JP2020092472A - 非接触給電装置 - Google Patents

非接触給電装置 Download PDF

Info

Publication number
JP2020092472A
JP2020092472A JP2018226354A JP2018226354A JP2020092472A JP 2020092472 A JP2020092472 A JP 2020092472A JP 2018226354 A JP2018226354 A JP 2018226354A JP 2018226354 A JP2018226354 A JP 2018226354A JP 2020092472 A JP2020092472 A JP 2020092472A
Authority
JP
Japan
Prior art keywords
circuit
power
power supply
coil
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018226354A
Other languages
English (en)
Other versions
JP7131344B2 (ja
Inventor
悟朗 中尾
Goro Nakao
悟朗 中尾
謙一 田畑
Kenichi Tabata
謙一 田畑
佑介 河合
Yusuke Kawai
佑介 河合
篤司 野村
Tokuji Nomura
篤司 野村
孝博 武山
Takahiro Takeyama
孝博 武山
雅暢 中條
Masanobu Nakajo
雅暢 中條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2018226354A priority Critical patent/JP7131344B2/ja
Priority to PCT/JP2019/040755 priority patent/WO2020116033A1/ja
Priority to DE112019006031.7T priority patent/DE112019006031T5/de
Priority to US17/294,790 priority patent/US11637451B2/en
Publication of JP2020092472A publication Critical patent/JP2020092472A/ja
Application granted granted Critical
Publication of JP7131344B2 publication Critical patent/JP7131344B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】送電側の装置の送信コイルと受電側の装置の受信コイルとの間に異物が混入しても異常が発生することを抑制できる非接触給電装置を提供する。【解決手段】非接触給電装置1の送電装置(2、4−7)は、受電装置3へ電力を供給する送信コイル14と、直流電源(11、12)と送信コイル14との間にフルブリッジ状またはハーフブリッジ状に接続される複数のスイッチング素子(13−1〜13−4,72−1〜72−2)を有し、複数のスイッチング素子のオンとオフとがスイッチング周波数にて切り替えられることで直流電源から供給される直流電力を、スイッチング周波数を持つ交流電力に変換して送信コイルへ供給する電力供給回路(10、71)と、送信コイル14の両端に接続されるLC直列回路(16−1、16−2)を少なくとも一つ有する位相制御回路(16、56、66、73)とを有する。【選択図】図1

Description

本発明は、非接触給電装置に関する。
従来より、金属の接点などを介さずに、空間を通じて電力を伝送する、いわゆる非接触給電(ワイヤレス給電とも呼ばれる)技術が研究されている。
このような非接触給電技術の一つとして、二次(受電)側コイルのみに共振回路を構成し、共振回路に流れる共振電流の位相情報を検出し、この位相情報に基づいて、一次(送電)コイルに流れる駆動電流の電流位相が電圧位相よりもわずかに遅延するように駆動周波数を定めて一次コイルを駆動する技術が提案されている(例えば、特許文献1を参照)。またこの技術では、また、二次コイルの漏れインダクタンスと共振コンデンサのキャパシタンスと等価負荷抵抗で決定されるQ値が、Q=2/k2(kは結合係数)で定まる値以上の値に設定される。この技術によれば、一次コイルでの発熱が抑制されるとともに、一次コイルの側から見た力率の最も良い周波数を駆動周波数として自動的に選択可能となる。
国際公開第2015/173850号
しかしながら、上記の技術では、専ら受電側の共振回路にて共振が生じるため、受電側のコイルの近傍に磁束が集中してしまう。そのため、受電側のコイルの近傍に小さな金属片が混入した場合でも、異常発熱を生じ、その結果として、火災が発生するおそれがあった。また上記のように高いQ値を設定するためには、受電側のコイルが大型化する。
そこで、本発明は、送電側の装置の送信コイルと受電側の装置の受信コイルとの間に異物が混入しても異常が発生することを抑制することが可能な非接触給電装置を提供することを目的とする。
本発明の一つの形態として、送電装置と、送電装置から非接触で電力伝送される受電装置とを有する非接触給電装置が提供される。この非接触給電装置において、送電装置は、受電装置へ電力を供給する送信コイルと、直流電源と送信コイルとの間にフルブリッジ状またはハーフブリッジ状に接続される複数のスイッチング素子を有し、複数のスイッチング素子のオンとオフとがスイッチング周波数にて切り替えられることで直流電源から供給される直流電力を、スイッチング周波数を持つ交流電力に変換して送信コイルへ供給する電力供給回路と、送信コイルの両端に接続されるLC直列回路を少なくとも一つ有する位相制御回路とを有する。
係る構成を有することにより、この非接触給電装置は、送電装置の送信コイルと受電装置の受信コイルとの間に異物が混入しても異常が発生することを抑制することができる。
この非接触給電装置において、送電装置の位相制御回路の少なくとも一つのLC直列回路のそれぞれは、コイルと、そのコイルと直列に接続され、かつ、互いに並列に接続される第1のコンデンサ及び第2のコンデンサと、第2のコンデンサと直列に接続され、オンとなると第2のコンデンサをコイルに接続し、オフとなると第2のコンデンサをコイルから切り離すスイッチング素子とを有することが好ましい。そして送電装置は、電力供給回路の複数のスイッチング素子の何れかを流れる電流量の測定値を求める電流検出回路と、電力供給回路の複数のスイッチング素子の何れかがターンオフされるときの電流量の測定値が所定の許容範囲に含まれるように、少なくとも一つのLC直列回路のそれぞれのスイッチング素子のオンとオフとの切り替えを制御する制御回路とをさらに有することが好ましい。
係る構成を有することで、この非接触給電装置は、電力供給回路の各スイッチング素子に印可される電圧の位相に対する、電力供給回路の各スイッチング素子に流れる電流の位相の遅れ量を、電力供給回路の各スイッチング素子のスイッチングロス及び導通ロスを軽減するよう調整できる。
あるいは、この非接触給電装置において、送電装置の位相制御回路の少なくとも一つのLC直列回路のそれぞれは、コイルと、そのコイルと直列に接続され、かつ、互いに並列に接続される第1のコンデンサ及び第2のコンデンサと、第2のコンデンサと直列に接続され、オンとなると第2のコンデンサをコイルに接続し、オフとなると第2のコンデンサをコイルから切り離すスイッチング素子とを有することが好ましい。そして送電装置は、電力供給回路の複数のスイッチング素子のオンとオフとを切り替えるスイッチング周波数を制御するとともに、非接触給電装置が定電圧出力動作しているときの電力供給回路から送信コイルに供給される交流電力のスイッチング周波数に応じて、少なくとも一つのLC直列回路のそれぞれのスイッチング素子のオンとオフとの切り替えを制御する制御回路とをさらに有することが好ましい。
係る構成を有することで、この非接触給電装置は、電力供給回路から送信コイルに供給される交流電力のスイッチング周波数が変動しても、電力供給回路の各スイッチング素子に印可される電圧の位相に対する、電力供給回路の各スイッチング素子に流れる電流の位相の遅れ量を、電力供給回路の各スイッチング素子のスイッチングロスを軽減するよう調整できる。
この場合において、送電装置の制御回路は、少なくとも一つのLC直列回路のそれぞれの共振周波数が電力供給回路から送信コイルに供給される交流電力のスイッチング周波数よりも高くなるように、少なくとも一つのLC直列回路のそれぞれのスイッチング素子のオンとオフとの切り替えを制御することが好ましい。
係る構成を有することで、この非接触給電装置は、電力供給回路から送信コイルに供給される交流電力のスイッチング周波数に応じて、電力供給回路の各スイッチング素子のスイッチングロスを軽減できる。
あるいはまた、この非接触給電装置において、送電装置の位相制御回路の少なくとも一つのLC直列回路のそれぞれは、オンとなるとそのLC直列回路を送信コイルに接続し、オフとなるとそのLC直列回路を送信コイルから切り離すスイッチング素子を有することが好ましい。そして送電装置は、電力供給回路の複数のスイッチング素子のオンとオフとを切り替えるスイッチング周波数を制御するとともに、非接触給電装置が定電圧出力動作しているときの電力供給回路から送信コイルに供給される交流電力のスイッチング周波数または電圧に応じて、少なくとも一つのLC直列回路のそれぞれのスイッチング素子のオンとオフとの切り替えを制御する制御回路をさらに有することが好ましい。
係る構成を有することにより、この非接触給電装置は、送信コイルと受信コイル間の結合度が低下しても、電力供給回路の各スイッチング素子のスイッチングロスを軽減できる。
この場合において、受電装置は、送電装置の送信コイルを介して電力を受信する受信コイルと、受信コイルとともに共振する共振コンデンサとを有する共振回路と、共振回路から出力される電力を整流する整流回路と、整流回路から出力される電力の出力電圧を測定して出力電圧の測定値を求める電圧検出回路と、出力電圧の測定値に基づいて、非接触給電装置が定電圧出力動作しているか否かを判定する判定回路と、非接触給電装置が定電圧出力動作しているか否かを表す判定情報を含む信号を送電装置へ送信する第1の通信器とを有することが好ましい。そして送電装置は、判定情報を含む信号を受信する第2の通信器をさらに有し、制御回路は、判定情報が、非接触給電装置が定電圧出力動作していないことを表す場合、受電装置の整流回路と接続される負荷回路の抵抗が変化しても出力電圧の測定値が変化しなくなるように、スイッチング周波数を制御することが好ましい。
係る構成を有することにより、この非接触給電装置は、送信コイルと受信コイル間の結合度が変化しても定電圧出力動作を継続することが可能になるとともに、定電圧出力動作時のスイッチング周波数に応じて位相制御回路のオン/オフの切り替えを可能にできるので、送信コイルと受信コイル間の結合度が変化しても、電力供給回路の各スイッチング素子のスイッチングロスを軽減できる。
さらに、この非接触給電装置において、送電装置の位相制御回路の少なくとも一つのLC直列回路の一端は送信コイルの一端と接続され、他端は送信コイルの他端と接続されることが好ましい。
係る構成を有することにより、位相制御回路のLC直列回路の数は一つでよいので、送電装置が小型化される。
あるいは、この非接触給電装置において、送電装置の少なくとも一つのLC直列回路は、一端が送信コイルの一端と接続され、他端が接地される第1のLC直列回路と、一端が送信コイルの他端と接続され、他端が接地される第2のLC直列回路とを有することが好ましい。
係る構成を有することにより、各LC直列回路のオン/オフの切り替え、または各LC直列回路の共振周波数の制御が容易となる。
本発明の一つの実施形態に係る非接触給電装置の概略構成図である。 (a)〜(c)は、それぞれ、送信コイルに流れる電流の波形のシミュレーション結果の一例を示す図である。 本実施形態による、磁界の強度分布の一例を示すシミュレーション結果を表す図である。 比較例による、磁界の強度分布の一例を示すシミュレーション結果を表す図である。 変形例による、送電装置の概略構成図である。 他の変形例による送電装置の概略構成図である。 さらに他の変形例による送電装置の概略構成図である。 さらに他の変形例による送電装置の概略構成図である。
以下、本発明の一つの実施形態による非接触給電装置を、図を参照しつつ説明する。
本発明による非接触給電装置では、送電側の装置(以下、単に送電装置と呼ぶ)の送電用のコイル(以下、送信コイルと呼ぶ)の両端のそれぞれとグラウンドとの間に、LC直列回路が接続される。これにより、この非接触給電装置は、送信コイルに交流電力を供給する電力供給回路の各スイッチング素子に印可される電圧の位相に対する、電力供給回路の各スイッチング素子に流れる電流の位相の遅れ量を制御して、受電側の装置(以下、単に受電装置と呼ぶ)の共振回路のQ値を高くしなくても、電力供給回路のスイッチングロスを軽減する。その結果として、受電装置の共振回路が有するコイル(以下、受信コイルと呼ぶ)の巻き数を減らすことができる。そのため、送信コイルに供給される交流電力に対して受電装置の共振回路が主として共振することで電力伝送される場合でも、この非接触給電装置は、送信コイルと受信コイル間での磁束の偏りを軽減して、送信コイルと受信コイル間に異物が混入しても、異常発熱といった異常が発生することを抑制する。
さらに、この非接触給電装置は、電力供給回路から送信コイルへ供給される交流電力のスイッチング周波数を制御することで、定電圧出力動作することを可能とするとともに、電力供給回路から送信コイルへ供給される交流電力の電圧を制御することで、定電圧出力動作時における、受電装置の共振回路からの出力電圧が所定の許容範囲に含まれるようにする。なお、定電圧出力動作とは、受電装置に接続される負荷回路の抵抗値が変化しても、共振回路からの出力電圧が略一定となる動作をいう。
また、以下の実施形態に示されるように、送信コイルとLC直列回路の間に、送信コイルと直列に接続されるコンデンサが存在する場合も、LC直列回路による位相の遅れ量の制御には影響がない。そのため、LC直列回路が送信コイルの一端と接続されることには、LC直列回路がコンデンサを介して送信コイルの一端と接続されることも含まれる。
図1は、本発明の一つの実施形態に係る非接触給電装置の概略構成図である。図1に示されるように、非接触給電装置1は、送電装置2と、送電装置2から空間を介して非接触で電力伝送される受電装置3とを有する。送電装置2は、電力供給回路10と、送信コイル14と、コンデンサ15と、位相制御回路16と、電流検出回路17と、通信器18と、制御回路19とを有する。一方、受電装置3は、受信コイル21及び共振コンデンサ22を有する共振回路20と、整流平滑回路23と、負荷回路26と、電圧検出回路27と、スイッチング素子28と、判定回路29と、通信器30とを有する。
先ず、送電装置2について説明する。
電力供給回路10は、調節可能なスイッチング周波数、及び、調節可能な電圧を持つ交流電力を送信コイル14へ供給する。そのために、電力供給回路10は、電源11と、力率改善回路12と、4個のスイッチング素子13−1〜13−4とを有する。
電源11は、所定の脈流電圧を持つ電力を供給する。そのために、電源11は、商用の交流電源と接続され、その交流電源から供給された交流電力を整流するための全波整流回路を有する。
力率改善回路12は、電源11から出力された電力の電圧を、制御回路19からの制御に応じた電圧を持つ直流電力に変換して出力する。そのために、力率改善回路12の構成は、制御回路19からの制御によって出力電圧を調整可能な様々な力率改善回路の何れかと同様の構成、例えば、特許第6390808号に記載された送電装置の力率改善回路と同様の構成とすることができる。なお、電源11と力率改善回路12とは、直流電源を構成する。
4個のスイッチング素子13−1〜13−4は、例えば、nチャネル型のMOSFETとすることができる。本実施形態では、4個のスイッチング素子13−1〜13−4は、電源11及び力率改善回路12と、送信コイル14との間に、フルブリッジ状に接続されるフルブリッジ回路を構成する。すなわち、4個のスイッチング素子13−1〜13−4のうち、スイッチング素子13−1とスイッチング素子13−2は、電源11の正極側端子と負極側端子との間に、力率改善回路12を介して直列に接続される。また本実施形態では、電源11の正極側に、スイッチング素子13−1が接続され、一方、電源11の負極側に、スイッチング素子13−2が接続される。そしてスイッチング素子13−1のドレイン端子は、力率改善回路12を介して電源11の正極側端子と接続され、スイッチング素子13−1のソース端子は、スイッチング素子13−2のドレイン端子と接続される。また、スイッチング素子13−2のソース端子は、力率改善回路12を介して電源11の負極側端子と接続される。さらに、スイッチング素子13−1のソース端子、及び、スイッチング素子13−2のドレイン端子は、コンデンサ15を介して送信コイル14の一端に接続され、スイッチング素子13−2のソース端子は、スイッチング素子13−4を介して送信コイル14の他端に接続される。
同様に、4個のスイッチング素子13−1〜13−4のうち、スイッチング素子13−3とスイッチング素子13−4は、スイッチング素子13−1及びスイッチング素子13−2と並列に、かつ、力率改善回路12を介して電源11の正極側端子と負極側端子との間に直列に接続される。また、電源11の正極側に、スイッチング素子13−3が接続され、一方、電源11の負極側に、スイッチング素子13−4が接続される。そしてスイッチング素子13−3のドレイン端子は、力率改善回路12を介して電源11の正極側端子と接続され、スイッチング素子13−3のソース端子は、スイッチング素子13−4のドレイン端子と接続される。また、スイッチング素子13−4のソース端子は、力率改善回路12を介して電源11の負極側端子と接続される。さらに、スイッチング素子13−3のソース端子、及び、スイッチング素子13−4のドレイン端子は、送信コイル14の他端に接続される。
また、スイッチング素子13−1〜13−4のゲート端子は、制御回路19と接続される。さらに、スイッチング素子13−1〜13−4のゲート端子は、オンとなる電圧が印加されたときにそのスイッチング素子がオンとなることを保証するために、それぞれ、抵抗を介して自素子のソース端子と接続されてもよい。そしてスイッチング素子13−1〜13−4は、制御回路19からの制御信号にしたがって、調整可能なスイッチング周波数にてオン/オフが切り替えられる。本実施形態では、スイッチング素子13−1とスイッチング素子13−4とがオンとなっている間、スイッチング素子13−2とスイッチング素子13−3とがオフとなり、逆に、スイッチング素子13−2とスイッチング素子13−3とがオンとなっている間、スイッチング素子13−1とスイッチング素子13−4とがオフとなるように、スイッチング素子13−1とスイッチング素子13−4の組と、スイッチング素子13−2とスイッチング素子13−3との組について交互にオン/オフが切り替えられる。これにより、電源11から力率改善回路12を介して供給された直流電力は、各スイッチング素子のスイッチング周波数を持つ交流電力に変換されて、送信コイル14に供給される。
そして送信コイル14は、電力供給回路10から供給された交流電力を、空間を介して受電装置3の共振回路20へ伝送する。
コンデンサ15は、送信コイル14と直列に接続され、送信コイル14に流れる直流電流を遮断する。本実施形態では、コンデンサ15は、送信コイル14の一端と、スイッチング素子13−1のソース端子、及び、スイッチング素子13−2のドレイン端子との間に接続される。なお、コンデンサ15の静電容量は、送信コイル14とコンデンサ15とにより形成される共振回路の共振周波数が、電力供給回路10から送信コイル14に供給される交流電力のスイッチング周波数の調整範囲に含まれる周波数と異なるように、すなわち、電力供給回路10から送信コイル14に供給される交流電力に対して送信コイル14とコンデンサ15とにより形成される共振回路が共振しないように設定されることが好ましい。また、コンデンサ15は省略されてもよい。
位相制御回路16は、送信コイル14の両端のそれぞれにおいて、一端が送信コイル14(またはコンデンサ15)と接続され、他端が、電源11の負極側端子と接続される、すなわち、接地される二つのLC直列回路16−1、16−2を有する。LC直列回路16−1、16−2は、それぞれ、コイルL1,L2と、コイルL1,L2と直列、かつ、互いに並列に接続されるn個(nは2以上の整数、図1では、n=3)のコンデンサC1k,C2k(k=1,..,n)と、n個のコンデンサC1k,C2kのうちの(n-1)個のコンデンサのそれぞれと直列に接続される、MOSFETといったスイッチング素子S1j,S2j(j=1,..,n-1)とを有する。スイッチング素子S1j,S2jは、制御回路19によりオン/オフが制御される。そしてスイッチング素子S1j,S2jのうち、オンになるスイッチング素子の数が増えるほど、LC直列回路16−1、16−2の静電容量は増加するので、LC直列回路16−1、16−2の共振周波数は低下する。したがって、スイッチング素子S1j,S2jのうち、オンになるスイッチング素子の数に応じて、電力供給回路10のスイッチング素子13−1〜13−4に印可される電圧の位相に対する、スイッチング素子13−1〜13−4に流れる電流の位相の遅れ量が制御される。そのため、送信コイル14と受信コイル21間の結合度が変化し、その変化に伴って、送信コイル14に供給される交流電力のスイッチング周波数及び電圧が変化しても、送電装置2は、電力供給回路10及び送信コイル14によるソフトスイッチング動作を継続させることができるとともに、電力供給回路10のスイッチング素子13−1〜13−4のスイッチングロスを軽減できる。さらに、各LC直列回路の一端は接地されるので、各LC直列回路のスイッチング素子について基準となる電圧が一定となるので、各LC直列回路の制御が簡単化される。
また、LC直列回路16−1、16−2において、コイルL1,L2のインダクタンスは大きいほど好ましい。これは、コイルL1,L2のインダクタンスが大きいほど、LC直列回路16−1、16−2に流れる電流が減少するためである。例えば、コイルL1,L2のインダクタンスは、送信コイル14に流れる電流のうちの共振回路20に接続される負荷回路26の負荷に依存しない励磁電流成分よりもLC直列回路16−1、16−2に流れる電流が小さくなるように、想定される結合度の最大値kmaxに、送信コイル14と受信コイル21とが電磁結合する場合の送電側の自己インダクタンスL1を乗じた値よりも大きいことが好ましい。
電流検出回路17は、電力供給回路10が有するスイッチング素子13−1〜13−4に流れる電流量を測定する。電流検出回路17は、例えば、直流電流を測定できる公知の様々な電流検出回路の何れかとすることができる。本実施形態では、電流検出回路17は、スイッチング素子13−2のソース端子及びスイッチング素子13−4のソース端子と、電源11の負極側端子との間に接続される。そして電流検出回路17は、非接触給電装置1が電力伝送を実施している間、スイッチング素子13−1〜13−4に流れる電流量を測定し、測定した電流量を表す信号を制御回路19へ出力する。
通信器18は、受電装置3の通信器30から無線信号を受信する度に、その無線信号から、非接触給電装置1が定電圧出力動作しているか否かなどを表す判定情報を取り出して、制御回路19へ出力する。そのために、通信器18は、例えば、所定の無線通信規格に準じて無線信号を受信するアンテナと、その無線信号を復調する通信回路とを有する。なお、所定の無線通信規格は、例えば、ISO/IEC 15693、ZigBee(登録商標)、あるいはBluetooth(登録商標)とすることができる。
制御回路19は、例えば、不揮発性のメモリ回路及び揮発性のメモリ回路と、演算回路と、他の回路と接続するためのインターフェース回路と、各スイッチング素子への制御信号を出力するための駆動回路とを有する。そして制御回路19は、通信器18から判定情報を受け取る度に、その判定情報に応じて、電力供給回路10から送信コイル14に供給される交流電力のスイッチング周波数及び電圧を制御する。
そのために、本実施形態では、制御回路19は、スイッチング素子13−1及びスイッチング素子13−4の組とスイッチング素子13−2及びスイッチング素子13−3の組とが交互にオンとなり、かつ、スイッチング周波数に対応する1周期内でスイッチング素子13−1及びスイッチング素子13−4の組がオンとなっている期間とスイッチング素子13−2及びスイッチング素子13−3の組がオンとなっている期間とが等しくなるように、スイッチング素子13−1〜13−4を制御する。なお、制御回路19は、スイッチング素子13−1及びスイッチング素子13−4の組とスイッチング素子13−2及びスイッチング素子13−3の組が同時にオンとなり、電源11が短絡されることを防止するために、スイッチング素子13−1及びスイッチング素子13−4の組とスイッチング素子13−2及びスイッチング素子13−3の組のオン/オフを切り替える際に、両方のスイッチング素子の組がオフとなるデッドタイムを設けてもよい。
また、制御回路19は、スイッチング周波数に応じて、非接触給電装置1が定電圧出力動作するための電圧を持つ交流電力が電力供給回路10から出力されるように、力率改善回路12を制御する。例えば、制御回路19は、特許第6390808号に記載された送電装置の力率改善回路の制御と同様の制御を行えばよい。
さらに、制御回路19は、電流検出回路17により検出された電流量に応じて、位相制御回路16のLC直列回路16−1、16−2の共振周波数を制御する。
なお、制御回路19による、位相制御回路16のLC直列回路16−1、16−2の共振周波数の制御、及び、スイッチング周波数及び送信コイル14への印加電圧の制御の詳細については後述する。
次に、受電装置3について説明する。
共振回路20は、受信コイル21と共振コンデンサ22とが直列に接続されるLC共振回路である。そして共振回路20が有する受信コイル21の一端が、共振コンデンサ22を介して整流平滑回路23の一方の入力端子に接続される。また、受信コイル21の他端が、整流平滑回路23の他方の入力端子に接続される。
受信コイル21は、送電装置2の送信コイル14に流れる交流電流と共振することで、送信コイル14から電力を受信する。そして受信コイル21は、共振コンデンサ22を介して、受信した電力を整流平滑回路23へ出力する。なお、受信コイル21の巻き数と、送電装置2の送信コイル14の巻き数は同一でもよく、あるいは、異なっていてもよい。
共振コンデンサ22は、その一端で受信コイル21の一端と接続されるとともに、他端で整流平滑回路23と接続される。そして共振コンデンサ22は、受信コイル21とともに、送信コイル14に流れる電流に対して共振することで電力を受電し、受電した電力を整流平滑回路23へ出力する。
整流平滑回路23は、整流回路の一例であり、ブリッジ接続された4個のダイオードを有する全波整流回路24と平滑コンデンサ25とを有し、共振回路20から出力された電力を整流し、かつ、平滑化して、直流電力に変換する。そして整流平滑回路23は、その直流電力を、負荷回路26に出力する。
電圧検出回路27は、整流平滑回路23の両端子間の出力電圧を測定する。整流平滑回路23の両端子間の出力電圧は、共振回路20の出力電圧と1対1に対応するので、整流平滑回路23の両端子間の出力電圧の測定値は、間接的に共振回路20の出力電圧の測定値となる。電圧検出回路27は、例えば、直流電圧を検出できる公知の様々な電圧検出回路の何れかとすることができる。そして電圧検出回路27は、その出力電圧の測定値を表す電圧検出信号を判定回路29へ出力する。
スイッチング素子28は、例えば、MOSFETであり、整流平滑回路23と負荷回路26との間に接続される。スイッチング素子28は、オフとなると整流平滑回路23から負荷回路26へ電流が流れないようにし(すなわち、負荷回路26の交流等価抵抗値Rac=∞)、一方、オンとなると整流平滑回路23から負荷回路26へ電流が流れるようにする。
判定回路29は、電圧検出回路27から受け取った出力電圧の測定値に基づいて、非接触給電装置1が定電圧出力動作しているか否か、及び、出力電圧の測定値が、定電圧出力動作が行われているときの電圧の許容範囲内に含まれているか否か判定する。そして判定回路29は、その判定結果を通信器30へ通知する。そのために、判定回路29は、例えば、電圧の許容範囲を記憶するメモリ回路と、出力電圧の測定値と電圧の許容範囲とを比較する演算回路と、スイッチング素子28のオン/オフを制御するための制御回路を有する。
判定回路29は、出力電圧の測定値が、電圧の許容範囲から外れている間、所定の周期でスイッチング素子28のオン/オフを切り替える。これにより、その所定の周期で、整流平滑回路23と接続される、負荷回路26を含む回路全体の抵抗値が変化する。したがって、判定回路29は、スイッチング素子28のオン/オフを切り替えながら、出力電圧の測定値が略一定となるか否かを判定することで、非接触給電装置1が定電圧出力動作しているか否かを判定できる。そこで、判定回路29は、所定の周期でスイッチング素子28のオン/オフを切り替えても出力電圧の測定値が略一定となっている間、非接触給電装置1が定電圧出力動作していることを通信器30へ通知する。
また、判定回路29は、出力電圧の測定値が所定の周期よりも長い一定期間の間、非接触給電装置1が定電圧出力動作している場合、スイッチング素子28のオン/オフの切り替えを停止して、オンとなる状態を維持する。そして判定回路29は、出力電圧の測定値が電圧の許容範囲に含まれるか否か判定し、その判定結果を通信器30へ通知する。
その際、判定回路29は、出力電圧の測定値が所定の周期よりも長い一定期間の間、電圧の許容範囲に含まれる場合、非接触給電装置1が定電圧出力動作しており、かつ、出力電圧の測定値が電圧の許容範囲内であることを表す判定結果を通信器30へ通知する。
なお、変形例によれば、受電装置3は、整流平滑回路23に対して、負荷回路26と並列に接続される抵抗を有していてもよい。この場合、スイッチング素子28は、その抵抗と直列、かつ、負荷回路26と並列となるように設けられてもよい。この場合には、出力電圧の測定値が電圧の許容範囲に含まれる間、判定回路29は、スイッチング素子28をオフにする。一方、出力電圧の測定値が電圧の許容範囲から外れると、上記の実施形態と同様に、判定回路29は、所定の周期でスイッチング素子28のオン/オフを切り替えればよい。この変形例によれば、非接触給電装置1が定電圧出力動作していない場合にも、負荷回路26への電力供給が継続される。
さらに他の変形例によれば、上記の抵抗と並列、かつ、負荷回路26と直列に、MOSFETといった第2のスイッチング素子が設けられてもよい。この場合、出力電圧の測定値が電圧の許容範囲に含まれる間、判定回路29は、第2のスイッチング素子をオンにして、負荷回路26への電力供給を可能とする。一方、出力電圧の測定値が電圧の許容範囲から外れると、判定回路29は、第2のスイッチング素子をオフにして、負荷回路26への電力供給を停止してもよい。これにより、送電装置2においてスイッチング周波数が調整されている間に、受電した電力の電圧が過度に高くなっても、その過度に高い電圧が負荷回路26に印加されることが防止される。
通信器30は、所定の送信周期ごとに、判定回路29から受け取った判定結果に応じて、非接触給電装置1が定電圧出力動作しているか否か、及び、出力電圧の測定値が電圧の許容範囲に含まれるか否かを表す判定情報を含む無線信号を生成し、その無線信号を送電装置2の通信器18へ向けて送信する。そのために、通信器30は、例えば、所定の無線通信規格に準じて無線信号を生成する通信回路と、その無線信号を出力するアンテナとを有する。なお、所定の無線通信規格は、通信器18と同様に、例えば、ISO/IEC 15693、ZigBee(登録商標)、あるいはBluetooth(登録商標)とすることができる。
以下、非接触給電装置1の動作の詳細について説明する。
本実施形態では、送電装置2の制御回路19は、通信器18から受け取った判定情報に基づいて、非接触給電装置1が定電圧出力動作を継続するように、電力供給回路10から送信コイル14に供給される交流電力のスイッチング周波数及び電圧を制御する。さらに、制御回路19は、電力供給回路10のスイッチング素子13−1〜13−4のスイッチングロスが軽減されるように、電流検出回路17により検出された電流量に基づいて、位相制御回路16のLC直列回路16−1、16−2が有するスイッチング素子S1j,S2jのオン/オフを制御して、スイッチング素子13−1〜13−4に印可される電圧の位相に対する、スイッチング素子13−1〜13−4に流れる電流の位相の遅れ量を制御する。
最初に、電力供給回路10から送信コイル14に供給される交流電力のスイッチング周波数及び電圧の制御について説明する。上述したように、本実施形態による非接触給電装置1は、送電側における共振を利用しないものの、いわゆる一次直列二次直列コンデンサ方式(SS方式)と同様の構成を有する。このことから、非接触給電装置1の出力電圧の周波数特性は、SS方式の非接触給電装置の出力電圧の周波数特性と類似したものとなる。
そこで、制御回路19は、定電圧出力動作を達成するために、下記のように送信コイル14に印加される交流電力のスイッチング周波数及び電圧を制御する。
通信器18から出力電圧の測定値が許容範囲から外れていることを表す判定情報を受け取ると、制御回路19は、交流電力のスイッチング周波数を所定の周波数領域内で変化させる。所定の周波数領域は、例えば、送電装置2から受電装置3への給電が行われる場合における、送信コイル14と受信コイル21間の想定される結合度の最小値において定電圧出力となる周波数を下限とし、送信コイル14と受信コイル21間の想定される結合度の最大値において定電圧出力となる周波数を上限とする周波数領域とすることができる。
制御回路19は、スイッチング周波数を変化させる際、所定の周波数領域の下限から上限まで順にスイッチング周波数を高くしてもよく、あるいは、逆に、所定の周波数領域の上限から下限まで順にスイッチング周波数を低くしてもよい。その際、制御回路19は、受電装置3の判定回路29が、出力電圧の測定値が略一定となったか否かを調べることができるように、判定回路29がスイッチング素子28のオンとオフを切り替える周期よりも長い期間、同じスイッチング周波数を保つように、ステップ状にスイッチング周波数を変化させることが好ましい。
制御回路19は、受電装置3から通信器18を介して受けとった無線信号に含まれる判定情報において、出力電圧の測定値が電圧の許容範囲には含まれないものの、負荷回路26の抵抗が変化しても略一定となることが示されていると、それ以降、スイッチング周波数を一定に保つ。そして次に、制御回路19は、スイッチング周波数と、そのスイッチング周波数において結合度によらず、負荷回路26に対して略一定の電圧が出力されるように、力率改善回路12から出力される直流電圧を制御する。これにより、共振回路20からの出力電圧が電圧の許容範囲に含まれるように、すなわち、結合度によらずに略一定の電圧が出力されるように、送信コイル14に印加される電圧が調整される。そして制御回路19は、受電装置3から通信器18を介して受けとった無線信号に含まれる判定情報において、出力電圧の測定値が電圧の許容範囲に含まれることが示されると、送信コイル14に供給される交流電力のスイッチング周波数及び電圧を一定に保つ。
なお、制御回路19は、受電装置3から通信器18を介して受けとった無線信号に含まれる判定情報において、出力電圧の測定値が電圧の許容範囲に含まれることが示されるようになるまで、力率改善回路12から出力される電圧が徐々に高くなるように、力率改善回路を制御してもよい。
次に、位相制御回路16の制御について説明する。エネルギー伝送効率を向上するためには、送電装置2の電力供給回路10のスイッチング素子13−1〜13−4が継続してソフトスイッチング(誘導性)動作することが好ましい。スイッチング素子13−1〜13−4がソフトスイッチング動作するためには、スイッチング素子13−1〜13−4に印加される電圧の位相に対して、スイッチング素子13−1〜13−4を流れる電流の位相が遅れることが好ましい。これにより、例えば、スイッチング素子13−1及びスイッチング素子13−4がオンとなる際に、スイッチング素子13−1のソース端子からドレイン端子へ向かって電流が流れることになるので、電力供給回路10のスイッチング素子13−1〜13−4がソフトスイッチング動作することとなる。
さらに、スイッチング素子13−1〜13−4がオンからオフに切り替わるとき(すなわち、ターンオフされるとき)の送信コイル14に流れる電流の波高値が小さいほど、スイッチング素子13−1〜13−4におけるスイッチングロスが軽減される。
図2(a)〜図2(c)は、それぞれ、スイッチング素子13−1〜13−4の何れかに流れる電流の波形のシミュレーション結果の一例を示す図である。図2(a)〜図2(c)のそれぞれにおいて、横軸は時間を表し、縦軸は電流量を表す。このシミュレーションにおいて、送信コイル14のインダクタンスLp及び受信コイル21のインダクタンスLsを220μHとした。また、コンデンサ15の静電容量を440nFとし、共振コンデンサ22の静電容量を16.5nFとした。さらに、負荷回路26の抵抗値Roを8Ωとし、送信コイル14と受信コイル21間の結合度kを0.15とした。そして送信コイル14に印加される交流電力のスイッチング周波数を84.5kHzとし、その交流電力の電圧を270Vとした。
図2(a)に示される波形201は、比較例として、位相制御回路16が接続されていない場合における、スイッチング素子13−1〜13−4の何れかに流れる電流の波形である。また、図2(b)に示される波形202は、位相制御回路16の各LC直列回路のコイルのインダクタンスを220μHとし、そのLC直列回路のコンデンサの静電容量を11nFとした場合(すなわち、LC直列回路の共振周波数=102kHz)における、送信コイル14に流れる電流の波形である。さらに、図2(c)に示される波形203は、位相制御回路16の各LC直列回路のコイルのインダクタンスを220μHとし、そのLC直列回路のコンデンサの静電容量を8nFとした場合(すなわち、LC直列回路の共振周波数=120kHz)における、送信コイル14に流れる電流の波形である。
図2(a)〜図2(c)において、時刻toffは、電力供給回路10のスイッチング素子13−1〜13−4のうちの同時にオンとなる組について、ターンオフされるタイミングである。図2(a)に示される比較例では、タイミングtoffにおける電流量は3.75Aであり、スイッチング素子13−1〜13−4のうちの着目するスイッチング素子に流れる電流の実効値は1.65Aである。また、図2(b)に示される例では、タイミングtoffにおける電流量は0.95Aであり、着目するスイッチング素子に流れる電流の実効値は0.68Aである。そして図2(c)に示される例では、タイミングtoffにおける電流量は2.6Aであり、着目するスイッチング素子に流れる電流の実効値は1.05Aである。波形201〜203に示されるように、位相制御回路16が設けられることで、電力供給回路10のスイッチング素子13−1〜13−4がターンオフする際の電流波高値が低下する。また、着目するスイッチング素子に流れる電流の実効値も低下する。そのため、各スイッチング素子におけるスイッチングロス及び導通ロスの両方が軽減される。また、波形201〜203に示されるように、位相制御回路16の各LC直列回路の共振周波数は、送信コイル14に供給される交流電力のスイッチング周波数よりも高いことが好ましく、特に、そのスイッチング周波数の2倍未満であることが好ましい。
これは以下の理由による。すなわち、スイッチング素子13−1〜13−4に流れる電流量は、送信コイル14に流れる電流量と位相制御回路16の各LC直列回路に流れる電流量の和となる。そして送信コイル14に流れる電流の位相は、スイッチング素子13−1〜13−4に印加される電圧の位相よりも遅れる。一方、位相制御回路16の各LC直列回路の共振周波数が、送信コイル14に供給される交流電力のスイッチング周波数よりも高いと、各LC直列回路に流れる電流の位相は、スイッチング素子13−1〜13−4に印加される電圧の位相よりも進む。特に、各LC直列回路の共振周波数が、送信コイル14に供給される交流電力のスイッチング周波数の2倍未満であれば、スイッチング素子13−1〜13−4において、送信コイル14に流れる電流と位相制御回路16の各LC直列回路に流れる電流とが互いに打ち消し合い、その結果として、スイッチング素子13−1〜13−4に流れる電流の実効値も低下することになる。
したがって、制御回路19は、スイッチング素子13−1〜13−4のうちの同時にオンとなる組の何れか(例えば、スイッチング素子13−1と13−4)について、ターンオフされるタイミングtoffにおける、電流検出回路17により検出された電流量の測定値を所定の許容範囲と比較する。そして制御回路19は、電流量の測定値が許容範囲から外れている場合に、LC直列回路16−1、16−2のスイッチング素子S1j,S2jのオン/オフを切り替える。なお、許容範囲の下限値は、例えば、0に所定のオフセットを加えた値とすることができる。これにより、スイッチング素子13−1〜13−4に流れる電流の位相がスイッチング素子13−1〜13−4に印加される電圧の位相よりも進んで、スイッチング素子13−1〜13−4のスイッチングがハードスイッチングとなることが防止される。また、許容範囲の上限値は、位相制御回路16が無い場合における、タイミングtoffにおける、電流検出回路17よる電流量の測定値よりも小さい値に設定される。
制御回路19は、スイッチング素子S1j,S2jのオン/オフの切り替えに関して、二つのLC直列回路16−1、16−2について同じ処理を実行すればよい。そこで以下では、LC直列回路16−1における、スイッチング素子S1jのオン/オフの切り替えについて説明する。
例えば、制御回路19は、スイッチング素子S1jの全てがオフとなっている場合において、電流量の測定値が許容範囲から外れていると、スイッチング素子S1jの何れかをオンにする。また、制御回路19は、スイッチング素子S1jの全てがオンとなっている場合において、電流量の測定値が許容範囲から外れていると、スイッチング素子S1jの何れかをオフにする。さらに、スイッチング素子S1jのうちの何れかがオンとなり、その他のスイッチング素子がオフとなっている場合において、電流量の測定値が許容範囲から外れていると、スイッチング素子S1jのうちのオフとなっているものの何れかをオンにする。そしてオンとなるスイッチング素子が増えても、電流量の測定値が許容範囲から外れたままとなっている場合には、制御回路19は、直前にオンしたスイッチング素子とともに、それ以前にオンとなっているスイッチング素子をオフにする。また、スイッチング素子S1jが2個以上ある場合には、制御回路19は、電流量の測定値が許容範囲に含まれるまで、スイッチング素子S1jを一つずつ順にオンにする。そして全てのスイッチング素子S1jがオンとなっても、電流量の測定値が許容範囲から外れたままである場合には、制御回路19は、電流量の測定値が許容範囲に含まれるまで、スイッチング素子S1jを一つずつ順にオフにすればよい。
また、タイミングtoffにおける電流量の測定値が所定の許容範囲に含まれる場合には、制御回路19は、スイッチング素子S1jのオン/オフの切り替えを行わない。
これにより、制御回路19は、位相制御回路16の各LC直列回路の共振周波数を調整して、スイッチング素子13−1〜13−4に印加される電圧の位相に対する、スイッチング素子13−1〜13−4に流れる電流の位相の遅れ量を、スイッチング素子13−1〜13−4によるスイッチングロス及び導通ロスを軽減するように調整できる。
図3は、本実施形態による、磁界の強度分布の一例を示すシミュレーション結果を表す図である。図3のシミュレーションは、図2(b)のシミュレーションと同じ条件を用いて実行した。図3に示される磁界の強度分布300において、黒いところほど、磁界が強いことが表される。強度分布300に示されるように、送信コイル14の近傍に生じる磁界の強さと、受信コイル21の近傍に生じる磁界の強さとは、ほぼ等しいことが分かる。
なお、このシミュレーションにおいて、送信コイル14の巻き線14aが巻き付けられるコア14bの受信コイル21側の表面に、厚さ0.5mm、幅10mmのアルミ片が位置する場合、99.9mWのロスが生じる。一方、受信コイル21の巻き線21aが巻き付けられるコア21bの送信コイル14側の表面に、厚さ0.5mm、幅10mmのアルミ片が位置する場合、100.1mWのロスが生じる。このように、異物の位置が送電側または受電側の何れに近い場合でも、異物により生じるロスは同程度となる。
図4は、比較例による、磁界の強度分布の一例を示すシミュレーション結果を表す図である。図4のシミュレーションは、位相制御回路16が無い条件、すなわち、図2(a)のシミュレーションと同じ条件を用いて実行した。図4に示される磁界の強度分布400において、黒いところほど、磁界が強いことが表される。強度分布400に示されるように、送信コイル14の近傍に生じる磁界と比較して、受信コイル21の近傍に生じる磁界の方が強く、送信コイル14と受信コイル21間の磁界の強さに偏りが生じていることが分かる。
このシミュレーションにおいて、送信コイル14の巻き線14aが巻き付けられるコア14bの受信コイル21側の表面に、厚さ0.5mm、幅10mmのアルミ片が位置する場合、28mWのロスが生じる。一方、受信コイル21の巻き線21aが巻き付けられるコア21bの送信コイル14側の表面に、厚さ0.5mm、幅10mmのアルミ片が位置する場合、302mWのロスが生じる。
このように、比較例では、生じる磁界が強い受信コイル21の近傍に異物が混入すると大きなロスが生じ、その結果、異物において発熱量が大きくなるのに対して、本実施形態では、送信コイル14と受信コイル21間に異物が混入しても、比較的ロスが小さく、異物による発熱が抑制されることが分かる。
以上に説明してきたように、この非接触給電装置は、送電装置の送信コイルの両端に接続されたLC直列回路を有する。そしてこの非接触給電装置は、送信コイルに交流電力を供給する電力供給回路の各スイッチング素子がターンオフされるタイミングにおける、各スイッチング素子に流れる電流に応じてLC直列回路のコンデンサの容量を調節することで、そのLC直列回路の共振周波数を制御して、各スイッチング素子に印加される電圧の位相に対する、各スイッチング素子に流れる電流の位相の遅れ量を適切に制御する。これにより、この非接触給電装置は、受電装置の共振回路のQ値を高くしなくても、電力供給回路の各スイッチング素子のスイッチングロス及び導通ロスを軽減することができる。その結果として、この非接触給電装置は、受電装置の共振回路が有する受信コイルの巻き数を減らすことができるとともに、受信コイル及び共振コンデンサに要求される耐圧を低減できる。そのため、送信コイルに供給される交流電力に対して受電装置の共振回路が主として共振することで電力伝送される場合でも、この非接触給電装置は、送信コイルと受信コイル間に生じる磁束の偏りを軽減して、送信コイルと受信コイル間に異物が混入しても、異常発熱といった異常が発生することを抑制する。さらに、この非接触給電装置は、受信コイルの巻き数を減らすことができるので、受信コイルを小型化でき、その結果として、受電装置全体を小型化できる。さらに、この非接触給電装置は、送信コイルと受信コイル間の結合度が低い場合でも、電力供給回路の各スイッチング素子のスイッチングロスを低減できるので、電力伝送時の送電装置と受電装置間の距離、すなわち送電距離を長くすることができる。
変形例によれば、位相制御回路16の各LC直列回路は、互いに並列に接続されるn個(nは2以上の整数)のコイルと、n個のコイルのうちの(n-1)個のコイルのそれぞれと直列に接続される、MOSFETといったスイッチング素子を有していてもよい。なお、各LC直列回路において、一つのコンデンサが、各コイルと直列に接続されてもよく、あるいは、n個のコンデンサのそれぞれが、互いに異なるコイルと直列に接続されてもよい。この場合も、各LC直列回路のスイッチング素子のうち、オンとなるスイッチング素子の数に応じて、各LC直列回路の共振周波数が変化する。そのため、各LC直列回路のスイッチング素子のうち、オンとなるスイッチング素子の数に応じて、電力供給回路10のスイッチング素子13−1〜13−4に印加される電圧の位相に対する、スイッチング素子13−1〜13−4に流れる電流の位相の遅れ量が制御される。そこで制御回路19は、上記の実施形態と同様に、電力供給回路10のスイッチング素子13−1〜13−4に流れる電流量に応じて、各LC直列回路のスイッチング素子のオン/オフを制御すればよい。
なお、上記のように、位相制御回路16の各LC直列回路の共振周波数は、送信コイル14に供給される交流電力のスイッチング周波数よりも高いことが好ましい。そこで変形例によれば、送電装置2の制御回路19は、定電圧出力動作時において電力供給回路10から送信コイル14に供給される交流電力のスイッチング周波数に応じて、位相制御回路16の各LC直列回路の共振周波数がそのスイッチング周波数よりも高くなるように、各LC直列回路のスイッチング素子S1j,S2jのうち、オンとなるものを決定してもよい。この場合には、制御回路19は、例えば、送信コイル14に供給される交流電力のスイッチング周波数と、位相制御回路16の各LC直列回路のスイッチング素子S1j,S2jのうちのオンとなるものの組み合わせを表す参照テーブルを予め記憶しておけばよい。そして制御回路19は、その参照テーブルを参照して、送信コイル14に供給される交流電力のスイッチング周波数に対応する、各LC直列回路のスイッチング素子S1j,S2jのうちのオンとなるものの組み合わせを決定し、決定した組み合わせに含まれる各スイッチング素子をオンとなるように制御すればよい。
この変形例でも、送電装置2の制御回路19は、各LC直列回路の共振周波数を調整して、電力供給回路の各スイッチング素子に印加される電圧の位相に対する、電力供給回路の各スイッチング素子に流れる電流の位相の遅れ量を適切に制御できる。そのため、制御回路19は、電力供給回路の各スイッチング素子のスイッチングロス及び導通ロスを軽減できる。またこの変形例によれば、電流検出回路17は省略されてもよい。
また、送信コイル14と受信コイル21間の結合度が高くなると、位相制御回路が無くても、電力供給回路10のスイッチング素子13−1〜13−4に印加される電圧の位相に対する、スイッチング素子13−1〜13−4に流れる電流の位相の遅れ量が、スイッチング素子13−1〜13−4のスイッチングロスが小さくなる遅れ量となる。そこで他の変形例によれば、送信コイル14と受信コイル21間の結合度に応じて、位相制御回路の各LC直列回路のオン/オフが切り替えられてもよい。
図5は、この変形例による、送電装置4の概略構成図である。図5では、簡単化のために、通信器18の図示は省略される。この変形例による送電装置4は、図1に示される送電装置2と比較して、位相制御回路16のLC直列回路16−1、16−2が有するコンデンサ及びスイッチング素子の数がそれぞれ一つである点と、電流検出回路17を有さない点と、制御回路19による位相制御回路16の制御について相違する。そこで以下では、これらの相違点について説明する。送電装置4のその他の構成要素については、上記の実施形態における対応する構成要素の説明を参照されたい。
この変形例では、制御回路19は、送信コイル14と受信コイル21間の結合度が所定値以上となった場合にLC直列回路16−1、16−2のスイッチング素子S1,S2をオフにして、LC直列回路16−1、16−2を送信コイル14から切り離し、LC直列回路16−1、16−2が位相の遅れ量に対して影響しないようにする。一方、制御回路19は、送信コイル14と受信コイル21間の結合度が所定値未満となった場合にLC直列回路16−1、16−2のスイッチング素子S1,S2をオンにして、電力供給回路10のスイッチング素子13−1〜13−4によるスイッチングロスが軽減されるような位相の遅れ量に調整する。
具体的に、送信コイル14と受信コイル21間の結合度が高くなるほど、非接触給電装置1が定電圧出力動作する、電力供給回路10から送信コイル14に供給される交流電力のスイッチング周波数は高くなるとともに、電力供給回路10から送信コイル14に供給される交流電力の電圧は低下する。そこで、制御回路19は、非接触給電装置1が定電圧出力動作する際の、電力供給回路10から送信コイル14に供給される交流電力のスイッチング周波数が結合度の所定値に対応する周波数閾値以上となると、LC直列回路16−1、16−2のスイッチング素子S1,S2をオフにする。一方、制御回路19は、非接触給電装置1が定電圧出力動作する際の、電力供給回路10から送信コイル14に供給される交流電力のスイッチング周波数がその周波数閾値未満になると、LC直列回路16−1、16−2のスイッチング素子S1,S2をオンにする。
あるいは、制御回路19は、非接触給電装置1が定電圧出力動作する際の、電力供給回路10から送信コイル14に供給される交流電力の電圧が結合度の所定値に対応する電圧閾値以下となると、LC直列回路16−1、16−2のスイッチング素子S1,S2をオフにしてもよい。一方、制御回路19は、非接触給電装置1が定電圧出力動作する際の、電力供給回路10から送信コイル14に供給される交流電力の電圧がその電圧閾値よりも高くなると、LC直列回路16−1、16−2のスイッチング素子S1,S2をオンにしてもよい。なお、制御回路19は、電力供給回路10から送信コイル14に供給される交流電力の電圧を、例えば、電力供給回路10が有する力率改善回路の制御パラメータ(例えば、力率改善回路が有するスイッチング素子のオン/オフのデューティ比)により推定することができる。
この変形例によれば、位相制御回路の構成が簡単化されるので、送電装置が小型化される。また、送電装置の制御回路による位相制御回路の制御も簡単化できる。さらに、この変形例においても、非接触給電装置は、送信コイルと受信コイル間の結合度が変化しても、特に、その結合度が低下しても、電力供給回路の各スイッチング素子のスイッチングロスを軽減できる。
さらに他の変形例によれば、位相制御回路のLC直列回路は、送信コイル14と並列に接続されてもよい。
図6は、さらに他の変形例による送電装置5の概略構成図である。図6では、簡単化のために、通信器18の図示は省略される。この変形例による送電装置5は、図5に示される送電装置4と比較して、位相制御回路56の構成が異なる。そこで以下では、位相制御回路56及びその関連部分について説明する。送電装置5のその他の構成要素については、上記の実施形態または変形例における対応する構成要素の説明を参照されたい。
位相制御回路56は、一つのLC直列回路を有し、そのLC直列回路の一端は、コンデンサ15を介して送信コイル14の一端と接続され、そのLC直列回路の他端は、送信コイル14の他端と接続される。また、LC直列回路と直列に接続されるスイッチング素子S1は、nチャネル型のMOSFETを有する。この変形例では、LC直列回路の両端の電位は変動する。そこで、図4に示される変形例と同様にLC直列回路のスイッチング素子S1のオン/オフを制御できるようにするために、位相制御回路56は、負極側が接地される定電圧源と、定電圧源によりバイアスされるダイオードDと、LC直列回路の他端及び送信コイル14の他端に対して一端が接続され、他端がダイオードDのカソード端子と接続されるコンデンサCとを有する。これにより、位相制御回路56のスイッチング素子S1のMOSFETのゲート端子の電圧がソース端子よりも一定以上高くなり、制御回路19は、スイッチング素子S1のオン/オフを、図4に示される変形例と同様に制御することができる。なお、この変形例においても、送電装置2と同様に、スイッチング素子13−1〜13−4に流れる電流量を測定する電流検出回路を設けてもよい。この場合、制御回路19は、電力供給回路の何れかのスイッチング素子がターンオフされるタイミングにおける、スイッチング素子13−1〜13−4に流れる電流量の測定値が所定の閾値以上となる場合に、スイッチング素子S1をオンにし、その電流量の測定値が所定の閾値未満となる場合に、スイッチング素子S1をオフにしてもよい。
この変形例によれば、位相制御回路が有するLC直列回路は一つでよいので、送電装置がより小型化される。
なお、送電装置5では、位相制御回路56のスイッチング素子S1がオフにされる際に、位相制御回路56のLC直列回路が有するコイルに生じる逆起電力により、送信コイル14に意図しない電流が流れるおそれがある。そこで他の変形例によれば、位相制御回路56のLC直列回路が有するコイルに生じる逆起電力により流れる電流をバイパスさせるバイパス回路がさらに設けられてもよい。また、スイッチング素子S1がオフされている間、スイッチング素子S1に印可される電圧を下げるために、スイッチング素子S1に対して並列に接続されるコンデンサがさらに設けられてもよい。
図7は、さらに他の変形例による送電装置6の概略構成図である。図7では、簡単化のために、通信器18の図示は省略される。この変形例による送電装置6は、図6に示される送電装置5と比較して、位相制御回路66がバイパス回路67を有する点で異なる。そこで以下では、位相制御回路66及びその関連部分について説明する。送電装置6のその他の構成要素については、上記の実施形態または変形例における対応する構成要素の説明を参照されたい。
この変形例では、位相制御回路66は、LC直列回路のコイルが接続されていない方のコンデンサの一端と、電力供給回路10のスイッチング素子13−1のソース端子との間に接続されるバイパス回路67を有する。バイパス回路67は、LC直列回路のコンデンサに対してアノード端子が接続されるダイオードと、そのダイオードとスイッチング素子13−1のソース端子との間に接続されるコンデンサと、そのコンデンサと並列に接続される抵抗とを有する。
位相制御回路66のスイッチング素子S1がオンからオフに切り替えられると、位相制御回路66のLC直列回路のコイルの逆起電力により生じる電流は、バイパス回路67のダイオードを経由してバイパス回路67のコンデンサへ流れる。また、スイッチング素子S1は、その逆起電力により生じる電流に対しては逆バイアスされているので、その電流はスイッチング素子S1を介しては流れない。そのため、その逆起電力により生じる電流が送信コイル14へ流れることが防止される。なお、バイパス回路67のコンデンサに充電された電荷は、そのコンデンサと並列に接続された抵抗により消費される。
この変形例によれば、位相制御回路のLC直列回路が有するコイルに生じる逆起電力により、送信コイルに意図しない電流が流れることが防止される。
さらに他の変形例によれば、電力供給回路は、力率改善回路から出力される直流電力を、複数のスイッチング素子がハーフブリッジ状に接続されるハーフブリッジ回路を用いて交流電力に変換してもよい。
図8は、さらに他の変形例による送電装置7の概略構成図である。図8では、簡単化のために、通信器18の図示は省略される。この変形例による送電装置7は、図6に示される送電装置5と比較して、電力供給回路71が、ハーフブリッジ回路となる二つのスイッチング素子72−1、72−2を有する点と、位相制御回路73の構成が相違する。そこで以下では、電力供給回路71、位相制御回路73及びその関連部分について説明する。送電装置7のその他の構成要素については、上記の実施形態または変形例における対応する構成要素の説明を参照されたい。
この変形例でも、二つのスイッチング素子72−1、72−2は、例えば、nチャネル型のMOSFETとすることができる。スイッチング素子72−1とスイッチング素子72−2は、電源11の正極側端子と負極側端子との間に、力率改善回路12を介して直列に接続される。また、電源11の正極側に、スイッチング素子72−1が接続され、一方、電源11の負極側に、スイッチング素子72−2が接続される。そしてスイッチング素子72−1のドレイン端子は、電源11の正極側端子と力率改善回路12を介して接続され、スイッチング素子72−1のソース端子は、スイッチング素子72−2のドレイン端子と接続される。また、スイッチング素子72−2のソース端子は、電源11の負極側端子と力率改善回路12を介して接続される。さらに、スイッチング素子72−1のソース端子、及び、スイッチング素子72−2のドレイン端子は、コンデンサ15を介して送信コイル14の一端に接続され、スイッチング素子72−2のソース端子は、送信コイル14の他端に接続される。また、各スイッチング素子のゲート端子は、制御回路19と接続される。
この変形例では、制御回路19は、スイッチング素子72−1とスイッチング素子72−2のオン/オフを交互に切り替えればよい。すなわち、スイッチング素子72−1がオンとなり、スイッチング素子72−2がオフとなる場合には、電源11から力率改善回路12及びスイッチング素子72−1を介して流れる電流によりコンデンサ15が充電されるとともに、送信コイル14にも電流が流れる。一方、スイッチング素子72−1がオフとなり、スイッチング素子72−2がオンとなる場合には、コンデンサ15が放電して、コンデンサ15から送信コイル14を介して電流が流れる。したがって、この変形例では、制御回路19が、受電装置3から受信した判定情報に応じて、スイッチング素子72−1とスイッチング素子72−2のオン/オフを切り替えるスイッチング周波数を制御すればよい。
また、この変形例では、位相制御回路73のLC直列回路は、送信コイル14と並列に接続される。具体的に、LC直列回路の一端は、スイッチング素子72−1のソース端子、及び、スイッチング素子72−2のドレイン端子と、コンデンサ15との間に接続され、LC直列回路の他端は、送信コイル14のコンデンサ15と反対側の端子及び電源11の負極側端子に接続される。すなわち、この変形例では、LC直列回路の他端は接地される。さらに、位相制御回路73は、LC直列回路のコンデンサの送信コイル14の他端との間にアノード端子が接続され、カソード端子が電源11の正極側端子と接続されるダイオードを有する。これにより、LC直列回路がターンオフされたときにLC直列回路のコイルに生じる逆起電力により流れる電流は、そのダイオード及びスイッチング素子72−1を介してコンデンサ15の充電に利用され、送信コイルに意図しない電流が流れることが防止される。そのため、制御回路19は、送電装置2の位相制御回路16の各LC直列回路のスイッチング素子と同様に、位相制御回路73のLC直列回路のスイッチング素子のオン/オフを制御できる。
なお、上記の実施形態または各変形例において、位相制御回路のLC直列回路のコンデンサ15側に接続される一端は、コンデンサ15と送信コイル14の間に接続されてもよい。
また、上記の実施形態または各変形例において、送信コイルと受信コイル間の結合度が略一定であると想定される場合、例えば、送電装置と受電装置との位置関係が略一定となるように送電装置と受電装置とが設置される場合、送電装置の制御回路は、電力供給回路から送信コイルへ供給される交流電力のスイッチング周波数を一定としてもよい。この場合には、送電装置の位相制御回路のLC直列回路は、スイッチング素子を有さなくてもよい。すなわち、送電装置の制御回路は、位相制御回路のLC直列回路のオン/オフまたはLC直列回路の共振周波数を制御しなくてもよい。そしてLC直列回路の共振周波数がスイッチング周波数よりも高くなるように、LC直列回路のコイルのインダクタンス及びコンデンサの静電容量が設定されればよい。この場合には、送信装置の通信器18、及び、受電装置の電圧検出回路27、スイッチング素子28、判定回路29及び通信器30は省略されてもよい。さらに、送電装置の電力供給回路は、力率改善回路を有さなくてよい。さらにまた、送電装置の電力供給回路は、力率改善回路の代わりに、電源11の全波整流回路からの出力電圧を平滑化する平滑コンデンサを有してもよく、さらに、送電装置の電力供給回路は、送信コイル14に印加される電圧が、負荷回路26の仕様、及び送信コイル14と受信コイル21間の結合度に応じた電圧となるように、DC−DCコンバータを有してもよい。
さらに、上記の実施形態または各変形例において、受電装置の共振回路では、受信コイルと共振コンデンサとが並列に接続されてもよい。このように、受電装置の共振回路がLC並列共振回路である場合には、Q値を大きくするためには、負荷回路の抵抗値を大きくすることが求められる。しかし、上記の実施形態または各変形例の非接触給電装置によれば、受電装置の共振回路がLC並列共振回路であっても、Q値を大きくする必要が無いので、抵抗値が小さい負荷回路が接続されても、送電装置の電力供給回路のスイッチングロスを軽減することができる。
このように、当業者は、本発明の範囲内で、実施される形態に合わせて様々な変更を行うことができる。
1 非接触給電装置
2、4−7 送電装置
10、71 電力供給回路
11 電源
12 力率改善回路
13−1〜13−4、72−1〜72−2 スイッチング素子
14 送信コイル
15 コンデンサ
16、56、66、73 位相制御回路
16−1、16−2 LC直列回路
67 バイパス回路
17 電流検出回路
18 通信器
19 制御回路
3 受電装置
20 共振回路
21 受信コイル
22 共振コンデンサ
23 整流平滑回路
24 全波整流回路
25 平滑コンデンサ
26 負荷回路
27 電圧検出回路
28 スイッチング素子
29 判定回路
30 通信器

Claims (8)

  1. 送電装置と、前記送電装置から非接触で電力伝送される受電装置とを有する非接触給電装置であって、
    前記送電装置は、
    前記受電装置へ電力を供給する送信コイルと、
    直流電源と前記送信コイルとの間にフルブリッジ状またはハーフブリッジ状に接続される複数のスイッチング素子を有し、前記複数のスイッチング素子のオンとオフとがスイッチング周波数にて切り替えられることで前記直流電源から供給される直流電力を、前記スイッチング周波数を持つ交流電力に変換して前記送信コイルへ供給する電力供給回路と、
    前記送信コイルの両端に接続されるLC直列回路を少なくとも一つ有する位相制御回路と、
    を有する非接触給電装置。
  2. 前記位相制御回路の前記少なくとも一つのLC直列回路のそれぞれは、コイルと、前記コイルと直列に接続され、かつ、互いに並列に接続される第1のコンデンサ及び第2のコンデンサと、前記第2のコンデンサと直列に接続され、オンとなると前記第2のコンデンサを前記コイルに接続し、オフとなると前記第2のコンデンサを前記コイルから切り離すスイッチング素子とを有し、
    前記送電装置は、
    前記複数のスイッチング素子に流れる電流量の測定値を求める電流検出回路と、
    前記電力供給回路の前記複数のスイッチング素子の何れかがターンオフされるときの前記電流量の測定値が所定の許容範囲に含まれるように、前記少なくとも一つのLC直列回路のそれぞれの前記スイッチング素子のオンとオフとの切り替えを制御する制御回路とをさらに有する、
    請求項1に記載の非接触給電装置。
  3. 前記位相制御回路の前記少なくとも一つのLC直列回路のそれぞれは、コイルと、前記コイルと直列に接続され、かつ、互いに並列に接続される第1のコンデンサ及び第2のコンデンサと、前記第2のコンデンサと直列に接続され、オンとなると前記第2のコンデンサを前記コイルに接続し、オフとなると前記第2のコンデンサを前記コイルから切り離すスイッチング素子とを有し、
    前記送電装置は、
    前記電力供給回路の前記複数のスイッチング素子のオンとオフとを切り替える前記スイッチング周波数を制御するとともに、前記非接触給電装置が定電圧出力動作しているときの前記電力供給回路から前記送信コイルに供給される交流電力の前記スイッチング周波数に応じて、前記少なくとも一つのLC直列回路のそれぞれの前記スイッチング素子のオンとオフとの切り替えを制御する制御回路とをさらに有する、
    請求項1に記載の非接触給電装置。
  4. 前記制御回路は、前記少なくとも一つのLC直列回路のそれぞれの共振周波数が前記スイッチング周波数よりも高くなるように、前記少なくとも一つのLC直列回路のそれぞれの前記スイッチング素子のオンとオフとの切り替えを制御する、請求項3に記載の非接触給電装置。
  5. 前記位相制御回路の前記少なくとも一つのLC直列回路のそれぞれは、オンとなると当該LC直列回路を前記送信コイルに接続し、オフとなると当該LC直列回路を前記送信コイルから切り離すスイッチング素子を有し、
    前記送電装置は、
    前記電力供給回路の前記複数のスイッチング素子のオンとオフとを切り替える前記スイッチング周波数を制御するとともに、前記非接触給電装置が定電圧出力動作しているときの前記電力供給回路から前記送信コイルに供給される交流電力の前記スイッチング周波数または電圧に応じて、前記少なくとも一つのLC直列回路のそれぞれのスイッチング素子のオンとオフとの切り替えを制御する制御回路をさらに有する、請求項1に記載の非接触給電装置。
  6. 前記受電装置は、
    前記送電装置の前記送信コイルを介して電力を受信する受信コイルと、前記受信コイルとともに共振する共振コンデンサとを有する共振回路と、
    前記共振回路から出力される電力を整流する整流回路と、
    前記整流回路から出力される電力の出力電圧を測定して当該出力電圧の測定値を求める電圧検出回路と、
    前記出力電圧の測定値に基づいて、前記非接触給電装置が定電圧出力動作しているか否かを判定する判定回路と、
    前記非接触給電装置が定電圧出力動作しているか否かを表す判定情報を含む信号を前記送電装置へ送信する第1の通信器とを有し、
    前記送電装置は、
    前記判定情報を含む信号を受信する第2の通信器をさらに有し、
    前記制御回路は、前記判定情報が前記非接触給電装置が定電圧出力動作していないことを表す場合、前記受電装置の前記整流回路と接続される負荷回路の抵抗が変化しても前記出力電圧の測定値が変化しなくなるように、前記スイッチング周波数を制御する、請求項5に記載の非接触給電装置。
  7. 前記少なくとも一つのLC直列回路の一端は前記送信コイルの一端と接続され、他端は前記送信コイルの他端と接続される、請求項1〜6の何れか一項に記載の非接触給電装置。
  8. 前記少なくとも一つのLC直列回路は、一端が前記送信コイルの一端と接続され、他端が接地される第1のLC直列回路と、一端が前記送信コイルの他端と接続され、他端が接地される第2のLC直列回路とを有する、請求項1〜6の何れか一項に記載の非接触給電装置。
JP2018226354A 2018-12-03 2018-12-03 非接触給電装置 Active JP7131344B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018226354A JP7131344B2 (ja) 2018-12-03 2018-12-03 非接触給電装置
PCT/JP2019/040755 WO2020116033A1 (ja) 2018-12-03 2019-10-16 非接触給電装置
DE112019006031.7T DE112019006031T5 (de) 2018-12-03 2019-10-16 Kontaktlose energieversorungsvorrichtung
US17/294,790 US11637451B2 (en) 2018-12-03 2019-10-16 Non-contact power feeding device including power transmitter device with phase control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018226354A JP7131344B2 (ja) 2018-12-03 2018-12-03 非接触給電装置

Publications (2)

Publication Number Publication Date
JP2020092472A true JP2020092472A (ja) 2020-06-11
JP7131344B2 JP7131344B2 (ja) 2022-09-06

Family

ID=70974570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018226354A Active JP7131344B2 (ja) 2018-12-03 2018-12-03 非接触給電装置

Country Status (4)

Country Link
US (1) US11637451B2 (ja)
JP (1) JP7131344B2 (ja)
DE (1) DE112019006031T5 (ja)
WO (1) WO2020116033A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118274A1 (ja) * 2012-02-09 2013-08-15 株式会社 テクノバ 双方向非接触給電システム
US20180269726A1 (en) * 2017-03-15 2018-09-20 Apple Inc. Inductive Power Transmitter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9472958B2 (en) * 2012-07-18 2016-10-18 WIPQTUS Inc. Wireless power system
JP5772851B2 (ja) * 2013-03-21 2015-09-02 株式会社デンソー 非接触給電装置
US9991779B2 (en) * 2014-01-07 2018-06-05 NuVolta Technologies Harmonic reduction apparatus for wireless power transfer systems
WO2015173847A1 (ja) 2014-05-14 2015-11-19 ネオテス株式会社 非接触電力伝送装置
JP6490250B2 (ja) * 2016-02-02 2019-03-27 三菱電機株式会社 電力変換装置および非接触給電システム
JP6390808B1 (ja) 2017-05-19 2018-09-19 オムロン株式会社 非接触給電装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118274A1 (ja) * 2012-02-09 2013-08-15 株式会社 テクノバ 双方向非接触給電システム
US20180269726A1 (en) * 2017-03-15 2018-09-20 Apple Inc. Inductive Power Transmitter

Also Published As

Publication number Publication date
DE112019006031T5 (de) 2021-09-09
US20210408828A1 (en) 2021-12-30
WO2020116033A1 (ja) 2020-06-11
US11637451B2 (en) 2023-04-25
JP7131344B2 (ja) 2022-09-06

Similar Documents

Publication Publication Date Title
CN110546855B (zh) 非接触供电装置以及异常停止方法
JP6390808B1 (ja) 非接触給電装置
WO2014010518A1 (ja) 受電機器及び電力伝送システム
CN111712991B (zh) 非接触式供电装置
WO2019155820A1 (ja) 非接触給電装置
US10938248B1 (en) Contactless power supply device
JP6384569B1 (ja) 非接触給電装置
JP2019176565A (ja) 非接触給電装置
EP3547497B1 (en) Contactless power supply device
CN110582923B (zh) 非接触供电装置
WO2020090534A1 (ja) 非接触給電装置
CN112448482B (zh) 非接触供电装置及送电装置
JP7238423B2 (ja) 非接触給電装置及び送電装置
JP7131344B2 (ja) 非接触給電装置
JP2024060491A (ja) 非接触給電装置及び電力伝送方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220808

R150 Certificate of patent or registration of utility model

Ref document number: 7131344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150