JP6659113B2 - 光学機器 - Google Patents

光学機器 Download PDF

Info

Publication number
JP6659113B2
JP6659113B2 JP2015209665A JP2015209665A JP6659113B2 JP 6659113 B2 JP6659113 B2 JP 6659113B2 JP 2015209665 A JP2015209665 A JP 2015209665A JP 2015209665 A JP2015209665 A JP 2015209665A JP 6659113 B2 JP6659113 B2 JP 6659113B2
Authority
JP
Japan
Prior art keywords
pitch
coil
magnet
movable member
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015209665A
Other languages
English (en)
Other versions
JP2017083557A5 (ja
JP2017083557A (ja
Inventor
遼 阿部
遼 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015209665A priority Critical patent/JP6659113B2/ja
Priority to US15/298,509 priority patent/US10416411B2/en
Publication of JP2017083557A publication Critical patent/JP2017083557A/ja
Publication of JP2017083557A5 publication Critical patent/JP2017083557A5/ja
Application granted granted Critical
Publication of JP6659113B2 publication Critical patent/JP6659113B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors
    • H02K41/0356Lorentz force motors, e.g. voice coil motors moving along a straight path

Description

本発明は、デジタルカメラや交換レンズ等の光学機器に備えられ、光学素子等のシフト素子をシフトさせる光学機器に関する。
光学シフト装置は、光学系を通して撮像を行うカメラの振れに起因した撮像面(撮像素子)上での光学像の振れを低減するために、光学系に含まれる光学素子や撮像素子等のシフト素子を光軸に対してシフトさせる光学防振に用いられる。このような光学シフト装置には、カメラの大きな振れにも対応できるように、シフト素子を大きくシフトさせることができることが求められる。
特許文献1には、ボイスコイルモータ(VCM)をアクチュエータとして用い、コイルの駆動方向での幅と該コイルに対向するマグネットの幅とに特定の関係を持たせることでシフト素子を大きくシフトさせることが可能な光学シフト装置が開示されている。
特開2000−19577号公報
特許文献1の光学シフト装置では、光軸が延びる方向(光軸方向)から見た場合において、コイルの中心とマグネットの中心とが重なるように配置されており、マグネットの中心の位置を駆動中心としてコイルが移動することでシフト素子がシフト駆動される。この場合、光軸方向から見ると、コイルの中心がマグネットにおける磁束密度が最大となる位置付近に位置する際に駆動方向での推力が0となる。このため、シフト素子のシフト可能量を増加させるためには、マグネットの幅とコイルの幅を増加させる必要がある。
しかしながら、マグネットやコイルの幅が増加すると、シフト可能量の増加分以上に装置の径が増加し、装置が大型化する。
本発明は、VCMをアクチュエータとして用いる場合に、大型化を抑えつつシフト素子のシフト可能量を拡大することができるようにした光学機器を提供する。
本発明の一側面としての光学機器は、ベース部材と、光学素子または撮像素子である第1素子を保持し、前記ベース部材に対して第1方向にシフト可能な可動部材と、前記ベース部材に設けられている第1コイルと、前記可動部材に設けられている第1マグネットとを含む第1アクチュエータと、前記ベース部材に設けられている第2コイルと、前記可動部材に設けられている第2マグネットとを含む第2アクチュエータと、を有し、前記第1方向と直交する第2方向において、前記第1コイルと前記第1マグネットは対向し、前記第2方向において、前記第2コイルと前記第2マグネットは対向し、前記第1素子は、前記第1アクチュエータと前記第2アクチュエータとの間に配置され、前記第1マグネットの前記第1コイルと対向する第1面及び前記第2マグネットの前記第2コイルと対向する第2面は、N極部とS極部が前記第1方向に並んでおり、前記第1アクチュエータ及び前記第2アクチュエータは、前記可動部材を前記第1方向に移動させ、前記可動部材が前記第1方向における可動範囲の中心に位置する第1状態で、前記第1方向において、前記第1コイルの中心位置が前記第1マグネットのN極部とS極部の境界位置に対して前記第1素子から離れる側にずれており、前記第2コイルの中心位置が前記第2マグネットのN極部とS極部の境界位置に対して前記第1素子から離れる側にずれていることを特徴とする。


本発明によれば、VCMをアクチュエータとして用いる光学シフト装置において、装置の大型化を抑えながらも可動部材の可動範囲(つまりはシフト素子のシフト可能量)を拡大することができる。
本発明の実施例1である光学防振装置の回路構成を示すブロック図。 実施例1の光学防振装置の正面図および断面図。 実施例1の光学防振装置のコイルとマグネットとの位置関係を示す正面図および断面図。 実施例1の光学防振装置の支持部と付勢部との位置関係を示す正面図。 実施例1の光学防振装置の動作を説明する断面図。 実施例1に対する比較例としての光学防振装置のコイルとマグネットのずれ量を示す断面図。 実施例1の光学防振装置の制御を示すフローチャート。 実施例1における関数演算部の演算例を示す図。 実施例1の光学防振装置の可動量と装置の径を説明する断面図。 従来の光学防振装置の可動量と装置の径を説明する断面図。 本発明の実施例2である光学防振装置の正面図および断面図。 本発明の実施例3である光学防振装置の正面図および断面図。 実施例3の変形例としての光学防振装置の正面図および断面図。 本発明の実施例4である光学防振装置の正面図および断面図。 実施例4の光学防振装置の動作を説明する断面図。 実施例4の変形例としての光学防振装置の正面図および断面図。 本発明の実施例5である光学防振装置の正面図および断面図。 実施例5の光学防振装置の動作を説明する断面図。 本発明の実施例6である光学防振装置の正面図および断面図。 各実施例の光学防振装置を備えた光学機器を示す図。
以下、本発明の実施例について図面を参照しながら説明する。
図1には、本発明の実施例1である光学シフト装置としての光学防振装置100の回路構成を示している。本実施例の光学防振装置100は、カメラや交換レンズ等の光学機器に搭載される。光学防振装置100は、比較部110、演算部120、駆動部130、補正部140および検出部150を有する。
比較部110は、後述する可動部材142の目標位置と検出位置との差異を出力する。演算部120は、比較部110の出力に基づいてゲインを演算するゲイン演算部120gと、検出位置に基づいて後述するコイルに流す電流値の比を演算する関数演算部120fとを有し、コイルに流す電流値を出力する。
駆動部130は、演算部120の出力に基づいてコイルへの通電を行う。駆動部130は、可動部材142を2つのシフト方向(第1方向)のうちピッチ方向に駆動する第1および第2コイル駆動回路を含むピッチ駆動部130pを有する。また、駆動部130は、可動部材142をもう1つのシフト方向であるヨー方向に駆動する第1および第2ヨーコイル駆動回路を含むヨー駆動部130yとを有する。
補正部140は、駆動部130からの通電によって防振動作を行う。補正部140は、第1ピッチコイル146pと第2ピッチコイル148pを有するピッチ補正部140pと、第1ヨーコイル146yと第2ヨーコイル148yを有するヨー補正部140yとを有する。これらコイルとマグネットにより、ボイスコイルモータ(VCM)が構成される。
検出部150は、ピッチ検出部150pとヨー検出部150yを有し、可動部材142のピッチ方向およびヨー方向での位置を検出する。
図2(a),(b)には、光学防振装置100の機械的構成を示す。図2(a)は光軸方向(これについては後述する)から見た光学防振装置100の構成を、図2(b)は図2(a)中のI−I線での断面を示す。図3(a),(b)には、光学防振装置100の補正部140を構成するコイルとマグネットをのみを示している。図3(a)は光軸方向から見たコイルとマグネットを、図3(b)は図3(a)中のII−II線での断面(ヨー方向から見た断面)を示す。
図2(a)に示す電気基板部101は、比較部110、演算部120および駆動部130の処理を行う回路を有する回路基板である。該回路基板には、不図示の配線によって第1ピッチコイル146p、第2ピッチコイル148p、第1ヨーコイル146y、第2ヨーコイル148y、ピッチ検出部150pおよびヨー検出部150yが接続されている。なお、第1ピッチコイル146pと第1ヨーコイル146yがそれぞれ第1コイルに相当し、第2ピッチコイル148pと第2ヨーコイル148yがそれぞれ第2コイルに相当する。
図2(a)において、レンズにより構成されるシフト素子としての光学素子141は、後述する可動部材142がその可動範囲の中心(ピッチおよびヨー方向の中心)に位置する中立状態から該光学素子141の光軸Oaに対して直交する方向に移動(シフト)する。手振れ等による光学機器の振れに応じて光学素子141をシフトさせることで、該光学素子141を通過する光により形成される光学像の振れを低減する防振(像振れ補正)効果を得ることができる。
なお、本実施例ではシフト素子として光学素子141を用いるが、光学像の光電変換を行うCMOSセンサ等の撮像素子をシフト素子として用いてもよい。
また、前述した光軸方向(第2方向)は、光学素子141の光軸Oaが延びる方向に相当し、シフト方向、すなわち互いに直交するピッチ方向およびヨー方向は光軸Oa(光軸方向)に対して直交する方向である。さらに、本実施例において、シフト方向のうち可動範囲の中心から離れる側を外側といい、該中心に近づく側を内側という。
図2(a)において、可動部材142は、その中央部に光学素子141を保持する筒状の保持部を有する。図2(b)に示すように、可動部材142のうち後述する転動ボール144aに当接する側の面には、光軸Oaに直交する平面状のボール受け部142aが光軸Oaを中心する周方向の3箇所に形成されている。また、可動部材142の外周部には、ばね掛け部142bが周方向4箇所に形成されている。
図2(a)において、ベース部材143は、円盤状に形成され、転動ボール144aを介して可動部材142をシフト方向に移動可能に支持する。図2(b)に示すように、ベース部材143のうち可動部材142に面する側の面には、光軸Oaに直交する平面状のボール受け部143aが周方向3箇所に形成されている。また、ベース部材143における外周部よりも内側であってボール受け部143aよりも外側には、ばね掛け部143bが周方向4箇所に形成されている。さらに、ベース部材143における外周部よりも内側であってボール受け部143aよりも外側には、周方向に環状に延びるストッパ部材143cが形成されている。可動部材142が大きくシフトしてストッパ部材143cに当接することで、それ以上の可動部材142のシフトが阻止される。可動部材142がピッチ方向およびヨー方向のそれぞれにおける一方の側にシフトしてストッパ部材143cに当接する位置から他方の側にシフトしてストッパ部材143cに当接する位置までの範囲が可動部材142の可動範囲である。
図2(b)おいて、支持部144は、ベース部材143に対して可動部材142をピッチ方向およびヨー方向に移動可能(シフト可能)に支持する。支持部144は、前述したボール受け部142a、ボール受け部143aおよび転動ボール144aにより構成される。支持部材としての転動ボール144aは、セラミックや金属からなる球体であり、それぞれ周方向3箇所に設けられたボール受け部142aとボール受け部143aとの間に位置するように周方向3箇所に配置されている。転動ボール144aがボール受け部142a,143aの間に挟まれながら転動することで、可動部材142を、ベース部材143に対して光軸方向に位置決めつつ滑らかにピッチ方向およびヨー方向にシフトさせることができる。
周方向4箇所に設けられた付勢部145はそれぞれ、ステンレス製のコイルばね等の引張りばね(付勢部材)145aと、その両端が掛けられる前述したばね掛け部142b,143bにより構成される。引張りばね145aは、可動部材142(ボール受け部142a)を転動ボール144aに当接させ、さらに転動ボール144aをベース部材143(ボール受け部143a)に当接させるように可動部材142をベース部材143に向けて付勢する。なお、可動部材142が可動範囲の中心からシフトした際に、引張りばね145aは該可動部材142を可動範囲の中心に戻す方向への付勢力(つまりはシフト抗力)を作用させる。そして、可動部材142のシフト量が大きいほど引張りばね145aのシフト抗力が大きくなる。
付勢部145の構成は、引張りばね145aを用いるものに限らない。すなわち、可動部材142とベース部材143との間に互いに吸着する方向に作用する磁力を発生する磁石を用いる等、可動部材142とベース部材143を転動ボール144aに当接させる付勢力を発生する構成であればよい。また、転動ボール144aと引張りばね145aの材料や引張りばね145aのばね定数については任意に選択することができる。
図3(a)に示すように、第1ピッチコイル146pは、光軸方向から見て2つの直線部とその両側の円弧部とを有する楕円状に巻回された導線からなる巻き線コイルであり、ベース部材(第1部材)143により保持されている。第1ピッチコイル146pは、図3(b)に示すように、その厚み方向(光軸方向)の端面146paが第1ピッチマグネット147pに対向している。第1ピッチコイル146pのピッチ方向での中心を、以下、第1ピッチコイル中心146pbという。
第1ピッチマグネット147pは、前述したように第1ピッチコイル146pに対向するように可動部材(第2部材)142に保持されている。第1ピッチマグネット147pにおける第1ピッチコイル146pとの対向面(第1の面)147paの法線方向が着磁方向であり、着磁境界面147pbを挟んだ両側にN極部(第1極部)147pnとS極部(第2極部)147psとが設けられている。言い換えれば、N極部とS極部が対向面147pa上においてピッチ方向に並んでいる。着磁境界面147pbは、N極部147pnとS極部147psの境界位置を示している。本実施例では、光軸Oaから遠い側にN極部147pnを、光軸Oaに近い側にS極部147psを設けている。着磁境界面147pbは、第1ピッチコイル146pの長手方向(ヨー方向)に平行に延びている。また、第1ピッチマグネット147pのうち光学素子141から最も離れた面を外端面147pcとする。
第2ピッチコイル148pも、図3(a)に示すように、光軸方向から見て2つの直線部とその両側の円弧部とを有する楕円状に巻回された導線からなる巻き線コイルであり、ベース部材143により保持されている。第2ピッチコイル148pは、その厚み方向の端面が第2ピッチマグネット149pに対向している。第2ピッチコイル148pのピッチ方向での中心を、第2ピッチコイル中心148pbという。
第2ピッチマグネット149pは、前述したように第2ピッチコイル149pに対向するように可動部材142に保持されている。
ここで、図3(a),(b)に示すように、ピッチ方向において、第1および第2ピッチマグネット147p,149pの間(第1および第2ピッチコイル146p,148pの間)に光学素子141が配置されている。
第2ピッチマグネット149pにおける第2ピッチコイル148pとの対向面(第2の面)149paの法線方向が着磁方向であり、着磁境界面149pbを挟んだ両側にN極部149pnとS極部149psとが設けられている。言い換えれば、N極部とS極部が対向面149pa上においてピッチ方向に並んでいる。着磁境界面149pbは、N極部149pnとS極部149psの境界位置を示している。本実施例では、光軸Oaから遠い側にS極部149psを、光軸Oaに近い側にN極部149pnを設けている。着磁境界面149pbは、第2ピッチコイル148pの長手方向(ヨー方向)に平行に延びている。第2ピッチマグネット149pのうち光学素子141から最も離れた面を外端面149pcとする。
本実施例では、図2(a),(b)および図3(a),(b)に示す中立状態において、第1ピッチコイル中心146pbが第1ピッチマグネット147pの着磁境界面147pbよりも後述する所定のずれ量だけピッチ方向の外側にずれて位置する。また、第2ピッチコイル中心148pbが、第2ピッチマグネット149pの着磁境界面149pbよりも上記ずれ量だけピッチ方向の外側にずれて位置する。つまり、ピッチ方向において、第1および第2ピッチコイル中心146pa,148pbがそれぞれ、第1および第2ピッチマグネット147p,149pの着磁境界面147pb,149pbに対して外側と内側のうち互いに同じ側(ここでは外側)にずれて位置する。このことによる効果については、後述する。
ピッチ検出素子151pは、これに対向する第1ピッチマグネット147pの位置の変化に応じた磁気の変化を電気信号に変換するホールセンサであり、ホルダ等を介してベース部材143に固定されている。ピッチ検出素子151pからの電気信号(ピッチ位置検出信号)は、電気基板部101に入力される。
ヨー補正部140yとヨー検出部150yはそれぞれ、ピッチ補正部140pとピッチ検出部150pに対して光軸Oaと直交する面(以下、シフト面という)内で互いに直交する向きで配置されている。
図2(a)および図3(a)に示す第1ヨーコイル146yも、光軸方向から見て2つの直線部とその両側の円弧部とを有する楕円状に巻回された導線からなる巻き線コイルであり、ベース部材143により保持されている。第1ヨーコイル146yは、その厚み方向の端面が第1ヨーマグネット147yに対向している。第1ヨーコイル146yのヨー方向での中心を、以下、第1ヨーコイル中心146ybという。
第1ヨーマグネット147yは、前述したように第1ヨーコイル146yに対向するように可動部材142に保持されている。第1ヨーマグネット147yにおける第1ヨーコイル146yとの対向面(第1の面)の法線方向が着磁方向であり、着磁境界面147ybを挟んだ両側にN極部147ynとS極部147ysとが設けられている。言い換えれば、N極部とS極部が対向面上においてピッチ方向に並んでいる。着磁境界面147ybは、N極部147ynとS極部147ysの境界位置を示している。本実施例では、光軸Oaから遠い側にN極部147ynを、光軸Oaに近い側にS極部147ysを設けている。着磁境界面147ybは、第1ヨーコイル146yの長手方向(ピッチ方向)に平行に延びている。また、第1ヨーマグネット147yのうち光学素子141から最も離れた面を外端面147ycとする。
第2ヨーコイル148yも、図3(a)に示すように、光軸方向から見て2つの直線部とその両側の円弧部とを有する楕円状に巻回された導線からなる巻き線コイルであり、ベース部材143により保持されている。第2ヨーコイル148yは、その厚み方向の端面が第2ヨーマグネット149yに対向している。第2ヨーコイル148yのヨー方向での中心を、第2ヨーコイル中心148ybという。
第2ヨーマグネット149yは、前述したように第2ヨーコイル149yに対向するように可動部材142に保持されている。
ここで、図3(a)に示すように、ヨー方向において、第1および第2ヨーマグネット147y,149yの間(第1および第2ヨーコイル146y,148yの間)に光学素子141が配置されている。
第2ヨーマグネット149yにおける第2ヨーコイル148yとの対向面(第2の面)の法線方向が着磁方向であり、着磁境界面149ybを挟んだ両側にN極部149ynとS極部149ysとが設けられている。言い換えれば、N極部とS極部が対向面上においてピッチ方向に並んでいる。着磁境界面149ybは、N極部149ynとS極部149ysの境界位置を示している。本実施例では、光軸Oaから遠い側にS極部149ysを、光軸Oaに近い側にN極部149ynを設けている。着磁境界面149ybは、第2ヨーコイル148yの長手方向(ピッチ方向)に平行に延びている。第2ヨーマグネット149yのうち光学素子141から最も離れた面を外端面149ycとする。
本実施例では、図2(a)および図3(a)に示す中立状態において、第1ヨーコイル中心146ybが第1ヨーマグネット147yの着磁境界面147ybよりも所定のずれ量だけヨー方向の外側にずれて位置する。また、第2ヨーコイル中心148ybが、第2ヨーマグネット149yの着磁境界面149ybよりも上記ずれ量だけヨー方向の外側にずれて位置する。つまり、ヨー方向において、第1および第2ヨーコイル中心146ya,148ybがそれぞれ、第1および第2ヨーマグネット147y,149yの着磁境界面147y,149yに対して外側と内側のうち互いに同じ側(ここでは外側)にずれて位置する。このことによる効果については、後述する。
また、本実施例では、第1および第2ピッチマグネット147p,149pと第1および第2ヨーマグネット147y,149yはいずれも、図3(b)に示すように、光学素子141に対して光軸方向における同じ位置(同じ領域)に配置されている。これにより、光学防振装置100の光軸方向での厚みの増加を防ぐことができる。各コイルおよび各マグネットは可動部材142がその可動範囲でシフトしても互いに干渉しない位置であって、光学防振装置100のシフト方向での大きさ(直径)が可能な限り小さくなるように光学素子141に近い位置に配置されている。
ヨー検出素子151pは、これに対向する第1ヨーマグネット147yの位置の変化に応じた磁気の変化を電気信号に変換するホールセンサであり、ホルダ等を介してベース部材143に固定されている。ヨー検出素子151yからの電気信号(ヨー位置検出信号)は、電気基板部101に入力される。
以下、本実施例の説明を続けるが、光学防振装置100はピッチ方向とヨー方向とで基本的に構成が同じであるため、ピッチ方向についてのみ説明する。
次に、支持部144と付勢部145の配置について図4を用いて説明する。図4には、ベース部材143、第1ピッチマグネット147p、第2ピッチマグネット149p、支持部144および付勢部145のみを示している。支持部144のうち光軸Oaから最も離れた点を点Aとし、付勢部145のうち光軸Oaから最も離れた点を点Bとする。また、光学素子の中心点Oを中心として、点Aを通る円、点Bを通る円および第1ピッチマグネット147pの外端面147pcと第2ピッチマグネット149の外端面149pcとに接する円の半径をそれぞれ、Da,DbおよびDcとする。本実施例では、Da<DcおよびDb<Dcが成り立つように第1ピッチマグネット147p、第2ピッチマグネット149p、支持部144および付勢部145を配置している。したがって、光軸方向から見た場合に、支持部144の転動ボール144aと付勢部145の引張りばね145aとが第1ピッチマグネット147pおよび第2ピッチマグネット149pの外端面147pc,149pcよりも光軸Oaの近くに配置されている。このように第1ピッチマグネット147pと第2ピッチマグネット149pが光学素子141に近い位置に配置されているため、光学防振装置100の径方向の大きさを小さく抑えることができる。
次に、図5(a)〜(c)を用いて、補正部140の動作について説明する。図5(a)〜(c)には、第1および第2ピッチマグネット147p,149pのそれぞれの第1および第2ピッチコイル146p,148pに対するシフト方向(ピッチ方向)での所定のずれ量をともに同じdとしたときの補正部140のヨー方向から見た断面を示す。これらの図では、ストッパ部材143cによる可動部材142の可動範囲の制限をなくしている。
図5(a)には、可動部材142が可動範囲の中心に位置する中立状態を示す。第1および第2ピッチコイル146p,148pにはそれぞれ、コイル−マグネット間の電磁気作用により発生するローレンツ力のうち可動部材142のシフト方向の成分の向きが互いに同じになるように、互いに逆向きの+J1方向と+J2方向に電流が流れている。第1ピッチマグネット147pおよび第2ピッチマグネット149pにおいて発生するローレンツ力をそれぞれF1aおよびF2aとする。F1aのシフト方向の成分(以下、シフト方向成分という)をF1ahとし、シフト方向に直交する光軸方向の成分(以下、光軸方向成分という)をF1avとする。また、F2aのシフト方向成分をF2ahとし、光軸方向成分をF2avとする。シフト方向成分F1ahとF2ahの合力が可動部材142に作用する推力であり、光軸方向成分F1avとF2avがそれぞれ可動部材142を光軸方向に動かそうとするように可動部材142に作用する面外力である。図5(a)では、第1ピッチマグネット147pおよび第2ピッチマグネット149pの両方に推力が発生している。
図5(b)には、図5(a)の中立状態から可動部材142がシフトし、第1ピッチマグネット147pの着磁境界面147pbが第1ピッチコイル146pのコイル線束部146pdのうち光学素子141から遠い側の部分に到達する直前の位置にある状態(第2の状態)を示す。この状態では、第2ピッチマグネット149pが第2ピッチコイル148のコイル線束部148pdのうち光学素子141から遠い側の部分を通過し、第2ピッチコイル148pと第2ピッチマグネット149pの間のローレンツ力の向きが反転する。このため、ローレンツ力のシフト方向成分が互いに同じ向きになるように、第1ピッチコイル146pには+J1方向に、第2ピッチコイル148pには図5Aと反対の−J2方向にそれぞれ電流を流すことで、F1bおよびF2bで示すローレンツ力が発生する。F1bとF2bのシフト方向成分F1bhとF2bhの合力が可動部材142の推力であり、光軸方向成分F1bvとF2bvが可動部材142を光軸方向に動かそうとする面外力である。図5Bでは、第2ピッチマグネット149pが第2ピッチコイル148pのコイル線束部148pdの片側の部分に対向する領域から外れているために推力が小さくなる。しかし、第1ピッチマグネット147pと第1ピッチコイル146pとの間で十分な推力が発生しており、可動部材142をシフトさせることができる。
図5(c)には、図5(b)の状態からさらに可動部材142がシフトし、第1ピッチマグネット147の着磁境界面147pbが第1ピッチコイル146のコイル線束部146pdのうち光学素子141から遠い側の部分に到達した位置にある状態を示す。図には、図示を省略した4つの引張りばね145aによって発生するシフト抗力の大きさと方向を矢印K1とK2で示す。第1ピッチコイル146pと第2ピッチコイル148pにそれぞれ+J1方向と−J2方向に電流を流すことで、F1cとF2cで示すローレンツ力が発生する。F1chとF2chの合力が可動部材142の推力であり、F1cvとF1cvが可動部材142を移動方向に直交する方向に動かそうとする面外力である。図5(c)では、第1ピッチマグネット147pの着磁境界面147pbが第1ピッチコイル146のコイル線束部146pdのうち光学素子141から遠い側の部分に到達しているために、推力よりも面外力が大きくなり、推力が小さくなる。一方、図5(b)と同様に、第2ピッチマグネット149pが第2ピッチコイル148のコイル線束部148pdの片側の部分に対向する領域から外れているために、推力が小さくなる。この位置は、推力が可動部材142を付勢する引張りばね145aのシフト抗力K1とK2の和と釣り合うために可動部材142がそれ以上シフトできなくなる位置、すなわちストッパ部材143cがないときの可動部材142の最大シフト可能位置を示している。
このように、ストッパ部材143cによる可動範囲の制限をなくすると、可動部材142は図5(c)に示す最大シフト可能位置までシフトすることはできる。しかし、一般には、引張りばね145aのシフト抗力のばらつきを見込んで余裕を持たせた範囲を可動範囲として使用する。このため、本実施例では、図5(b)の位置で可動部材142がストッパ部材143cと当接する構成とする。すなわち、図5(b)の位置までを可動範囲とする。ただし、ストッパ部材143cをさらに光学素子141の中心Oから遠ざけて配置し、推力が発生する範囲内でより広い可動範囲を設定してもよい。
なお、可動部材142が、図5(a)〜(c)で説明したシフト方向と反対方向にシフトする場合は、電流の向きおよび力の向きが反転することとなる。
次に、図6を用いて、補正部140におけるコイル−マグネット間のずれ量dの限界値について説明する。図6には、本実施例とは異なる比較例として、ずれ量dを限界値であるPとしたときの構成を示している。また、この図では、中立状態を示し、ストッパ部材143cによる可動部材142の可動範囲の制限をなくしている。
中立状態において、第1ピッチコイル146pに+J1方向に電流を流す。Pは、このときに第1ピッチコイル146pと第1ピッチマグネット147のN極147pnとの間に発生するローレンツ力のシフト方向成分FnhとS極147psとの間に発生するローレンツ力のシフト方向成分Fshとが釣り合うずれ量である。第1ピッチコイル146pと第1ピッチマグネット147pとの間に発生する力は面外力FnvとFsvのみとなり、推力が発生しない。また、第2ピッチコイル148pと第2ピッチマグネット149pとの間にも同様に推力が発生しない。このため、可動部材142を中立状態からシフトさせることができない。
しかし、ずれ量dがPより小さければ、第1ピッチコイル146pとN極147pnとの間に発生するシフト方向成分Fnhと第1ピッチコイル146pとS極147psとの間に発生するシフト方向成分Fshとが釣り合わなくなる。このため、推力が得られ、可動部材142をシフトさせることができる。したがって、実際のずれ量dはPより小さいことが必要である。言い換えれば、実際のずれ量dをPより小さい限りは大きくしても、中立状態から可動部材142を動かすことができる。このように、通電された第1ピッチコイル146pとN極147pnとの間に発生するシフト方向の力(Fnh)と、第1ピッチコイル146pとS極147psとの間に発生するシフト方向の力(Fsh)とが釣り合うずれ量をPとする。このとき、実際のずれ量dはPより小さいことが必要な条件となる。
次に、図7のフローチャートを用いて光学防振装置100の制御(各コイルへの通電制御)を行う処理について説明する。図7には、防振動作の開始から終了までの処理の流れを示している。比較部110と演算部120からなる制御部がコンピュータプログラムに従って本処理を実行する。また、ここでも可動部材142をピッチ方向にシフトさせる場合とヨー方向にシフトさせる場合の処理は基本的に同じであるので、ピッチ方向にシフトさせる場合の処理について説明する。
ステップS1では、比較部110は、光学防振装置100に入力される可動部材142の目標位置を読み出して更新する。
次にステップS2では、比較部110は、検出部150からのピッチ位置検出信号を取得して、可動部材142のピッチ方向での検出位置を更新する。
次にステップS3では、比較部110は、ステップS1で更新した目標位置とステップS2で更新した検出位置との差分(以下、位置差という)を算出する。
次にステップS4では、演算部120は、ステップS3で算出された位置差に基づいて、ゲイン演算部120gにて係数kを算出する。係数kは、その値が大きいほど可動部材142をシフトさせる推力を大きくする。具体的には、ゲイン演算部120gは、可動部材142のシフト量に応じて異なる係数kを算出する。例えは、可動部材142のシフト量が大きくなると引張りばね145aによるシフト抗力が大きくなるため、大きい係数kを算出する。また、目標位置と検出位置との位置差に応じて異なる係数kを算出する。例えば、位置差が大きいほど素早く可動部材142をシフトさせるように大きい係数kを算出する。目標位置と検出位置とが一致した場合はそれ以上可動部材142をシフトさせる必要がないため、k=0となる。
次にステップS5では、演算部120は、各コイルに流す電流値を算出する。関数演算部120fには、可動部材142のシフト量xの関数である第1の関数a(x)と第2の関数b(x)とが記憶されている。関数演算部120fは、可動部材142のシフト量xと第1の関数a(x)によって決まる第1の分配値d1と、可動部材142のシフト量と第2の関数b(x)によって決まる第2の分配値d2とを決定する。分配値d1,d2はそれぞれ、第1ピッチコイル146pと第2ピッチコイル148pに通電する比率を示す。関数演算部120fは、検出部150からのピッチ位置検出信号から可動部材142のシフト量を計算し、さらに第1の関数a(x)と第2の関数b(x)から分配値d1,d2を計算し、ゲイン演算部120gに出力する。
図8(a)には、可動部材142のシフト量に対する第1および第2の関数a(x),b(x)の例を示している。図8(b)に示すようにマグネットの着磁境界面と直交する方向での該マグネットの長さをwとし、コイルに対するマグネットのずれ量をdとすると、第1および第2の関数a(x),b(x)は、後述する2つの理由から、
a(x)=sin[{2π(x+d)}/2w] ・・・(1)
b(x)=sin[{2π(x−d)}/2w] ・・・(2)
となる。
第1の理由は、第1および第2の関数a(x),b(x)が三角関数であることにより、ステッピングモータのマイクロステップ駆動方式と同様に、可動部材142を滑らかに駆動するためである。
第2の理由は、第1および第2の関数a(x),b(x)の位相がそれぞれxに対してdだけずれていることで、可動部材142がdだけ移動した位置で第1および第2の関数a(x),b(x)の値がともに最大値となり、コイルに流す電流値が最大となるためである。この位置では、図8(b)に示すx=dのように、マグネットの着磁境界面とコイルの中心とがシフト方向で同じ位置となる。このマグネットとコイルとの位置関係は、図8(c)に示すように、単位電流当たりの推力である推力定数が最大となる位置関係であり、最も高効率で推力を発生させることができる。したがって、第1および第2の関数a(x),b(x)の位相をそれぞれxに対してdだけずらすことで、一組のコイルとマグネットについて最も高効率な位置で最大の推力が発生する。このように、本実施例では、コイルとマグネットのずれ量分だけ位相をずらした三角関数を第1および第2の関数a(x),b(x)とする。これにより、図8(d)に示すように、シフト量xによらず高効率で、かつシフト量xによる変動が少ない(滑らかに変化する)推力を発生させることができる。
なお、本実施例では第1および第2の関数a(x),b(x)を三角関数とした場合について説明したが、他の関数を用いてもよい。
ゲイン演算部120gは、分配値d1にステップS4で算出した係数kを乗じた値k・d1を第1ピッチコイル146pに流す電流値とし、分配値d2に係数kを乗じた値k・d2を第2ピッチコイル148pに流す電流値とする。
次にステップS6では、演算部120は、ステップS5で算出した電流値を、駆動部130の各コイル駆動回路を通じて補正部140の各コイルに通電する。これにより、各コイルと対応するマグネット間にローレンツ力が発生し、可動部材142がシフトする。
次にステップS7では、比較部110および演算部120は、可動部材142の検出位置が目標位置に一致したか否か、つまりは可動部材142のシフトを停止させるか否かを判定する。シフトを停止させない場合はステップS1に戻り、検出位置が目標位置に一致するまで処理を継続する。一方、可動部材142の検出位置が目標位置に一致した場合は、可動部材142のシフトを停止させて処理を終了する。
次に、本実施例の効果について、図9(a),(b)を用いて説明する。図9(a)には、中立状態における光学防振装置100のヨー方向から見た断面を示す。中立状態での光学素子141の光軸の位置をOaで示す。図9(b)には、中立状態から可動部材142がシフトし、第1ピッチマグネット147の着磁境界面147pbが第1ピッチコイル146のコイル線束部146pdのうち光学素子141から遠い側の部分に到達する直前の位置(可動範囲の端位置)にある状態での断面を示す。この状態での光学素子141の光軸の位置をOc1で示し、可動部材142が可動範囲の反対側の端位置に到達したときの光学素子141の光軸の位置をOc2で示す。可動部材142の最大シフト可能量は、可動範囲における互いに反対側の端位置と端位置間の距離であるStである。第1ピッチマグネット147の外端面147pcから光軸Oaまでの距離はR1である。この距離R1が大きいと、光学防振装置100の径方向の寸法が大きくなる。
図10(a),(b)には、従来の光学防振装置であって、可動部材102のピッチ方向での駆動に1つのコイル(第1ピッチコイル106p)と1つのマグネット(第1ピッチマグネット)107pのみを使用するものの構成をヨー方向から見た断面により示す。この装置における可動部材142の最大シフト可能量は、図9(b)に示したStと等しい。図10(a)には中立状態を示しており、このときの光学素子101の光軸の位置をOdで示す。図10(b)には中立状態から可動部材02がシフトして、第1ピッチマグネット107の着磁境界面107pbが第1ピッチコイル106のコイル線束部106pdのうち光学素子101から遠い側の部分に到達する直前の位置(可動範囲の端位置)にある状態を示す。この状態での光学素子101の光軸の位置をOe1で示し、可動部材102が可動範囲の反対側の端位置に到達したときの光学素子101の光軸の位置をOe2で示す。
この装置のようにコイルとマグネットを1つずつ使用する場合は、可動部材102の最大シフト可能量を図9(b)に示したStと等しくするために、第1ピッチコイル106pの長手方向に直交する方向(ピッチ方向)の寸法Lcを拡大する必要がある。さらに、第1ピッチコイル106pと第1ピッチマグネット107pが、可動範囲の全域において光軸方向にてほぼ全面で重なっているため、第1ピッチマグネット107pの長手方向に直交する方向(ピッチ方向)の寸法Lmを併せて拡大する必要がある。これらの結果、可動部材102の最大シフト可能量はStであるが、可動範囲の端に到達したときの第1ピッチマグネット107pの外端面107pcから光軸Odまでの距離はR1より大きいR2となる。
したがって、図9(a),(b)で示す本実施例の光学防振装置100は、図10(a),(b)に示す従来の光学防振装置に対して、同じ可動部材102の最大シフト可能量を維持したまま、径方向に小型化することができる。
以上説明したように、本実施例では、VCMをアクチュエータとする光学防振装置100において、大きな最大シフト可能量を確保しつつ、装置の径の増加を抑制することができる。
なお、本実施例では、第1および第2ピッチコイル中心のそれぞれの第1および第2ピッチマグネットの着磁境界面に対するずれ量をともに同じとした場合について説明した。しかし、これらずれ量を、第1ピッチコイル−第1ピッチマグネット間および第2ピッチコイル−第2ピッチマグネット間のそれぞれで発生するローレンツ力の差(誤差)等に応じて異ならせてもよい。このことは、後述する他の実施例でも同じである。
次に、本発明の実施例2である光学防振装置200について説明する。本実施例において、実施例1と共通する構成要素には同符号を付して説明は省略する。本実施例では、実施例1と異なる部分を主として説明する。
図11(a),(b)は、光学防振装置200の構成を示す図であり、図11(a)は光軸方向から見た構成を、図11(b)は図11(a)中のIII−III線での断面(ヨー方向から見た断面)を示す。また、図11(a),(b)は、可動部材242がその可動範囲の中心に位置する中立状態を示している。
第1ピッチコイル246pは光学素子141を保持する可動部材(第1部材)242により保持され、第1ピッチマグネット247pは、第1ピッチコイル246pに光軸方向にて対向するようにベース部材(第2部材)243により保持されている。第2ピッチコイル248pは可動部材242により保持され、第2ピッチマグネット249pは、第2ピッチコイル248pに光軸方向にて対向するようにベース部材243により保持されている。図11(a)に示すように、ピッチ方向において、第1および第2ピッチコイル246p,248pの間(第1および第2ピッチマグネット247p,249pの間)に光学素子141が配置されている。
また、第1ヨーコイル246yは可動部材242により保持され、第1ヨーマグネット247yは、第1ヨーコイル246yに光軸方向にて対向するようにベース部材243により保持されている。第2ヨーコイル248yは可動部材242により保持され、第2ヨーマグネット249yは、第2ヨーコイル248yに光軸方向にて対向するようにベース部材243により保持されている。図11(a)に示すように、ヨー方向において、第1および第2ヨーコイル246y,248yの間(第1および第2ピッチマグネット247y,249yの間)に光学素子141が配置されている。
また、第1および第2ピッチコイル246p,248pと第1および第2ヨーコイル246y,268yはいずれも、図11(b)に示すように、光学素子141に対して光軸方向における同じ位置(同じ領域)に配置されている。これにより、光学防振装置200の光軸方向での厚みの増加を防ぐことができる。
以下、本実施例の説明を続けるが、光学防振装置200はピッチ方向とヨー方向とで基本的に同じ構成を有するため、ピッチ方向についてのみ説明する。
図11(b)に示すように、中立状態において、第1ピッチコイル中心246pbは第1ピッチマグネット247pの着磁境界面247pbよりも所定のずれ量だけピッチ方向の内側にずれて位置する。また、第2ピッチコイル中心248pbも、第2ピッチマグネット249pの着磁境界面249pbよりも上記ずれ量だけピッチ方向の内側にずれて位置する。つまり、ピッチ方向において、第1および第2ピッチコイル中心246pa,248pbがそれぞれ、第1および第2ピッチマグネット247p,249pの着磁境界面247pb,249pbに対して外側と内側のうち互いに同じ側(ここでは内側)にずれて位置する。
また、図示しないピッチ検出素子は、ホルダ等を介して可動部材242に固定されており、これに対向する第1ピッチマグネット247pの位置(磁気)の変化を電気信号に変換して出力する。
本実施例では、実施例1と異なり、各コイルを可動部材242により保持し、各マグネットをベース部材243により保持している。これにより、可動部材によってマグネットを保持する実施例1に比べて、コイルを含む可動部材242の重量をより軽量化することができ、各コイルに流す電流値を低減したり、各コイルを小型化したりすることができる。
本実施例における補正部の動作、各コイル中心の各マグネットの着磁境界面に対するずれ量(d)および光学防振装置200の制御については、実施例1と同じである。
本実施例でも、VCMをアクチュエータとする光学防振装置200において、大きな最大シフト可能量を確保しつつ、装置の径の増加を抑制することができる。
次に、本発明の実施例3である光学防振装置300について説明する。本実施例において、実施例1と共通する構成要素には同符号を付して説明は省略する。本実施例では、実施例1と異なる部分を主として説明する。
図12(a),(b)は、光学防振装置300の構成を示す図であり、図12(a)は光軸方向から見た構成を、図12(b)は図12(a)中のIV−IV線での断面(ヨー方向から見た断面)を示す。また、図12(a),(b)は、可動部材342がその可動範囲の中心に位置する中立状態を示している。
本実施例では、実施例1と同様に、各コイル(346p,348p,346y,346y)がベース部材343により保持され、各マグネット(347p,349p,347y,349y)が可動部材342により保持されている。以下、本実施例の説明を続けるが、光学防振装置300はピッチ方向の構成とヨー方向の構成(第1および第2ヨーコイル346y,348y、第1および第2ヨーマグネット347y,349y)とで基本的に同じであるため、ピッチ方向についてのみ説明する。
本実施例でも、図12(a)に示すように、ピッチ方向において、第1および第2ピッチマグネット347p,349pの間(第1および第2ピッチコイル346p,348pの間)に光学素子141が配置されている。
そして、可動部材342がその可動範囲の中心に位置する中立状態において、第1ピッチコイル中心が第1ピッチマグネット347pの着磁境界面よりも所定のずれ量だけピッチ方向の内側にずれて位置する。また、第2ピッチコイル中心が、第2ピッチマグネット349pの着磁境界面よりも上記ずれ量だけピッチ方向の内側にずれて位置する。つまり、ピッチ方向において、第1および第2ピッチコイル中心がそれぞれ、第1および第2ピッチマグネット347p,349pの着磁境界面に対して外側と内側のうち互いに同じ側(ここでは内側)にずれて位置する。
このようにベース部材343によって保持する各コイルの中心を各マグネットの着磁境界面よりも内側にずらすことで、ベース部材343を径方向により小型化することができる。この結果、光学防振装置300がカメラ等の光学機器に搭載されたときに、該光学防振装置300の周辺に配置される各種部品の配置自由度を高めることができる。
本実施例における補正部の動作、各コイル中心の各マグネットの着磁境界面に対するずれ量(d)および光学防振装置200の制御については、実施例1と同じである。
図12(a),(b)には可動部材342により各マグネットが保持され、ベース部材343により各コイルが保持されるムービングマグネットタイプの光学防振装置300を示した。これに対して、実施例2と同様に、可動部材により各コイルが保持され、ベース部材により各マグネットが保持されるムービングコイルタイプとしてもよい。図13(a),(b)には、ムービングコイル方式の光学防振装置400を示している。図12(a)は光軸方向から見た構成を、図13(b)は図13(a)中のV−V線での断面(ヨー方向から見た断面)を示す。
図13(a),(b)では、可動部材442がその可動範囲の中心に位置する中立状態において、第1ピッチコイル446pの中心(第1ピッチコイル中心)が第1ピッチマグネット447pの着磁境界面よりも所定のずれ量だけピッチ方向の外側にずれて位置する。また、第2ピッチコイル448pの中心(第2ピッチコイル中心)が、第2ピッチマグネット449pの着磁境界面よりも上記ずれ量だけピッチ方向の外側にずれて位置する。
本実施例でも、VCMをアクチュエータとする光学防振装置300,400において、大きな最大シフト可能量を確保しつつ、装置の径の増加を抑制することができる。
次に、本発明の実施例4である光学防振装置500について説明する。本実施例において、実施例1と共通する構成要素には同符号を付して説明は省略する。本実施例では、実施例1と異なる部分を主として説明する。
図14(a),(b)は、光学防振装置500の構成を示す図であり、図14(a)は光軸方向から見た構成を、図14(b)は図14(a)中のVI−VI線での断面(ヨー方向から見た断面)を示す。また、図15(a),(b)は、可動部材542がその可動範囲の中心に位置する中立状態を示している。
次に、本発明の実施例4である光学防振装置500について説明する。実施例1と共通する構成要素には同符号を付して説明は省略する。本実施例では、実施例1と異なる部分を主として説明する。
本実施例でも、各コイル(546p,548p,546y,546y)がベース部材543により保持され、各マグネット(547p,549p,547y,549y)が可動部材542により保持されている。また、ピッチ方向において、第1ピッチマグネット547pと第2ピッチマグネット549pとの間(第1ピッチコイル546pと第2ピッチコイル248pとの間)に光学素子141が配置されている。
また、中立状態において、第1ピッチコイル546pの中心(第1ピッチコイル中心)が第1ピッチマグネット547pの着磁境界面よりも所定のずれ量だけピッチ方向の外側にずれて位置する。また、第2ピッチコイル548pの中心(第2ピッチコイル中心)が、第2ピッチマグネット549pの着磁境界面よりも上記ずれ量だけピッチ方向の外側にずれて位置する。つまり、ピッチ方向において、第1および第2ピッチコイル中心がそれぞれ、第1および第2ピッチマグネット547p,549pの着磁境界面に対して外側と内側のうち互いに同じ側(ここでは外側)にずれて位置する。このことは、第1および第2ヨーコイル546y,548pおよび第1および第2ヨーマグネット547y,549yについても同様である。
ただし、本実施例では、第2ピッチマグネット549pを光軸方向におけるベース部材543と第2ピッチコイル548pとの間に配置している。ベース部材543と第2ピッチコイル548pとの間に第2ピッチマグネット549pを配置するスペースを確保するため、ベース部材543から光軸方向に延びるアーム部543gを設け、該アーム部543gの先端にて第2ピッチコイル548pを保持している。同様に、第1ヨーマグネット547yを光軸方向におけるベース部材543と第1ヨーコイル546yとの間に配置している。
以下、本実施例の説明を続けるが、光学防振装置500はピッチ方向とヨー方向とで基本的に構成が同じであるため、ピッチ方向についてのみ説明する。
本実施例では、光学防振装置500の厚み方向での寸法を小さくするために、上述したように第2ピッチマグネット549pを光軸方向におけるベース部材543と第2ピッチコイル548pとの間に配置している。これにより、第1ピッチコイル546pと第2ピッチマグネット549pとを、光軸Oaに直交するほぼ同一平面上に配置している。また、第2ピッチコイル548pと第1ピッチマグネット547pとを、光軸Oaに直交するほぼ同一平面上に配置している。
ただし、可動部材542の形状を単純化するために、第1ピッチコイル546pと第2ピッチマグネット549pが光軸Oaに直交するほぼ同一平面上に配置されていなくてもよい。また、第2ピッチコイル548pと第1ピッチマグネット547pが光軸Oaに直交するほぼ同一平面上に配置されなくていなくてもよい。また、第2ピッチコイル548pと第2ピッチマグネット549pを保持する部材が入れ替わり、第1ピッチコイル546pと第1ピッチマグネット547pを保持する部材が入れ替わってもよい。
このように、本実施例は、第1および第2ピッチマグネット547p,549pのうち一方のピッチマグネットが対向するピッチコイルとベース部材との間に配置されている点で、実施例1と異なる。
次に、図15(a),(b)を用いて、可動範囲の端位置近傍における実施例1における力の発生状態と本実施例における力の発生状態との差異について説明する。
図15(a)は、実施例1において、可動部材142が可動範囲の第1ピッチコイル側の端位置に到達した状態のモデルを示す。該モデルは、可動部材142の形状を単純化した可動部材162、ベース部材163、転動ボール164、引張りばね165、第1コイル166p、第1マグネット167p、第2コイル168pおよび第2マグネット169pで構成される。
可動部材162が上記端位置に到達した状態では、可動部材162とベース部材163を付勢する引張りばね165の伸び量が大きく、引張りばね165により生じるシフト抗力も大きい。シフト抗力のシフト方向成分は、コイルとマグネットによって発生する推力と逆向きであるため、可動部材162を目標位置へ到達させるには、コイルとマグネットによって発生する推力を増加させる必要がある。推力を増加させるためにコイルに流す電流を増加させることで面外力も増加するため、可動部材162が端位置に到達した状態では第1マグネット167pと第2マグネット169pのそれぞれへの通電によって大きな面外力N1,N2が発生することになる。ここで、第1マグネット167pと第2マグネット169pのそれぞれへの通電によって発生する面外力N1,N2は互いに逆を向いている。加えて、前述したように装置の径を小さくするために転動ボール164を光軸Oaの近くに配置しているため、面外力N1,N2によって転動ボール164を回転中心とする大きなモーメントM1が可動部材162に発生する。この結果、モーメントM1により可動部材162と転動ボール164が接触しなくなるボール浮きが発生するおそれがある。
図15(b)は、本実施例において、可動部材542が可動範囲の第1コイル546p側の端位置に到達した状態でのモデルを示す。該モデルは、可動部材542の形状を単純化した可動部材562、ベース部材563、転動ボール564、引張りばね565、第1コイル566p、第1マグネット567p、第2コイル568pおよび第2マグネット569pで構成される。
図15(a)と同様に、可動部材562が端位置に到達した状態では、引張りばね564のシフト抗力が増加することで、第1マグネット567pと第2マグネット569pのそれぞれに大きな面外力N3,N4が発生する。しかし、本実施例では、第1マグネット567pと第2マグネット569pに発生する面外力N3,N4は互いに同じ方向を向いている。このため、面外力N3,N4によって生じる転動ボール564を回転中心とするモーメントM2は、面外力N3と面外力N4が打ち消し合い、実施例1と比べて小さくなる。この結果、ボール浮きの発生を抑制することができる。
ここでは可動部材が片側の端位置に到達した状態について説明しているが、反対側の端位置に到達した状態では、推力と面外力は向きが反対に作用することとなる。この場合には、引張りばね165に抗して転動ボール164を浮かせる方向に力が作用することとなる。しかし、引張りばね165の力を面外力に対して十分大きな付勢力としておくことでボール浮きの発生を抑制できる。
ここで、本実施例と異なるボール浮き対策として、引張りばねや転動ボールを光学素子の中心Oから遠ざけて配置する構成が考えられるが、その構成では装置の径が増加してしまう。したがって、ボール浮き対策が必要な場合は、装置の径方向の拡大を抑制するために、本実施例に示すボール浮き対策を行うことが望ましい。
本実施例における補正部の動作、各コイル中心の各マグネットの着磁境界面に対するずれ量(d)および光学防振装置500の制御については、実施例1と同じである。
図14(a),(b)には可動部材542により各マグネットが保持され、ベース部材543により各コイルが保持されるムービングマグネットタイプの光学防振装置500を示した。これに対して、実施例2と同様に、可動部材により各コイルが保持され、ベース部材により各マグネットが保持されるムービングコイルタイプとしてもよい。図16(a),(b)には、ムービングコイル方式の光学防振装置600を示している。図16(a)は光軸方向から見た構成を、図16(b)は図16(a)中のVII−VII線での断面(ヨー方向から見た断面)を示す。
図16(a),(b)では、可動部材642がその可動範囲の中心に位置する中立状態において、第1ピッチコイル646pの中心(第1ピッチコイル中心)が第1ピッチマグネット647pの着磁境界面よりも所定のずれ量だけピッチ方向の内側にずれて位置する。また、第2ピッチコイル648pの中心(第1ピッチコイル中心)が、第2ピッチマグネット649pの着磁境界面よりも上記ずれ量だけピッチ方向の内側にずれて位置する。
そして、光学防振装置600の厚み方向での寸法を小さくするために、第2ピッチコイル648pを光軸方向におけるベース部材543と第2ピッチマグネット649pとの間に配置している。
本実施例によれば、VCMをアクチュエータとする光学防振装置500,600において、大きな最大シフト可能量を確保しつつ、装置の径の増加を抑制することができる。しかも、可動部材に作用するモーメントを減少させ、ボール浮きの発生を抑制することができる。
次に、本発明の実施例5である光学防振装置700について説明する。本実施例において、実施例1と共通する構成要素には同符号を付して説明は省略する。本実施例では、実施例1と異なる部分を主として説明する。
図17(a),(b)は、光学防振装置700の構成を示す図であり、図17(a)は光軸方向から見た構成を、図17(b)は図17(a)中のVIII−VIII線での断面(ヨー方向から見た断面)を示す。また、図17(a),(b)は、可動部材742がその可動範囲の中心に位置する中立状態を示している。
本実施例では、第1ピッチマグネット747pと第2ピッチコイル748pが可動部材742により保持され、第1ピッチコイル746pと第2ピッチマグネット749yがベース部材743により保持されている。ピッチ方向において、第1ピッチマグネット747pと第2ピッチマグネット749pとの間(第1ピッチコイル746pと第2ピッチコイル748pとの間)に光学素子141が配置されている。
また、中立状態において、第1ピッチコイル746pの中心(第1ピッチコイル中心)が第1ピッチマグネット747pの着磁境界面よりも所定のずれ量だけピッチ方向の外側にずれて位置する。一方、第2ピッチコイル748pの中心(第2ピッチコイル中心)は、第2ピッチマグネット749pの着磁境界面よりも上記ずれ量だけピッチ方向の内側にずれて位置する。つまり、ピッチ方向において、第1および第2ピッチコイル中心がそれぞれ、第1および第2ピッチマグネット747p,749pの着磁境界面747pb,749pbに対して外側と内側のうち互いに異なる側にずれて位置する。このことは、第1および第2ヨーコイル746y,748pおよび第1および第2ヨーマグネット747y,749yについても同様である。
さらに、本実施例では、第2ピッチコイル748pを光軸方向におけるベース部材543と第2ピッチマグネット549pとの間に配置している。ベース部材543と第2ピッチマグネット749pとの間に第2ピッチコイル548pを配置するスペースを確保するため、ベース部材743から光軸方向に延びるアーム部743gを設け、該アーム部743gの先端で第2ピッチマグネット749pを保持している。同様に、第1ヨーコイル747yを光軸方向におけるベース部材743と第1ヨーマグネット747yとの間に配置している。
以下、本実施例の説明を続けるが、光学防振装置500はピッチ方向とヨー方向とで基本的に構成が同じであるため、ピッチ方向についてのみ説明する。
本実施例では、光学防振装置700の厚み方向での寸法を小さくするために、上述したように第2ピッチコイル748pを光軸方向におけるベース部材543と第2ピッチマグネット549pとの間に配置している。これにより、第1ピッチコイル746pと第2ピッチコイル748pとを、光軸Oaに直交するほぼ同一平面上に配置している。また、第1ピッチマグネット747pと第2ピッチマグネット749pとを、光軸Oaに直交するほぼ同一平面上に配置している。
ただし、可動部材742の形状を単純化するために、第1ピッチコイル746pと第2ピッチコイル748pが光軸Oaに直交するほぼ同一平面上に配置されていなくてもよい。また、第1ピッチマグネット747pと第2ピッチマグネット749pが光軸Oaに直交するほぼ同一平面上に配置されなくていなくてもよい。また、第2ピッチコイル748pと第2ピッチマグネット749pを保持する部材が入れ替わり、第1ピッチコイル746pと第1ピッチマグネット747pを保持する部材が入れ替わってもよい。
このように、本実施例は、第1および第2ピッチコイル746p,748pのうち一方と他方がベース部材743と可動部材742のうち互いに異なる部材によって保持されている。また、第1および第2ピッチマグネット747p,749pのうち一方と他方がベース部材743と可動部材742のうち互いに異なる部材によって保持されている。さらに、上述したように、ピッチ方向において、第1および第2ピッチコイル中心がそれぞれ、第1および第2ピッチマグネット747p,749pの着磁境界面747pb,749pbに対して外側と内側のうち互いに異なる側にずれて位置する。これらの点で実施例1と異なる。
次に、図18(a),(b)を用いて、可動範囲の端位置近傍における実施例1における力の発生状態と本実施例における力の発生状態との差異について説明する。
図18(a)は、図15(a)と同じ図である。図18(b)は、本実施例において、可動部材742が可動範囲の第1ピッチコイル側の端位置に到達した状態でのモデルを示す。該モデルは、可動部材742の形状を単純化した可動部材762、ベース部材763、転動ボール764、引張りばね765、第1コイル766p、第1マグネット767p、第2コイル768pおよび第2マグネット769pで構成される。
図18(a)では、第1コイル746pに+J1方向に電流を流し、第2コイル748pに−J2方向に電流を流して推力を発生させている。しかし、図18(b)では、第2コイル748pと第2マグネット749pを保持する部品が入れ替わっており、作用する力が逆向きになる。このため、第1マグネット747pと第2コイル748pに作用する推力の方向を同じにするために、第2コイル748pには+J2方向に電流を流す。この結果、図15(b)と同様に、面外力N3,N4によって生じる転動ボール764を回転中心とするモーメントM2は、面外力N3と面外力N4とが打ち消し合うことで、実施例1と比べて小さくなる。この結果、ボール浮きの発生を抑制することができる。可動部材742が可動範囲の反対側の端位置に到達した状態については、実施例4と同じである。
本実施例における補正部の動作、各コイル中心の各マグネットの着磁境界面に対するずれ量(d)および光学防振装置700の制御については、実施例1と同じである。
なお、本実施例において、中立状態で、ピッチ方向において、第1および第2ピッチコイル中心がそれぞれ、第1および第2ピッチマグネットの着磁境界面に対して外側と内側のうち互いに同じ側にずれて位置してもよい。
本実施例によれば、VCMをアクチュエータとする光学防振装置700において、大きな最大シフト可能量を確保しつつ、装置の径の増加を抑制することができる。しかも、可動部材に作用するモーメントを減少させ、ボール浮きの発生を抑制することができる。
次に、本発明の実施例5である光学防振装置800について説明する。本実施例において、実施例1と共通する構成要素には同符号を付して説明は省略する。本実施例では、実施例1と異なる部分を主として説明する。
図19(a),(b)は、光学防振装置800の構成を示す図であり、図19(a)は光軸方向から見た構成を、図19(b)は図19(a)中のIX−IX線での断面を示す。また、図19(a),(b)は、可動部材742がその可動範囲の中心に位置する中立状態を示している。
本実施例では、各コイル(846p,848p,846y,846y)がベース部材843により保持され、各マグネット(847p,849p,847y,849y)が可動部材842により保持されている。また、ピッチ方向において、第1ピッチマグネット847pと第2ピッチマグネット849pとの間(第1ピッチコイル846pと第2ピッチコイル848pとの間)に光学素子141が配置されている。ヨー方向についても同様である。
また、中立状態において、第1ピッチコイル846pの中心(第1ピッチコイル中心)が第1ピッチマグネット847pの着磁境界面よりも所定のずれ量だけピッチ方向の外側にずれて位置する。また、第2ピッチコイル848pの中心(第2ピッチコイル中心)は、第2ピッチマグネット849pの着磁境界面よりも上記ずれ量だけピッチ方向の外側にずれて位置する。つまり、ピッチ方向において、第1および第2ピッチコイル中心がそれぞれ、第1および第2ピッチマグネット847p,849pの着磁境界面847pb,849pbに対して外側と内側のうち互いに同じ側にずれて位置する。このことは、第1および第2ヨーコイル846y,848pおよび第1および第2ヨーマグネット847y,849yについても同様である。
本実施例では、可動部材842およびベース部材843に設けられたボール受け部842a,843aがそれぞれ、凸球面および凹球面の形状を有し、転動ボール844aはそれらの球面上を転動する。そして、第1および第2ピッチコイル846p,848p、第1および第2ピッチマグネット847p,849pおよびピッチ検出素子151pは、全て光軸Oaと直交するシフト面に対して所定の角度だけ傾いて保持されている。傾いて保持されたマグネットとコイルにより、可動部材842が点Qを中心とする球面上を動くように推力が発生する。
本実施例における補正部の動作、各コイル中心の各マグネットの着磁境界面に対するずれ量(d)および光学防振装置800の制御については、実施例1と同じである。
本実施例では、可動部材842に各マグネットが保持され、ベース部材843に各コイルが保持されたムービングマグネットタイプについて説明したが、可動部材に各コイルが保持され、ベース部材に各マグネットが保持されたムービングコイルタイプとしてもよい。
また、各コイル中心が各マグネットの着磁境界面に対するずれる側をともに内側としてもよい。
さらに、実施例4と同様に、ベース部材に保持された一方のコイルとベース部材との間に、該コイルに対向し、可動部材により保持されたマグネットを配置してもよい。また、実施例5と同様に、一方のコイルと他方のコイルがベース部材と可動部材のうち互いに異なる部材により保持され、一方のマグネットと他方のマグネットがベース部材と可動部材のうち互いに異なる部材により保持されてもよい。
本実施例によれば、VCMをアクチュエータとする光学防振装置700において、大きな最大シフト可能量を確保しつつ、装置の径の増加を抑制することができる。
図20には、上述した各実施例の光学防振装置を備えた光学機器としてのデジタルカメラ(撮像装置)900を示している。なお、光学機器としては交換レンズ等、デジタルカメラ以外のものであってもよい。
図20において、L1,L2は撮像光学系を構成するレンズであり、光学防振装置100〜800はこの撮像光学系内に配置されている。撮像光学系は被写体像(光学像)を形成する。901はCCDセンサやCMOSセンサ等の撮像素子であり、被写体像を光電変換する。これにより、撮像画像が生成される。
902はジャイロセンサ等の振れセンサであり、カメラ900の振れを検出して、電気信号(振れ検出信号)を光学防振装置100〜800の電気基板部101に入力する。電気基板部101における比較部110および演算部120が、振れ検出信号に基づいて算出された目標位置に応じて、実施例1で説明したように光学防振装置100〜800の制御を行う。
また、上記各実施例では、光学防振装置について説明したが、本発明の光学シフト装置は光学防振装置以外の用途にも使用することができる。
以上説明した各実施例は代表的な例にすぎず、本発明の実施に際しては、各実施例に対して種々の変形や変更が可能である。
100,200,300,400,500,600,700,800 光学防振装置
141 光学素子
142〜842 可動部材
143〜843 ベース部材
146p〜846p 第1ピッチコイル
147p〜847p 第1ピッチマグネット
148p〜848p 第2ピッチコイル
149p〜849p 第2ピッチマグネット
147pb,149pb 着磁境界面

Claims (4)

  1. ベース部材と、
    光学素子または撮像素子である第1素子を保持し、前記ベース部材に対して第1方向にシフト可能な可動部材と、
    前記ベース部材に設けられている第1コイルと、前記可動部材に設けられている第1マグネットとを含む第1アクチュエータと、
    前記ベース部材に設けられている第2コイルと、前記可動部材に設けられている第2マグネットとを含む第2アクチュエータと、
    を有し、
    前記第1方向と直交する第2方向において、前記第1コイルと前記第1マグネットは対向し、
    前記第2方向において、前記第2コイルと前記第2マグネットは対向し、
    前記第1素子は、前記第1アクチュエータと前記第2アクチュエータとの間に配置され、
    前記第1マグネットの前記第1コイルと対向する第1面及び前記第2マグネットの前記第2コイルと対向する第2面は、N極部とS極部が前記第1方向に並んでおり、
    前記第1アクチュエータ及び前記第2アクチュエータは、前記可動部材を前記第1方向に移動させ、
    前記可動部材が前記第1方向における可動範囲の中心に位置する第1状態で、前記第1方向において、前記第1コイルの中心位置が前記第1マグネットのN極部とS極部の境界位置に対して前記第1素子から離れる側にずれており、前記第2コイルの中心位置が前記第2マグネットのN極部とS極部の境界位置に対して前記第1素子から離れる側にずれていることを特徴とする光学機器。
  2. 前記第1方向における前記第1コイルの中心位置のずれ量及び前記第2コイルの中心位置のずれ量は等しいことを特徴とする請求項1に記載の光学機器。
  3. 前記第1状態で、前記第1方向において、通電した前記第1コイルと前記第1マグネットのN極部とによって生じる力と、通電した前記第1コイルと前記第1マグネットのS極部とによって生じる力とが釣り合わないことを特徴とする請求項1または2に記載の光学機器。
  4. 前記第1状態から移動した第2状態の前記可動部材を、前記第1方向における可動範囲の中心に向けて付勢する付勢部材を更に有することを特徴とする請求項1からのいずれか一項に記載の光学機器。
JP2015209665A 2015-10-26 2015-10-26 光学機器 Expired - Fee Related JP6659113B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015209665A JP6659113B2 (ja) 2015-10-26 2015-10-26 光学機器
US15/298,509 US10416411B2 (en) 2015-10-26 2016-10-20 Optical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015209665A JP6659113B2 (ja) 2015-10-26 2015-10-26 光学機器

Publications (3)

Publication Number Publication Date
JP2017083557A JP2017083557A (ja) 2017-05-18
JP2017083557A5 JP2017083557A5 (ja) 2018-12-06
JP6659113B2 true JP6659113B2 (ja) 2020-03-04

Family

ID=58561525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015209665A Expired - Fee Related JP6659113B2 (ja) 2015-10-26 2015-10-26 光学機器

Country Status (2)

Country Link
US (1) US10416411B2 (ja)
JP (1) JP6659113B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109089020B (zh) * 2017-06-13 2021-06-04 台湾东电化股份有限公司 光学系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4181663B2 (ja) 1998-06-30 2008-11-19 キヤノン株式会社 補正光学装置、像振れ補正装置、カメラ及び交換レンズ
JP2010191411A (ja) * 2009-01-21 2010-09-02 Canon Inc レンズ鏡筒及びそれを有する光学機器
KR101074034B1 (ko) * 2009-10-26 2011-10-17 삼성전자주식회사 손떨림 보정장치
JP2012008379A (ja) * 2010-06-25 2012-01-12 Shicoh Engineering Co Ltd レンズ駆動装置、オートフォーカスカメラ及びカメラ付きモバイル端末装置
JP2013073201A (ja) * 2011-09-29 2013-04-22 Olympus Corp 像振れ補正装置及びそれを備えた撮像装置
WO2013046816A1 (ja) * 2011-09-29 2013-04-04 オリンパス株式会社 像振れ補正装置及びそれを備えた撮像装置
JP2013246413A (ja) * 2012-05-29 2013-12-09 Sony Corp 像ぶれ補正装置及び撮像装置
JP6199398B2 (ja) * 2013-09-27 2017-09-20 シャープ株式会社 カメラモジュール
DE102014217226B4 (de) * 2014-08-28 2021-09-23 Skf Blohm + Voss Industries Gmbh Verdampfungsanlage, Verdampfungsverfahren und Abdichtungssystem
US20180164661A1 (en) * 2015-07-13 2018-06-14 Sharp Kabushiki Kaisha Camera module

Also Published As

Publication number Publication date
US10416411B2 (en) 2019-09-17
JP2017083557A (ja) 2017-05-18
US20170115465A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5308457B2 (ja) 補正レンズ駆動用ボイスコイルモータ、手振れ補正装置、交換レンズ及び光学機器
JP5109450B2 (ja) ブレ補正装置及び光学機器
JP2012177753A (ja) レンズ駆動装置、オートフォーカスカメラ及びカメラ付きモバイル端末装置
JP2012088477A (ja) レンズ駆動装置、オートフォーカスカメラ及びカメラ付きモバイル端末装置
US11402604B2 (en) Camera device actuator
JP6833504B2 (ja) 振れ補正装置およびこれを用いたレンズ装置、撮像装置
JP2012177754A (ja) レンズ駆動装置、オートフォーカスカメラ及びカメラ付きモバイル端末装置
JP2012242801A (ja) 電磁駆動装置
JP2012103373A (ja) レンズ駆動装置、オートフォーカスカメラ及びカメラ付きモバイル端末
JP2011090064A (ja) レンズ駆動装置、オートフォーカスカメラ及びカメラ付き携帯電話
JP2008233525A (ja) アクチュエータ、及びそれを備えたレンズユニット、カメラ
JP2016224184A (ja) 手振れ補正機能付きレンズ駆動装置
JP2012177755A (ja) レンズ駆動装置、オートフォーカスカメラ及びカメラ付きモバイル端末装置
JP2015141389A (ja) レンズ駆動装置
JP6173416B2 (ja) 位置検出装置
JP6659113B2 (ja) 光学機器
JP2008209435A (ja) ブレ補正装置及び光学装置
JP6716281B2 (ja) 駆動装置、その制御方法、および制御プログラム、並びに撮像装置
JP2017015963A (ja) レンズ鏡筒
JP2011180519A (ja) 防振アクチュエータ、及びそれを備えたレンズユニット、カメラ
JP2011112918A (ja) レンズ駆動装置、オートフォーカスカメラ及びカメラ付き携帯電話
JP2018040864A (ja) 像ブレ補正装置、レンズ装置、および、撮像装置
JP2011118131A (ja) レンズ駆動装置、オートフォーカスカメラ及びカメラ付き携帯電話
JP6702690B2 (ja) 光学シフト装置および光学機器
US20230156334A1 (en) Sensor shifting module and camera module including the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181023

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200204

R151 Written notification of patent or utility model registration

Ref document number: 6659113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees