複数のスイッチング素子の何れかがターンオフされるときの電流量の測定値に応じて、位相調整回路のスイッチング素子のオンとオフとの切り替えを制御する制御回路とを有する。
係る構成を有することにより、この非接触給電装置は、簡単な制御によって電力伝送が停止されるときのエネルギー消費を抑制することができる。
この非接触給電装置において、制御回路は、位相調整回路のスイッチング素子がオンとなっている場合において、電流量の測定値が第1の閾値以下となると位相調整回路のスイッチング素子をオフとし、一方、位相調整回路のスイッチング素子がオフとなっている場合において、電流量の測定値が第1の閾値よりも大きい第2の閾値よりも高くなると位相調整回路のスイッチング素子をオンとすることが好ましい。
係る構成を有することで、この非接触給電装置は、電力伝送の停止中における、電力供給回路の複数のスイッチング素子におけるスイッチングロスを軽減することができるとともに、電力伝送中に電力供給回路の複数のスイッチング素子にソフトスイッチング動作させることができる。
この場合において、電力供給回路は、複数のスイッチング素子に印加される電圧を調整可能であり、制御回路は、位相調整回路のスイッチング素子がオンとなっている場合において、電流量の測定値が第1の閾値以下となると、複数のスイッチング素子に印加される電圧が上昇するよう電力供給回路を制御し、一方、位相調整回路のスイッチング素子がオフとなっている場合において、電流量の測定値が第2の閾値よりも高くなると複数のスイッチング素子に印加される電圧が低下するよう電力供給回路を制御することが好ましい。
係る構成を有することで、この非接触給電装置は、電力伝送の停止中における、電力供給回路の複数のスイッチング素子における導通ロスを軽減してエネルギー消費を抑制できるとともに、電力伝送が行われるときの伝送効率を向上できる。
本発明の他の形態として、受電装置に対して非接触で電力伝送する送電装置が提供される。この送電装置は、受電装置へ電力を供給する送信コイルと、直流電源と送信コイルとの間にフルブリッジ状またはハーフブリッジ状に接続される複数のスイッチング素子を有し、複数のスイッチング素子のオンとオフとがスイッチング周波数にて切り替えられることで直流電源から供給される直流電力を、スイッチング周波数を持つ交流電力に変換して送信コイルへ供給する電力供給回路と、送信コイルと並列に接続されるLC直列回路と、LC直列回路と直列に接続されるスイッチング素子とを有する位相調整回路と、電力供給回路の複数のスイッチング素子に流れる電流量の測定値を求める電流検出回路と、電力供給回路の複数のスイッチング素子の何れかがターンオフされるときの電流量の測定値に応じて、位相調整回路のスイッチング素子のオンとオフとの切り替えを制御する制御回路とを有する。
係る構成を有することにより、この送電装置は、簡単な制御によって電力伝送が停止されるときのエネルギー消費を抑制することができる。
本発明の一つの実施形態に係る送電装置を含む非接触給電装置の概略構成図である。 送信コイルと受信コイル間の結合度及び負荷回路に流れる電流と、送信コイルに流れる電流の位相遅れ量の周波数特性との関係の一例を示す図である。 (a)及び(b)は、それぞれ、位相調整回路がオンとなっている場合における、電力供給回路のスイッチング素子に流れる電流の波形のシミュレーション結果の一例を示す図である。(c)は、位相調整回路がオフとなっている場合における、電力供給回路のスイッチング素子に流れる電流の波形のシミュレーション結果の一例を示す図である。 送電装置の制御回路による電力供給回路及び位相調整回路の制御フローチャートである。
以下、本発明の一つの実施形態による非接触給電装置を、図を参照しつつ説明する。
本発明による非接触給電装置では、送電側の装置(以下、単に送電装置と呼ぶ)の送電用のコイル(以下、送信コイルと呼ぶ)と並列に接続されるLC直列回路を有する位相調整回路を有する。そしてこの非接触給電装置は、受電側の装置(以下、単に受電装置と呼ぶ)が電力を受電不可能なほど送電装置から離れているか、または、受電装置と接続される負荷回路に流れる電流が少ない場合、位相調整回路をオンにしてLC直列回路が電力供給回路に接続されるようにする。一方、受電装置が電力を受電可能なほど送電装置に近づき、かつ、負荷回路に流れる電流がある程度以上多くなる場合には、送電装置は、位相調整回路をオフにしてLC直列回路を電力供給回路から切り離す。これにより、この非接触給電装置は、送信コイルに交流電力を供給する電力供給回路の各スイッチング素子に印可される電圧の位相に対する、電力供給回路の各スイッチング素子に流れる電流の位相の遅れ量を制御して、電力供給回路のスイッチングロスを軽減する。また送電装置は、位相調整回路がオンとなっている間、電力供給回路から送信コイルに印加される電圧を低下させて電力供給回路の各スイッチング素子による導通ロスを軽減する。さらに、この非接触給電装置では、送電装置が、電力供給回路の各スイッチング素子がターンオフされるときにそのスイッチング素子に流れる電流の波高値に基づいて、位相調整回路のオン/オフを切り替える。そのため、この非接触給電装置は、受電装置において電力伝送時とそれ以外の時とを切り替えるための制御が不要となるので、簡単な制御によって電力伝送が停止されるときのエネルギー消費を抑制することができる。
図1は、本発明の一つの実施形態に係る送電装置を含む非接触給電装置の概略構成図である。図1に示されるように、非接触給電装置1は、送電装置2と、送電装置2から空間を介して非接触で電力伝送される受電装置3とを有する。送電装置2は、電力供給回路10と、送信コイル14と、コンデンサ15と、位相調整回路16と、電流検出回路17と、制御回路18とを有する。一方、受電装置3は、受信コイル21及び共振コンデンサ22を有する共振回路20と、整流平滑回路23と、負荷回路26とを有する。
先ず、送電装置2について説明する。
電力供給回路10は、所定のスイッチング周波数を持ち、かつ、調節可能な電圧を持つ交流電力を送信コイル14へ供給する。そのために、電力供給回路10は、電源11と、DC/DCコンバータ12と、リレーRLと、4個のスイッチング素子13−1〜13−4とを有する。
電源11は、直流電力を供給する。そのために、電源11は、例えば、商用の交流電源と接続され、その交流電源から供給された交流電力を整流するための全波整流回路と、全波整流回路から出力される脈流電力を平滑化するための平滑コンデンサとを有する。そして電源11は、送電装置2から受電装置3へ電力伝送されるときに送信コイル14に印加される交流電力の電圧に相当する電圧を持つ直流電力を出力する。
DC/DCコンバータ12は、電源11から出力された直流電力の電圧を、より低い電圧に変換する。そのために、DC/DCコンバータ12は、降圧型のDC/DCコンバータの何れかとすることができる。なお、電源11とDC/DCコンバータ12とは、直流電源を構成する。
リレーRLは、電源11の正極側端子に対して、DC/DCコンバータ12と並列に接続される。そしてリレーRLは、制御回路18からの制御に従ってオン/オフが切り替えられる。本実施形態では、送電装置2から受電装置3へ電力伝送されるときに、リレーRLはオンとなり、電源11から出力された電力は、DC/DCコンバータ12をバイパスして4個のスイッチング素子13−1〜13−4へ供給される。一方、送電装置2から受電装置3へ電力伝送されないとき、すなわち、受電装置3が送電装置2から電力を受電できないほど離れているか、または受電装置3の負荷回路26に流れる電流が少ない場合、リレーRLはオフとなる。そして電源11から出力された電力は、DC/DCコンバータ12を経由して4個のスイッチング素子13−1〜13−4へ供給される。その結果として、電力が伝送されないときに、送信コイル14に印加される交流電力の電圧は、電力伝送時における、送信コイル14に印加される交流電力の電圧よりも低くなる。
4個のスイッチング素子13−1〜13−4は、例えば、nチャネル型のMOSFETとすることができる。本実施形態では、4個のスイッチング素子13−1〜13−4は、電源11及びDC/DCコンバータ12と、送信コイル14との間において、フルブリッジ状に接続されることでフルブリッジ型のインバータ回路を構成する。すなわち、4個のスイッチング素子13−1〜13−4のうち、スイッチング素子13−1とスイッチング素子13−2は、電源11の正極側端子と負極側端子との間に、DC/DCコンバータ12を介して直列に接続される。また本実施形態では、電源11の正極側に、スイッチング素子13−1が接続され、一方、電源11の負極側に、スイッチング素子13−2が接続される。そしてスイッチング素子13−1のドレイン端子は、DC/DCコンバータ12を介して電源11の正極側端子と接続され、スイッチング素子13−1のソース端子は、スイッチング素子13−2のドレイン端子と接続される。また、スイッチング素子13−2のソース端子は、DC/DCコンバータ12を介して電源11の負極側端子と接続される。さらに、スイッチング素子13−1のソース端子、及び、スイッチング素子13−2のドレイン端子は、送信コイル14の一端に接続され、スイッチング素子13−2のソース端子は、スイッチング素子13−4及びコンデンサ15を介して送信コイル14の他端に接続される。
同様に、4個のスイッチング素子13−1〜13−4のうち、スイッチング素子13−3とスイッチング素子13−4は、スイッチング素子13−1及びスイッチング素子13−2と並列に、かつ、DC/DCコンバータ12を介して電源11の正極側端子と負極側端子との間に直列に接続される。また、電源11の正極側に、スイッチング素子13−3が接続され、一方、電源11の負極側に、スイッチング素子13−4が接続される。そしてスイッチング素子13−3のドレイン端子は、DC/DCコンバータ12を介して電源11の正極側端子と接続され、スイッチング素子13−3のソース端子は、スイッチング素子13−4のドレイン端子と接続される。また、スイッチング素子13−4のソース端子は、DC/DCコンバータ12を介して電源11の負極側端子と接続される。さらに、スイッチング素子13−3のソース端子、及び、スイッチング素子13−4のドレイン端子は、コンデンサ15を介して送信コイル14の他端に接続される。
また、スイッチング素子13−1〜13−4のゲート端子は、制御回路18と接続される。さらに、スイッチング素子13−1〜13−4のゲート端子は、オンとなる電圧が印加されたときにそのスイッチング素子がオンとなることを保証するために、それぞれ、抵抗を介して自素子のソース端子と接続されてもよい。そしてスイッチング素子13−1〜13−4は、制御回路18からの制御信号にしたがって、所定のスイッチング周波数にてオン/オフが切り替えられる。本実施形態では、スイッチング素子13−1とスイッチング素子13−4の組と、スイッチング素子13−2とスイッチング素子13−3との組について交互にオン/オフが切り替えられる。すなわち、スイッチング素子13−1とスイッチング素子13−4とがオンとなっている間、スイッチング素子13−2とスイッチング素子13−3とがオフとなる。逆に、スイッチング素子13−2とスイッチング素子13−3とがオンとなっている間、スイッチング素子13−1とスイッチング素子13−4とがオフとなる。これにより、電源11からDC/DCコンバータ12を介して供給された直流電力は、各スイッチング素子のスイッチング周波数を持つ交流電力に変換されて、送信コイル14に供給される。
そして送信コイル14は、電力供給回路10から供給された交流電力を、空間を介して受電装置3の共振回路20へ伝送する。
コンデンサ15は、送信コイル14と直列に接続され、送信コイル14に流れる直流電流を遮断する。本実施形態では、コンデンサ15は、送信コイル14の一端と、スイッチング素子13−3のソース端子、及び、スイッチング素子13−4のドレイン端子との間に接続される。なお、コンデンサ15の静電容量は、送信コイル14とコンデンサ15とにより形成される共振回路の共振周波数が、電力供給回路10から送信コイル14に供給される交流電力のスイッチング周波数と異なるように設定されることが好ましい。すなわち、コンデンサ15の静電容量は、電力供給回路10から送信コイル14に供給される交流電力に対して送信コイル14とコンデンサ15とにより形成される共振回路が共振しないように設定されることが好ましい。また、コンデンサ15は省略されてもよい。
位相調整回路16は、電力供給回路10の各スイッチング素子に印加される電圧の位相に対する、電力供給回路10の各スイッチング素子に流れる電流の位相の遅れ量を調整する。そのために、位相調整回路16は、送信コイル14と並列に接続され、コイルLと、コイルLと直列に接続されるコンデンサCとからなるLC直列回路と、LC直列回路と直列に接続される、MOSFETといったスイッチング素子Sとを有する。スイッチング素子Sは、制御回路18によりオン/オフが制御される。スイッチング素子Sがオンになると(すなわち、位相調整回路16がオンになると)、LC直列回路が電力供給回路10に接続される。そのため、電力供給回路10の各スイッチング素子に流れる電流量は、LC直列回路を流れる電流量と送信コイル14を流れる電流量の和となる。したがって、電力供給回路10の各スイッチング素子に印加される電圧の位相に対する、電力供給回路10の各スイッチング素子に流れる電流の位相の遅れ量は、その電流量の和の位相に依存する。一方、スイッチング素子Sがオフになると(すなわち、位相調整回路16がオフになると)、LC直列回路が電力供給回路10から切り離される。そのため、電力供給回路10の各スイッチング素子に印加される電圧の位相に対する、電力供給回路10の各スイッチング素子に流れる電流の位相の遅れ量は、送信コイル14に流れる電流そのものの位相に依存する。したがって、位相調整回路16のオンとオフとが切り替えられることで、電力供給回路10の各スイッチング素子に印加される電圧の位相に対する、電力供給回路10の各スイッチング素子に流れる電流の位相の遅れ量が制御される。
本実施形態では、送信コイル14と受信コイル21間の結合度が低い場合、例えば、受電装置3が送電装置2から受電不可能なほど離れている場合、送信コイル14に流れる電流の位相は、電力供給回路10の各スイッチング素子に印加される電圧の位相よりも遅れる。また、受電装置3の負荷回路26に流れる電流が少ない場合も同様となる。そこで、LC直列回路が有するコイルLのインダクタンス及びコンデンサCの静電容量は、LC直列回路に流れる電流の位相が電力供給回路10の各スイッチング素子に印加される電圧の位相よりも進むように設定されることが好ましい。そのために、コイルLのインダクタンス及びコンデンサCの静電容量は、LC直列回路の共振周波数が送信コイル14に印加される交流電力のスイッチング周波数よりも高くなるように設定されることが好ましい。
また、コイルLのインダクタンスは大きいほど好ましい。これは、コイルLのインダクタンスが大きいほど、位相調整回路16に流れる電流が減少するためである。例えば、コイルLのインダクタンスは、送信コイル14に流れる電流のうちの共振回路20に接続される負荷回路26の負荷に依存しない励磁電流成分よりも位相調整回路16に流れる電流が小さくなるように設定されることが好ましい。すなわち、コイルLのインダクタンスは、想定される結合度の最大値kmaxに、送信コイル14と受信コイル21とが電磁結合する場合の送電側の自己インダクタンスを乗じた値よりも大きいことが好ましい。
電流検出回路17は、電力供給回路10が有するスイッチング素子13−1〜13−4に流れる電流量を測定する。電流検出回路17は、例えば、直流電流を測定できる公知の様々な電流検出回路の何れかとすることができる。本実施形態では、電流検出回路17は、スイッチング素子13−2のソース端子及びスイッチング素子13−4のソース端子と、電源11の負極側端子との間に接続される。そして電流検出回路17は、非接触給電装置1が電力伝送を実施している間、スイッチング素子13−1〜13−4に流れる電流量を測定し、測定した電流量を表す信号を制御回路18へ出力する。
制御回路18は、例えば、不揮発性のメモリ回路及び揮発性のメモリ回路と、演算回路と、他の回路と接続するためのインターフェース回路と、各スイッチング素子への制御信号を出力するための駆動回路とを有する。そして制御回路18は、電力供給回路10から送信コイル14に供給される交流電力の周波数が所定のスイッチング周波数となるように、電力供給回路10の各スイッチング素子13−1〜13−4を制御する。なお、所定のスイッチング周波数は、送信コイル14と受信コイル21間の想定される結合度において受電装置3の共振回路20が共振する周波数とすることができる。
そのために、本実施形態では、制御回路18は、スイッチング素子13−1及びスイッチング素子13−4の組とスイッチング素子13−2及びスイッチング素子13−3の組とが交互にオンにする。さらに、制御回路18は、スイッチング周波数に対応する1周期内でスイッチング素子13−1及びスイッチング素子13−4の組がオンとなっている期間とスイッチング素子13−2及びスイッチング素子13−3の組がオンとなっている期間とを等しくする。なお、制御回路18は、スイッチング素子13−1及びスイッチング素子13−4の組とスイッチング素子13−2及びスイッチング素子13−3の組が同時にオンとなり、電源11が短絡されることを防止することが好ましい。そのために、制御回路18がスイッチング素子13−1及びスイッチング素子13−4の組とスイッチング素子13−2及びスイッチング素子13−3の組のオン/オフを切り替える際に、両方のスイッチング素子の組がオフとなるデッドタイムを設けてもよい。
また、制御回路18は、電流検出回路17により検出された電流量に応じて、位相調整回路16のオン/オフの切り替え、すなわち、位相調整回路16のスイッチング素子Sのオン/オフの切り替えを制御するとともに、電力供給回路10から送信コイル14に供給される交流電力の電圧を制御する。
なお、制御回路18による、位相調整回路16のオン/オフの切り替え、及び、送信コイル14への印加電圧の制御の詳細については後述する。
次に、受電装置3について説明する。
共振回路20は、受信コイル21と共振コンデンサ22とが直列に接続されるLC共振回路である。そして共振回路20が有する受信コイル21の一端が、共振コンデンサ22を介して整流平滑回路23の一方の入力端子に接続される。また、受信コイル21の他端が、整流平滑回路23の他方の入力端子に接続される。
受信コイル21は、送電装置2の送信コイル14に流れる交流電流と共振することで、送信コイル14から電力を受信する。そして受信コイル21は、共振コンデンサ22を介して、受信した電力を整流平滑回路23へ出力する。なお、受信コイル21の巻き数と、送電装置2の送信コイル14の巻き数は同一でもよく、あるいは、異なっていてもよい。
共振コンデンサ22は、その一端で受信コイル21の一端と接続されるとともに、他端で整流平滑回路23と接続される。そして共振コンデンサ22は、受信コイル21とともに、送信コイル14に流れる電流に対して共振することで電力を受電し、受電した電力を整流平滑回路23へ出力する。
整流平滑回路23は、整流回路の一例であり、ブリッジ接続された4個のダイオードを有する全波整流回路24と平滑コンデンサ25とを有し、共振回路20から出力された電力を整流し、かつ、平滑化して、直流電力に変換する。そして整流平滑回路23は、その直流電力を、負荷回路26に出力する。
以下、非接触給電装置1の動作の詳細について説明する。
本実施形態では、送電装置2の制御回路18は、電流検出回路17により検出された電流量に基づいて、位相調整回路16のスイッチング素子Sのオン/オフを制御する。これにより、制御回路18は、スイッチング素子13−1〜13−4に印可される電圧の位相に対する、スイッチング素子13−1〜13−4に流れる電流の位相の遅れ量を制御して、電力供給回路10のスイッチング素子13−1〜13−4のスイッチングロスを軽減する。
上述したように、位相調整回路16がオンとなっている場合、スイッチング素子13−1〜13−4に流れる電流量は、送信コイル14に流れる電流量と位相調整回路16に流れる電流量の和となる。そして、位相調整回路16のLC直列回路の共振周波数が、送信コイル14に供給される交流電力のスイッチング周波数よりも高いと、位相調整回路16に流れる電流の位相は、スイッチング素子13−1〜13−4に印加される電圧の位相よりも進む。一方、送信コイル14に流れる電流の位相は、スイッチング素子13−1〜13−4に印加される電圧の位相よりも遅れる。したがって、スイッチング素子13−1〜13−4において、送信コイル14に流れる電流と位相調整回路16に流れる電流とが互いに打ち消し合い、その結果として、スイッチング素子13−1〜13−4に流れる電流の実効値も低下することになる。
ただし、位相調整回路16に流れる電流の位相は、送信コイル14と受信コイル21間の結合度、及び、受電装置3の負荷回路26に流れる電流の変化にかかわらず、略一定となる。一方、送信コイル14と受信コイル21間の結合度、及び、受電装置3の負荷回路26に流れる電流に応じて、送信コイル14に流れる電流の位相は変化する。具体的に、送信コイル14と受信コイル21間の結合度が低いほど、あるいは、負荷回路26に流れる電流が小さいほど、スイッチング素子13−1〜13−4に印加される電圧の位相に対する、送信コイル14に流れる電流の位相の遅れは大きくなる。その結果、スイッチング素子13−1〜13−4がオンからオフに切り替わるとき(すなわち、ターンオフされるとき)の送信コイル14に流れる電流の波高値は、送信コイル14と受信コイル21間の結合度、及び、受電装置3の負荷回路26に流れる電流に応じて変化する。
図2は、送信コイル14と受信コイル21間の結合度及び負荷回路26に流れる電流と、送信コイル14に流れる電流の位相遅れ量の周波数特性との関係の一例を示す図である。図2において、横軸は周波数を表し、縦軸は、スイッチング素子13−1〜13−4に印加される電圧の位相に対する、送信コイル14に流れる電流の位相の遅れ量(以下では、単に、位相遅れ量と呼ぶことがある)を表す。なお、位相遅れ量が負の値となることは、スイッチング素子13−1〜13−4に印加される電圧の位相に対して送信コイル14に流れる電流の位相が進んでいることを表す。
グラフ201は、送信コイル14と受信コイル21間の結合度kを0.1、負荷回路26の抵抗値Roを10Ωとしたときの位相遅れ量の周波数特性を表す。またグラフ202は、結合度kを0.1、抵抗値Roを1Ωとしたときの位相遅れ量の周波数特性を表す。さらに、グラフ203は、結合度kを0.3、抵抗値Roを10Ωとしたときの位相遅れ量の周波数特性を表す。そしてグラフ204は、結合度kを0.3、抵抗値Roを1Ωとしたときの位相遅れ量の周波数特性を表す。なお、このシミュレーションにおいて、送信コイル14及び受信コイル21のインダクタンスを220μH、コンデンサ15の静電容量を440nF、共振コンデンサ22の静電容量を16.5nF、送信コイル14の巻き線抵抗値及び受信コイル21の巻き線抵抗値を100mΩとした。また、位相調整回路16のコイルLのインダクタンスを220μH、コンデンサCの静電容量を9nFとした。
本実施形態では、グラフ201とグラフ203との比較結果、及び、グラフ202とグラフ204との比較結果に示されるように、送信コイル14と受信コイル21間の結合度kが小さいほど、位相遅れ量は大きくなる。また、グラフ201とグラフ202との比較結果、及び、グラフ203とグラフ204との比較結果に示されるように、負荷回路26の抵抗値Roが大きいほど、すなわち、負荷回路26に流れる電流が少ないほど、共振回路20が共振する周波数帯域にて位相遅れ量は大きくなる。したがって、結合度kが高くなるほど、スイッチング素子13−1〜13−4がターンオフされるときの各スイッチング素子に流れる電流の波高値は低下する。同様に、負荷回路26に流れる電流が多いほど、スイッチング素子13−1〜13−4がターンオフされるときの各スイッチング素子に流れる電流の波高値は低下する。また、グラフ204に示されるように、結合度kがある程度大きく、かつ、負荷回路26の抵抗値Roが小さいと、周波数によっては、スイッチング素子13−1〜13−4に印加される電圧の位相に対して送信コイル14に流れる電流の位相が進んでいる状態となる。
図3(a)及び図3(b)は、それぞれ、位相調整回路16がオンとなっている場合における、スイッチング素子13−1〜13−4の何れかに流れる電流の波形のシミュレーション結果の一例を示す図である。また、図3(c)は、位相調整回路16がオフとなっている場合における、スイッチング素子13−1〜13−4の何れかに流れる電流の波形のシミュレーション結果の一例を示す図である。図3(a)〜図3(c)のそれぞれにおいて、横軸は時間を表し、縦軸は電流量を表す。このシミュレーションにおいて、負荷回路26の抵抗値Roを8Ωとし、送信コイル14に印加される交流電力のスイッチング周波数を84.5kHzとし、その交流電力の電圧を27Vとした。また、図3(a)及び図3(c)において、送信コイル14と受信コイル21間の結合度kを0とし、図3(b)において、送信コイル14と受信コイル21間の結合度kを0.2とした。それ以外のパラメータについては、図2のシミュレーションと同じ値とした。
図3(a)に示される波形301は、位相調整回路16がオンとなっている場合における、送信コイル14と受信コイル21間の結合度kが0のときの電流の波形であり、図3(b)に示される波形302は、位相調整回路16がオンとなっている場合における、結合度kが0.2の時の電流の波形である。また、図3(c)に示される波形303は、位相調整回路16がオフとなっている場合における、送信コイル14と受信コイル21間の結合度kが0のときの電流の波形である。なお、負荷回路26に流れる電流が0となる場合(例えば、負荷回路26が二次電池であり、その二次電池がほぼ満充電となっている場合)における電流の波形も、波形303と同様の波形となる。図3(a)〜図3(c)において、ターンオフ時刻toffは、電力供給回路10のスイッチング素子13−1〜13−4のうちの同時にオンとなる組について、ターンオフされるタイミングである。図3(a)に示される波形301と図3(b)に示される波形302とを比較すると、ターンオフ時刻toffにおける電流の波高値は結合度kが高いほど低下していることが分かる。また図3(b)に示されるように、場合によっては、ターンオフ時刻toffにおける電流の波高値は負となる。さらに、図3(a)に示される波形301と図3(c)に示される波形303とを比較すると、結合度kが0、すなわち、受電装置3が送電装置2から電力を受電できないほど離れている場合でも、位相調整回路16がオンとなることで、ターンオフ時刻toffにおける電流の波高値が低く抑制され、その結果としてスイッチングロスが低減されていることが分かる。
また、エネルギー伝送効率を向上するためには、送電装置2の電力供給回路10のスイッチング素子13−1〜13−4が継続してソフトスイッチング(誘導性)動作することが好ましい。スイッチング素子13−1〜13−4がソフトスイッチング動作するためには、スイッチング素子13−1〜13−4に印加される電圧の位相に対して、スイッチング素子13−1〜13−4を流れる電流の位相が遅れることが好ましい。これにより、例えば、スイッチング素子13−1及びスイッチング素子13−4がオンとなる際に、スイッチング素子13−1のソース端子からドレイン端子へ向かって電流が流れることになるので、電力供給回路10のスイッチング素子13−1〜13−4がソフトスイッチング動作することとなる。しかし、上記のように、送信コイル14と受信コイル21間の結合度が高くなるほど、あるいは、負荷回路26の抵抗値Roが小さくなるほど、スイッチング素子13−1〜13−4に印加される電圧の位相に対して送信コイル14に流れる電流の位相の遅れが軽減される。そのため、位相調整回路16がオンのままだと、スイッチング素子13−1〜13−4に印加される電圧の位相に対して送信コイル14に流れる電流の位相が進み、スイッチング素子13−1〜13−4は、ソフトスイッチング動作を継続できなくなることがある。
したがって、制御回路18は、以下のように電力供給回路10及び位相調整回路16を制御する。
制御回路18は、待機状態において、スイッチング素子13−1〜13−4のうちの同時にオンとなる組の何れか(例えば、スイッチング素子13−1と13−4)について、ターンオフされるタイミングtoffにおける、電流検出回路17により検出された電流量の測定値を第1の閾値Ith1と比較する。なお、第1の閾値Ith1は、例えば、0または0に所定のオフセットを加えた値とすることができる。待機状態は、送電装置2から受電装置3への電力供給が行われておらず、位相調整回路16がオンとなっている状態を表す。そして制御回路18は、送信コイル14と受信コイル21間の結合度が高くなり、電流量の測定値が閾値Ith1以下となると、位相調整回路16のスイッチング素子Sをオフとするよう制御して、位相調整回路16をオフにする。そのため、LC直列回路が電力供給回路10から切り離され、送電装置2は、待機状態から供給動作状態へ移行する。供給動作状態は、送電装置2から受電装置3への電力供給が行われており、位相調整回路16がオフとなっている状態を表す。これにより、スイッチング素子13−1〜13−4は、ソフトスイッチング動作を継続できる。また、送信コイル14と受信コイル21間の結合度が高くなると、スイッチング素子13−1〜13−4に印加される電圧の位相に対する、送信コイル14に流れる電流の位相の遅れ量が軽減されるので、位相調整回路16がオフとなっても、各スイッチング素子がターンオフされるタイミングtoffにおける電流の波高値も低くなる。さらに、制御回路18は、電力供給回路10のリレーRLをオンにして、電源11から各スイッチング素子13−1〜13−4へDC/DCコンバータ12を経由せずに電力供給されるようにする。これにより、単位時間あたりに伝送可能な電力量が増加するので、電力伝送効率が向上する。
一方、制御回路18は、供給動作状態において、スイッチング素子13−1〜13−4のうちの同時にオンとなる組の何れかについて、ターンオフされるタイミングtoffにおける、電流検出回路17により検出された電流量の測定値を第2の閾値Ith2と比較する。なお、第2の閾値Ith2は、第1の閾値Ith1よりも高い値に設定される。そして制御回路18は、電流量の測定値が閾値Ith2よりも高くなると、位相調整回路16のスイッチング素子Sをオンとするよう制御して、位相調整回路16をオンにする。これにより、送電装置2は、供給動作状態から待機状態へ移行する。待機状態では、上記のように、位相調整回路16を流れる電流と送信コイル14を流れる電流とが打ち消し合うことで、ターンオフされるタイミングtoffにおける、各スイッチング素子13−1〜13−4を流れる電流の波高値が低下する。そのため、各スイッチング素子13−1〜13−4におけるスイッチングロスが軽減される。また、制御回路18は、電力供給回路10のリレーRLをオフにして、電源11からの電力が、DC/DCコンバータ12を経由して各スイッチング素子13−1〜13−4へ電力供給されるようにする。これにより、送電装置2から受電装置3への電力供給が停止される間、各スイッチング素子13−1〜13−4に印加される電圧が低下するので、各スイッチング素子13−1〜13−4における導通ロスが軽減される。
図4は、本実施形態による、制御回路18による電力供給回路10及び位相調整回路16の制御フローチャートである。制御回路18は、所定の周期ごとに、下記の制御フローチャートに従って電力供給回路10及び位相調整回路16を制御すればよい。
制御回路18は、送電装置2が待機状態か否か、すなわち、位相調整回路16がオンとなっているか判定する(ステップS101)。例えば、制御回路18は、制御回路18が有するメモリ回路に記憶されている、待機状態か否かを表すフラグを参照して、送電装置2が待機状態か否かを判定すればよい。
送電装置2が待機状態である場合(ステップS101−Yes)、制御回路18は、電力供給回路10の各スイッチング素子のターンオフのタイミングにおける、各スイッチング素子を流れる電流の波高値が第1の閾値Ith1以下か否か判定する(ステップS102)。ターンオフのタイミングにおける、各スイッチング素子を流れる電流の波高値が第1の閾値Ith1よりも高い場合(ステップS102−No)、電力伝送不可能なほど、受電装置3が送電装置2から離れているか、あるいは、受電装置3の負荷回路26を流れる電流が非常に少ないことが想定される。そのため、制御回路18は、待機状態を維持する。
一方、ターンオフのタイミングにおける、各スイッチング素子を流れる電流の波高値が第1の閾値Ith1以下である場合(ステップS102−Yes)、電力伝送可能なほど、受電装置3が送電装置2に近づいたことが想定される。そこで制御回路18は、位相調整回路16をオフにするとともに、送信コイル14に印加される交流電力の電圧を上昇させる(ステップS103)。すなわち、制御回路18は、位相調整回路16のスイッチング素子をオフとして、位相調整回路16が有するLC直列回路を電力供給回路10から切り離す。また制御回路18は、電力供給回路10のリレーRLをオンにして、DC/DCコンバータ12を経由せずに電源11から各スイッチング素子へ電力が供給されるようにする。また、制御回路18は、フラグの値を、供給動作状態であることを表す値に書き換える。
一方、ステップS101において、送電装置2が待機状態でない場合、すなわち、送電装置2が供給動作状態である場合(ステップS101−No)、制御回路18は、電力供給回路10の各スイッチング素子のターンオフのタイミングにおける、各スイッチング素子を流れる電流の波高値が第2の閾値Ith2よりも高いか否か判定する(ステップS104)。ターンオフのタイミングにおける、各スイッチング素子を流れる電流の波高値が第2の閾値Ith2以下である場合(ステップS104−No)、送電装置2から受電装置3へ十分な電力が伝送されていると想定される。そのため、制御回路18は、供給動作状態を維持する。
一方、ターンオフのタイミングにおける、各スイッチング素子を流れる電流の波高値が第2の閾値Ith2よりも高い場合(ステップS104−Yes)、電力伝送不可能なほど、受電装置3が送電装置2から離れたか、あるいは、受電装置3の負荷回路26を流れる電流が非常に少ないことが想定される。そこで制御回路18は、位相調整回路16をオンにするとともに、送信コイル14に印加される交流電力の電圧を低下させる(ステップS105)。すなわち、制御回路18は、位相調整回路16のスイッチング素子をオンとして、位相調整回路16が有するLC直列回路を電力供給回路10に対して接続する。また制御回路18は、電力供給回路10のリレーRLをオフにして、DC/DCコンバータ12を経由して電源11から各スイッチング素子へ電力が供給されるようにする。また、制御回路18は、フラグの値を、待機状態であることを表す値に書き換える。
以上に説明してきたように、この非接触給電装置は、送電装置の送信コイルと並列に接続され、かつ、LC直列回路を有する位相調整回路を有する。そしてこの非接触給電装置は、送信コイルに交流電力を供給する電力供給回路の各スイッチング素子がターンオフされるタイミングにおける、各スイッチング素子に流れる電流に応じて位相調整回路のオン/オフを切り替えることで、各スイッチング素子に印加される電圧の位相に対する、各スイッチング素子に流れる電流の位相の遅れ量を適切に制御する。これにより、この非接触給電装置は、送電装置から受電装置への電力供給が行われないときの電力供給回路の各スイッチング素子のスイッチングロスを軽減する。さらに、この非接触給電装置は、位相調整回路がオンとなる場合、すなわち、待機状態において、送信コイル及び電力供給回路の各スイッチング素子に印加される電圧を低下させることで、導通ロスを軽減する。さらに、この非接触給電装置は、送電側の共振を電力伝送に利用しないので、待機状態におけるエネルギー消費を抑制できる。このように、この非接触給電装置は、給電装置側の制御だけで、送電装置から受電装置への電力供給が停止されているときのスイッチングロス及び導通ロスを軽減できるので、簡単な制御によって電力伝送が停止されるときのエネルギー消費を抑制することができる。
そのため、この非接触給電装置は、例えば、車両といった移動物体へ電力供給するための設備として好適に利用される。例えば、非特許文献1に記載されているように、受電装置3は、移動物体に搭載され、送電装置2は、移動物体が走行する経路上に設置されてもよい。この場合、受電装置3が搭載された移動物体が送電装置2に近づき、送電装置2の電流検出回路17による、電力供給回路10の各スイッチング素子がターンオフとなるタイミングにおける各スイッチング素子の電流の測定値が閾値Ith1以下になると、制御回路18は、位相調整回路16をオンにするとともに、送信コイル14に印加される電圧を上昇させればよい。そして受電装置3が搭載された移動物体が送電装置2から離れ、電力供給回路10の各スイッチング素子がターンオフとなるタイミングにおける各スイッチング素子の電流の測定値が閾値Ith2以下になると、制御回路18は、位相調整回路16をオフにするとともに、送信コイル14に印加される電圧を低下させればよい。これにより、この非接触給電装置は、移動中の移動物体に対して給電できるとともに、待機状態におけるエネルギー消費を抑制できる。
変形例によれば、送電装置2の電力供給回路は、フルブリッジ回路の代わりに、複数のスイッチング素子がハーフブリッジ状に接続されるハーフブリッジ回路を有してもよい。そして電力供給回路は、直流電源から出力される直流電力を、ハーフブリッジ回路を用いて交流電力に変換してもよい。この場合も、送電装置2の電流検出回路17は、ハーフブリッジ回路の各スイッチング素子を流れる電流を測定できるように設けられればよい。そして送電装置2の制御回路18は、上記の実施形態と同様に、図4に示されるフローチャートに従って、ハーフブリッジ回路の各スイッチング素子の何れかがターンオフされるときの電流検出回路17により測定された電流の測定値に基づいて、位相調整回路16のオンとオフとを切り替えればよい。
他の変形例によれば、送電装置2の電力供給回路は、DC/DCコンバータ及びリレーRLの代わりに力率改善回路を有してもよい。この場合には、送電装置2の制御回路18は、位相調整回路16がオンとなる間における、力率改善回路による、電源11から供給される電力の電圧に対する昇圧比が、位相調整回路16がオフとなる間における昇圧比よりも低下するように力率改善回路を制御すればよい。
なお、上記の実施形態または各変形例において、位相調整回路のLC直列回路のコンデンサ15側に接続される一端は、コンデンサ15と送信コイル14の間に接続されてもよい。
さらに、上記の実施形態または各変形例において、受電装置の共振回路では、受信コイルと共振コンデンサとが並列に接続されてもよい。さらに、受信コイルと整流平滑回路との間に受信コイルと直列に接続されるコイルが設けられてもよい。
このように、当業者は、本発明の範囲内で、実施される形態に合わせて様々な変更を行うことができる。
1 非接触給電装置
2 送電装置
10 電力供給回路
11 電源
12 DC/DCコンバータ
13−1〜13−4 スイッチング素子
14 送信コイル
15 コンデンサ
16 位相調整回路
17 電流検出回路
18 制御回路
3 受電装置
20 共振回路
21 受信コイル
22 共振コンデンサ
23 整流平滑回路
24 全波整流回路
25 平滑コンデンサ
26 負荷回路

Claims (4)

  1. 送電装置と、前記送電装置から非接触で電力伝送される受電装置とを有する非接触給電装置であって、
    前記送電装置は、
    前記受電装置へ電力を供給する送信コイルと、
    直流電源と前記送信コイルとの間にフルブリッジ状またはハーフブリッジ状に接続される複数のスイッチング素子を有し、前記複数のスイッチング素子のオンとオフとがスイッチング周波数にて切り替えられることで前記直流電源から供給される直流電力を、前記スイッチング周波数を持つ交流電力に変換して前記送信コイルへ供給する電力供給回路と、
    前記送信コイルと並列に接続されるLC直列回路と、前記LC直列回路と直列に接続されるスイッチング素子とを有する位相調整回路と、
    前記電力供給回路の前記複数のスイッチング素子に流れる電流量の測定値を求める電流検出回路と、
    前記電力供給回路の前記複数のスイッチング素子の何れかがターンオフされるときの前記電流量の測定値に応じて、前記位相調整回路の前記スイッチング素子のオンとオフとの切り替えを制御する制御回路と、
    を有する非接触給電装置。
  2. 前記制御回路は、前記位相調整回路の前記スイッチング素子がオンとなっている場合において、前記電流量の測定値が第1の閾値以下となると前記位相調整回路の前記スイッチング素子をオフとし、一方、前記位相調整回路の前記スイッチング素子がオフとなっている場合において、前記電流量の測定値が前記第1の閾値よりも大きい第2の閾値よりも高くなると前記位相調整回路の前記スイッチング素子をオンとする、
    請求項1に記載の非接触給電装置。
  3. 前記電力供給回路は、前記複数のスイッチング素子に印加される電圧を調整可能であり、
    前記制御回路は、前記位相調整回路の前記スイッチング素子がオンとなっている場合において、前記電流量の測定値が前記第1の閾値以下となると、前記複数のスイッチング素子に印加される電圧が上昇するよう前記電力供給回路を制御し、一方、前記位相調整回路の前記スイッチング素子がオフとなっている場合において、前記電流量の測定値が前記第2の閾値よりも高くなると前記複数のスイッチング素子に印加される電圧が低下するよう前記電力供給回路を制御する、
    請求項2に記載の非接触給電装置。
  4. 受電装置に対して非接触で電力伝送する送電装置であって、
    前記受電装置へ電力を供給する送信コイルと、
    直流電源と前記送信コイルとの間にフルブリッジ状またはハーフブリッジ状に接続される複数のスイッチング素子を有し、前記複数のスイッチング素子のオンとオフとがスイッチング周波数にて切り替えられることで前記直流電源から供給される直流電力を、前記スイッチング周波数を持つ交流電力に変換して前記送信コイルへ供給する電力供給回路と、
    前記送信コイルと並列に接続されるLC直列回路と、前記LC直列回路と直列に接続されるスイッチング素子とを有する位相調整回路と、
    前記電力供給回路の前記複数のスイッチング素子に流れる電流量の測定値を求める電流検出回路と、
    前記電力供給回路の前記複数のスイッチング素子の何れかがターンオフされるときの前記電流量の測定値に応じて、前記位相調整回路の前記スイッチング素子のオンとオフとの切り替えを制御する制御回路と、
    を有する送電装置。
JP2019009596A 2019-01-23 2019-01-23 非接触給電装置及び送電装置 Active JP7238423B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019009596A JP7238423B2 (ja) 2019-01-23 2019-01-23 非接触給電装置及び送電装置
US17/416,710 US11652368B2 (en) 2019-01-23 2019-12-03 Non-contact power supply device and power transmission device
PCT/JP2019/047247 WO2020152999A1 (ja) 2019-01-23 2019-12-03 非接触給電装置及び送電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019009596A JP7238423B2 (ja) 2019-01-23 2019-01-23 非接触給電装置及び送電装置

Publications (2)

Publication Number Publication Date
JP2020120494A true JP2020120494A (ja) 2020-08-06
JP7238423B2 JP7238423B2 (ja) 2023-03-14

Family

ID=71735501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019009596A Active JP7238423B2 (ja) 2019-01-23 2019-01-23 非接触給電装置及び送電装置

Country Status (3)

Country Link
US (1) US11652368B2 (ja)
JP (1) JP7238423B2 (ja)
WO (1) WO2020152999A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114421639A (zh) * 2020-10-13 2022-04-29 宁波微鹅电子科技有限公司 无线电能发射端及控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150194811A1 (en) * 2014-01-07 2015-07-09 NuVolta Technologies Harmonic Reduction Apparatus for Wireless Power Transfer Systems
JP2016067135A (ja) * 2014-09-25 2016-04-28 東芝テック株式会社 非接触給電装置
WO2017134870A1 (ja) * 2016-02-02 2017-08-10 三菱電機株式会社 電力変換装置および非接触給電システム
JP2017184487A (ja) * 2016-03-30 2017-10-05 矢崎総業株式会社 非接触電力伝送装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10122203B2 (en) * 2012-07-18 2018-11-06 WIPQTUS Inc. Wireless power system
US9472958B2 (en) * 2012-07-18 2016-10-18 WIPQTUS Inc. Wireless power system
US20140266018A1 (en) * 2013-03-12 2014-09-18 Qualcomm Incorporated Systems and methods for extending the power capability of a wireless charger
JP5772851B2 (ja) * 2013-03-21 2015-09-02 株式会社デンソー 非接触給電装置
JP6777524B2 (ja) 2016-12-16 2020-10-28 株式会社Soken 送電装置
CN110034539B (zh) * 2018-01-12 2021-06-25 泰达电子股份有限公司 故障保护方法及其适用的无线电能传输装置
EP3796516A1 (en) * 2019-09-23 2021-03-24 EnerSys Delaware Inc. Controlling a wireless power transfer system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150194811A1 (en) * 2014-01-07 2015-07-09 NuVolta Technologies Harmonic Reduction Apparatus for Wireless Power Transfer Systems
JP2016067135A (ja) * 2014-09-25 2016-04-28 東芝テック株式会社 非接触給電装置
WO2017134870A1 (ja) * 2016-02-02 2017-08-10 三菱電機株式会社 電力変換装置および非接触給電システム
JP2017184487A (ja) * 2016-03-30 2017-10-05 矢崎総業株式会社 非接触電力伝送装置

Also Published As

Publication number Publication date
US11652368B2 (en) 2023-05-16
US20220052558A1 (en) 2022-02-17
WO2020152999A1 (ja) 2020-07-30
JP7238423B2 (ja) 2023-03-14

Similar Documents

Publication Publication Date Title
US10498170B2 (en) Non-contact electric power transmitting device and electric power transfer system
US9093908B2 (en) Bidirectional DC-DC converter and method of controlling bidirectional DC-DC converter
US9287790B2 (en) Electric power converter
US10286795B2 (en) Charging device for electric vehicle
US9667171B2 (en) Switching circuit, power converter, and control method
JP5853889B2 (ja) 受電機器及び電力伝送システム
EP2899847A1 (en) Power receiving device and contactless power transmission device
JP7408952B2 (ja) 非接触給電装置
WO2012098867A1 (ja) 非接触充電装置の給電装置
WO2020152999A1 (ja) 非接触給電装置及び送電装置
JP2013158168A (ja) 共振型コンバータ
WO2012093423A1 (ja) 非接触充電システムの給電装置
WO2019176432A1 (ja) 受電装置
JP7395879B2 (ja) 非接触給電装置及び送電装置
JP2016092959A (ja) 送電機器及び非接触電力伝送装置
JP7131344B2 (ja) 非接触給電装置
JP6675094B2 (ja) 非接触給電装置、プログラム、非接触給電装置の制御方法、及び非接触電力伝送システム
JP6685015B2 (ja) 非接触給電装置、非接触電力伝送システム、プログラムおよび非接触給電装置の制御方法
JP6675093B2 (ja) 非接触給電装置、プログラム、非接触給電装置の制御方法、及び非接触電力伝送システム
Schulz et al. A bidirectional and isolated DC/DC converter connecting mobile battery systems to a DC grid in commercial buildings
US10923938B2 (en) Charging device and charging method
JP6715476B2 (ja) 非接触給電装置、プログラム、非接触給電装置の制御方法、及び非接触電力伝送システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R150 Certificate of patent or registration of utility model

Ref document number: 7238423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150