JP6641226B2 - Vacuum evaporation apparatus and method for cooling evaporation source - Google Patents

Vacuum evaporation apparatus and method for cooling evaporation source Download PDF

Info

Publication number
JP6641226B2
JP6641226B2 JP2016090099A JP2016090099A JP6641226B2 JP 6641226 B2 JP6641226 B2 JP 6641226B2 JP 2016090099 A JP2016090099 A JP 2016090099A JP 2016090099 A JP2016090099 A JP 2016090099A JP 6641226 B2 JP6641226 B2 JP 6641226B2
Authority
JP
Japan
Prior art keywords
evaporation source
evaporation
refrigerant gas
heat
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016090099A
Other languages
Japanese (ja)
Other versions
JP2017197824A (en
Inventor
一弘 渡邊
一弘 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Tokki Corp
Original Assignee
Canon Tokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Tokki Corp filed Critical Canon Tokki Corp
Priority to JP2016090099A priority Critical patent/JP6641226B2/en
Priority to KR1020170050814A priority patent/KR102190775B1/en
Priority to CN201710286860.XA priority patent/CN107338410A/en
Priority to CN202111476889.7A priority patent/CN114231909B/en
Publication of JP2017197824A publication Critical patent/JP2017197824A/en
Application granted granted Critical
Publication of JP6641226B2 publication Critical patent/JP6641226B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、真空蒸着装置並びに蒸発源の冷却方法に関するものである。   The present invention relates to a vacuum evaporation apparatus and a method for cooling an evaporation source.

成膜室内に基板と対向状態に蒸発源が設置される真空蒸着装置において、蒸着後の成膜材料の補充作業や機器のメンテナンス作業は、加熱された蒸発源を例えば100℃程度まで冷却して真空槽を大気開放した後で行う必要がある。   In a vacuum evaporation apparatus in which an evaporation source is installed in a film formation chamber so as to face a substrate, replenishment work of the film formation material after evaporation and maintenance work of equipment are performed by cooling the heated evaporation source to, for example, about 100 ° C. It must be performed after the vacuum chamber is opened to the atmosphere.

しかし、単に蒸発源の加熱を停止して真空雰囲気内に放置する自然冷却だけでは、蒸発源を100℃程度まで冷却するのに数時間から十数時間かかる場合もある。そのため、例えば特許文献1に開示されるように、蒸発源を加熱する加熱部の周囲に設けるリフレクタ(反射板)に冷媒配管を設けて冷媒ガス等を循環させることで、リフレクタの冷却により間接的に蒸発源の冷却効率を向上させたり、また、加熱部自体を冷却する冷媒配管を加熱部に設けたりするなど、冷却時間の短縮化を図るために種々の工夫が行われている。   However, simply cooling the evaporation source and leaving it in a vacuum atmosphere by simply stopping the heating of the evaporation source may require several to ten and several hours to cool the evaporation source to about 100 ° C. Therefore, as disclosed in Patent Document 1, for example, a refrigerant pipe or the like is provided in a reflector (reflection plate) provided around a heating unit that heats an evaporation source, and refrigerant gas or the like is circulated. Various efforts have been made to shorten the cooling time, for example, by improving the cooling efficiency of the evaporation source or by providing a refrigerant pipe for cooling the heating section itself in the heating section.

また、特許文献1では、蒸発源の冷却中に成膜室内に不活性ガスを導入して冷却を促進する点が開示されているが、具体的にどこにどのようにして不活性ガスを導入するかは何ら示唆されていない。   Patent Document 1 discloses that an inert gas is introduced into a film forming chamber during cooling of an evaporation source to promote cooling, but specifically, where and how the inert gas is introduced. Nothing is suggested.

特開2012−207238号公報JP 2012-207238 A

本発明は、上述のような現状に鑑み、蒸発源の冷却時間の更なる短縮化を図るべくなされたものであり、蒸発源を直接冷媒ガスで冷却することで蒸着後の蒸発源を短時間で大気開放可能な温度とすることが可能となり、装置の立ち下げ時間を短縮して生産効率を向上させることができる真空蒸着装置並びに蒸発源の冷却方法を提供するものである。   The present invention has been made in view of the above situation, and has been made to further reduce the cooling time of the evaporation source.The evaporation source can be cooled for a short time by directly cooling the evaporation source with a refrigerant gas. The present invention provides a vacuum vapor deposition apparatus and a method for cooling an evaporation source, which can reduce the fall time of the apparatus and improve the production efficiency by making it possible to make the temperature open to the atmosphere.

真空槽内に、収納された成膜材料を蒸発させる蒸発源を備え、前記蒸発源に設けられた蒸発口部から蒸発した成膜材料を射出することで、前記蒸発源と対向する位置に設けられた基板上に蒸着膜を形成する真空蒸着装置であって、前記蒸発源及びこの蒸発源を加熱する加熱部を収容し前記蒸発源及び前記加熱部からの熱を遮断する遮熱容体を備え、この遮熱容体と前記蒸発源との間の空間に冷媒ガスを導入する冷媒ガス導入機構が設けられており、この冷媒ガス導入機構は、前記遮熱容体に設けられた冷媒ガス導入孔と、この冷媒ガス導入孔の入口側に接続され前記真空槽の外部から前記冷媒ガス導入孔に前記冷媒ガスを送出するための冷媒ガス配管とで構成されていて、前記遮熱容体は前記蒸発口部を露出させるための開口部を有し、前記冷媒ガス導入孔から前記遮熱容体と前記蒸発源との間の前記空間に導入された前記冷媒ガスで前記蒸発源が直接冷却されると共に、この冷媒ガスが前記開口部の前記蒸発口部の周囲から前記遮熱容体の外部に流出されるように構成されていることを特徴とする真空蒸着装置に係るものである。 In the vacuum chamber, an evaporation source for evaporating the stored film-forming material is provided, and the film-forming material evaporated from the evaporation port provided in the evaporation source is provided at a position opposed to the evaporation source. A vacuum deposition apparatus for forming a vapor deposition film on the substrate, comprising a heat shield for housing the evaporation source and a heating unit for heating the evaporation source, and shielding heat from the evaporation source and the heating unit. A refrigerant gas introduction mechanism for introducing a refrigerant gas into a space between the heat shield container and the evaporation source is provided, and the refrigerant gas introduction mechanism includes a refrigerant gas introduction hole provided in the heat shield container. A refrigerant gas pipe connected to the inlet side of the refrigerant gas introduction hole for sending the refrigerant gas from outside the vacuum chamber to the refrigerant gas introduction hole, and the heat shield container is provided with the evaporating port. Having an opening for exposing the portion, The evaporation source is directly cooled by the refrigerant gas introduced from the medium gas introduction hole into the space between the heat shielding container and the evaporation source, and the refrigerant gas is supplied to the evaporation port of the opening. in which according to vacuum vapor deposition apparatus characterized that you have been composed around as flow out of the heat insulating condition.

本発明は上述のように構成したから、蒸発源を直接冷媒ガスで冷却することで蒸着後の蒸発源を短時間で大気開放可能な温度とすることが可能となり、装置の立ち下げ時間を短縮して生産効率を向上させることができる真空蒸着装置並びに蒸発源の冷却方法となる。   Since the present invention is configured as described above, the evaporation source can be cooled to a temperature at which the evaporation source can be opened to the atmosphere in a short time by directly cooling the evaporation source with a refrigerant gas, and the fall time of the apparatus is reduced. Thus, a vacuum evaporation apparatus and a method for cooling an evaporation source, which can improve production efficiency.

しかも、本発明は、遮熱容体に設けた冷媒ガス導入孔から、確実に遮熱容体と蒸発源との間の空間に冷媒ガスを導入することができ、冷却対象である蒸発源を冷媒ガスにより直接冷却することが可能となり、さらに遮熱容体と蒸発源との間の空間に導入された冷媒ガスが、遮熱容体の蒸発口部を露出させるための開口部の蒸発口部の周囲から流出するように構成することで、前記空間に導入した冷媒ガスが冷媒ガス導入孔から前記開口部に向かって流れる冷媒ガス流が作出されることになり、冷媒ガス導入孔から導入される冷媒ガスによる冷却が一層良好に行われることになる極めて優れた真空蒸着装置並びに蒸発源の冷却方法となる。Moreover, the present invention can reliably introduce the refrigerant gas into the space between the heat shield container and the evaporation source from the refrigerant gas introduction hole provided in the heat shield container, and change the evaporation source to be cooled to the refrigerant gas. It is possible to cool directly, and furthermore, the refrigerant gas introduced into the space between the heat shield container and the evaporation source flows from around the evaporator opening of the opening for exposing the evaporator opening of the heat shield container. By being configured to flow out, the refrigerant gas introduced into the space creates a refrigerant gas flow flowing from the refrigerant gas introduction hole toward the opening, and the refrigerant gas introduced from the refrigerant gas introduction hole The vacuum evaporation apparatus and the cooling method of the evaporation source are excellent in that the cooling by the evaporation is performed more excellently.

本実施例の概略説明断面図である。It is a schematic explanatory sectional view of a present Example. 本実施例の冷却曲線を示すグラフである。It is a graph which shows the cooling curve of a present Example. 蒸発源ユニットの一例を示す概略説明断面図である。It is a schematic explanatory sectional view showing an example of an evaporation source unit. 蒸発源ユニットの一例を示す概略説明断面図である。It is a schematic explanatory sectional view showing an example of an evaporation source unit. 蒸発源ユニットの一例を示す概略説明断面図である。It is a schematic explanatory sectional view showing an example of an evaporation source unit. 図3の例における冷却曲線を示すグラフである。4 is a graph showing a cooling curve in the example of FIG. 蒸発源ユニットの一例を示す概略説明断面図である。It is a schematic explanatory sectional view showing an example of an evaporation source unit. 蒸発源ユニットの一例を示す概略説明断面図である。It is a schematic explanatory sectional view showing an example of an evaporation source unit. 蒸発源ユニットの一例を示す概略説明断面図である。It is a schematic explanatory sectional view showing an example of an evaporation source unit. 蒸発源ユニットの一例を示す概略説明断面図である。It is a schematic explanatory sectional view showing an example of an evaporation source unit. 蒸発源ユニットの一例を示す概略説明断面図である。It is a schematic explanatory sectional view showing an example of an evaporation source unit. 別例の概略説明断面図である。It is a schematic explanatory sectional view of another example. 別例の冷却曲線を示すグラフである。It is a graph which shows the cooling curve of another example.

好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。   Preferred embodiments of the present invention will be briefly described with reference to the drawings, showing the operation of the present invention.

蒸発源4に収納された成膜材料20を加熱して蒸発させ、蒸発した成膜材料20を蒸発口部5から射出して基板6上に蒸着膜を形成する。   The film-forming material 20 stored in the evaporation source 4 is heated and evaporated, and the evaporated film-forming material 20 is emitted from the evaporation port 5 to form a vapor-deposited film on the substrate 6.

ここで、成膜後に真空槽1を大気開放する際、遮熱容体8と蒸発源4との間の空間9に冷媒ガスを導入し、この冷媒ガスにより直接蒸発源4を冷却することで、蒸発源4を短時間で大気開放可能な温度まで冷却することが可能となる。即ち、遮熱容体8に設けた冷媒ガス導入孔10から、確実に遮熱容体8と蒸発源4との間の空間9に冷媒ガスを導入することができ、冷却対象である蒸発源4を冷媒ガスにより直接冷却することが可能となる。   Here, when the vacuum chamber 1 is opened to the atmosphere after the film formation, a refrigerant gas is introduced into the space 9 between the heat shield container 8 and the evaporation source 4, and the evaporation source 4 is directly cooled by the refrigerant gas. It is possible to cool the evaporation source 4 to a temperature that can be opened to the atmosphere in a short time. That is, the refrigerant gas can be reliably introduced into the space 9 between the heat shield container 8 and the evaporation source 4 from the refrigerant gas introduction hole 10 provided in the heat shield container 8, and the evaporation source 4 to be cooled is cooled. It is possible to directly cool by the refrigerant gas.

具体的には、成膜後、加熱部7のパワーをオフにして、直ぐに冷媒ガスを前記空間9に導入するのではなく、自然冷却等の放射による冷却により、蒸発源4を冷媒ガスと蒸発源4との化合物が生じない程度の温度まで低下させた後、冷媒ガスを前記空間9に導入する。   Specifically, after the film formation, the power of the heating unit 7 is turned off, and instead of immediately introducing the refrigerant gas into the space 9, the evaporation source 4 is evaporated with the refrigerant gas by cooling by radiation such as natural cooling. After the temperature is lowered to such a level that the compound with the source 4 is not generated, the refrigerant gas is introduced into the space 9.

また、例えば、遮熱容体8と蒸発源4との間の空間9に導入された冷媒ガスが、遮熱容体8の蒸発口部5を露出させるための開口部12の蒸発口部5の周囲から流出するように構成することで、前記空間9に導入した冷媒ガスが冷媒ガス導入孔10から前記開口部12に向かって流れる冷媒ガス流が作出されることになり、冷媒ガス導入孔10から導入される冷媒ガスによる冷却が一層良好に行われることになる。   In addition, for example, the refrigerant gas introduced into the space 9 between the heat shield container 8 and the evaporation source 4 circulates around the evaporation port 5 of the opening 12 for exposing the evaporation port 5 of the heat shield container 8. The refrigerant gas introduced into the space 9 is generated from the refrigerant gas introduction hole 10, and a refrigerant gas flow flowing toward the opening 12 is created. Cooling by the introduced refrigerant gas is performed more favorably.

従って、本発明は、放射による冷却だけでなく、冷媒ガスを遮熱容体8と蒸発源4との間の空間9に導入して蒸発源4を直接冷媒ガス(対流)によって確実に冷却することが可能となり、極めて効率的に冷媒ガスによる冷却を行うことが可能となる。   Therefore, the present invention not only cools by radiation, but also introduces a refrigerant gas into the space 9 between the heat shielding container 8 and the evaporation source 4 to surely cool the evaporation source 4 directly by the refrigerant gas (convection). And cooling with the refrigerant gas can be performed very efficiently.

また、例えば遮熱容体8の内側面側に吸熱面部13を設ける構成とすることで、蒸発源4との対向面が冷えやすくなり、それだけ蒸発源4の放射による冷却が促進されることになる。従って、例えば、蒸着後、加熱部7のパワーをオフした直後は、吸熱面部13を利用した放射による冷却を行い、所定温度に到達した後、冷媒ガスを遮熱容体8と蒸発源4との間の空間9に導入することによる冷却を行うようにすることで、蒸発源4の冷却時間を一層短縮することが可能となる。   Further, for example, by providing the heat absorbing surface portion 13 on the inner surface side of the heat shield container 8, the surface facing the evaporation source 4 is easily cooled, and the cooling by the radiation of the evaporation source 4 is promoted accordingly. . Therefore, for example, immediately after the power of the heating unit 7 is turned off after vapor deposition, cooling by radiation using the heat absorbing surface unit 13 is performed, and after reaching a predetermined temperature, the refrigerant gas is cooled by the heat shielding container 8 and the evaporation source 4. By performing cooling by introducing into the space 9 between the spaces, the cooling time of the evaporation source 4 can be further reduced.

また、例えば冷媒ガス導入孔10をその出口が蒸発源4の前記成膜材料20が収納される収納部2を臨む位置に設けることで、例えば熱容量の大きい有機材料等の成膜材料20が収納される収納部2近傍を良好に冷却することが可能となり、それだけ冷却時間を短縮可能となる。   Further, for example, by providing the refrigerant gas introduction hole 10 at a position where the outlet faces the storage section 2 of the evaporation source 4 where the film formation material 20 is stored, the film formation material 20 such as an organic material having a large heat capacity is stored. Thus, the vicinity of the storage section 2 to be cooled can be satisfactorily cooled, and the cooling time can be shortened accordingly.

本発明の具体的な実施例について図面に基づいて説明する。   A specific embodiment of the present invention will be described with reference to the drawings.

本実施例は、真空槽1内に蒸発源4、蒸発源4を加熱する加熱部7及び蒸発源4と加熱部7とを収容する遮熱容体8が設けられ、前記蒸発源4と対向する基板6上に蒸着膜を形成する真空蒸着装置である。   In this embodiment, an evaporation source 4, a heating unit 7 for heating the evaporation source 4, and a heat shielding container 8 for accommodating the evaporation source 4 and the heating unit 7 are provided in the vacuum chamber 1 and face the evaporation source 4. This is a vacuum evaporation apparatus for forming an evaporation film on the substrate 6.

具体的には、図1に図示したように、蒸発源4と遮熱容体8との間の空間9に冷媒ガス(窒素ガス)を導入する冷媒ガス導入機構が設けられ、この冷媒ガス導入機構は、前記遮熱容体8に設けられた冷媒ガス導入孔10と、この冷媒ガス導入孔10の入口側に接続され前記真空槽1の外部から前記ガス導入孔に前記冷媒ガスを送出するための冷媒ガス配管11とで構成されているものである。図1中、符号25は冷媒ガス供給用の冷媒ガス供給部、26は排気用の真空ポンプである。   Specifically, as shown in FIG. 1, a refrigerant gas introduction mechanism for introducing a refrigerant gas (nitrogen gas) into a space 9 between the evaporation source 4 and the heat shield container 8 is provided. A refrigerant gas introduction hole 10 provided in the heat shielding container 8 and a refrigerant gas introduction hole 10 connected to the inlet side of the refrigerant gas introduction hole 10 for sending the refrigerant gas from outside the vacuum chamber 1 to the gas introduction hole. And a refrigerant gas pipe 11. In FIG. 1, reference numeral 25 denotes a refrigerant gas supply unit for supplying a refrigerant gas, and reference numeral 26 denotes a vacuum pump for exhaust.

本実施例の蒸発源4は、内部に材料収納容器21が設けられ、この材料収納容器21に成膜材料20が収納されている。材料収納容器21は箱状で、材料放出用の孔が設けられた蓋体22が設けられている。従って、メンテナンス時に、蒸発源4から材料収納容器21を取り出し、成膜材料20を充填してから蒸発源4にセットすることで、蒸発源4自体を取り外す作業が不要となり、手軽に成膜材料20を充填することが可能となる。   In the evaporation source 4 of the present embodiment, a material storage container 21 is provided inside, and the film storage material 20 is stored in the material storage container 21. The material storage container 21 has a box shape, and is provided with a lid 22 provided with a hole for discharging material. Therefore, at the time of maintenance, by taking out the material storage container 21 from the evaporation source 4, filling the film forming material 20, and then setting the material into the evaporation source 4, the work of removing the evaporation source 4 itself becomes unnecessary, and the film forming material can be easily prepared. 20 can be filled.

成膜材料20は材料収納容器21の下部に収納され、成膜材料20の表面と蓋体22との間の空間は蒸発した成膜材料20が拡散する拡散領域となる。即ち、図1の蒸発源4は、材料収納容器21の成膜材料20が収納される材料収納領域との対向部分が収納部2となり、前記拡散領域との対向部分が拡散部3となる。なお、材料収納容器21の外部の空間も拡散領域となり得る。   The film forming material 20 is stored in the lower part of the material storage container 21, and the space between the surface of the film forming material 20 and the lid 22 is a diffusion region where the evaporated film forming material 20 is diffused. That is, in the evaporation source 4 of FIG. 1, the portion facing the material storage region of the material storage container 21 in which the film forming material 20 is stored serves as the storage portion 2, and the portion facing the diffusion region serves as the diffusion portion 3. Note that a space outside the material storage container 21 can also be a diffusion region.

蒸発源4の周囲には、円形断面のシースヒータにより構成される板状の加熱部7が設けられている。なお、加熱部7は、例えば板状のカーボンヒータ等、他の構成としても良い。   Around the evaporation source 4, there is provided a plate-shaped heating unit 7 constituted by a sheath heater having a circular cross section. The heating unit 7 may have another configuration such as a plate-like carbon heater.

蒸発源4の拡散部3にはノズル状の蒸発口部5が設けられ、蒸発口部5を露出させた状態で蒸発源4及び加熱部7を収容する遮熱容体8が設けられている。   The diffusion unit 3 of the evaporation source 4 is provided with a nozzle-shaped evaporation port 5, and a heat shield container 8 that accommodates the evaporation source 4 and the heating unit 7 with the evaporation port 5 exposed.

遮熱容体8は蒸発口部5を露出させるための開口部12を有し、前記冷媒ガス導入孔10から遮熱容体8と蒸発源4との間の空間9に導入された冷媒ガスが前記開口部12の前記蒸発口部5の周囲から、真空槽1の内部にして遮熱容体8の外部に流出するように構成されている。即ち、開口部12は蒸発口部5の外径より径大で蒸発口部5の外周面と開口部12の端面との間に隙間が生じるように構成されている。   The heat shield container 8 has an opening 12 for exposing the evaporating port 5, and the refrigerant gas introduced into the space 9 between the heat shield container 8 and the evaporation source 4 from the refrigerant gas introducing hole 10 is used for the heat shield container 8. From the periphery of the evaporating port 5 of the opening 12, the inside of the vacuum chamber 1 is discharged to the outside of the heat shield container 8. That is, the opening 12 has a diameter larger than the outer diameter of the evaporating port 5, and is configured such that a gap is formed between the outer peripheral surface of the evaporating port 5 and the end face of the opening 12.

この蒸発源4を囲む遮熱容体8の内部には冷媒循環路23が形成されている。この冷媒循環路23に水等の冷媒を循環させることで、遮熱容体8の温度を保持して蒸発源4や加熱部7からの輻射熱が真空槽1内の基板6や他の部位に影響しないようにしている。また、本実施例の遮熱容体8は冷媒循環路23を内装したパネル体を組み合わせて形成している。冷媒循環部23は各パネル体に蛇行状に設けられ、別のパネル体の冷媒循環路23と接続されて全体として1つの循環路を構成するものである。図1中、符号24は冷媒循環路23に冷媒を循環させる冷媒循環部である。   A refrigerant circulation path 23 is formed inside the heat shielding container 8 surrounding the evaporation source 4. By circulating a coolant such as water in the coolant circulation path 23, the temperature of the heat shield container 8 is maintained, and the radiant heat from the evaporation source 4 and the heating unit 7 affects the substrate 6 and other parts in the vacuum chamber 1. I try not to. In addition, the heat shield container 8 of the present embodiment is formed by combining a panel body having a refrigerant circulation path 23 therein. The refrigerant circulation section 23 is provided in a meandering shape on each panel body, and is connected to the refrigerant circulation path 23 of another panel body to constitute one circulation path as a whole. In FIG. 1, reference numeral 24 denotes a refrigerant circulating unit that circulates the refrigerant through the refrigerant circulating path 23.

本実施例の冷媒ガス導入孔10は、その出口側が収納部2を臨む位置に設けられている。具体的には、冷媒ガス導入孔10は、上端側の開口部12とは反対側位置となる下端側に設けられている。収納部2は、成膜材料20が収納され冷却に大きなエネルギーが必要な部位である。従って、収納部2を良好に冷却することが可能となり、それだけ冷却時間を短縮可能となる。特に、熱容量の大きい有機材料が成膜材料20である場合、より効果が著しい。   The outlet side of the refrigerant gas introduction hole 10 of the present embodiment is provided at a position facing the storage section 2. Specifically, the refrigerant gas introduction hole 10 is provided on the lower end side opposite to the opening 12 on the upper end side. The storage part 2 is a part in which the film forming material 20 is stored and a large amount of energy is required for cooling. Therefore, the storage section 2 can be cooled well, and the cooling time can be shortened accordingly. In particular, when the organic material having a large heat capacity is the film forming material 20, the effect is more remarkable.

以上の構成の真空蒸着装置において、成膜後、以下の工程で蒸発源4を冷却する。   In the vacuum evaporation apparatus having the above configuration, the evaporation source 4 is cooled in the following steps after film formation.

成膜後の温度が400℃程度の場合、先ず、加熱部7による加熱を停止して熱放射により蒸発源4の冷却を行う(第1冷却工程)。   When the temperature after film formation is about 400 ° C., first, the heating by the heating unit 7 is stopped, and the evaporation source 4 is cooled by heat radiation (first cooling step).

続いて、蒸発源4が250℃程度まで冷却された後、遮熱容体8と蒸発源4との間の空間9に冷媒ガスを導入することにより蒸発源4の冷却を行う(第2冷却工程)。   Subsequently, after the evaporation source 4 is cooled to about 250 ° C., the evaporation source 4 is cooled by introducing a refrigerant gas into the space 9 between the heat shielding container 8 and the evaporation source 4 (second cooling step). ).

以上の工程で蒸発源4を約100℃まで冷却する際にかかる時間は、図2に図示したように、冷却対策がない従従来例(C)では6時間、リフレクタを冷却する特許文献1に係る従来例(B)では3.5時間かかるのに対し、本実施例(A)は2.5時間程度となる。   As shown in FIG. 2, the time required for cooling the evaporation source 4 to about 100 ° C. in the above process is 6 hours in the conventional example (C) having no cooling countermeasure. The conventional example (B) takes 3.5 hours, while the present example (A) takes about 2.5 hours.

従って、本実施例によれば冷却速度が向上し、それだけ装置の立ち下げ時間を短縮することが可能となる。   Therefore, according to the present embodiment, the cooling rate is improved, and it is possible to shorten the fall time of the apparatus accordingly.

また、本実施例は、上記第1冷却工程及び第2冷却工程を経ることにより、急速冷却による各構成部品の熱変形を防ぐことができ、また、冷媒ガスと蒸発源4に用いられる金属との反応を防止できる。   Further, in the present embodiment, by performing the first cooling step and the second cooling step, it is possible to prevent the thermal deformation of each component due to the rapid cooling. Reaction can be prevented.

また、冷媒ガス導入孔10を収納部2を臨む下端側位置に設けることで、蒸発口部5が収納部2にやや遅れて冷却されていくため、蒸着レートが高い状態で加熱部7のパワーをオフしても、蒸発口部5付近に材料が析出することを防止できる。   In addition, by providing the refrigerant gas introduction hole 10 at the lower end position facing the storage section 2, the evaporation port section 5 is cooled slightly later than the storage section 2, so that the power of the heating section 7 is kept high at a high deposition rate. Is turned off, it is possible to prevent the material from being deposited in the vicinity of the evaporation port 5.

また、図1中破線部で囲む蒸発源ユニットを以下のように構成することで、更に冷却効率を向上させることができる。   Further, by configuring the evaporation source unit surrounded by a broken line in FIG. 1 as follows, the cooling efficiency can be further improved.

例えば図3〜5は、蒸発源4を、成膜材料20を収納する収納部2を形成する収納室と蒸発した前記成膜材料20が拡散し圧力を均一化する拡散部3を形成する拡散室とを、収納部及び拡散室より小径な連結管17で連結した構成としている。   For example, FIGS. 3 to 5 show that the evaporation source 4 is formed by a storage chamber for forming the storage unit 2 for storing the film forming material 20 and a diffusion unit 3 for forming the diffusion unit 3 for diffusing the evaporated film forming material 20 to make the pressure uniform. The chamber and the diffusion chamber are connected to each other by a connection pipe 17 having a smaller diameter than the storage section and the diffusion chamber.

図3〜5においては、材料収納容器21を配置する収納室を設けると共に、蒸発した成膜材料を良好に拡散するための拡散室を収納室とは分離して設け、この拡散室を拡散部3としている。   3 to 5, a storage chamber for disposing the material storage container 21 is provided, and a diffusion chamber for satisfactorily diffusing the evaporated film-forming material is provided separately from the storage chamber. It is set to 3.

また、遮熱容体8には、収納部2と拡散部3との間を仕切る仕切部19を設ける。仕切部19により収納部2と拡散部3とを熱的に独立した構成とすることで、収納部2及び拡散部3の温度制御を夫々独立して行うことが可能となり、一層良好に成膜を行える構成となる。   Further, the heat shield container 8 is provided with a partition 19 for partitioning between the storage section 2 and the diffusion section 3. By making the storage part 2 and the diffusion part 3 thermally independent by the partition part 19, the temperature control of the storage part 2 and the diffusion part 3 can be performed independently, and the film can be more excellently formed. Can be performed.

具体的には仕切部19は、遮熱容体8を構成する1つのパネル体に前記連結管17を挿通する挿通孔18を設けた構成としている。挿通孔18は連結管17の外径より径大で連結管17の外周面と挿通孔18の端面との間に隙間が生じるように構成されている。   Specifically, the partition part 19 has a configuration in which an insertion hole 18 through which the connection pipe 17 is inserted is provided in one panel body constituting the heat shield container 8. The insertion hole 18 has a diameter larger than the outer diameter of the connection pipe 17 and is configured such that a gap is formed between the outer peripheral surface of the connection pipe 17 and the end face of the insertion hole 18.

また、図3〜5においては、遮熱容体8の内側面側に赤外領域における放射率を高くする吸熱面部13を設けている。吸熱面部13の赤外領域における放射率が、吸熱面部13を設けない場合の遮熱容体8の赤外領域における放射率より高ければ、放射率向上による冷却効率向上効果を得ることができる。図3〜5においては、遮熱容体8の内側面に吸熱面部13を有する板材を取り付けている。これにより、加熱部7や蒸発源4からの熱を吸熱面部13で吸熱し、吸熱面部13を遮熱容体8により速やかに冷却して放射による冷却が効率的に行える。また、吸熱面部13を設けることで収納部2と遮熱容体8との間で単位時間当たりにやり取りする熱量が大きくなり、真空中でも熱応答性が良く、レートの制御がし易い構成となる。また、吸熱面部13を遮熱容体8と別体構成とすることで、高温環境にさらされる事などによる表面処理の劣化時に交換を容易に行える構成となる。   3 to 5, a heat absorbing surface portion 13 for increasing the emissivity in the infrared region is provided on the inner surface side of the heat shield container 8. If the emissivity in the infrared region of the heat absorbing surface portion 13 is higher than the emissivity in the infrared region of the heat shielding container 8 when the heat absorbing surface portion 13 is not provided, an effect of improving the cooling efficiency by improving the emissivity can be obtained. In FIGS. 3 to 5, a plate having a heat absorbing surface 13 is attached to the inner surface of the heat shield container 8. Thereby, the heat from the heating unit 7 and the evaporation source 4 is absorbed by the heat absorbing surface 13, and the heat absorbing surface 13 is quickly cooled by the heat shielding container 8, so that the radiation cooling can be efficiently performed. Further, by providing the heat absorbing surface portion 13, the amount of heat exchanged per unit time between the storage portion 2 and the heat shield container 8 is increased, so that the heat response is good even in a vacuum and the rate can be easily controlled. In addition, since the heat absorbing surface portion 13 is formed separately from the heat shield container 8, the structure can be easily replaced when the surface treatment is deteriorated due to exposure to a high temperature environment.

吸熱面部13は、前記板材の表面に深さの1/2以下の直径を有する止まり穴を複数並設して形成されている。なお、止まり穴に限らず、貫通孔としても良い。この止まり穴により、表面積が増加し、更に止まり穴の内面で電磁波が多重反射を繰り返すことで見かけの放射率が向上する。また、表面積が増加し、冷媒ガスと遮熱容体8との熱伝達率が向上することで、冷却時間をより短縮することができる。また、止まり穴の密度を部位により変えて吸熱し易い部分とし難い部分とを意図的に形成することもできる。例えば、収納部2を臨む位置にある吸熱面部13は放射率を高くし、拡散部3や蒸発口部5を臨む位置にある吸熱面部13は放射率を低くすること等ができる。   The heat absorbing surface portion 13 is formed by arranging a plurality of blind holes having a diameter of 以下 or less of a depth on the surface of the plate material. In addition, it is good also as not only a blind hole but a through-hole. The blind hole increases the surface area, and further improves the apparent emissivity by repeating multiple reflections of the electromagnetic wave on the inner surface of the blind hole. In addition, the cooling time can be further reduced by increasing the surface area and improving the heat transfer coefficient between the refrigerant gas and the heat shield container 8. Further, the density of the blind hole can be changed depending on the portion, and a portion that easily absorbs heat and a portion that is difficult to absorb heat can be intentionally formed. For example, the emissivity of the heat absorbing surface 13 at the position facing the storage unit 2 can be increased, and the emissivity of the heat absorbing surface 13 at the position facing the diffusion unit 3 and the evaporating port 5 can be reduced.

なお、吸熱面部13は、止まり穴を設けることで形成しているが、赤外領域における放射率を高くするメッキ処理、溶射処理、酸化被膜処理若しくは粗面処理を施したりして形成しても良い。また、吸熱面部13は、遮熱容体8とは別体構成として遮熱容体8の内側面に取り付ける構成としているが、遮熱容体8の内側面自体の赤外領域における放射率を高くするように、遮熱容体8の内側面自体に止まり穴を形成したりメッキ処理等を施しても良い。吸熱面部13を遮熱容体8に一体に形成した場合には、遮熱容体8と吸熱面部13間に形成される接触熱抵抗がなくなるため、それだけ冷却速度を速くすることができる。   Although the heat absorbing surface portion 13 is formed by providing a blind hole, the heat absorbing surface portion 13 may be formed by performing a plating process, a thermal spraying process, an oxide film process, or a rough surface process for increasing the emissivity in the infrared region. good. Further, the heat absorbing surface portion 13 is configured to be attached to the inner surface of the heat shield container 8 as a separate structure from the heat shield container 8, but the emissivity of the inner surface of the heat shield container 8 itself in the infrared region is increased. Alternatively, a blind hole may be formed in the inner surface of the heat shield container 8 itself, or plating may be performed. When the heat absorbing surface portion 13 is formed integrally with the heat shield container 8, there is no contact thermal resistance formed between the heat shield container 8 and the heat absorbing surface portion 13, so that the cooling rate can be increased accordingly.

図3は収納部2及び拡散部3との対向面に吸熱面部13を設けた例、図4は収納部2との対向面に吸熱面部13を設け、拡散部3と遮熱容体8との間に後述する保温板部16を設けた例、図5は収納部2及び蒸発口部5の周囲を除く拡散部3との対向面に吸熱面部13を設け、蒸発口部5の周囲に保温板部16を設けた例である。   FIG. 3 shows an example in which a heat absorbing surface portion 13 is provided on a surface facing the storage portion 2 and the diffusion portion 3. FIG. 4 shows an example in which a heat absorption surface portion 13 is provided on a surface facing the storage portion 2. FIG. 5 shows an example in which a heat insulating plate portion 16 is provided between the heat absorbing plate portion 16 and the diffusion portion 3 except for the periphery of the storage portion 2 and the evaporating port portion 5. This is an example in which a plate portion 16 is provided.

また、図3及び図5では仕切部19の収納部2との対向面及び仕切部19の拡散部3との対向面にも夫々吸熱面部13を設けている。仕切部19に夫々吸熱面部13を設ける構成とすることで、蒸発源4の高さをよりコンパクトにできる。   3 and 5, a heat absorbing surface portion 13 is provided also on the surface of the partition 19 facing the storage section 2 and on the surface of the partition 19 facing the diffusion portion 3, respectively. By providing the heat absorbing surface portions 13 in the partition portions 19, respectively, the height of the evaporation source 4 can be made more compact.

保温板部16は、赤外領域における放射率が低い板部材で構成されている。保温板部16は、拡散部3を加熱する加熱部7と遮熱容体8との間にして蒸発口部5の外周を囲むように設けると、この蒸発口部5の冷却速度を他部位より遅くすることができ、蒸着レートが高い状態で加熱部7のパワーをオフしても、材料の析出を抑制することが可能となる。   The heat retaining plate 16 is made of a plate member having a low emissivity in the infrared region. When the heat retaining plate 16 is provided between the heating unit 7 for heating the diffusion unit 3 and the heat shield container 8 so as to surround the outer periphery of the evaporating port 5, the cooling rate of the evaporating port 5 is set to be lower than that of other parts. Even if the power of the heating unit 7 is turned off at a high deposition rate, the deposition of the material can be suppressed.

図3の構成の蒸発源ユニットを使用した場合の冷却工程は以下の通りになる。   The cooling process when the evaporation source unit having the configuration shown in FIG. 3 is used is as follows.

成膜後の温度が400℃程度の場合、先ず、加熱部7による加熱を停止して吸熱面部13も利用した熱放射により蒸発源4の冷却を行う(第1冷却工程)。   When the temperature after film formation is about 400 ° C., first, the heating by the heating unit 7 is stopped, and the evaporation source 4 is cooled by heat radiation using the heat absorbing surface 13 (first cooling step).

続いて、蒸発源4が250℃程度まで冷却された後、遮熱容体8と蒸発源4との間の空間9に冷媒ガスを導入することにより蒸発源4の冷却を行う(第2冷却工程)。   Subsequently, after the evaporation source 4 is cooled to about 250 ° C., the evaporation source 4 is cooled by introducing a refrigerant gas into the space 9 between the heat shielding container 8 and the evaporation source 4 (second cooling step). ).

以上の工程で蒸発源4を約100℃まで冷却する際にかかる時間は、図6に図示したように、冷却対策がない従従来例(C)では6時間、リフレクタを冷却する特許文献1に係る従来例(B)では3.5時間かかるのに対し、図3の例(A´)は2時間程度となる。   As shown in FIG. 6, the time required to cool the evaporation source 4 to about 100 ° C. in the above-described process is 6 hours in the conventional example (C) having no cooling measures. The conventional example (B) takes 3.5 hours, while the example (A ′) of FIG. 3 takes about 2 hours.

即ち、熱放射による冷却が吸熱面部13により促進され、一層冷却速度を向上させることが可能となる。   That is, cooling by heat radiation is promoted by the heat absorbing surface portion 13, and the cooling rate can be further improved.

更に、図1中破線部で囲む蒸発源ユニットを以下のように構成しても良い。   Further, the evaporation source unit surrounded by a broken line in FIG. 1 may be configured as follows.

図7〜9は、図3〜5における冷媒ガス導入孔10の設置数を増やしたり、設置位置を変更したりした例である。   7 to 9 show examples in which the number of the refrigerant gas introduction holes 10 shown in FIGS. 3 to 5 is increased or the installation position is changed.

図7は、遮熱容体8の下端面だけでなく、収納部2の左右側面との対向面に夫々冷媒ガス導入孔10を設けた例である。この場合、一層良好に収納部2を冷却できる。   FIG. 7 shows an example in which the refrigerant gas introduction holes 10 are provided not only on the lower end surface of the heat shield container 8 but also on the surfaces facing the left and right side surfaces of the storage section 2. In this case, the storage section 2 can be cooled more favorably.

図8は、遮熱容体8の下端面(収納部2を臨む位置)だけでなく、拡散部3を臨む位置(拡散部3の左右側面との対向面夫々)に冷媒ガス導入孔10を設けた例である。また、図9は、遮熱容体8の下端面(収納部2を臨む位置)に冷媒ガス導入孔10を設けず、拡散部3を臨む位置(拡散部3の左右側面との対向面夫々)にのみ冷媒ガス導入孔10を設けた例である。この場合、拡散部3の冷却を良好に行うことができる。   FIG. 8 shows that the refrigerant gas introduction holes 10 are provided not only at the lower end surface of the heat shield container 8 (at the position facing the storage unit 2) but also at the position facing the diffusion unit 3 (each of the surfaces facing the left and right side surfaces of the diffusion unit 3). This is an example. FIG. 9 shows a position in which the refrigerant gas introduction hole 10 is not provided at the lower end surface of the heat shielding container 8 (a position facing the storage unit 2) and the diffusion unit 3 is facing (the surfaces facing the left and right side surfaces of the diffusion unit 3). This is an example in which the coolant gas introduction holes 10 are provided only in the holes. In this case, the cooling of the diffusion unit 3 can be favorably performed.

また、図10に図示したように、箱状の蒸発源4に直接成膜材料20を収納し、成膜材料20が収納される部分を収納部2とし、成膜材料20の表面と蒸発源4の上面との間の空間を囲む部分を拡散部3とした構成において、遮熱容体8の内側面に吸熱面部13を設ける構成としても良い。   As shown in FIG. 10, the film-forming material 20 is directly stored in the box-shaped evaporation source 4, and a portion in which the film-forming material 20 is stored is referred to as a storage unit 2. In the configuration in which the portion surrounding the space between the upper surface of the heat shield 4 and the upper surface of the heat shield 4 is the diffusion portion 3, the heat absorbing surface 13 may be provided on the inner surface of the heat shield container 8.

図10では、遮熱容体8の内側面全面に吸熱面部13を設け、冷媒ガス導入孔10を2つ設けた構成としている。また、各冷媒ガス導入孔10からは夫々異なる冷媒ガスを導入するように構成しても良い。例えば一方は窒素ガス、他方はアルゴンガスを導入するような構成としても良い。   In FIG. 10, a heat absorbing surface portion 13 is provided on the entire inner side surface of the heat shield container 8, and two refrigerant gas introduction holes 10 are provided. Further, different refrigerant gas may be introduced from each refrigerant gas introduction hole 10. For example, one may introduce nitrogen gas and the other may introduce argon gas.

また、図11に図示したように、蒸発源4を、拡散部3の長手方向に複数蒸発口部5を並設した所謂ラインソースとした場合でも同様である。即ち、図11は、拡散部3に4つの蒸発口部5を並設した構成であり、遮熱容体8には各蒸発口部5を露出させる開口部12が4つ設けられている。また、収納部2と拡散部3との間を仕切る仕切部19が設けられている。また、遮熱容体8の収納部2及び蒸発口部5の周囲を除く拡散部3との対向面に吸熱面部13を設け、蒸発口部5の周囲に保温板部16を設けている。また、遮熱容体8の仕切部19の収納部2との対向面及び仕切部19の拡散部3との対向面にも夫々吸熱面部13を設けている。仕切部19の上下面に夫々吸熱面部13を設ける構成とすることで、蒸発源4の高さをよりコンパクトにできる。また、収納部2及び拡散部3が大型となるラインソースでは、収納部2と拡散部3との温度が相互に影響を受け易く、仕切部19により収納部2と拡散部3とを熱的に独立した構成とすることによる恩恵が特に大きくなる。   Also, as shown in FIG. 11, the same applies to a case where the evaporation source 4 is a so-called line source in which a plurality of evaporation ports 5 are arranged in the longitudinal direction of the diffusion section 3. That is, FIG. 11 shows a configuration in which four evaporating ports 5 are provided side by side in the diffusing section 3, and the heat shield container 8 is provided with four openings 12 for exposing each evaporating port 5. Further, a partition 19 is provided to partition between the storage section 2 and the diffusion section 3. In addition, a heat absorbing surface 13 is provided on a surface of the heat shielding container 8 facing the diffusion unit 3 except for the periphery of the storage unit 2 and the evaporating port 5, and a heat retaining plate 16 is provided around the evaporating port 5. Further, a heat absorbing surface portion 13 is also provided on a surface of the heat shielding container 8 facing the storage portion 2 of the partition portion 19 and a surface of the partition portion 19 facing the diffusion portion 3. By providing the heat absorbing surfaces 13 on the upper and lower surfaces of the partition 19, respectively, the height of the evaporation source 4 can be made more compact. In a line source in which the storage unit 2 and the diffusion unit 3 are large, the temperatures of the storage unit 2 and the diffusion unit 3 are easily affected by each other, and the storage unit 2 and the diffusion unit 3 are thermally separated by the partition unit 19. The benefit of having an independent configuration is particularly great.

図11は、冷媒ガス導入孔10を2つ設けた構成であり、各冷媒ガス導入孔10からは夫々異なる冷媒ガスを導入するように構成しても良い。例えば一方は窒素ガス、他方はアルゴンガスを導入するような構成としても良い。   FIG. 11 shows a configuration in which two refrigerant gas introduction holes 10 are provided, and different refrigerant gas may be introduced from each refrigerant gas introduction hole 10. For example, one may introduce nitrogen gas and the other may introduce argon gas.

図12は、加熱部7に冷媒循環路15を設ける構成とした本実施例の別例である。具体的には、冷媒循環路15は各加熱部7の外面側に蛇行状に配置されており、夫々が接続されて全体として1つの循環路を構成するようにしている。   FIG. 12 is another example of the present embodiment in which a refrigerant circulation path 15 is provided in the heating unit 7. Specifically, the refrigerant circulation paths 15 are arranged in a meandering shape on the outer surface side of each heating unit 7 and are connected to each other to constitute one circulation path as a whole.

冷媒循環路15の一端には冷媒としての冷却水を供給する冷却水供給部29が接続され、他端には、三方弁32を介して冷却水回収用の冷却水回収部30と、冷却水を落として大気開放させるための大気開放部31とが接続されている。図12中、符号24aは遮熱容体8の冷媒循環路23に冷却水を供給する冷却水供給部、24bは冷媒循環路23の冷却水を回収する冷却水回収部である。   A coolant supply unit 29 for supplying coolant as a coolant is connected to one end of the coolant circulation path 15, and a coolant collection unit 30 for coolant collection via a three-way valve 32 and a coolant Is connected to an atmosphere opening section 31 for dropping the air to the atmosphere. In FIG. 12, reference numeral 24a denotes a cooling water supply unit that supplies cooling water to the refrigerant circulation path 23 of the heat shield container 8, and 24b denotes a cooling water recovery unit that collects cooling water of the refrigerant circulation path 23.

また、別例では、冷媒ガス導入孔10を2つ、遮熱容体8の収納部2を臨む下端に並設した構成としている。また、一方の冷媒ガス導入孔10には窒素ガス供給部27が冷媒ガス配管11を介して接続され、他方の冷媒ガス導入孔10にはアルゴンガス供給部28が冷媒ガス配管11を介して接続されている。   In another example, two refrigerant gas introduction holes 10 are arranged side by side at the lower end facing the storage section 2 of the heat shield container 8. A nitrogen gas supply unit 27 is connected to one of the refrigerant gas introduction holes 10 via the refrigerant gas pipe 11, and an argon gas supply unit 28 is connected to the other refrigerant gas introduction hole 10 via the refrigerant gas pipe 11. Have been.

また、別例では、吸熱面部13及び保温板部16が図5の例と同様に設けられている。   Further, in another example, the heat absorbing surface portion 13 and the heat retaining plate portion 16 are provided similarly to the example of FIG.

別例では、蒸着中は、遮熱容体8の冷媒循環路23には常時冷却水を循環させ、加熱部7の冷媒循環路15への冷却水供給部29のバルブを閉じ、且つ、冷媒循環路15を三方弁32により大気開放しておく。   In another example, during vapor deposition, cooling water is constantly circulated through the refrigerant circulation path 23 of the heat shield container 8, the valve of the cooling water supply unit 29 to the refrigerant circulation path 15 of the heating unit 7 is closed, and the refrigerant circulates. The passage 15 is opened to the atmosphere by a three-way valve 32.

そして、蒸着後の冷却は以下のように行う。   Cooling after vapor deposition is performed as follows.

加熱部7による加熱を停止し、放射による冷却を行う。この際、収納部2の冷却が吸熱面部13により促進され、且つ、蒸発口部5の冷却は保温板部16により遅れることになる。従って、加熱停止後に収納部2から発生する多少の蒸発粒子が蒸発口部5近傍で冷却されて析出することを可及的に抑制しつつ、収納部2の冷却が良好に行われる。   The heating by the heating unit 7 is stopped, and cooling by radiation is performed. At this time, the cooling of the storage section 2 is promoted by the heat absorbing surface section 13, and the cooling of the evaporation port section 5 is delayed by the heat retaining plate section 16. Therefore, the cooling of the storage unit 2 is performed satisfactorily while the evaporation particles generated from the storage unit 2 after the stop of the heating are suppressed as much as possible in the vicinity of the evaporating port portion 5 by cooling.

続いて、所定の第1温度(250℃)まで蒸発源4の収納部2の温度が低下したところでアルゴンガスを蒸発源4と遮熱容体8との間の空間9に導入することで冷却を促進する。更に、所定の第2温度(200℃)まで蒸発源4の収納部2の温度が低下したところで窒素ガスを前記空間9に導入することで冷却を促進する。   Subsequently, when the temperature of the storage section 2 of the evaporation source 4 has decreased to a predetermined first temperature (250 ° C.), cooling is performed by introducing argon gas into the space 9 between the evaporation source 4 and the heat shield container 8. Facilitate. Further, when the temperature of the storage section 2 of the evaporation source 4 decreases to a predetermined second temperature (200 ° C.), cooling is promoted by introducing nitrogen gas into the space 9.

続いて、所定の第3温度(150℃)まで蒸発源4の収納部2の温度が低下したところで、冷却水供給部29のバルブを開け、且つ、三方弁32により冷却水を回収することで加熱部7の冷媒循環部15に冷却水を循環させて水冷する。   Subsequently, when the temperature of the storage section 2 of the evaporation source 4 has decreased to a predetermined third temperature (150 ° C.), the valve of the cooling water supply section 29 is opened, and the cooling water is collected by the three-way valve 32. Cooling water is circulated through the refrigerant circulating unit 15 of the heating unit 7 to perform water cooling.

以上の工程により、図13に図示したように、冷却対策がない従従来例(C)に比し冷却時間を短縮できるのは勿論、収納部(X)を迅速に冷却しつつ拡散部(Y)の冷却を遅らせることが可能となり、材料の析出や各部の破損を抑制しつつ、蒸発源4を大気開放可能な温度まで迅速に冷却することが可能となる。   According to the above-described steps, as shown in FIG. 13, the cooling time can be shortened as compared with the conventional example (C) having no cooling measures, and the diffusion section (Y) can be cooled while the storage section (X) is cooled quickly. ), The evaporation source 4 can be quickly cooled to a temperature at which the evaporation source 4 can be opened to the atmosphere while suppressing precipitation of materials and damage to various parts.

なお、蒸発源4が所定温度まで冷却された後、他種の冷媒ガスを導入するのではなく、導入中の冷媒ガスの導入量(流量)を増加させることで冷却速度を速める構成としても良い。また、冷媒循環路15には冷却水を5Pa〜50Pa程度で循環させる。圧力が高すぎると急速な温度変化により熱応力が発生し加熱部7が破損するおそれがあるためである。   After the evaporation source 4 is cooled to a predetermined temperature, the cooling rate may be increased by increasing the introduction amount (flow rate) of the refrigerant gas being introduced instead of introducing another type of refrigerant gas. . In addition, cooling water is circulated through the refrigerant circulation path 15 at about 5 Pa to 50 Pa. This is because if the pressure is too high, thermal stress is generated due to rapid temperature change, and the heating unit 7 may be damaged.

1 真空槽
2 収納部
3 拡散部
4 蒸発源
5 蒸発口部
6 基板
7 加熱部
8 遮熱容体
9 空間
10 冷媒ガス導入孔
11 冷媒ガス配管
12 開口部
13 吸熱面部
15 冷媒循環路
16 保温板部
17 連結管
18 挿通孔
19 仕切部
20 成膜材料
DESCRIPTION OF SYMBOLS 1 Vacuum tank 2 Storage part 3 Diffusion part 4 Evaporation source 5 Evaporation port part 6 Substrate 7 Heating part 8 Heat shielding container 9 Space
10 Refrigerant gas inlet
11 Refrigerant gas piping
12 Opening
13 Heat absorbing surface
15 Refrigerant circuit
16 Heat insulation plate
17 Connecting pipe
18 Insertion hole
19 Partition
20 Film-forming materials

Claims (19)

真空槽内に、収納された成膜材料を蒸発させる蒸発源を備え、前記蒸発源に設けられた蒸発口部から蒸発した成膜材料を射出することで、前記蒸発源と対向する位置に設けられた基板上に蒸着膜を形成する真空蒸着装置であって、前記蒸発源及びこの蒸発源を加熱する加熱部を収容し前記蒸発源及び前記加熱部からの熱を遮断する遮熱容体を備え、この遮熱容体と前記蒸発源との間の空間に冷媒ガスを導入する冷媒ガス導入機構が設けられており、この冷媒ガス導入機構は、前記遮熱容体に設けられた冷媒ガス導入孔と、この冷媒ガス導入孔の入口側に接続され前記真空槽の外部から前記冷媒ガス導入孔に前記冷媒ガスを送出するための冷媒ガス配管とで構成されていて、前記遮熱容体は前記蒸発口部を露出させるための開口部を有し、前記冷媒ガス導入孔から前記遮熱容体と前記蒸発源との間の前記空間に導入された前記冷媒ガスで前記蒸発源が直接冷却されると共に、この冷媒ガスが前記開口部の前記蒸発口部の周囲から前記遮熱容体の外部に流出されるように構成されていることを特徴とする真空蒸着装置。 In the vacuum chamber, an evaporation source for evaporating the stored film-forming material is provided, and the film-forming material evaporated from the evaporation port provided in the evaporation source is provided at a position opposed to the evaporation source. A vacuum deposition apparatus for forming a vapor deposition film on the substrate, comprising a heat shield for housing the evaporation source and a heating unit for heating the evaporation source, and shielding heat from the evaporation source and the heating unit. A refrigerant gas introduction mechanism for introducing a refrigerant gas into a space between the heat shield container and the evaporation source is provided, and the refrigerant gas introduction mechanism includes a refrigerant gas introduction hole provided in the heat shield container. A refrigerant gas pipe connected to the inlet side of the refrigerant gas introduction hole for sending the refrigerant gas from outside the vacuum chamber to the refrigerant gas introduction hole, and the heat shield container is provided with the evaporating port. Having an opening for exposing the portion, The evaporation source is directly cooled by the refrigerant gas introduced from the medium gas introduction hole into the space between the heat shielding container and the evaporation source, and the refrigerant gas is supplied to the evaporation port of the opening. vacuum vapor deposition apparatus characterized that you have been composed around as flow out of the heat insulating condition. 真空槽内に、成膜材料が収納される収納部と蒸発した前記成膜材料が拡散する拡散部とを有する蒸発源を備え、前記拡散部に設けられた蒸発口部から前記蒸発した成膜材料を射出することで、前記蒸発源と対向する位置に設けられた基板上に蒸着膜を形成する真空蒸着装置であって、前記蒸発源及びこの蒸発源を加熱する加熱部を収容し前記蒸発源及び前記加熱部からの熱を遮断する遮熱容体を備え、この遮熱容体と前記蒸発源との間の空間に冷媒ガスを導入する冷媒ガス導入機構が設けられており、この冷媒ガス導入機構は、前記遮熱容体に設けられた冷媒ガス導入孔と、この冷媒ガス導入孔の入口側に接続され前記真空槽の外部から前記冷媒ガス導入孔に前記冷媒ガスを送出するための冷媒ガス配管とで構成されていて、前記遮熱容体は前記蒸発口部を露出させるための開口部を有し、前記冷媒ガス導入孔から前記遮熱容体と前記蒸発源との間の前記空間に導入された前記冷媒ガスで前記蒸発源が直接冷却されると共に、この冷媒ガスが前記開口部の前記蒸発口部の周囲から前記遮熱容体の外部に流出されるように構成されていることを特徴とする真空蒸着装置。 In a vacuum chamber, there is provided an evaporation source having a storage section in which a film-forming material is stored and a diffusion section in which the evaporated film-forming material is diffused, wherein the evaporated film is formed from an evaporation port provided in the diffusion section What is claimed is: 1. A vacuum evaporation apparatus for forming an evaporation film on a substrate provided at a position facing said evaporation source by injecting a material, said vacuum evaporation apparatus containing said evaporation source and a heating unit for heating said evaporation source. A heat-shielding container that shuts off heat from the heat source and the heating unit, and a refrigerant gas introduction mechanism that introduces a refrigerant gas into a space between the heat-shielding container and the evaporation source is provided. The mechanism includes a refrigerant gas introduction hole provided in the heat shield container, and a refrigerant gas connected to the inlet side of the refrigerant gas introduction hole for sending the refrigerant gas from outside the vacuum chamber to the refrigerant gas introduction hole. be constituted by a pipe, the heat insulating condition is The evaporation source has an opening for exposing the evaporation port, and the evaporation source is directly cooled by the refrigerant gas introduced from the refrigerant gas introduction hole into the space between the heat shield container and the evaporation source. Rutotomoni, vacuum vapor deposition apparatus characterized that you have been configured so that this refrigerant gas is discharged to the outside of the heat insulating condition from the periphery of the evaporation port of the opening. 前記冷媒ガス導入孔は、その出口側が前記蒸発源の前記成膜材料が収納される収納部を臨む位置に設けられていることを特徴とする請求項1,2のいずれか1項に記載の真空蒸着装置。 4. The refrigerant gas introduction hole according to claim 1 , wherein an outlet side thereof is provided at a position facing a storage portion of the evaporation source where the film forming material is stored. Vacuum evaporation equipment. 前記冷媒ガス導入孔は、前記遮熱容体に設けられ、前記蒸発口部を露出させるための開口部とは反対側位置に設けられていることを特徴とする請求項1,2のいずれか1項に記載の真空蒸着装置。 The refrigerant gas introducing hole, the provided heat shield condition, any one of the claims 1 and 2 wherein the opening for exposing the evaporation opening, characterized in that on the opposite side positions Item 6. The vacuum evaporation apparatus according to Item 1. 前記遮熱容体の前記蒸発源と対向する内側面側に、赤外領域における放射率を高くする吸熱面部が設けられていることを特徴とする請求項1〜4のいずれか1項に記載の真空蒸着装置。 On the inner surface side facing the evaporation source of the heat shielding condition, according to any one of claims 1 to 4, characterized in that the heat absorbing surface to increase the emissivity in the infrared region is provided Vacuum evaporation equipment. 前記吸熱面部は前記蒸発源の前記成膜材料が収納される収納部を臨む位置に設けられていることを特徴とする請求項に記載の真空蒸着装置。 6. The vacuum evaporation apparatus according to claim 5 , wherein the heat absorbing surface is provided at a position facing a storage portion of the evaporation source in which the film forming material is stored. 前記吸熱面部には、深さの1/2以下の直径を有する止まり穴若しくは貫通孔が複数形成されていることを特徴とする請求項5,6のいずれか1項に記載の真空蒸着装置。 7. The vacuum evaporation apparatus according to claim 5 , wherein a plurality of blind holes or through holes having a diameter equal to or less than の of a depth are formed in the heat absorbing surface portion. 8. 前記吸熱面部の前記蒸発源との対向面が、赤外領域における放射率を高くするメッキ層、溶射層若しくは酸化被膜であるか、または、所定粗さの凹凸面であることを特徴とする請求項5〜7のいずれか1項に記載の真空蒸着装置。 The surface of the heat absorption surface portion facing the evaporation source is a plating layer, a thermal spray layer, or an oxide film for increasing the emissivity in an infrared region, or an uneven surface having a predetermined roughness. Item 8. The vacuum evaporation apparatus according to any one of Items 5 to 7 . 前記加熱部には冷媒循環路が設けられ、この冷媒循環路を冷媒が循環するように構成されていることを特徴とする請求項1〜8のいずれか1項に記載の真空蒸着装置。 The vacuum evaporation apparatus according to any one of claims 1 to 8 , wherein a refrigerant circulation path is provided in the heating unit, and the refrigerant is circulated through the refrigerant circulation path. 前記遮熱容体の、前記蒸発源の蒸発した前記成膜材料が拡散する拡散部を臨む位置に、赤外領域における放射率を低くする保温板部が設けられていることを特徴とする請求項1〜9のいずれか1項に記載の真空蒸着装置。 A heat retaining plate for lowering the emissivity in an infrared region is provided at a position of the heat shielding container facing a diffusion portion where the film forming material evaporated by the evaporation source is diffused. The vacuum evaporation apparatus according to any one of claims 1 to 9 . 前記保温板部が前記蒸発口部の近傍位置に設けられていることを特徴とする請求項10に記載の真空蒸着装置。 The vacuum evaporation apparatus according to claim 10 , wherein the heat retaining plate is provided at a position near the evaporation port. 前記蒸発源は、前記成膜材料が収納される収納部を形成する収納室と蒸発した前記成膜材料が拡散する拡散部を形成する拡散室とを有し、前記収納室と前記拡散室とが連結管で連結されていることを特徴とする請求項1〜11のいずれか1項に記載の真空蒸着装置。 The evaporation source has a storage chamber that forms a storage section in which the film-forming material is stored, and a diffusion chamber that forms a diffusion section in which the evaporated film-forming material is diffused. The storage chamber and the diffusion chamber The vacuum evaporation apparatus according to any one of claims 1 to 11 , wherein are connected by a connection pipe. 前記遮熱容体に、前記連結管が挿通する挿通孔を有し前記収納部と前記拡散部とを仕切る板状の仕切部が設けられていることを特徴とする請求項12に記載の真空蒸着装置。 13. The vacuum vapor deposition according to claim 12 , wherein the heat shield container has a plate-shaped partition portion having an insertion hole through which the connection pipe is inserted and separating the storage portion and the diffusion portion. apparatus. 前記仕切部の収納部との対向面及び前記仕切部の前記拡散部との対向面に夫々赤外領域における放射率を高くする吸熱面部が設けられていることを特徴とする請求項13に記載の真空蒸着装置。 According to claim 13, characterized in that the heat absorbing surface to increase the opposing surfaces and emissivity at each infrared region to the opposing surfaces of the diffusing portion of the partition portion between the housing portion of the partition portion is provided Vacuum evaporation equipment. 前記蒸発口部は前記蒸発源の長手方向に複数並設されていることを特徴とする請求項1〜14のいずれか1項に記載の真空蒸着装置。 The vacuum evaporation apparatus according to any one of claims 1 to 14 , wherein a plurality of the evaporation ports are arranged in a longitudinal direction of the evaporation source. 真空槽内に、収納された成膜材料を蒸発させる蒸発源を備え、前記蒸発源に設けられた蒸発口部から蒸発した成膜材料を射出することで、前記蒸発源と対向する位置に設けられた基板上に蒸着膜を形成する真空蒸着装置の前記蒸発源の冷却方法であって、前記蒸発源及び蒸発源を加熱する加熱部を収容し前記蒸発源及び前記加熱部からの熱を遮断する遮熱容体と前記蒸発源との間の冷媒ガスを導入して、この冷媒ガスで前記蒸発源を直接冷却すると共に、この冷媒ガスを前記遮熱容体の前記蒸発口部を露出するための開口部の前記蒸発口部の周囲から前記遮熱容体の外部に流出させることを特徴とする蒸発源の冷却方法。 In the vacuum chamber, an evaporation source for evaporating the stored film-forming material is provided, and the film-forming material evaporated from the evaporation port provided in the evaporation source is provided at a position opposed to the evaporation source. A method for cooling an evaporation source of a vacuum evaporation apparatus for forming an evaporation film on a substrate, wherein the evaporation source and a heating unit for heating the evaporation source are accommodated, and heat from the evaporation source and the heating unit is shut off. A refrigerant gas is introduced between the heat shield container and the evaporation source to cool the evaporation source directly with the refrigerant gas and to expose the evaporation port of the heat shield container to the refrigerant gas. A method of cooling an evaporation source, wherein the cooling source is caused to flow out of the heat shielding container from around the evaporating opening of the opening . 真空槽内に、成膜材料が収納される収納部と蒸発した前記成膜材料が拡散する拡散部とを有する蒸発源を備え、前記拡散部に設けられた蒸発口部から前記蒸発した成膜材料を射出することで、前記蒸発源と対向する位置に設けられた基板上に蒸着膜を形成する真空蒸着装置の前記蒸発源の冷却方法であって、前記蒸発源及び蒸発源を加熱する加熱部を収容し前記蒸発源及び前記加熱部からの熱を遮断する遮熱容体と前記蒸発源との間の冷媒ガスを導入して、この冷媒ガスで前記蒸発源を直接冷却すると共に、この冷媒ガスを前記遮熱容体の前記蒸発口部を露出するための開口部の前記蒸発口部の周囲から前記遮熱容体の外部に流出させることを特徴とする蒸発源の冷却方法。 In a vacuum chamber, there is provided an evaporation source having a storage section in which a film-forming material is stored and a diffusion section in which the evaporated film-forming material is diffused, wherein the evaporated film is formed from an evaporation port provided in the diffusion section A method for cooling an evaporation source of a vacuum evaporation apparatus for forming an evaporation film on a substrate provided at a position facing the evaporation source by injecting a material, the method comprising: heating the evaporation source and the evaporation source. A refrigerant gas is introduced between the evaporation source and a heat shield container that shuts off heat from the evaporation source and the heating unit, and directly cools the evaporation source with the refrigerant gas. A method for cooling an evaporation source , wherein gas is caused to flow out of the heat shield container from around the evaporation port portion of the opening for exposing the evaporation port portion of the heat shield container . 前記遮熱容体の前記蒸発源と対向する内側面側に設けられた赤外領域における放射率を高くする吸熱面部を介した熱放射により前記蒸発源の冷却を行う第1冷却工程を行い、続いて、前記遮熱容体と前記蒸発源との間の空間に冷媒ガスを導入することにより前記蒸発源の冷却を行う第2冷却工程を行うことを特徴とする請求項16,17のいずれか1項に記載の蒸発源の冷却方法。 Performing a first cooling step of cooling the evaporation source by heat radiation through a heat absorption surface portion that increases the emissivity in the infrared region provided on the inner surface side of the heat shield container facing the evaporation source, 18. The method according to claim 16 , wherein a second cooling step of cooling the evaporation source by introducing a refrigerant gas into a space between the heat shielding container and the evaporation source is performed. Item 14. The method for cooling an evaporation source according to Item 3. 前記蒸発源が所定温度以下となった際、前記冷媒ガスの導入量を増加させることを特徴とする請求項16〜18のいずれか1項に記載の蒸発源の冷却方法。 The method according to any one of claims 16 to 18 , wherein the amount of the refrigerant gas introduced is increased when the temperature of the evaporation source becomes equal to or lower than a predetermined temperature.
JP2016090099A 2016-04-28 2016-04-28 Vacuum evaporation apparatus and method for cooling evaporation source Active JP6641226B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016090099A JP6641226B2 (en) 2016-04-28 2016-04-28 Vacuum evaporation apparatus and method for cooling evaporation source
KR1020170050814A KR102190775B1 (en) 2016-04-28 2017-04-20 Vacuum deposition apparatus and method for cooling evaporation source
CN201710286860.XA CN107338410A (en) 2016-04-28 2017-04-27 The cooling means of vacuum deposition apparatus and evaporation source
CN202111476889.7A CN114231909B (en) 2016-04-28 2017-04-27 Vacuum vapor deposition device and method for cooling evaporation source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016090099A JP6641226B2 (en) 2016-04-28 2016-04-28 Vacuum evaporation apparatus and method for cooling evaporation source

Publications (2)

Publication Number Publication Date
JP2017197824A JP2017197824A (en) 2017-11-02
JP6641226B2 true JP6641226B2 (en) 2020-02-05

Family

ID=60222747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016090099A Active JP6641226B2 (en) 2016-04-28 2016-04-28 Vacuum evaporation apparatus and method for cooling evaporation source

Country Status (3)

Country Link
JP (1) JP6641226B2 (en)
KR (1) KR102190775B1 (en)
CN (2) CN107338410A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11795541B2 (en) * 2017-11-16 2023-10-24 Applied Materials, Inc. Method of cooling a deposition source, chamber for cooling a deposition source and deposition system
JP6686069B2 (en) * 2018-05-29 2020-04-22 キヤノントッキ株式会社 Evaporation source device, vapor deposition device, and vapor deposition system
JP6526880B1 (en) * 2018-06-29 2019-06-05 キヤノントッキ株式会社 Evaporation source and evaporation apparatus
CN109321883B (en) * 2018-10-15 2020-10-27 武汉华星光电半导体显示技术有限公司 Evaporation plating machine
KR20200079901A (en) 2018-12-26 2020-07-06 송재만 (Refrigerant circuit structure for temperature maintenance of refrigerant evaporator of vacuum evaporator
KR20200104976A (en) * 2019-02-27 2020-09-07 삼성디스플레이 주식회사 Evaporating apparatus for deposition source and manufacturing method thereof
JP6605163B1 (en) * 2019-03-05 2019-11-13 日本エア・リキード株式会社 Solid material container
KR102221962B1 (en) * 2019-03-25 2021-03-04 엘지전자 주식회사 Deposition apparatus
CN112877651A (en) * 2021-01-08 2021-06-01 京东方科技集团股份有限公司 Evaporation plating device
KR102509629B1 (en) * 2021-02-08 2023-03-16 (주)에스브이엠테크 High frequency induction heating device for film deposition facilities
JP7291197B2 (en) * 2021-07-15 2023-06-14 キヤノントッキ株式会社 Film forming apparatus, film forming method, and evaporation source unit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100761079B1 (en) * 2005-01-31 2007-09-21 삼성에스디아이 주식회사 Deposition source having a cooling means and deposition apparatus using the same
JP2011052301A (en) * 2009-09-04 2011-03-17 Hitachi Zosen Corp Evaporation/sublimation method for vapor deposition material for vacuum deposition, and crucible apparatus for vacuum deposition
JP5414587B2 (en) * 2010-03-23 2014-02-12 日立造船株式会社 Vapor deposition equipment
WO2012124246A1 (en) * 2011-03-11 2012-09-20 パナソニック株式会社 Thin-film production method and production device
JP2012207238A (en) * 2011-03-29 2012-10-25 Hitachi High-Technologies Corp Vapor deposition method and vapor deposition apparatus
CN202543304U (en) * 2012-03-19 2012-11-21 北京北仪创新真空技术有限责任公司 Crucible cooling device
JP6241903B2 (en) * 2014-03-11 2017-12-06 株式会社Joled Vapor deposition apparatus, vapor deposition method using vapor deposition apparatus, and device manufacturing method

Also Published As

Publication number Publication date
KR102190775B1 (en) 2020-12-14
CN114231909A (en) 2022-03-25
JP2017197824A (en) 2017-11-02
CN107338410A (en) 2017-11-10
CN114231909B (en) 2023-12-01
KR20170123244A (en) 2017-11-07

Similar Documents

Publication Publication Date Title
JP6641226B2 (en) Vacuum evaporation apparatus and method for cooling evaporation source
US7527497B2 (en) Heat treating apparatus, heat treating method, and storage medium
KR100645689B1 (en) Linear type deposition source
US20120171632A1 (en) Device and treatment chamber for thermally treating substrates
JP2011256427A (en) Method for evaporating/sublimating evaporation material in vacuum deposition apparatus and crucible device for vacuum deposition
JP2005352306A (en) Heating device
JP4342868B2 (en) Deposition equipment
US20110239937A1 (en) Apparatus and method for treating substrate
KR101885092B1 (en) Deposition Chamber Blocking Increasing Temperature of Reflecter Shield
KR20160028371A (en) Magnetic annealing apparatus
KR20130020882A (en) Device for thermally treating substrates
JP3788835B2 (en) Organic thin film manufacturing method
JP4987539B2 (en) Heating device
KR20140014948A (en) Deposition chamber and in-line processing system having the same
KR100518147B1 (en) Evaporation apparatus, organic material evaporation source, and method of manufacturing thin organic film
JP6116685B2 (en) Apparatus and method for heat treating an object
JP2022145486A (en) Organic film formation device and cleaning method of the same
KR101473176B1 (en) Thermal treatment apparatus
KR102127716B1 (en) Wafer Cassette Dry Oven Stocker and Wafer Cassette Dry Method Using It
KR101895795B1 (en) Deposition Chamber including Heat Blocking Shield
KR20140015874A (en) Apparatus for treating substrate and process chamber
JP7490692B2 (en) Organic Film Forming Equipment
TWI844365B (en) Organic film forming device and cleaning method of organic film forming device
JP2004084997A (en) Gas cooling and oil cooling vacuum furnace
JP7289161B2 (en) Heating device and heating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191227

R150 Certificate of patent or registration of utility model

Ref document number: 6641226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250