JP2011052301A - Evaporation/sublimation method for vapor deposition material for vacuum deposition, and crucible apparatus for vacuum deposition - Google Patents

Evaporation/sublimation method for vapor deposition material for vacuum deposition, and crucible apparatus for vacuum deposition Download PDF

Info

Publication number
JP2011052301A
JP2011052301A JP2009204190A JP2009204190A JP2011052301A JP 2011052301 A JP2011052301 A JP 2011052301A JP 2009204190 A JP2009204190 A JP 2009204190A JP 2009204190 A JP2009204190 A JP 2009204190A JP 2011052301 A JP2011052301 A JP 2011052301A
Authority
JP
Japan
Prior art keywords
vapor deposition
heating
crucible
deposition material
induction heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009204190A
Other languages
Japanese (ja)
Inventor
Kenji Kamikawa
健司 上川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2009204190A priority Critical patent/JP2011052301A/en
Publication of JP2011052301A publication Critical patent/JP2011052301A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve the evaporation/sublimation of a vapor deposition material for a long time while preventing deterioration in the vapor deposition material by a simple constitution. <P>SOLUTION: The inside of a crucible Pa is provided with a crucible holder DKa made of a conductive material, storing a vapor deposition material E and further capable of induction heating, and further, a plurality of heating regions Ha to Hd are set to the vapor deposition material E in the crucible holder DKa, and the outside of the crucible Pa is provided with split induction coils Ca to Cd inductively heating the crucible holder DKa and capable of evaporating or subliming the vapor deposition material E, and is provided with a heating region displacement means of operating a magnetic field generated from the split induction coils Ca to Cd and capable of selectively inductive-heating the heating parts of the crucible holder DKa corresponding to the heating regions Ha to Hd. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、真空蒸着設備において、長時間にわたって蒸着材料を気化(蒸発または昇華)可能な蒸発、昇華方法と、それを実施するための真空蒸着用るつぼ装置に関する。   The present invention relates to an evaporation and sublimation method capable of vaporizing (evaporating or sublimating) a deposition material for a long time in a vacuum deposition facility, and a crucible device for vacuum deposition for carrying out the method.

特許文献1には、金属製のるつぼを、高周波誘導加熱により直接加熱する技術が提案されている。
真空蒸着設備において、蒸着材料を加熱して蒸発または昇華(以下、蒸散という)させており、特に量産工程では、一週間程度蒸着設備を連続運転する必要がある。しかし、蒸着材料が長時間高熱に晒されると、品質の劣化を招くおそれがある。
Patent Document 1 proposes a technique for directly heating a metal crucible by high-frequency induction heating.
In a vacuum deposition facility, the deposition material is heated to evaporate or sublimate (hereinafter referred to as transpiration). Particularly in a mass production process, it is necessary to continuously operate the deposition facility for about one week. However, when the vapor deposition material is exposed to high heat for a long time, the quality may be deteriorated.

このため、たとえば下記の技術が提案されている。
a)劣化する前に蒸着材料が蒸散して無くなる程度の量の蒸着材料を収容したるつぼを複数用意しておき、るつぼを順次交換しながら長時間の蒸着作業を行う。これを実施するための技術として、特許文献1に、るつぼを交換するための交換室を設けた技術が開示されている。
b)蒸着作業中に、るつぼまたはボート(平たい加熱るつぼ)に蒸着材料を追加投入しながら長時間の蒸着作業を行う。これを実施するための技術として、特許文献2に、シート状に形成した蒸着材料を連続的にるつぼに供給する技術が開示されている。
c)蒸着材料をペレット状に成形し、加熱部に押し当てて部分的に加熱蒸散させ、これを継続して長時間の蒸着作業を行う。これを実施するための技術として、特許文献3に、蒸着材料をペレット状にしてるつぼに供給する技術が開示されている。
For this reason, for example, the following techniques have been proposed.
a) Prepare a plurality of crucibles containing a sufficient amount of vapor deposition material so that the vapor deposition material evaporates before deteriorating, and perform a long-time vapor deposition operation while sequentially replacing the crucibles. As a technique for implementing this, Patent Document 1 discloses a technique in which an exchange chamber for exchanging the crucible is provided.
b) During the vapor deposition operation, the vapor deposition operation is performed for a long time while adding the vapor deposition material to a crucible or a boat (flat heating crucible). As a technique for implementing this, Patent Document 2 discloses a technique for continuously supplying a deposition material formed in a sheet shape to a crucible.
c) The vapor deposition material is formed into pellets, pressed against the heating part and partially evaporated by heating, and this is continued for a long time vapor deposition operation. As a technique for implementing this, Patent Document 3 discloses a technique of supplying a vapor deposition material to a crucible in a pellet form.

その他、蒸着材料を加熱する方式として、特許文献4に開示されるように電子ビームを走査して蒸着材料を加熱し蒸散するものや、特許文献5に開示されるように高周波誘電加熱により蒸着材料を加熱し蒸散するものもある。   In addition, as a method of heating the vapor deposition material, as disclosed in Patent Document 4, the electron beam is scanned to heat and vaporize the vapor deposition material, or as disclosed in Patent Document 5, the vapor deposition material is heated by high frequency dielectric heating. Some may heat and evaporate.

特許第3257056号公報Japanese Patent No. 3257056 特開平10−183346号公報Japanese Patent Laid-Open No. 10-183346 特開平09−95775号公報JP 09-95775 A 特許第3741160号公報Japanese Patent No. 3741160 特開2004−134250号公報JP 2004-134250 A

しかしながら、a)の技術では、多数のるつぼや、るつぼを収容するスペース(交換室)、るつぼを交換するための機構が必要となる。b)の技術では、真空室内の高温のるつぼに、蒸発材料を連続して供給できる機構が必要となる。c)の技術では、蒸着材料をペレット状に形成する装置や蒸着材料を加熱部に押し当てる機構が必要となる。このようにa)〜c)の技術では、装置や機構が複雑で、大型化し、製造コストや運転コストが嵩むという問題があった。   However, the technique a) requires a large number of crucibles, a space (exchange chamber) for accommodating the crucibles, and a mechanism for exchanging the crucibles. In the technique of b), a mechanism capable of continuously supplying the evaporation material to the high temperature crucible in the vacuum chamber is required. In the technique c), a device for forming the vapor deposition material in a pellet form and a mechanism for pressing the vapor deposition material against the heating unit are required. As described above, in the techniques a) to c), there are problems that the apparatus and mechanism are complicated, the size is increased, and the manufacturing cost and the operating cost are increased.

本発明は上記問題点を解決して、より簡単な構成で蒸着材料の劣化を防止しつつ長時間の蒸着材料の蒸発、昇華が可能な真空蒸着用蒸着材料の蒸発、昇華方法および真空蒸着用るつぼ装置を提供することを目的とする。   The present invention solves the above-mentioned problems, and evaporates and sublimates a vacuum deposition material that can evaporate and sublimate for a long time while preventing deterioration of the deposition material with a simpler structure. An object is to provide a crucible device.

請求項1記載の発明は、
真空蒸着容器内で被蒸着材の表面に蒸着材料の薄膜を蒸着するために、るつぼ内に収容された蒸着材料を加熱して蒸発または昇華させるに際し、
前記るつぼに、誘導加熱可能な材料により形成された誘導加熱るつぼを使用し、
前記誘導加熱るつぼに収容された蒸着材料に複数の加熱域を設定し、
るつぼの外側に設置された誘導加熱源から発生された磁界により、最初の加熱域に対応する前記誘導加熱るつぼの部位を誘導加熱して、当該加熱域の蒸着材料を蒸発または昇華させ、
最初の加熱域の蒸着材料が蒸発または昇華された後、前記誘導加熱源から発生される磁界を操作して、次の加熱域に対応する前記誘導加熱るつぼの所定部位を誘導加熱することにより、次の加熱域の蒸着材料を蒸発または昇華させ、
これを繰り返して蒸着作業を連続して行うものである。
請求項2記載の発明は、
真空蒸着容器内で被蒸着材の表面に蒸着材料の薄膜を蒸着するために、るつぼ内に収容された蒸着材料を加熱して蒸発または昇華させるに際し、
蒸着材料に接して配置されるとともに誘導加熱可能な材料により形成された誘導加熱部材を内装したるつぼを使用し、
るつぼ内の蒸着材料に、複数の加熱域を設定し、
るつぼの外側に設けられた誘導加熱源から発生された磁界により、最初の加熱域に対応する前記誘導加熱部材の部位を誘導加熱して、当該加熱域の蒸着材料を蒸発または昇華させ、
当該加熱域に対応する蒸着材料が蒸発または昇華された後、前記誘導加熱源から発生される磁界を操作して、次の加熱域に対応する誘導加熱部材の部位誘導加熱し、次の加熱域の蒸着材料を蒸発または昇華させ、
これを繰り返して蒸着作業を連続して行うものである。
The invention described in claim 1
In order to deposit a thin film of a vapor deposition material on the surface of the material to be vapor-deposited in a vacuum vapor deposition container, when the vapor deposition material contained in the crucible is heated to evaporate or sublimate,
For the crucible, use an induction heating crucible formed of a material capable of induction heating,
Setting a plurality of heating zones in the vapor deposition material accommodated in the induction heating crucible;
The induction heating crucible part corresponding to the initial heating area is induction-heated by a magnetic field generated from an induction heating source installed outside the crucible to evaporate or sublimate the vapor deposition material in the heating area,
After the vapor deposition material in the first heating zone is evaporated or sublimated, by manipulating the magnetic field generated from the induction heating source, the predetermined portion of the induction heating crucible corresponding to the next heating zone is induction heated, Evaporate or sublimate the vapor deposition material in the next heating zone,
By repeating this, the vapor deposition operation is continuously performed.
The invention according to claim 2
In order to deposit a thin film of a vapor deposition material on the surface of the material to be vapor-deposited in a vacuum vapor deposition container, when the vapor deposition material contained in the crucible is heated to evaporate or sublimate,
Using a crucible that is placed in contact with the vapor deposition material and that is equipped with an induction heating member formed of a material capable of induction heating,
Set multiple heating zones for the vapor deposition material in the crucible,
By induction heating a portion of the induction heating member corresponding to the first heating area by a magnetic field generated from an induction heating source provided outside the crucible, the vapor deposition material in the heating area is evaporated or sublimated,
After the vapor deposition material corresponding to the heating area is evaporated or sublimated, the magnetic field generated from the induction heating source is operated to perform part induction heating of the induction heating member corresponding to the next heating area, and the next heating area Evaporate or sublimate the vapor deposition material
By repeating this, the vapor deposition operation is continuously performed.

請求項3記載の発明は、
真空蒸着容器内で被蒸着材の表面に蒸着材料の薄膜を蒸着するために、るつぼ内に収容された蒸着材料を加熱して蒸発または昇華させるに際し、
誘導加熱可能な材料からなり蒸着材料の上面に支持される上面誘導加熱部材を設けたるつぼを使用し、
るつぼの外側に設けられた誘導加熱源から発生された磁界により、前記上面誘導加熱部材を誘導加熱して、当該上面誘導加熱部材下部の蒸着材料を蒸発または昇華させ、
蒸着材料の減少に従って下降する上面誘導加熱部材に対応して誘導加熱源から発生させる磁界を操作し、当該上面誘導加熱部材を連続して誘導加熱するものである。
The invention described in claim 3
In order to deposit a thin film of a vapor deposition material on the surface of the material to be vapor-deposited in a vacuum vapor deposition container, when the vapor deposition material contained in the crucible is heated to evaporate or sublimate,
Using a crucible made of a material capable of induction heating and provided with an upper surface induction heating member supported on the upper surface of the vapor deposition material,
Inductively heating the upper surface induction heating member by a magnetic field generated from an induction heating source provided outside the crucible, evaporating or sublimating the evaporation material below the upper surface induction heating member,
A magnetic field generated from the induction heating source is operated in response to the upper surface induction heating member descending as the deposition material decreases, and the upper surface induction heating member is continuously induction heated.

請求項4記載の発明は、
真空蒸着容器内で被蒸着材の表面に蒸着材料の薄膜を蒸着するために、るつぼ内に収容された蒸着材料を加熱して蒸発、昇華させるに際し、
誘導加熱可能な材料からなる輻射誘導加熱部材を、蒸着材料の上方に所定距離をあけて配置したるつぼを使用し、
るつぼ内の蒸着材料に複数の加熱域を設定し、
るつぼの外側に設けられた誘導加熱源から発生された磁界により、最初の加熱域に対応する輻射誘導加熱部材の部位を誘導加熱して、当該輻射誘導加熱部材からの輻射熱により最初の加熱域の蒸着材料を加熱して蒸発または昇華させ、
最初の加熱域の蒸着材料が蒸発または昇華された後、誘導加熱源から発生された磁界を操作して、次の加熱域に対応する前記輻射誘導加熱部材の部位を誘導加熱し、次の加熱域の蒸着材料を蒸発または昇華させ、
これを繰り返して蒸着作業を連続して行うものである。
The invention according to claim 4
In order to deposit a thin film of a vapor deposition material on the surface of the material to be vapor-deposited in a vacuum vapor deposition container, the vapor deposition material contained in the crucible is heated to evaporate and sublimate.
Using a crucible in which a radiation induction heating member made of a material capable of induction heating is arranged at a predetermined distance above the vapor deposition material,
Set multiple heating zones for the vapor deposition material in the crucible,
A portion of the radiation induction heating member corresponding to the first heating region is induction heated by a magnetic field generated from an induction heating source provided outside the crucible, and the first heating region is heated by radiation heat from the radiation induction heating member. The evaporation material is heated to evaporate or sublime,
After the vapor deposition material in the first heating area is evaporated or sublimated, the magnetic field generated from the induction heating source is manipulated to inductively heat the portion of the radiation induction heating member corresponding to the next heating area. Vaporize or sublimate the vapor deposition material in the area,
By repeating this, the vapor deposition operation is continuously performed.

請求項5記載の発明は、請求項1乃至4の何れかに記載の構成において、
るつぼの外側に設けられた冷却手段により蒸着材料全体を冷却するものである。
請求項6記載の発明は、請求項1乃至4の何れかに記載の構成において、
るつぼの外側に設けられた冷却手段により、加熱域を非冷却領域として冷却せず、その他の加熱域の蒸着材料を冷却し、
前記加熱域の変位に対応して、前記非冷却領域を変位させるものである。
The invention according to claim 5 is the configuration according to any one of claims 1 to 4,
The entire vapor deposition material is cooled by cooling means provided outside the crucible.
The invention according to claim 6 is the configuration according to any one of claims 1 to 4,
The cooling means provided outside the crucible does not cool the heating zone as a non-cooling zone, but cools the vapor deposition material in other heating zones,
The non-cooling region is displaced corresponding to the displacement of the heating region.

請求項7記載の発明は、
真空蒸着容器内で被蒸着材の表面に薄膜を蒸着するために、蒸着材料を加熱して蒸発または昇華させる真空蒸着用るつぼ装置において、
るつぼを誘導加熱可能な導電性材料により形成された誘導加熱るつぼとするとともに、当該誘導加熱るつぼ内の蒸着材料に複数の加熱域を設定し、
前記誘導加熱るつぼの外側に、前記誘導加熱るつぼを誘導加熱して蒸着材料を蒸発または昇華可能な誘導加熱源を設け、
当該誘導加熱源から発生する磁界を操作して、加熱域に対応する前記誘導加熱るつぼの部位を選択的に誘導加熱可能な加熱域変位手段を設けたものである。
The invention described in claim 7
In a vacuum evaporation crucible device for evaporating or sublimating a deposition material by heating in order to deposit a thin film on the surface of the deposition material in a vacuum deposition container,
The crucible is an induction heating crucible formed of a conductive material capable of induction heating, and a plurality of heating zones are set for the vapor deposition material in the induction heating crucible,
An induction heating source capable of evaporating or sublimating the deposition material by induction heating the induction heating crucible outside the induction heating crucible;
By operating a magnetic field generated from the induction heating source, a heating area displacing means capable of selectively inductively heating the portion of the induction heating crucible corresponding to the heating area is provided.

請求項8記載の発明は、
真空蒸着容器内で被蒸着材の表面に薄膜を蒸着するために、蒸着材料を加熱して蒸発または昇華させる真空蒸着用るつぼ装置において、
るつぼ内に、蒸着材料を収容するとともに誘導加熱可能な導電性材料からなるるつぼホルダを設けるとともに、当該るつぼホルダ内の蒸着材料に複数の加熱域を設定し、
るつぼの外側に、前記るつぼホルダを誘導加熱して蒸着材料を蒸発または昇華可能な誘導加熱源を設け、
当該誘導加熱源から発生する磁界を操作して、前記加熱域に対応する前記るつぼホルダの部位を選択的に誘導加熱可能な加熱域変位手段を設けたものである。
The invention described in claim 8
In a vacuum evaporation crucible device for evaporating or sublimating a deposition material by heating in order to deposit a thin film on the surface of the deposition material in a vacuum deposition container,
In the crucible, a crucible holder made of a conductive material capable of containing a vapor deposition material and capable of induction heating is provided, and a plurality of heating zones are set for the vapor deposition material in the crucible holder,
An induction heating source capable of evaporating or sublimating the vapor deposition material by induction heating the crucible holder outside the crucible,
By operating a magnetic field generated from the induction heating source, a heating area displacing means capable of selectively inductively heating a portion of the crucible holder corresponding to the heating area is provided.

請求項9記載の発明は、
真空蒸着容器内で被蒸着材の表面に薄膜を蒸着するために、蒸着材料を加熱して蒸発または昇華させる真空蒸着用るつぼ装置において、
るつぼに収容された蒸着材料中に、誘導加熱可能な導電性材料からなる内装誘導誘導加熱部材を設けるとともに、蒸着材料に複数の加熱域を設定し、
るつぼの外側に、前記内装誘導加熱部材を誘導加熱して蒸着材料を蒸発または昇華可能な誘導加熱源を設け、
当該誘導加熱源から発生する磁界を操作して、加熱域に対応する前記内装誘導加熱部材の部位を選択的に誘導加熱可能な加熱域変位手段を設けたものである。
The invention according to claim 9
In a vacuum evaporation crucible device for evaporating or sublimating a deposition material by heating in order to deposit a thin film on the surface of the deposition material in a vacuum deposition container,
In the vapor deposition material accommodated in the crucible, an internal induction induction heating member made of a conductive material capable of induction heating is provided, and a plurality of heating zones are set in the vapor deposition material,
An induction heating source capable of evaporating or sublimating the vapor deposition material by induction heating the internal induction heating member on the outside of the crucible,
By operating a magnetic field generated from the induction heating source, a heating area displacing means capable of selectively inductively heating a portion of the interior induction heating member corresponding to the heating area is provided.

請求項10記載の発明は、
真空蒸着容器内で被蒸着材の表面に薄膜を蒸着するために、蒸着材料を加熱して蒸発または昇華させる真空蒸着用るつぼ装置において、
るつぼに収容された蒸着材料の上面に支持されて、誘導加熱可能な導電性材料からなる上面誘導加熱部材を設け、
るつぼの外側に、前記上面誘導加熱部材を誘導加熱して当該上面誘導加熱部材下部の蒸着材料を蒸発または昇華可能な誘導加熱源を設け、
当該誘導加熱源から発生する磁界を操作して、蒸着材料の減少に従って下降する上面誘導加熱部材を誘導加熱可能な加熱域変位手段を設けたものである。
The invention according to claim 10 provides:
In a vacuum evaporation crucible device for evaporating or sublimating a deposition material by heating in order to deposit a thin film on the surface of the deposition material in a vacuum deposition container,
An upper surface induction heating member made of a conductive material capable of induction heating is provided on the upper surface of the vapor deposition material accommodated in the crucible,
An induction heating source capable of evaporating or sublimating the vapor deposition material under the upper surface induction heating member by induction heating the upper surface induction heating member outside the crucible,
By operating the magnetic field generated from the induction heating source, a heating area displacing means capable of induction heating the upper surface induction heating member that descends as the deposition material decreases is provided.

請求項11記載の発明は、
真空蒸着容器内で被蒸着材の表面に薄膜を蒸着するために、蒸着材料を加熱して蒸発または昇華させる真空蒸着用るつぼ装置において、
るつぼに収容された蒸着材料の上方に離間して配置されて、誘導加熱可能な導電性材料からなる輻射誘導加熱部材を設け、
るつぼ内の蒸着材料に複数の加熱域を設定し、
るつぼの外側に、前記輻射誘導加熱部材を誘導加熱可能な誘導加熱源を設け、
当該誘導加熱源から発生する磁界を操作して、加熱域に対応する前記輻射誘導加熱部材の部位を選択的に誘導加熱可能な加熱域変位手段を設けたものである。
The invention according to claim 11
In a vacuum evaporation crucible device for evaporating or sublimating a deposition material by heating in order to deposit a thin film on the surface of the deposition material in a vacuum deposition container,
A radiation induction heating member made of a conductive material capable of induction heating is provided spaced apart above the vapor deposition material housed in the crucible,
Set multiple heating zones for the vapor deposition material in the crucible,
An induction heating source capable of inductively heating the radiation induction heating member is provided outside the crucible,
A heating area displacing means capable of selectively inductively heating a portion of the radiation induction heating member corresponding to the heating area by operating a magnetic field generated from the induction heating source is provided.

請求項12記載の発明は、請求項7乃至11の何れかに記載の構成において、
誘導加熱源を、加熱域に対応して分割配置された複数の分割誘導コイルとし、
加熱域変位手段を、前記各分割誘導コイルにそれぞれ供給する高周波電流をオン、オフ制御する蒸散制御装置により構成したものである。
The invention according to claim 12 is the configuration according to any one of claims 7 to 11,
The induction heating source is a plurality of divided induction coils divided and arranged corresponding to the heating area,
The heating area displacing means is constituted by a transpiration control device that controls on / off of a high-frequency current supplied to each of the divided induction coils.

請求項13記載の発明は、請求項7乃至11の何れかに記載の構成において、
誘導加熱源を、加熱域の配置方向に移動自在に配置された可動誘導コイルとし、
加熱域変位手段を、前記可動誘導コイルを移動可能なコイル移動装置と、当該コイル移動装置を操作し、加熱域に対応して前記可動誘導コイルを移動させる蒸散制御装置により構成したものである。
The invention according to claim 13 is the configuration according to any one of claims 7 to 11,
The induction heating source is a movable induction coil arranged to be movable in the arrangement direction of the heating zone,
The heating area displacing means includes a coil moving device that can move the movable induction coil, and a transpiration control device that operates the coil moving device to move the movable induction coil in accordance with the heating area.

請求項14記載の発明は、請求項7乃至13の何れかに記載の構成において、
るつぼの外側に冷却手段を設け、
前記冷却手段を、冷却液が給、排出されて蒸着材料全体を均一に冷却する全体冷却ジャケットにより構成したものである。
The invention according to claim 14 is the configuration according to any one of claims 7 to 13,
Provide cooling means outside the crucible,
The cooling means is constituted by an entire cooling jacket for uniformly cooling the whole deposition material by supplying and discharging a cooling liquid.

請求項15記載の発明は、請求項7乃至13の何れかに記載の構成において、
るつぼの外側に冷却手段を設け、
前記冷却手段を、加熱域に対応して複数に分割配置され分割冷却ジャケットにより構成し、
前記加熱域に対応する前記分割冷却ジャケットへの冷却液の供給を停止するとともに、前記加熱域の変位に対応して、冷却液の供給を停止する分割冷却ジャケットを変更可能な蒸散制御装置を設けたものである。
The invention according to claim 15 is the structure according to any one of claims 7 to 13,
Provide cooling means outside the crucible,
The cooling means is divided and arranged in a plurality corresponding to the heating zone, and is constituted by a divided cooling jacket,
Provided is a transpiration control device capable of changing the divided cooling jacket for stopping the supply of the cooling liquid in response to the displacement of the heating area while stopping the supply of the cooling liquid to the divided cooling jacket corresponding to the heating area. It is a thing.

請求項1または7記載の構成によれば、誘導加熱源により加熱域に対応する誘導加熱るつぼの所定部位を集中して加熱することから、当該加熱域以外の蒸着材料の昇温を抑制することができて蒸着材料の劣化を防止でき、加熱域変位手段により誘導加熱るつぼの加熱部位を変位させて、順次加熱域の蒸着材料を蒸発または昇華させることにより、長時間の蒸着作業を連続して行うことができる。   According to the structure of Claim 1 or 7, since the predetermined site | part of the induction heating crucible corresponding to a heating area is concentrated and heated with an induction heating source, temperature rise of vapor deposition material other than the said heating area is suppressed. Deterioration of the vapor deposition material can be prevented, and the heating part of the induction heating crucible is displaced by the heating area displacing means, and the vapor deposition material in the heating area is sequentially evaporated or sublimated to continuously perform the vapor deposition work for a long time. It can be carried out.

請求項2記載の構成によれば、誘導加熱源により加熱域に対応する誘導加熱部材の所定部位の加熱域を集中して加熱することから、当該加熱域以外の蒸着材料の昇温を抑制することができて蒸着材料の劣化を防止でき、加熱域変位手段により誘導加熱部材の加熱部位を変位させて、順次加熱域の蒸着材料を蒸発または昇華させることにより、長時間の蒸着作業を連続して行うことができる。   According to the structure of Claim 2, since the heating area | region of the predetermined part of the induction heating member corresponding to a heating area is concentrated and heated with an induction heating source, the temperature rise of vapor deposition materials other than the said heating area is suppressed. Deposition of the vapor deposition material can be prevented, and the heating area of the induction heating member is displaced by the heating area displacing means, and the vapor deposition material in the heating area is sequentially evaporated or sublimated, thereby continuing a long-time vapor deposition operation. Can be done.

請求項3または10記載の発明によれば、誘導加熱源により、上面に配置された上面誘導加熱部材のみを集中して加熱することから、当該上面誘導加熱部材直下以外の蒸着材料の昇温を抑制することができて蒸着材料の劣化を防止できる。また加熱域変位手段により蒸着材料の減少に従って下降する上面誘導加熱部材に対応して、誘導加熱源から発生する磁界を操作し、上面誘導加熱部材を集中して連続的に誘導加熱することができる。これにより、上面誘導加熱部材直下の蒸着材料を効果的に蒸発または昇華させて、長時間の蒸着作業を連続して行うことができる。   According to the invention described in claim 3 or 10, since only the upper surface induction heating member disposed on the upper surface is concentrated and heated by the induction heating source, the temperature of the vapor deposition material other than directly below the upper surface induction heating member is increased. It can suppress and can prevent deterioration of vapor deposition material. In addition, the magnetic field generated from the induction heating source can be operated in response to the upper surface induction heating member that descends as the vapor deposition material decreases by the heating area displacing means, and the upper surface induction heating member can be concentrated and induction heated continuously. . Thereby, the vapor deposition material just under the upper surface induction heating member can be effectively evaporated or sublimated, and a long-time vapor deposition operation can be continuously performed.

請求項4または11記載の構成によれば、誘導加熱源により加熱域に対応する輻射誘導加熱部材の所定部位を集中して加熱することから、当該加熱域以外の蒸着材料の昇温を抑制することができて蒸着材料の劣化を防止でき、加熱域変位手段により輻射誘導加熱部材の加熱部位を変位させて、順次加熱域の蒸着材料を蒸発または昇華させることにより、長時間の蒸着作業を連続して行うことができる。   According to the structure of Claim 4 or 11, since the predetermined site | part of the radiation induction heating member corresponding to a heating area is concentrated and heated with an induction heating source, the temperature rise of vapor deposition material other than the said heating area is suppressed. Deposition of the evaporation material can be prevented, and the heating part of the radiation induction heating member is displaced by the heating area displacing means, and the evaporation material in the heating area is sequentially evaporated or sublimated to continuously perform the evaporation work for a long time. Can be done.

請求項5記載の構成によれば、冷却手段により蒸着材料を冷却することで、材料の劣化を効果的に防止することができ、長時間にわたって安定した蒸着作業を連続して行うことができる。   According to the configuration of the fifth aspect, by cooling the vapor deposition material by the cooling means, it is possible to effectively prevent the deterioration of the material, and it is possible to continuously perform the vapor deposition operation stably for a long time.

請求項6記載の発明によれば、冷却手段により、加熱域に対応する非冷却領域を除いて蒸着材料を冷却し、冷却領域調整手段により加熱域に対応して非冷却領域を変位させることにより、蒸着材料を効率よく蒸発、昇華させることができる。   According to the sixth aspect of the present invention, the cooling material cools the vapor deposition material except for the non-cooling region corresponding to the heating region, and the cooling region adjusting unit displaces the non-cooling region corresponding to the heating region. The vapor deposition material can be efficiently evaporated and sublimated.

請求項8記載の構成によれば、誘導加熱源により加熱域に対応するるつぼホルダの所定部位の加熱域を集中して加熱することから、当該加熱域以外の蒸着材料の昇温を抑制することができて蒸着材料の劣化を防止でき、加熱域変位手段によりるつぼホルダの加熱部位を変位させて、順次加熱域の蒸着材料を蒸発または昇華させることにより、長時間の蒸着作業を連続して行うことができる。   According to the structure of Claim 8, since the heating area | region of the predetermined part of the crucible holder corresponding to a heating area is concentrated and heated with an induction heating source, the temperature rise of vapor deposition materials other than the said heating area is suppressed. The deposition material can be prevented from deteriorating, and the heating area of the crucible holder is displaced by the heating area displacing means to sequentially evaporate or sublimate the evaporation material in the heating area, thereby continuously performing the evaporation operation for a long time. be able to.

請求項9記載の構成によれば、誘導加熱源により加熱域に対応する内装誘導加熱部材の所定部位の加熱域を集中して加熱することから、当該加熱域以外の蒸着材料の昇温を抑制することができて蒸着材料の劣化を防止でき、加熱域変位手段により内装誘導加熱部材の加熱部位を変位させて、順次加熱域の蒸着材料を蒸発または昇華させることにより、長時間の蒸着作業を連続して行うことができる。   According to the structure of Claim 9, since the heating area | region of the predetermined | prescribed site | part of the interior induction heating member corresponding to a heating area is concentrated and heated with an induction heating source, the temperature rise of vapor deposition materials other than the said heating area is suppressed. Deterioration of the vapor deposition material can be prevented, and the heating part of the interior induction heating member is displaced by the heating area displacement means to sequentially evaporate or sublimate the vapor deposition material in the heating area, thereby performing a long evaporation process. Can be done continuously.

請求項12記載の構成によれば、加熱域に対応して複数の分割誘導コイルを配置し、蒸散制御手段により、各分割誘導コイルに供給する高周波電流をオン、オフする簡易な構成で、加熱域を選択的に変位させることができる。   According to the configuration of claim 12, a plurality of split induction coils are arranged corresponding to the heating region, and the high-frequency current supplied to each split induction coil is turned on and off by the transpiration control means with a simple configuration. The area can be selectively displaced.

請求項13記載の構成によれば、コイル移動装置により可動誘導コイルを加熱域に沿って移動させることで、加熱域を選択的に変位させることができる。
請求項14記載の構成によれば、全体冷却ジャケットに冷却液を供給することにより、蒸着材料全体を冷却して劣化を効果的に防止することができ、長時間にわたって安定して蒸着作業を連続して行うことができる。
According to the structure of Claim 13, a heating area | region can be selectively displaced by moving a movable induction coil along a heating area | region with a coil moving apparatus.
According to the structure of Claim 14, by supplying a cooling liquid to the whole cooling jacket, the whole vapor deposition material can be cooled and deterioration can be effectively prevented, and the vapor deposition operation can be continued stably for a long time. Can be done.

請求項15記載の発明によれば、分割冷却ジャケットにそれぞれ冷却液を供給し、加熱域に対応する分割冷却ジャケットの冷却液の供給を停止することにより、加熱域の材料を効率よく蒸発または昇華させ、その他の加熱域の蒸着材料の劣化を防止することができる。また冷却領域調整装置により、加熱域の変位に応じて、非冷却領域の分割冷却ジャケットを変更することにより、長時間にわたって効率よく蒸着作業を連続して行うことができる。   According to the fifteenth aspect of the present invention, the cooling liquid is supplied to each of the divided cooling jackets and the supply of the cooling liquid of the divided cooling jacket corresponding to the heating area is stopped, thereby efficiently evaporating or sublimating the material in the heating area. It is possible to prevent the vapor deposition material in other heating regions from deteriorating. Further, by changing the divided cooling jacket in the non-cooling region in accordance with the displacement of the heating region by the cooling region adjusting device, it is possible to continuously perform the vapor deposition work efficiently for a long time.

(a),(b)は本発明に係る真空蒸着用るつぼ装置の実施例1の構成を示し、(a)は縦断面図、(b)は加熱装置と冷却手段の構造を示す斜視図である。(A), (b) shows the structure of Example 1 of the crucible device for vacuum evaporation according to the present invention, (a) is a longitudinal sectional view, and (b) is a perspective view showing the structure of the heating device and the cooling means. is there. 蒸着材料の劣化の判別例を示すグラフである。It is a graph which shows the example of discrimination | determination of deterioration of vapor deposition material. (a),(b)は真空蒸着装置およびるつぼ装置の基本構造を示し、(a)は真空蒸着装置を示す縦断面図、(b)はるつぼ装置を示す縦断面図である。(A), (b) shows the basic structure of a vacuum evaporation apparatus and a crucible apparatus, (a) is a longitudinal cross-sectional view which shows a vacuum evaporation apparatus, (b) is a longitudinal cross-sectional view which shows a crucible apparatus. (a)〜(f)は真空蒸着容器の構造を示す縦断面図で、(a)はアップデポジションタイプで、容器形のるつぼ外置き形を示し、(b)はアップデポジションタイプで、容器形のるつぼ内置き形を示し、(c)はアップデポジションタイプで、皿型のるつぼ内置き形を示し、(d)はサイドデポジションタイプで、容器形のるつぼ外置き形を示し、(e)はサイドデポジションタイプで、容器形のるつぼ内置き形を示し、(f)はサイドデポジションタイプで、皿型のるつぼ内置き形を示す。(A)-(f) is a longitudinal cross-sectional view which shows the structure of a vacuum evaporation container, (a) shows an up-deposition type, a container-shaped crucible placement type, (b) is an up-deposition type, a container type (C) is an up-deposition type, showing a dish-type crucible inside type, (d) is a side-deposition type, showing a container-type crucible outside type, (e) Is a side deposition type and shows a container-type crucible placement type, and (f) is a side deposition type and a dish-type crucible placement type. (a)〜(h)は誘導加熱部材の構造を示す縦断面図で、(a)は容器形のるつぼにるつぼホルダを内装したもの、(b)は皿形のるつぼにるつぼホルダを使用したもの、(c)は容器形の誘電加熱るつぼを使用したもの、(d)は皿形の誘電加熱るつぼを使用するもの、(e)は容器形のるつぼに内装誘導加熱部材を配置したもの、(f)は皿形のるつぼに内装誘導加熱部材を配置したもの、(g)は容器形のるつぼに輻射誘導加熱部材を配置したもの、(h)は皿形のるつぼに輻射誘導加熱部材を配置したものである。(A)-(h) is a longitudinal cross-sectional view which shows the structure of an induction heating member, (a) is what equipped the crucible holder in the container-shaped crucible, (b) used the crucible holder in the dish-shaped crucible. (C) is a container-shaped dielectric heating crucible, (d) is a dish-shaped dielectric heating crucible, (e) is a container-shaped crucible with an internal induction heating member, (F) is a dish-shaped crucible with an interior induction heating member, (g) is a container-shaped crucible with a radiation induction heating member, and (h) is a dish-shaped crucible with a radiation induction heating member. It is arranged. (a)〜(d)は誘導加熱源と加熱域変位手段を示すもので、(a)および(b)はそれぞれ分割式誘導コイルを示す斜視図、(c)および(d)はそれぞれ可動式誘導コイルを示す概略側面図である。(A)-(d) shows an induction heating source and a heating area displacement means, (a) and (b) are perspective views showing a split induction coil, and (c) and (d) are movable types, respectively. It is a schematic side view which shows an induction coil. (a)〜(d)は冷却手段と冷却領域調整手段を示す斜視図で、(a)は筒状の全体冷却ジャケットを示し、(b)はプレート状の全体冷却ジャケットを示し、(c)は筒状の分割冷却ジャケットを示し、(d)はプレート状の分割冷却ジャケットを示す。(A)-(d) is a perspective view which shows a cooling means and a cooling area adjustment means, (a) shows a cylindrical whole cooling jacket, (b) shows a plate-like whole cooling jacket, (c) Shows a cylindrical divided cooling jacket, and (d) shows a plate-shaped divided cooling jacket. (a)〜(h)はコイルの配置構造を示す縦断面図で、(a)〜(d)は誘電コイル外装タイプを示し、(e)〜(h)は誘電コイル内装タイプを示す。(A)-(h) is a longitudinal cross-sectional view which shows the arrangement structure of a coil, (a)-(d) shows a dielectric coil exterior type, (e)-(h) shows a dielectric coil interior type. (a),(b)は本発明に係る真空蒸着用るつぼ装置の実施例2を示し、(a)はるつぼ装置の構成を示す縦断面図、(b)は平面図である。(A), (b) shows Example 2 of the crucible apparatus for vacuum evaporation which concerns on this invention, (a) is a longitudinal cross-sectional view which shows the structure of a crucible apparatus, (b) is a top view. (a),(b)は本発明に係る真空蒸着用るつぼ装置の実施例3を示し、(a)はるつぼ装置の構成を示す縦断面図、(b)は斜視図である。(A), (b) shows Example 3 of the crucible apparatus for vacuum evaporation which concerns on this invention, (a) is a longitudinal cross-sectional view which shows the structure of a crucible apparatus, (b) is a perspective view. 本発明に係る真空蒸着用るつぼ装置の実施例3の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of Example 3 of the crucible apparatus for vacuum evaporation which concerns on this invention. (a),(b)は本発明に係る真空蒸着用るつぼ装置の実施例4を示し、(a)はるつぼ装置の構成を示す縦断面図、(b)は斜視図である。(A), (b) shows Example 4 of the crucible apparatus for vacuum evaporation which concerns on this invention, (a) is a longitudinal cross-sectional view which shows the structure of a crucible apparatus, (b) is a perspective view. 本発明に係る真空蒸着用るつぼ装置の実施例5の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of Example 5 of the crucible apparatus for vacuum evaporation which concerns on this invention. (a),(b)は内装誘導加熱部材の変形例を示す平面図で、(a)は2本の内装加熱ロッドの配置を示し、(b)は6本の内装加熱ロッドの配置を示す。(A), (b) is a top view which shows the modification of an internal induction heating member, (a) shows arrangement | positioning of two internal heating rods, (b) shows arrangement | positioning of six internal heating rods. . 実施例5の変形例の構成を示す縦断面図である。FIG. 10 is a longitudinal sectional view showing a configuration of a modified example of Example 5. 本発明に係るるつぼ装置の実施例6の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of Example 6 of the crucible apparatus which concerns on this invention. (a),(b)は上面加熱プレートを示す斜視図で、(a)はプレートタイプ、(b)は穴あきタイプである。(A), (b) is a perspective view which shows an upper surface heating plate, (a) is a plate type, (b) is a perforated type. 本発明に係るるつぼ装置の実施例6の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of Example 6 of the crucible apparatus which concerns on this invention. るつぼ装置の実施例7の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of Example 7 of a crucible apparatus. るつぼ装置の実施例8を示す要部拡大縦断面図である。It is a principal part expanded longitudinal cross-sectional view which shows Example 8 of a crucible apparatus. るつぼ装置の実施例9を示す要部拡大縦断面図である。It is a principal part expanded longitudinal cross-sectional view which shows Example 9 of a crucible apparatus. (a),(b)は内装誘導加熱部材を示し、(a)はロッド状の内装誘導加熱部材を示す平面視の部分断面図、(b)はプレート状の内装誘導加熱部材を示す平面視の部分断面図である。(A), (b) shows an interior induction heating member, (a) is a partial sectional view in plan view showing a rod-like interior induction heating member, and (b) is a plan view showing a plate-like interior induction heating member. FIG. るつぼ装置の実施例10の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of Example 10 of a crucible apparatus. (a),(b)は輻射誘導加熱部材を示し、(a)はロッド状の輻射誘導加熱部材を示す平面図、(b)はプレート状の輻射誘導加熱部材を示す平面図である。(A), (b) shows a radiation induction heating member, (a) is a top view which shows a rod-shaped radiation induction heating member, (b) is a top view which shows a plate-shaped radiation induction heating member.

以下、本発明の実施例を図面に基づいて説明する。
[基本構造]
本発明に係るるつぼ装置を具備した真空蒸着装置は、図3に示すように、真空蒸着容器Aの蒸着室a内において、るつぼ装置の加熱手段である高周波電源装置Bから誘導加熱源Cの一例である分割誘導コイルCa〜Cd高周波電流を給電し、分割誘導コイルCa〜Cdから発生する磁界により、誘導加熱部材Dの一例であるるつぼホルダDKaの一部(加熱部位)を高周波(電磁)誘導加熱し、るつぼPa内の蒸着材料Eを加熱して蒸散(蒸発または昇華)し、真空蒸着容器A内で保持具に保持された基板(被蒸着材)Tの表面に蒸着するものである。このるつぼ装置には、長時間にわたって連続蒸着を行うために、誘導加熱源Cによる誘導加熱部材Dの全体ではなく、後述するように蒸着材料Eに設定された加熱域Ha〜Hd(図6)に対応するるつぼホルダDKaの一部を集中的に加熱して、この加熱域Ha〜Hdの蒸着材料Eを蒸散させ、この加熱域Ha〜Hdを順次変位させて蒸着材料Eの全体を蒸散させる加熱域変位手段を設けている。また、蒸着中に加熱域Ha〜Hd以外の蒸着材料Eの劣化を防止するために、蒸着材料Eを冷却する冷却手段を設けている。ここで、蒸着材料Eは、高周波磁界により発熱しない非導電性の材料、または導電性ではあるが電気抵抗が小さく発熱量が小さい材料を対象としている。
Embodiments of the present invention will be described below with reference to the drawings.
[Basic structure]
As shown in FIG. 3, the vacuum vapor deposition apparatus equipped with the crucible apparatus according to the present invention is an example of an induction heating source C from a high frequency power supply apparatus B which is a heating means of the crucible apparatus in the vapor deposition chamber a of the vacuum vapor deposition container A. A high-frequency (electromagnetic) induction of a part (heating part) of the crucible holder DKa, which is an example of the induction heating member D, is performed by feeding a high-frequency current of the divided induction coils Ca to Cd that is Heating is performed to heat and evaporate (evaporate or sublimate) the vapor deposition material E in the crucible Pa, and deposit it on the surface of the substrate (vapor deposition material) T held by the holder in the vacuum vapor deposition container A. In this crucible device, in order to perform continuous vapor deposition for a long time, not the entire induction heating member D by the induction heating source C, but heating zones Ha to Hd set in the vapor deposition material E as described later (FIG. 6). A part of the crucible holder DKa corresponding to the above is intensively heated to evaporate the vapor deposition material E in the heating areas Ha to Hd, and sequentially displace the heating areas Ha to Hd to evaporate the entire vapor deposition material E. A heating zone displacement means is provided. Moreover, in order to prevent deterioration of the vapor deposition material E other than the heating zones Ha to Hd during vapor deposition, a cooling means for cooling the vapor deposition material E is provided. Here, the vapor deposition material E is a non-conductive material that does not generate heat due to a high-frequency magnetic field, or a material that is conductive but has a small electric resistance and a small amount of heat generation.

真空蒸着容器Aにおけるるつぼの配置構造は、図4(a)〜(f)に示すように4つのタイプI〜VIがあり、また誘導加熱部材Dの配置構造は、図5(a)〜(h)に示すように5つのタイプi〜vがある。さらに加熱域変位手段には、図6(a)(b)、(c)(d)に示すように、誘導加熱部材Dの加熱域を変位させる2つのタイプα,βがあり、さらに冷却領域調整手段には、図7(a),(b)に示すように、2つのタイプγ,δがあるので、以下に簡単に説明する。   As shown in FIGS. 4A to 4F, there are four types I to VI of the crucible arrangement structure in the vacuum evaporation container A, and the arrangement structure of the induction heating member D is shown in FIGS. There are five types i to v as shown in h). Further, as shown in FIGS. 6A, 6B, 6C, and 6D, the heating area displacing means includes two types α and β that displace the heating area of the induction heating member D, and further includes a cooling area. As shown in FIGS. 7A and 7B, there are two types of adjusting means, γ and δ, which will be briefly described below.

図4に示すように、るつぼの配置構造には、
タイプI:水平に保持された基板Tに対して、蒸発、昇華された蒸着材料Eを下方から蒸着させるアップデポジションタイプで、上面開口で縦長容器形のるつぼPaを真空蒸着容器Aの外部に配置したるつぼ外置き形[図4(a)]と、
タイプII−a,II−b:アップデポジションタイプで、るつぼPaまたは開口面が広い皿形のるつぼPbを蒸着室a内に配置したるつぼ内置き形[図4(b)(c)]と、
タイプIII:垂直に保持された基板Tに対して、蒸発、昇華された蒸着材料Eを側方から蒸着させるサイドデポジションタイプで、真空蒸着容器Aの外部にるつぼPaを配置してノズルGを介して真空蒸着容器Aに導入するつぼ外置き形[図4(d)]と、
タイプIV−a,IV−b:サイドデポジションタイプで、真空蒸着容器A内にるつぼPaまたはPbを真空蒸着容器A内に配置してノズルGから放出するるつぼ内置き形[図4(e)(f)]とがある。
As shown in FIG. 4, the crucible arrangement structure includes
Type I: Up-deposition type that deposits evaporated and sublimated deposition material E from below on a horizontally held substrate T. A vertically long crucible Pa is placed outside the vacuum deposition container A at the top opening. A crucible outside-mounted type [Fig. 4 (a)],
Type II-a, II-b: Updeposition type, crucible Pa or a dish-shaped crucible Pb having a wide opening surface placed in the vapor deposition chamber a [FIGS. 4 (b) (c)],
Type III: A side deposition type in which the evaporated and sublimated deposition material E is vapor-deposited from the side of the substrate T held vertically. A crucible Pa is arranged outside the vacuum deposition vessel A and the nozzle G is arranged. Through the crucible to be introduced into the vacuum deposition container A [Fig. 4 (d)],
Type IV-a, IV-b: Side deposition type, in which crucible Pa or Pb is placed in vacuum vapor deposition container A and discharged from nozzle G in vacuum vapor deposition container A [FIG. 4 (e) (F)].

図5に示すように、誘導加熱部材Dには、
タイプi−a,i−b:外周加熱タイプで、高周波磁界により発熱しにくい材料(非導電性、または導電性で低電気抵抗の材料からなる(以下、非導電性という)からなる容器形または皿形のるつぼPa,Pb内に、導電性材料からなるるつぼホルダ(誘導加熱部材、外周誘導加熱部材)DKaを設置し、誘導コイルCから発生させた磁界によりるつぼホルダDKaの所定部位を加熱し、主に伝導熱により蒸着材料Eを外周側から加熱して蒸散するもの[図5(a)(b)]と、
タイプii−a,ii−b:直接加熱タイプで、導電性で高周波磁界により発熱やすい高電気抵抗の材料(以下、導電性材料という)により形成した誘導加熱るつぼDPa,DPbを使用する。そして誘導コイルCから発生させた磁界によりるつぼDPa,DPbの所定部位を加熱し、主に伝導熱により蒸着材料Eを外周側から加熱して蒸散するもの[図5(c)(d)]と、
タイプiii−a,iii−b:内装加熱タイプで、非導電性のるつぼPa,Pb内で蒸着材料Eの内部に、導電性材料からなる内装誘導加熱部材(誘導加熱部材)DLを配置し、誘導コイルCから発生させた磁界により内装誘導加熱部材DLを加熱し、主に伝導熱により蒸着材料Eを内部から加熱して蒸着材料Eを蒸散するもの[図5(e)(f)]と、
タイプiv:上面加熱タイプで、非導電性のるつぼPa内で蒸着材料Eの上面に接地するように上面加熱プレート(上面誘導加熱部材)DMを昇降自在に配置し、誘導コイルCから発生させた磁界により上面加熱プレートDMを加熱して、主に伝導熱により蒸着材料Eを上面から加熱して蒸散するもの[図5(g)]と、
タイプv:輻射誘導加熱タイプで、非導電性のるつぼPbで蒸着材料Eの上方に一定機距離だけ離間して輻射誘導加熱部材DNを配置し、誘導コイルCから発生させた磁界により輻射誘導加熱部材DNの所定部位を加熱し、輻射熱により蒸着材料Eを部分的に加熱し蒸散するもの[図5(h)]とがある。
As shown in FIG. 5, the induction heating member D includes
Type ia, ib: Peripheral heating type, a container shape made of a material that does not easily generate heat due to a high-frequency magnetic field (non-conductive or conductive and low-electric resistance material (hereinafter referred to as non-conductive)) A crucible holder (induction heating member, outer periphery induction heating member) DKa made of a conductive material is installed in the dish-shaped crucibles Pa and Pb, and a predetermined part of the crucible holder DKa is heated by a magnetic field generated from the induction coil C. , One that heats the vapor deposition material E from the outer peripheral side mainly by conduction heat and evaporates [FIGS. 5 (a) (b)],
Type ii-a, ii-b: Direct heating type, which uses induction heating crucibles DPa and DPb formed of a material having high electrical resistance that is conductive and easily generates heat by a high-frequency magnetic field (hereinafter referred to as conductive material). Then, predetermined portions of the crucibles DPa and DPb are heated by the magnetic field generated from the induction coil C, and the vapor deposition material E is heated from the outer peripheral side mainly by conduction heat to evaporate [FIGS. 5 (c) (d)] ,
Type iii-a, iii-b: Internal heating type, an internal induction heating member (induction heating member) DL made of a conductive material is disposed inside the vapor deposition material E in the non-conductive crucible Pa, Pb, The interior induction heating member DL is heated by a magnetic field generated from the induction coil C, and the evaporation material E is evaporated from the inside mainly by conduction heat [FIGS. 5 (e) (f)]. ,
Type iv: a top surface heating type, and a top surface heating plate (top surface induction heating member) DM is disposed so as to be movable up and down so as to be grounded to the top surface of the vapor deposition material E in a non-conductive crucible Pa, The upper surface heating plate DM is heated by a magnetic field, and the evaporation material E is heated from the upper surface mainly by conduction heat to evaporate [FIG. 5 (g)],
Type v: Radiation induction heating type, a non-conductive crucible Pb, a radiation induction heating member DN disposed above the vapor deposition material E by a certain distance, and radiation induction heating by a magnetic field generated from the induction coil C There is one that heats a predetermined portion of the member DN and partially heats the vapor deposition material E by radiant heat to evaporate [FIG. 5 (h)].

図6に示すように、誘導コイルCおよび加熱域変位手段には、
タイプα:分割切替タイプで、誘導加熱コイルCは、加熱域Ha〜Hd,He〜Hhに対応して配置された複数の分割誘導コイルCa〜Cd,Ce〜Chからなり、スイッチSWa〜SWd,SWe〜SWhにより高周波電流の供給を切り替えることにより、加熱域Ha〜Hdに対応した加熱部分を変位させるもので、円筒状の分割誘導コイルCa〜Cdを使用したタイプa[図6(a)]、および加熱域He〜Hhに対応した加熱部分を変位させるもので平面状の分割誘導コイルCe〜Chを使用したタイプb[図6(b)]と、
タイプβ:移動変位タイプで、コイル移動装置Sにより、円筒形または平面形の可動誘導コイルCma,Cmbを加熱域Ha〜Hd,He〜Hhの配置方向に沿って移動させることにより、加熱域Ha〜Hd,He〜Hhに対応する誘導加熱部材Dの加熱部位を変位させるもので、円筒状の可動誘導コイルCmaを使用したタイプa[図6(c)]、および平面状の可動誘導コイルCmbを使用したタイプb[図6(d)]とがある。
As shown in FIG. 6, the induction coil C and the heating area displacing means include
Type α: Split switching type, the induction heating coil C is composed of a plurality of split induction coils Ca to Cd and Ce to Ch arranged corresponding to the heating zones Ha to Hd and He to Hh, and switches SWa to SWd, By switching the supply of high-frequency current with SWe to SWh, the heating part corresponding to the heating zones Ha to Hd is displaced, and type a using cylindrical divided induction coils Ca to Cd [FIG. 6 (a)] , And type b [FIG. 6 (b)] using a planar split induction coil Ce to Ch that displaces the heating portion corresponding to the heating zones He to Hh,
Type β: a moving displacement type, and by moving the cylindrical or planar movable induction coils Cma and Cmb along the arrangement direction of the heating zones Ha to Hd and He to Hh by the coil moving device S, the heating zone Ha ˜Hd, He˜Hh, which is to displace the heating part of the induction heating member D, type a using a cylindrical movable induction coil Cma [FIG. 6C], and a planar movable induction coil Cmb And type b [FIG. 6 (d)].

図7に示すように、冷却手段と冷却領域調整手段には、
タイプγ:全体冷却タイプで、誘導加熱部材Dの配置方向に沿って全体冷却ジャケットQ,Rを配置し、冷却液を全体冷却ジャケットQ,R内に均一に冷却するように供給して、蒸着材料Eを冷却するもので、円筒状の全体冷却ジャケットQを使用するタイプa[図7(a)]、およびプレート状の全体冷却ジャケットRを使用するタイプb[図7(b)]と、
タイプδ:分割冷却タイプで、複数の分割冷却ジャケットQa〜Qd,Ra〜Rdを所定の冷却領域ごとに分割配置して、それぞれの分割冷却ジャケットQa〜Qd,Ra〜Rdに選択的に冷却液を供給することにより、加熱域Ha〜Hd,He〜Hhに対応する蒸着材料Eを非冷却領域とするもので、円筒状の分割冷却ジャケットQa〜Qdを使用するタイプa[図7(c)]、およびプレート状の分割冷却ジャケットRa〜Rdを使用するタイプb[図7(d)]とがある。
As shown in FIG. 7, the cooling means and the cooling region adjusting means include
Type γ: Overall cooling type, in which the overall cooling jackets Q and R are arranged along the arrangement direction of the induction heating member D, and the cooling liquid is supplied so as to be uniformly cooled in the overall cooling jackets Q and R for vapor deposition. A type a that cools the material E, using a cylindrical overall cooling jacket Q [FIG. 7A], and a type b that uses a plate-like overall cooling jacket R [FIG. 7B],
Type δ: Divided cooling type, in which a plurality of divided cooling jackets Qa to Qd and Ra to Rd are divided and arranged for each predetermined cooling region, and the cooling liquid is selectively supplied to each divided cooling jacket Qa to Qd and Ra to Rd. Is used to make the vapor deposition material E corresponding to the heating zones Ha to Hd and He to Hh into the non-cooling zone, and the type a using the cylindrical divided cooling jackets Qa to Qd [FIG. And type b (FIG. 7D) using plate-shaped divided cooling jackets Ra to Rd.

図8に示すように、誘電コイルCの配置構造には、
タイプε:誘電コイル外装タイプで、冷却ジャケットQ,Qa〜Qd,R,Ra〜Rdの外側に、それぞれ分割誘導コイルCa〜Cd,Ce〜Chが配置された[図8(a)〜(d)]ものと、
タイプζ:誘電コイル内装タイプで、冷却ジャケットQ,Qa〜Qd,R,Ra〜Rdの内部に、冷却液中に浸漬されて分割誘導コイルCa〜Cd,Ce〜Chが配置された[図8(e)〜(f)]ものがある。
As shown in FIG. 8, the arrangement structure of the dielectric coil C includes
Type ε: Dielectric coil exterior type, and divided induction coils Ca to Cd and Ce to Ch are disposed outside the cooling jackets Q, Qa to Qd, R, and Ra to Rd, respectively [FIGS. )]things and,
Type ζ: Dielectric coil built-in type, and divided induction coils Ca to Cd and Ce to Ch are disposed in the cooling jackets Q, Qa to Qd, R, and Ra to Rd so as to be immersed in the cooling liquid [FIG. (E) to (f)].

[実施例1]
以下、本発明に係る真空蒸着用るつぼ装置の実施例1を図1〜図3を参照して説明する。
[Example 1]
Embodiment 1 of a crucible device for vacuum evaporation according to the present invention will be described below with reference to FIGS.

この実施例1は、真空蒸着装置Aは、図4に示すアップデポジションの外部配置タイプIやアップデポジションの内部配置タイプII−a、サイドデポジションの外部配置タイプIII、サイドデポジションの内部配置タイプIV−aについて適用される。また誘導加熱部材Dは、図5(a)に示す外周加熱タイプiで、非導電性のるつぼPa内に導電性のるつぼホルダDKaが内嵌されている。さらに冷却手段は全体冷却タイプγ−aで、上面が開口された容器形の全体冷却ジャケットQがるつぼPaに外嵌され、冷却水供給装置14から全体冷却ジャケットQに冷却液が供給されてるつぼPa内の蒸着材料Eを全体にわたって冷却する。この冷却液は、図示しないフィンなどにより、全体冷却ジャケットQの全体にわたって流送されて全体が均等に冷却される。   In the first embodiment, the vacuum deposition apparatus A includes an up-deposition external arrangement type I, an up-deposition internal arrangement type II-a, a side-deposition external arrangement type III, and a side-deposition internal arrangement type shown in FIG. Applicable for IV-a. Moreover, the induction heating member D is the outer periphery heating type i shown to Fig.5 (a), and the electroconductive crucible holder DKa is fitted in the nonelectroconductive crucible Pa. As shown in FIG. Further, the cooling means is a whole cooling type γ-a, and a container-like whole cooling jacket Q having an open upper surface is fitted on the crucible Pa, and the crucible is supplied with the cooling liquid from the cooling water supply device 14 to the whole cooling jacket Q. The vapor deposition material E in Pa is cooled throughout. The cooling liquid is fed over the entire cooling jacket Q by fins (not shown), and the whole is uniformly cooled.

(冷却・加熱構造)
誘導加熱部材Dおよび加熱変位手段は、図6(a)に示す分割切替タイプα−a、冷却・加熱構造におけるコイル配置構造は、誘電コイル外装タイプεであるが、誘電コイル内装タイプζであってもよい。誘電コイル外装タイプεにおける誘導コイルCは、蒸着材料Eに設定された加熱域Ha〜Hdに対応して、るつぼホルダDKaの高さ方向(加熱域の配置方向)に沿って全体冷却ジャケットQの外周部に外嵌配置された複数の分割誘導コイルCa〜Cdにより構成される。
(Cooling / heating structure)
The induction heating member D and the heating displacement means are the split switching type α-a shown in FIG. 6A, and the coil arrangement structure in the cooling / heating structure is the dielectric coil exterior type ε, but the dielectric coil interior type ζ. May be. The induction coil C in the dielectric coil exterior type ε corresponds to the heating areas Ha to Hd set in the vapor deposition material E, and the entire cooling jacket Q extends along the height direction of the crucible holder DKa (the arrangement direction of the heating area). It is comprised by several division | segmentation induction coil Ca-Cd externally arrange | positioned by the outer peripheral part.

したがって、高周波電源装置BからスイッチSWa〜SWdを介して誘導コイルCa〜Cdにそれぞれ高周波電流を供給する。そして、予め実験などにより求められた高周波電流と蒸散時間と蒸着材料Eの種類、蒸着膜厚、真空蒸着装置AやるつぼPの構造などのパラメータから、蒸着量や蒸散時間に対する蒸着材料Eの減少量を求めるデータが蒸散データテーブル11に記録されている。そして蒸散制御部13では、操作器12から入力される蒸着条件に基づいて、センサなどにより計測される蒸着量および加熱蒸着時間と、蒸散データテーブル11のデータとに基づいてスイッチSWa〜SWdを操作し加熱域Ha〜Hdを制御する。   Therefore, a high frequency current is supplied from the high frequency power supply device B to the induction coils Ca to Cd via the switches SWa to SWd. Then, from the parameters such as the high-frequency current, transpiration time, vapor deposition material E type, vapor deposition film thickness, vacuum vapor deposition apparatus A and crucible P structure obtained in advance through experiments, the amount of vapor deposition material E decreases with respect to the vapor deposition amount and transpiration time. Data for obtaining the quantity is recorded in the transpiration data table 11. In the transpiration control unit 13, the switches SWa to SWd are operated based on the vapor deposition amount and the heating vapor deposition time measured by the sensor and the data in the transpiration data table 11 based on the vapor deposition conditions input from the operation device 12. The heating zones Ha to Hd are controlled.

上記構成において、るつぼホルダDKa内に蒸着材料Eが投入され、操作器12の操作により蒸着作業が開始されると、まずスイッチSWaがオンされて最上段の誘導コイルCaに高周波電流が供給され、誘導コイルCaから発生される磁界が加熱域Haに対応するるつぼホルダDKaの最上段部位に作用して誘導加熱され、伝導熱や輻射熱により加熱域Haの蒸着材料Eが蒸散される。   In the above configuration, when the vapor deposition material E is put into the crucible holder DKa and the vapor deposition operation is started by the operation of the operation device 12, the switch SWa is first turned on to supply a high-frequency current to the uppermost induction coil Ca. A magnetic field generated from the induction coil Ca acts on the uppermost part of the crucible holder DKa corresponding to the heating area Ha to be induction heated, and the vapor deposition material E in the heating area Ha is evaporated by conduction heat or radiation heat.

蒸散制御部13では、所定の蒸散時間が経過すると、蒸散データテーブル11のデータに基づいて加熱域Haの蒸着材料Eが蒸散されたと判断し、スイッチSWaをオフするとともにスイッチSWbをオンし、最上段の加熱域Haからその下位の加熱域Hbに対応するつぼホルダDKaの部位を誘電加熱して、蒸着材料Eの減少に対応する。下位側に次順これを繰り返して長時間の蒸着作業を行い、蒸着材料Eをすべて蒸散する。   When a predetermined transpiration time elapses, the transpiration control unit 13 determines that the vapor deposition material E in the heating area Ha has been transpiration based on the data of the transpiration data table 11, and turns off the switch SWa and turns on the switch SWb. The part of the crucible holder DKa corresponding to the lower heating area Hb from the upper heating area Ha is dielectrically heated to cope with the decrease in the vapor deposition material E. This is repeated in the following order on the lower side, and a long-time deposition operation is performed to evaporate all the deposition material E.

この蒸着作業中に、冷却水供給装置14から全体冷却ジャケットQに冷却液が供給されて均一に冷却され、蒸着材料E全体が均等に冷却されており、蒸着材料Eが加熱により劣化されるのを防止している。また全体冷却ジャケットQによる吸熱量より、分割誘導コイルCa〜Cdにより誘導加熱される加熱域Ha〜Hdに対応するるつぼホルダDKaの部位おける発熱量がはるかに大きいため、加熱域Ha〜Hdの蒸着材料Eが集中して蒸散され、加熱域Ha〜Hdからずれた蒸着材料Eが冷却されて劣化が効果的に防止される。   During this vapor deposition operation, the cooling liquid is supplied from the cooling water supply device 14 to the entire cooling jacket Q to be uniformly cooled, and the entire vapor deposition material E is uniformly cooled, and the vapor deposition material E is deteriorated by heating. Is preventing. Further, since the amount of heat generated in the portion of the crucible holder DKa corresponding to the heating area Ha to Hd that is induction-heated by the divided induction coils Ca to Cd is much larger than the heat absorption amount by the entire cooling jacket Q, the evaporation of the heating areas Ha to Hd is performed. The material E is concentrated and evaporated, and the vapor deposition material E deviated from the heating zones Ha to Hd is cooled to effectively prevent deterioration.

ここで、蒸着材料Eの劣化はPL測定などにより測定することができ、図2に液晶パネルの蒸着材料Eであるα−NDPの計測結果を示す。
実施例1によれば、分割誘導コイルCa〜Cdにより加熱域Ha〜Hdに対応するるつぼホルダDKaの加熱部位をそれぞれ集中して加熱することから、当該加熱域Ha〜Hd以外の蒸着材料Eが加熱されずに蒸着材料Eの劣化を防止することができるとともに、蒸散制御部13によりスイッチSWa〜SWdを操作して、高周波電源装置Bから誘導コイルCa〜Cdに供給する高周波電流を制御し、加熱域Ha〜Hdに対応するるつぼホルダDKaの加熱部位を変位させることで、蒸着材料Eを順次蒸発または昇華させて蒸着作業を長時間にわたって連続して行うことができる。また冷却水供給装置14から全体冷却ジャケットQに冷却液を供給して蒸着材料Eを冷却することにより劣化を防止することができ、長時間の連続蒸着を効率よく行うことができる。
Here, the deterioration of the vapor deposition material E can be measured by PL measurement or the like, and FIG. 2 shows the measurement result of α-NDP which is the vapor deposition material E of the liquid crystal panel.
According to Example 1, since the heating parts of the crucible holder DKa corresponding to the heating zones Ha to Hd are concentrated and heated by the divided induction coils Ca to Cd, the vapor deposition material E other than the heating zones Ha to Hd is provided. The vapor deposition material E can be prevented from deteriorating without being heated, and the transpiration control unit 13 operates the switches SWa to SWd to control the high frequency current supplied from the high frequency power supply device B to the induction coils Ca to Cd. By displacing the heating part of the crucible holder DKa corresponding to the heating zones Ha to Hd, the vapor deposition material E can be sequentially evaporated or sublimated, and the vapor deposition operation can be performed continuously for a long time. Further, the cooling liquid can be supplied from the cooling water supply device 14 to the entire cooling jacket Q to cool the vapor deposition material E, thereby preventing deterioration and efficient continuous vapor deposition for a long time.

[実施例2]
以下、本発明に係る真空蒸着用るつぼ装置の実施例2を、図9を参照して説明する。この実施例2は、実施例1における加熱変位手段を、分割切替タイプα−aから移動変位タイプβ−aに変更したもので、同一部材には同一符号を付して説明を省略する。
[Example 2]
Hereinafter, Example 2 of the crucible apparatus for vacuum evaporation according to the present invention will be described with reference to FIG. In the second embodiment, the heating displacement means in the first embodiment is changed from the split switching type α-a to the moving displacement type β-a, and the same members are denoted by the same reference numerals and description thereof is omitted.

真空蒸着装置Aは図4に示すアップデポジション外部配置タイプIやアップデポジション内部配置タイプII−a、サイドデポジション外部配置タイプIII、サイドデポジション内部配置タイプIV−aについて適用される。また誘導加熱部材Dは、図5(a)に示す外周加熱タイプi−aのつぼホルダDKaである。さらに冷却手段は全体冷却タイプγ−aで、るつぼPaに外嵌された全体冷却ジャケットQにより冷却される。   The vacuum deposition apparatus A is applied to the updeposition external arrangement type I, the updeposition internal arrangement type II-a, the side deposition external arrangement type III, and the side deposition internal arrangement type IV-a shown in FIG. Moreover, the induction heating member D is the outer periphery heating type ia crucible holder DKa shown to Fig.5 (a). Further, the cooling means is a whole cooling type γ-a, and is cooled by a whole cooling jacket Q that is externally fitted to the crucible Pa.

(冷却・加熱構造)
そして、誘導加熱部材Dおよび加熱変位手段は移動変位タイプβ−aであり、冷却・加熱構造におけるコイル配置構造は、誘電コイル外装タイプεであるが、誘電コイル内装タイプζであってもよい。そしてコイル移動装置Sにより、全体冷却ジャケットQに昇降自在に遊嵌された円筒形の可動誘導コイルCmaを上下方向に移動させることにより、加熱域Ha〜Hdに対応するるつぼホルダDKaの加熱部位を変位させることができる。
(Cooling / heating structure)
The induction heating member D and the heating displacement means are the movement displacement type β-a, and the coil arrangement structure in the cooling / heating structure is the dielectric coil exterior type ε, but may be a dielectric coil interior type ζ. Then, the coil moving device S moves the cylindrical movable induction coil Cma that is loosely fitted to the entire cooling jacket Q in the up and down direction, so that the heating part of the crucible holder DKa corresponding to the heating zones Ha to Hd is moved. Can be displaced.

コイル移動装置Sは、架台15に加熱域Ha〜Hdの配置方向(上下方向)に沿うねじ軸16が回転自在に支持され、可動誘導コイルCmaがコイル保持具17に保持されれるとともに、このコイル保持具17に、ねじ軸16に螺合する雌ねじ部材18が取り付けられている。そしてねじ軸16の下端部に、減速機付の変位モータ19の出力軸が連結され、蒸散制御部13によりモータ制御器20を介して変位モータ19が操作される。21は保持具17を案内する一対のガイドロッドである。   In the coil moving device S, the screw shaft 16 along the arrangement direction (vertical direction) of the heating zones Ha to Hd is rotatably supported by the gantry 15, and the movable induction coil Cma is held by the coil holder 17, and this coil A female screw member 18 that is screwed onto the screw shaft 16 is attached to the holder 17. An output shaft of a displacement motor 19 with a speed reducer is connected to the lower end portion of the screw shaft 16, and the displacement motor 19 is operated by the transpiration control unit 13 via the motor controller 20. Reference numeral 21 denotes a pair of guide rods for guiding the holder 17.

したがって、高周波電源装置Bから伸縮可能な給電ケーブル22を介して可動誘導コイルCmaに高周波電流を供給して、可動誘導コイルCmaから発生した磁界によりるつぼホルダDKaの所定の加熱部位を加熱し、伝導熱や輻射熱により加熱域Ha〜Hdの蒸着材料Eを蒸散させる。また蒸散制御部13では、操作器12から入力される蒸着条件により、蒸散データテーブル11のデータに基づいて蒸散時間をカウントする。そして、その加熱域Ha〜Hdの蒸着材料Eが蒸散される蒸散時間が経過すると、モータ制御器20を介してコイル移動装置Sの変位モータ19を駆動し、可動誘導コイルCmaを変位させて、次の加熱域Ha〜Hdに対応するるつぼホルダDKaの加熱部位を誘導加熱する。   Accordingly, a high-frequency current is supplied from the high-frequency power supply device B to the movable induction coil Cma via the extendable power supply cable 22 to heat a predetermined heating part of the crucible holder DKa by the magnetic field generated from the movable induction coil Cma. The vapor deposition material E in the heating area Ha to Hd is evaporated by heat or radiant heat. Also, the transpiration control unit 13 counts the transpiration time based on the data of the transpiration data table 11 according to the vapor deposition conditions input from the operation device 12. Then, when the evaporation time during which the vapor deposition material E in the heating areas Ha to Hd evaporates has elapsed, the displacement motor 19 of the coil moving device S is driven via the motor controller 20 to displace the movable induction coil Cma, The heating part of the crucible holder DKa corresponding to the next heating area Ha to Hd is induction-heated.

上記構成において、るつぼホルダDKa内に蒸着材料Eが投入され、操作器12の操作により蒸着作業が開始されると、最上位の加熱域Haに対応して配置された可動誘導コイルCmaに高周波電源装置Bから高周波電流が供給されて、可動誘導コイルCmaから発生された磁界が作用し最上段の部位が誘導加熱され、加熱域Haの蒸着材料Eが蒸散される。   In the above configuration, when the vapor deposition material E is put into the crucible holder DKa and the vapor deposition operation is started by the operation of the operation device 12, a high frequency power source is supplied to the movable induction coil Cma arranged corresponding to the uppermost heating area Ha. A high-frequency current is supplied from the device B, the magnetic field generated from the movable induction coil Cma acts, the uppermost part is induction-heated, and the vapor deposition material E in the heating area Ha is evaporated.

蒸散制御部13では、蒸散データテーブル11のデータに基づいて、所定の蒸散時間が経過すると、加熱域Haの蒸着材料Eが蒸散されたと判断し、コイル移動装置Sを駆動して可動誘導コイルCmaを下降し、次の加熱域Hbの対応位置で停止させ、次の加熱域Hbに対応するるつぼホルダDKaの加熱部位を誘導加熱し、加熱域Hbの蒸着材料Eの蒸散する。次の各加熱域Hc,Hdに対して順次これを繰り返し、長時間の蒸着作業を行ってすべての蒸着材料Eを蒸散する。   The transpiration control unit 13 determines that the vapor deposition material E in the heating area Ha has been evaporated when a predetermined transpiration time has elapsed based on the data in the transpiration data table 11, and drives the coil moving device S to move the movable induction coil Cma. Is lowered and stopped at the position corresponding to the next heating area Hb, the heated portion of the crucible holder DKa corresponding to the next heating area Hb is induction-heated, and the vapor deposition material E in the heating area Hb is evaporated. This is sequentially repeated for the next heating zones Hc and Hd, and a long-time vapor deposition operation is performed to evaporate all the vapor deposition material E.

この蒸着作業中に、冷却水供給装置14から全体冷却ジャケットQに冷却液が供給されて蒸着材料Eが均一に冷却され、加熱域Ha〜Hdの熱により蒸着材料Eが劣化されるのを防止している。   During this vapor deposition operation, the cooling liquid is supplied from the cooling water supply device 14 to the entire cooling jacket Q to uniformly cool the vapor deposition material E, and the vapor deposition material E is prevented from being deteriorated by the heat in the heating zones Ha to Hd. is doing.

実施例2によれば、コイル移動装置Sを操作して可動誘導コイルCmaをるつぼホルダDKaの加熱域Ha〜Hdに沿って変位させることで、加熱域Ha〜Hdを順次加熱して、蒸着作業を長時間にわたって連続して行うことができる。全体冷却ジャケットQにより蒸着材料Eを冷却するので、蒸着材料Eの劣化を防止して長時間の連続蒸着を行うことができる。   According to the second embodiment, the coil moving device S is operated to displace the movable induction coil Cma along the heating zones Ha to Hd of the crucible holder DKa, thereby sequentially heating the heating zones Ha to Hd to perform the vapor deposition operation. Can be performed continuously over a long period of time. Since the vapor deposition material E is cooled by the entire cooling jacket Q, it is possible to prevent the vapor deposition material E from being deteriorated and perform continuous vapor deposition for a long time.

[実施例3]
以下、本発明に係る真空蒸着用るつぼ装置の実施例3を図10を参照して説明する。この実施例3は、実施例1において全体に均等に冷却する全体冷却タイプγ−aを、非冷却領域を変位可能に設けることができる分割冷却タイプδ−aに変更したもので、先の実施例と同一部材には同一符号を付して説明を省略する。
[Example 3]
A third embodiment of the vacuum evaporation crucible apparatus according to the present invention will be described below with reference to FIG. In the third embodiment, the whole cooling type γ-a that cools the whole area equally in the first embodiment is changed to a divided cooling type δ-a that can displace the non-cooling region. The same members as those in the example are denoted by the same reference numerals and description thereof is omitted.

真空蒸着容器Aは、図4に示すアップデポジション外部配置タイプIやアップデポジション内部配置タイプII−a、サイドデポジション外部配置タイプIII、サイドデポジション内部配置タイプIV−aについて適用される。また誘導加熱部材Dは、図5(a)に示す外周加熱タイプi−aのるつぼホルダDKaである。   The vacuum deposition container A is applied to the updeposition external arrangement type I, the updeposition internal arrangement type II-a, the side deposition external arrangement type III, and the side deposition internal arrangement type IV-a shown in FIG. Moreover, the induction heating member D is the outer periphery heating type ia crucible holder DKa shown to Fig.5 (a).

さらに冷却手段は図7(c)に示す分割冷却タイプδ−aであり、るつぼPaに外嵌されて加熱域Ha〜Hdに対応する冷却領域ごとに分割された複数の分割冷却ジャケットQa〜Qdと、冷却水供給装置14から各分割冷却ジャケットQa〜Qdに冷却液を供給する給液管および排液管と、給液管にそれぞれ介在された開閉弁23a〜23dとを具備し、蒸散制御部13により前記各開閉弁23a〜23dを選択的に操作して、加熱域Ha〜Hdに対応する分割冷却ジャケットQa〜Qdへの冷却液の供給を停止し非冷却領域とすることができる。   Further, the cooling means is a divided cooling type δ-a shown in FIG. 7 (c), and a plurality of divided cooling jackets Qa to Qd that are externally fitted to the crucible Pa and divided for each cooling area corresponding to the heating areas Ha to Hd. And a supply pipe and a drain pipe for supplying the coolant to the respective divided cooling jackets Qa to Qd from the cooling water supply device 14, and open / close valves 23a to 23d respectively interposed in the liquid supply pipes, and transpiration control. The on / off valves 23a to 23d can be selectively operated by the section 13 to stop the supply of the cooling liquid to the divided cooling jackets Qa to Qd corresponding to the heating zones Ha to Hd, thereby making the non-cooling zone.

(冷却・加熱構造)
誘導加熱部材Dおよび加熱変位手段は図6(a)に示す分割切替タイプα−aであり、また冷却・加熱構造におけるコイル配置構造は、図8(b)に示す誘電コイル外装タイプεで、各分割冷却ジャケットQa〜Qdの外周部に、るつぼホルダDKaの高さ方向(加熱域の移動方向)に沿って誘導コイルCa〜Cdが配置され、高周波電源装置BからスイッチSWa〜SWdを介して分割誘導コイルCa〜Cdにそれぞれ高周波電流が選択的に供給される。
(Cooling / heating structure)
The induction heating member D and the heating displacement means are the split switching type α-a shown in FIG. 6A, and the coil arrangement structure in the cooling / heating structure is the dielectric coil exterior type ε shown in FIG. Inductive coils Ca to Cd are arranged along the height direction of the crucible holder DKa (moving direction of the heating region) on the outer peripheral portion of each of the divided cooling jackets Qa to Qd, and from the high frequency power supply device B via the switches SWa to SWd. A high-frequency current is selectively supplied to each of the divided induction coils Ca to Cd.

そして蒸散制御部13では、操作器12から入力される蒸着条件と、蒸散データテーブル11のデータとに基づいてスイッチSWa〜SWdを操作し、分割誘導コイルCa〜Cdに高周波電流を順次供給して、加熱域Ha〜Hdを制御する。同時に、蒸散制御部13により前記開閉弁23a〜23dを操作し、分割冷却ジャケットQa〜Qdへの冷却液の供給を停止し非冷却領域を制御する。   The transpiration control unit 13 operates the switches SWa to SWd based on the vapor deposition conditions input from the operation device 12 and the data of the transpiration data table 11, and sequentially supplies the high frequency current to the divided induction coils Ca to Cd. The heating zones Ha to Hd are controlled. At the same time, the transpiration control unit 13 operates the on-off valves 23a to 23d to stop the supply of the coolant to the divided cooling jackets Qa to Qd and control the non-cooling region.

上記構成において、るつぼホルダDKa内に蒸着材料Eが投入され、操作器12の操作により蒸着作業が開始されると、高周波電源装置Bから最上位の加熱域Haに対応する分割誘導コイルCaに高周波電流が供給され、可動誘導コイルCmaから発生される磁界がるつぼホルダDKaの最上部に作用して誘導加熱し、加熱域Haの蒸着材料Eが蒸散される。同時に、開閉弁23aを閉じて加熱域Haに対応する分割冷却ジャケットQaへの冷却液の供給を停止し、非冷却領域とする。これにより、加熱域Haの蒸着材料Eを効率よく蒸散する。   In the above configuration, when the vapor deposition material E is put into the crucible holder DKa and the vapor deposition operation is started by the operation of the operation device 12, the high frequency power supply device B applies a high frequency to the divided induction coil Ca corresponding to the uppermost heating area Ha. A current is supplied, and a magnetic field generated from the movable induction coil Cma acts on the uppermost part of the crucible holder DKa to perform induction heating, and the vapor deposition material E in the heating area Ha is evaporated. At the same time, the on-off valve 23a is closed to stop the supply of the cooling liquid to the divided cooling jacket Qa corresponding to the heating area Ha, thereby setting the non-cooling area. Thereby, the vapor deposition material E in the heating area Ha is efficiently evaporated.

蒸散制御部13では、所定の蒸散時間が経過すると、蒸散データテーブル11のデータに基づいて加熱域Haの蒸着材料Eが蒸散されたと判断し、スイッチSWaをオフするとともにスイッチSWbをオンし、最上段の加熱域Haから次の加熱域Hb変位させて分割誘導コイルCbに高周波電流を供給し、次に対応するるつぼホルダDKaの部位を誘導加熱し加熱域Hbの蒸着材料Eが蒸散する。同時に開閉弁23aを開けて分割冷却ジャケットQaに冷却液を供給するとともに、開閉弁23bを閉じて非冷却領域とする。順次これを繰り返して長時間の蒸着作業を行い、蒸着材料Eをすべて蒸散する。   When a predetermined transpiration time elapses, the transpiration control unit 13 determines that the vapor deposition material E in the heating area Ha has been transpiration based on the data of the transpiration data table 11, and turns off the switch SWa and turns on the switch SWb. The next heating zone Hb is displaced from the upper heating zone Ha and a high frequency current is supplied to the divided induction coil Cb. Next, the corresponding part of the crucible holder DKa is induction heated, and the vapor deposition material E in the heating zone Hb evaporates. At the same time, the on-off valve 23a is opened to supply the coolant to the divided cooling jacket Qa, and the on-off valve 23b is closed to make a non-cooling region. This is sequentially repeated to perform a long-time vapor deposition operation, and all the vapor deposition material E is evaporated.

実施例3によれば、蒸着作業中に、選択された加熱域Ha〜Hd以外の分割冷却ジャケットQa〜Qdに冷却液の供給を停止して非冷却領域とするとともに、その他の加熱域Ha〜Hdに対応する分割冷却ジャケットQa〜Qdに冷却液を供給して、加熱域Ha〜Hd以外の蒸着材料Eを冷却することにより、蒸着材料Eの劣化を防止しつつ加熱域Ha〜Hdの蒸着材料Eを効率よく蒸散することができ、長時間の連続蒸着を行うことができる。   According to the third embodiment, during the vapor deposition operation, the supply of the cooling liquid to the divided cooling jackets Qa to Qd other than the selected heating zones Ha to Hd is stopped to be the non-cooling zone, and the other heating zones Ha to The cooling liquid is supplied to the divided cooling jackets Qa to Qd corresponding to Hd to cool the vapor deposition material E other than the heating zones Ha to Hd, thereby preventing the vapor deposition material E from deteriorating and vapor deposition in the heating zones Ha to Hd. The material E can be efficiently evaporated and continuous vapor deposition for a long time can be performed.

なお、変形例として図11を示す。この実施例3における真空蒸着容器Aは、図4に示すアップデポジション外部配置タイプIやアップデポジション内部配置タイプII−a、サイドデポジション外部配置タイプIII、サイドデポジション内部配置タイプIV−aについて適用される。また誘導加熱部材Dは、図5(c)に示す直接加熱タイプii−aで、誘導加熱るつぼDPaを使用するように図示されているが、外周加熱タイプi−aや内装加熱タイプiii−a、上面加熱タイプivであってもよい。また誘電コイルCは、分割冷却ジャケットQb内にそれぞれ分割誘電コイルCa〜Cdを内装した内装タイプζ:図8(g)としたものである。この実施例3の変形例も、実施例3と同様の作用効果を奏することができる。   FIG. 11 shows a modification. The vacuum deposition container A in Example 3 is applied to the updeposition external arrangement type I, the updeposition internal arrangement type II-a, the side deposition external arrangement type III, and the side deposition internal arrangement type IV-a shown in FIG. Is done. In addition, the induction heating member D is a direct heating type ii-a shown in FIG. 5C and is shown to use the induction heating crucible DPa, but the outer periphery heating type ia or the interior heating type iii-a. Further, the upper surface heating type iv may be used. Further, the dielectric coil C is an interior type ζ: FIG. 8G in which the divided dielectric coils Ca to Cd are respectively provided in the divided cooling jacket Qb. The modification of the third embodiment can also provide the same operational effects as the third embodiment.

[実施例4]
以下、本発明に係る真空蒸着用るつぼ装置の実施例4を図12を参照して説明する。この実施例4は、実施例2における誘導加熱部材Dおよび加熱変位手段が移動変位タイプβ−aと、非冷却領域を形成しかつこの非冷却領域を変位させることができる分割冷却タイプδ−aとを組み合わせたもので、なお、同一部材には同一符号を付して説明を省略する。
[Example 4]
A fourth embodiment of the crucible device for vacuum evaporation according to the present invention will be described below with reference to FIG. In this fourth embodiment, the induction heating member D and the heating displacement means in the second embodiment are divided into the displacement type β-a and the divided cooling type δ-a in which a non-cooling region can be formed and the non-cooling region can be displaced. In addition, the same code | symbol is attached | subjected to the same member and description is abbreviate | omitted.

分割冷却タイプδ−aは、るつぼPaに外嵌されて所定の冷却領域ごとに分割された複数の分割冷却ジャケットQa〜Qdと、冷却水供給装置14から各分割冷却ジャケットQa〜Qdに冷却液を供給する給液管に介在された開閉弁23a〜23dとを具備し、給液管および排液管は、それぞれ他の分割冷却ジャケットQb〜Qdを貫通して設けられている。   The divided cooling type δ-a includes a plurality of divided cooling jackets Qa to Qd that are externally fitted to the crucible Pa and divided for each predetermined cooling region, and a cooling liquid from the cooling water supply device 14 to each divided cooling jacket Qa to Qd. Open / close valves 23a to 23d interposed in the liquid supply pipe for supplying the liquid, and the liquid supply pipe and the drain pipe are provided through the other divided cooling jackets Qb to Qd, respectively.

実施例4によれば、可動誘導コイルCmaにより加熱域Ha〜Hdに対応するるつぼホルダDKaの加熱部位をそれぞれ集中して加熱すると同時に、選択された加熱域Ha〜Hdに対応して配置された冷却領域の分割冷却ジャケットQa〜Qdへの冷却液の供給を停止して非冷却領域とすることにより、当該加熱域Ha〜Hdの蒸着材料Eのみを効果的に加熱し、残りの蒸着材料Eが冷却されるので、蒸着材料Eの劣化を効果的に防止できる。そしてコイル移動装置Sを操作して可動誘導コイルCmaを加熱域Ha〜Hdに沿って変位させることで、加熱域Ha〜Hdの蒸着材料Eを順次加熱して、蒸着作業を長時間にわたって連続して行うことができる。   According to the fourth embodiment, the heating part of the crucible holder DKa corresponding to the heating zones Ha to Hd is concentrated and heated by the movable induction coil Cma, and at the same time, arranged corresponding to the selected heating zones Ha to Hd. By stopping the supply of the cooling liquid to the divided cooling jackets Qa to Qd of the cooling region to make the non-cooling region, only the vapor deposition material E in the heating region Ha to Hd is effectively heated, and the remaining vapor deposition material E As a result, the deposition material E can be effectively prevented from deteriorating. Then, by operating the coil moving device S to displace the movable induction coil Cma along the heating zones Ha to Hd, the vapor deposition material E in the heating zones Ha to Hd is sequentially heated, and the vapor deposition operation is continued for a long time. Can be done.

[実施例5]
以下、本発明に係る真空蒸着用るつぼ装置の実施例5を、図13を参照して説明する。なお、先の実施例と同一部材には同一符号を付して説明を省略する。
[Example 5]
Hereinafter, Example 5 of the crucible apparatus for vacuum evaporation according to the present invention will be described with reference to FIG. The same members as those in the previous embodiment are denoted by the same reference numerals and description thereof is omitted.

この実施例5は、真空蒸着容器Aは、図4に示すアップデポジション外部配置タイプIやアップデポジション内部配置タイプII−a、サイドデポジション外部配置タイプIII、サイドデポジション内部配置タイプIV−aについて適用される。また誘導加熱部材Dは、図5(e)に示す内装加熱タイプiiiで、非導電性のるつぼPa内で蒸着材料E内の軸心位置に、導電性材料からなるロッド状の内装誘導加熱部材DLが加熱域Ha〜Hdに対応して配置されている。そして、分割誘導コイルCa〜Cdにより内装誘導加熱部材DLを加熱し、伝導熱や輻射熱により蒸着材料Eを内部から加熱し、蒸着材料Eを蒸散するものである。   In Example 5, the vacuum deposition container A is for up-deposition external arrangement type I, up-deposition internal arrangement type II-a, side deposition external arrangement type III, and side deposition internal arrangement type IV-a shown in FIG. Applied. The induction heating member D is an internal heating type iii shown in FIG. 5E, and is a rod-shaped internal induction heating member made of a conductive material at the axial center position in the vapor deposition material E in the nonconductive crucible Pa. DL is arrange | positioned corresponding to heating area Ha-Hd. And the interior induction heating member DL is heated by the division | segmentation induction coils Ca-Cd, the vapor deposition material E is heated from the inside by conduction heat or radiant heat, and the vapor deposition material E is evaporated.

さらに冷却手段は、図7(c)に示す分割冷却タイプδ−aで、るつぼPaに外嵌されて加熱域Ha〜Hdに対応する冷却領域ごとに分割された複数の分割冷却ジャケットQa〜Qdと、冷却水供給装置14から各分割冷却ジャケットQa〜Qdに冷却液を供給する給液管および排液管と、給液管にそれぞれ介在された開閉弁23a〜23dとを具備し、蒸散制御部13により各開閉弁23a〜23dをそれぞれ操作して、加熱域に対応する分割冷却ジャケットQa〜Qdを非冷却領域とすることができる。   Further, the cooling means is a divided cooling type δ-a shown in FIG. 7C, and is a plurality of divided cooling jackets Qa to Qd that are externally fitted to the crucible Pa and divided for each cooling region corresponding to the heating regions Ha to Hd. And a supply pipe and a drain pipe for supplying the coolant to the respective divided cooling jackets Qa to Qd from the cooling water supply device 14, and open / close valves 23a to 23d respectively interposed in the liquid supply pipes, and transpiration control. Each of the on-off valves 23a to 23d can be operated by the section 13 so that the divided cooling jackets Qa to Qd corresponding to the heating region can be set as non-cooling regions.

(冷却・加熱構造)
誘導加熱部材Dおよび加熱変位手段は、図6(a)に示す分割切替タイプα−aで、冷却・加熱構造におけるコイル配置構造は、図8(b)に示す誘電コイル外装タイプεであるが、図8(g)に示す誘電コイル内装タイプζであってもよく、複数の分割誘導コイルCa〜Cdにより構成される。
(Cooling / heating structure)
The induction heating member D and the heating displacement means are the split switching type α-a shown in FIG. 6 (a), and the coil arrangement structure in the cooling / heating structure is the dielectric coil exterior type ε shown in FIG. 8 (b). The dielectric coil interior type ζ shown in FIG. 8G may be used, and is constituted by a plurality of divided induction coils Ca to Cd.

上記実施例5によれば、分割誘導コイルCa〜Cdにより、加熱域Ha〜Hdに対応する内装誘導加熱部材DLの所定部位を順次誘導加熱して、蒸着材料Eを内部から加熱し蒸着材料Eを蒸散することができる。また加熱域Ha〜Hdに対応する分割冷却ジャケットQa〜Qdを非冷却領域として、加熱域Ha〜Hd以外の蒸着材料Eのみを冷却することができる。したがって、蒸着材料Eの劣化を防止しつつ、蒸着材料Eを長時間にわたって蒸散することができ、長時間の連続蒸着が可能となる。   According to the fifth embodiment, the predetermined portions of the interior induction heating member DL corresponding to the heating zones Ha to Hd are sequentially induction-heated by the divided induction coils Ca to Cd, and the vapor deposition material E is heated from the inside, thereby vapor deposition material E. Can be transpired. Moreover, only the vapor deposition material E other than the heating zones Ha to Hd can be cooled using the divided cooling jackets Qa to Qd corresponding to the heating zones Ha to Hd as non-cooling zones. Therefore, the vapor deposition material E can be evaporated for a long time while preventing the vapor deposition material E from being deteriorated, and continuous vapor deposition for a long time is possible.

なお、図15の実施例5の他の変形例に示すように、可動誘電コイルCmaにより内装誘導加熱部材DLを加熱することもできる。また、ここで冷却手段は、全体冷却ジャケットQを使用した全体冷却タイプγ−aとしている。   In addition, as shown in the other modification of Example 5 of FIG. 15, interior induction heating member DL can also be heated with movable dielectric coil Cma. Here, the cooling means is an overall cooling type γ-a using an overall cooling jacket Q.

また、図13では、内装誘導加熱部材DLをるつぼPaの軸心部に1本配置したが、図14(a)、(b)に示すように、軸心を中心とする円弧上に複数本の内装誘導加熱部材DLを配置することにより、内装誘導加熱部材DLと蒸着部材Eとの接触面積を増加させて、効率よく蒸散させることができる。   In FIG. 13, one interior induction heating member DL is arranged in the axial center portion of the crucible Pa. However, as shown in FIGS. 14A and 14B, a plurality of interior induction heating members DL are arranged on an arc centered on the axial center. By arranging the interior induction heating member DL, it is possible to increase the contact area between the interior induction heating member DL and the vapor deposition member E and efficiently evaporate it.

[実施例6]
以下、本発明に係る真空蒸着用るつぼ装置の実施例6を、図16および図17を参照して説明する。なお、先の実施例と同一部材には同一符号を付して説明を省略する。
[Example 6]
Hereinafter, Example 6 of the crucible apparatus for vacuum evaporation according to the present invention will be described with reference to FIGS. 16 and 17. The same members as those in the previous embodiment are denoted by the same reference numerals and description thereof is omitted.

この実施例6は、実施例5における内装誘導加熱部材DLを、図5(g)に示す上面加熱タイプivとして上面加熱プレート(上面誘導加熱部材)DMを使用するものである。この上面加熱プレートDMは、図17(a)に示すように円板状か、または図17(b)に示すように、円板に単数または複数の蒸散孔24が形成されている。   In Example 6, the interior induction heating member DL in Example 5 is used as the upper surface heating type iv shown in FIG. 5 (g) using an upper surface heating plate (upper surface induction heating member) DM. The upper surface heating plate DM has a disk shape as shown in FIG. 17A, or one or a plurality of transpiration holes 24 are formed in the disk as shown in FIG. 17B.

真空蒸着容器装置Aは、図4に示すアップデポジション外部配置タイプIやアップデポジション内部配置タイプII−a、サイドデポジション外部配置タイプIII、サイドデポジション内部配置タイプIV−aについて適用される。そして、分割誘導コイルCa〜Cdにより、上面加熱プレートDMを加熱し、主に伝導熱により蒸着材料Eを上面から加熱し、蒸着材料Eを蒸散するものである。   The vacuum deposition container apparatus A is applied to the updeposition external arrangement type I, the updeposition internal arrangement type II-a, the side deposition external arrangement type III, and the side deposition internal arrangement type IV-a shown in FIG. And the upper surface heating plate DM is heated by the division | segmentation induction coils Ca-Cd, the vapor deposition material E is heated from an upper surface mainly by conduction heat, and the vapor deposition material E is evaporated.

導電性のるつぼPa内で蒸着材料Eの上面に支持されるように上面加熱プレートDMが配置され、誘導コイルCにより上面加熱プレートDMを誘導加熱して、主に伝導熱により蒸着材料Eを上面から加熱して蒸散させる。蒸散により蒸着材料Eが減少して上面加熱プレートDMが下降され、上面加熱プレートDMが加熱域Ha〜Hdに達すると、蒸散制御部13によりスイッチSWa〜SWdを操作して高周波電流を供給する分割誘導コイルCa〜Cdを下位側に切り替え、高密度の磁界内に上面加熱プレートDMが配置されるように制御される。また上面加熱プレートDMの変位にしたがって冷却領域も変位される。   An upper surface heating plate DM is disposed so as to be supported on the upper surface of the vapor deposition material E in the conductive crucible Pa, and the upper surface heating plate DM is induction-heated by the induction coil C. Heat from to evaporate. The evaporation material E decreases due to transpiration, the upper surface heating plate DM is lowered, and when the upper surface heating plate DM reaches the heating area Ha to Hd, the transpiration control unit 13 operates the switches SWa to SWd to supply the high frequency current. The induction coils Ca to Cd are switched to the lower side, and the upper surface heating plate DM is controlled to be disposed in the high-density magnetic field. Further, the cooling region is also displaced according to the displacement of the upper surface heating plate DM.

もちろん、図18に示す実施例6の変形例のように、上面加熱プレートDMの下降に従って、コイル移動装置Sにより可動誘導コイルCmaを下降させるようにしてもよい。
上記実施例6や実施例6の変形例によれば、分割誘導コイルCa〜Cdまたは可動誘導コイルDmにより、蒸着材料Eの上面に配置した上面加熱プレートDMを誘導加熱し、伝導熱や輻射熱により上面加熱プレートDMに接する蒸着材料Eを加熱して蒸散させる。そして蒸散により減少する蒸着材料Eに従って上面加熱プレートDMが下降されると、給電する分割誘導コイルCa〜Cdを下位側に変更したり、あるいはコイル移動装置Sにより可動誘導コイルDmを下方に変位させて、高密度な磁界が上面加熱プレートDMに作用するように制御して、誘導加熱を継続させることにより、長時間にわたって蒸着材料Eを蒸散することができる。一方、冷却領域調整手段により、選択された加熱域Ha〜Hdを非冷却領域とし、残りの蒸着材料Eを冷却することができる。したがって、蒸着材料Eの劣化を防止しつつ、蒸着材料Eを長時間にわたって蒸散することができ、長時間の連続蒸着が可能となる。
Of course, the movable induction coil Cma may be lowered by the coil moving device S as the upper surface heating plate DM is lowered, as in the modification of the sixth embodiment shown in FIG.
According to the modification of the sixth embodiment and the sixth embodiment, the upper surface heating plate DM disposed on the upper surface of the vapor deposition material E is induction-heated by the divided induction coils Ca to Cd or the movable induction coil Dm, and the conductive heat or radiant heat is used. The vapor deposition material E in contact with the upper surface heating plate DM is heated to evaporate. When the upper surface heating plate DM is lowered according to the vapor deposition material E that decreases due to evaporation, the divided induction coils Ca to Cd to be fed are changed to the lower side, or the movable induction coil Dm is displaced downward by the coil moving device S. Thus, the vapor deposition material E can be evaporated for a long time by controlling the high-density magnetic field to act on the upper surface heating plate DM and continuing the induction heating. On the other hand, the cooling region adjusting means can set the selected heating regions Ha to Hd as non-cooling regions and cool the remaining vapor deposition material E. Therefore, the vapor deposition material E can be evaporated for a long time while preventing the vapor deposition material E from being deteriorated, and continuous vapor deposition for a long time is possible.

[実施例7]
以下、本発明に係る真空蒸着用るつぼ装置の実施例7を、図19を参照して説明する。なお、先の実施例と同一部材には同一符号を付して説明を省略する。
[Example 7]
A seventh embodiment of the vacuum evaporation crucible apparatus according to the present invention will be described below with reference to FIG. The same members as those in the previous embodiment are denoted by the same reference numerals and description thereof is omitted.

この実施例7は、図4に示す開口面が広い皿形のるつぼ(ボート)Pbを使用するもので、アップデポジション内部配置タイプタイプII−b,サイドデポジション内部配置タイプタイプIV−bについて適用される。そして、誘導加熱部材Dは、図5(d)に示す直接加熱タイプii−bで、るつぼPbに導電性材料により形成される誘電加熱るつぼDPbが使用され、分割誘導コイルCa〜Cdから発生される磁界により、誘導加熱るつぼDPbの所定の加熱部位を誘導加熱して、伝導熱や輻射熱により蒸着材料Eを蒸散するものである。   The seventh embodiment uses a dish-shaped crucible (boat) Pb with a wide opening shown in FIG. 4 and is applied to the up-deposition internal arrangement type II-b and the side deposition internal arrangement type type IV-b. Is done. The induction heating member D is a direct heating type ii-b shown in FIG. 5D, and a dielectric heating crucible DPb formed of a conductive material is used for the crucible Pb, which is generated from the divided induction coils Ca to Cd. A predetermined heating portion of the induction heating crucible DPb is induction heated by a magnetic field to evaporate the vapor deposition material E by conduction heat or radiation heat.

冷却手段は、図7(d)に示すタイプδ−bで、真空蒸着容器Aの底部外側に加熱域Ha〜Hdに対応する冷却領域ごとに分割された複数の分割冷却ジャケットRa〜Rdと、冷却水供給装置14から各分割冷却ジャケットRa〜Rdに冷却液を供給する給液管および排液管と、冷却液を循環供給する冷却液供給装置14と、給液管にそれぞれ介在されたに介在された開閉弁23a〜23dとを具備している。そして、蒸散制御部13により前記各開閉弁23a〜23dを操作して、加熱域Ha〜Hdに対応する分割冷却ジャケットQa〜Qdへの冷却液の供給を停止して、非冷却領域とすることができる。   The cooling means is of the type δ-b shown in FIG. 7 (d), and a plurality of divided cooling jackets Ra to Rd divided for each cooling region corresponding to the heating regions Ha to Hd on the outside of the bottom of the vacuum evaporation container A, A liquid supply pipe and a drain pipe for supplying the cooling liquid from the cooling water supply apparatus 14 to each of the divided cooling jackets Ra to Rd, a cooling liquid supply apparatus 14 for circulating and supplying the cooling liquid, and a liquid supply pipe, respectively. Intervening on-off valves 23a to 23d are provided. Then, the on / off valves 23a to 23d are operated by the transpiration control unit 13 to stop the supply of the cooling liquid to the divided cooling jackets Qa to Qd corresponding to the heating zones Ha to Hd, thereby setting the non-cooling zone. Can do.

加熱変位手段は、図6(b)に示す分割切替タイプα−b、誘導コイルCの配置構造は、図8(h)に示す内装外装タイプζであって、分割冷却ジャケットQa〜Qd内に分割誘電コイルCe〜Chがそれぞれ配置されている。   The heating displacement means is the split switching type α-b shown in FIG. 6 (b), and the arrangement structure of the induction coil C is the interior / exterior type ζ shown in FIG. 8 (h), which is in the split cooling jackets Qa to Qd. Divided dielectric coils Ce to Ch are respectively arranged.

上記実施例7によれば、最初の分割誘導コイルCeから発生された磁界により、加熱域Haに対応する導電性の誘導加熱るつぼDPbの所定部位を加熱し、伝導熱や輻射熱により当該加熱域Ha内の蒸着材料Eを加熱して蒸散させる。そして加熱域He内の蒸着材料Eが減少すると、分割誘導コイルCeへの高周波電流の給電を停止するとともに、次の加熱域Hbの分割誘導コイルCfに高周波電流を給電し、加熱域Hbに対応する誘導加熱るつぼDPbの次の部位を加熱し、伝導熱や輻射熱により当該加熱域Hf内の蒸着材料Eを加熱して蒸散させる。   According to the seventh embodiment, a predetermined portion of the conductive induction heating crucible DPb corresponding to the heating area Ha is heated by the magnetic field generated from the first split induction coil Ce, and the heating area Ha is heated by conduction heat or radiant heat. The evaporation material E inside is heated and evaporated. When the vapor deposition material E in the heating area He decreases, the feeding of the high-frequency current to the divided induction coil Ce is stopped, and the high-frequency current is fed to the divided induction coil Cf of the next heating area Hb to correspond to the heating area Hb. The next part of the induction heating crucible DPb to be heated is heated, and the vapor deposition material E in the heating area Hf is heated and evaporated by conduction heat or radiation heat.

一方、選択された加熱域Ha〜Hdに対応する分割冷却ジャケットRa〜Rd対して冷却水の供給を停止し非冷却領域とするとともに、残りの蒸着材料Eを冷却することにより、蒸着材料Eの劣化を防止しつつ、蒸着材料Eを長時間にわたって蒸散することができ、長時間の連続蒸着が可能となる。   On the other hand, the supply of cooling water to the divided cooling jackets Ra to Rd corresponding to the selected heating areas Ha to Hd is stopped to be a non-cooling area, and the remaining vapor deposition material E is cooled, thereby While preventing the deterioration, the vapor deposition material E can be evaporated for a long time, and continuous vapor deposition for a long time becomes possible.

[実施例8]
本発明に係る真空蒸着用るつぼ装置の実施例8を、図20を参照して説明する。なお、先の実施例と同一部材には同一符号を付して説明を省略する。
[Example 8]
Example 8 of the crucible device for vacuum evaporation according to the present invention will be described with reference to FIG. The same members as those in the previous embodiment are denoted by the same reference numerals and description thereof is omitted.

この実施例8は、皿形のるつぼPb内に導電性のるつぼホルダDKbを配置した外周加熱タイプi−bで、るつぼDPbを蒸着室a内に配置したアップデポジション内部配置タイプタイプII−bやサイドデポジション内部配置タイプタイプIV−bについて適用される。そして、可動コイルCmbから発生される磁界により、加熱域Ha〜Hdに対応するるつぼホルダDKbの所定部位を誘導加熱して、伝導熱や輻射熱により蒸着材料Eを蒸散するものである。   Example 8 is an outer peripheral heating type i-b in which a conductive crucible holder DKb is arranged in a dish-shaped crucible Pb, and an up-deposition internal arrangement type II-b in which a crucible DPb is arranged in a vapor deposition chamber a. Applies to side deposition internal arrangement type IV-b. And the predetermined site | part of the crucible holder DKb corresponding to heating area Ha-Hd is induction-heated with the magnetic field generate | occur | produced from the movable coil Cmb, and the vapor deposition material E is evaporated by conduction heat or radiation heat.

冷却手段は、図7(b)に示すタイプγ−bで、るつぼPbの底部外側に全体冷却ジャケットRと、冷却水供給装置14から全体冷却ジャケットRに冷却液を供給する給液管および排液管と、冷却液を循環供給する冷却液供給装置14とを具備している。   The cooling means is of the type γ-b shown in FIG. 7 (b). A liquid pipe and a cooling liquid supply device 14 that circulates and supplies the cooling liquid are provided.

誘導コイルCおよび加熱域変位手段については、図6(d)に示すように、コイル移動装置Sにより、可動誘導コイルCmbを加熱域Ha〜Hdの配置方向に沿って移動させる移動変位タイプβ−bである。誘導コイルCmbは全体冷却ジャケットRの下部側方に配置されている。   As for the induction coil C and the heating area displacement means, as shown in FIG. 6 (d), the coil displacement device S moves the movable induction coil Cmb along the arrangement direction of the heating areas Ha to Hd. b. The induction coil Cmb is disposed on the lower side of the entire cooling jacket R.

上記実施例8によれば、コイル移動装置Sにより可動誘導コイルCmbを加熱域Ha〜Hdに沿って移動させることにより、加熱域Ha〜Hdに対応するるつぼホルダDKbの加熱部位を変位させ、伝導熱や輻射熱により当該加熱域Ha〜Hdの蒸着材料Eを順次加熱して蒸散させることができる。また全体冷却ジャケットRに冷却水を供給して、蒸着材料E全体を冷却することから、加熱域Ha〜Hd以外の蒸着材料Eが熱により劣化させることがない。したがって、蒸着材料Eの劣化を防止しつつ、蒸着材料Eを長時間にわたって蒸散することができ、長時間の連続蒸着が可能となる。   According to the said Example 8, the heating site | part of the crucible holder DKb corresponding to heating area Ha-Hd is displaced by moving movable induction coil Cmb along heating area Ha-Hd by the coil moving apparatus S, and conduction is carried out. The vapor deposition material E in the heating areas Ha to Hd can be sequentially heated and evaporated by heat or radiant heat. Moreover, since cooling water is supplied to the whole cooling jacket R and the whole vapor deposition material E is cooled, the vapor deposition materials E other than the heating zones Ha to Hd are not deteriorated by heat. Therefore, the vapor deposition material E can be evaporated for a long time while preventing the vapor deposition material E from being deteriorated, and continuous vapor deposition for a long time is possible.

[実施例9]
本発明に係る真空蒸着用るつぼ装置の実施例9を、図21および図22を参照して説明する。なお、先の実施例と同一部材には同一符号を付して説明を省略する。
[Example 9]
A ninth embodiment of the vacuum evaporation crucible apparatus according to the present invention will be described with reference to FIGS. The same members as those in the previous embodiment are denoted by the same reference numerals and description thereof is omitted.

実施例7では、直接加熱タイプii−bの誘導加熱るつぼDPbを使用したのに対して、この実施例9では、図5(f)に示す内装加熱タイプiii−bとしたものであり、他の構造は実施例7と同じである。   In Example 7, the direct heating type ii-b induction heating crucible DPb was used, whereas in this Example 9, the internal heating type iii-b shown in FIG. The structure of is the same as that of Example 7.

るつぼPb内で蒸着材料Eの内部に配置される内装誘導加熱材DLは、たとえば図22(a)に示すように、加熱域Ha〜Hdに沿って配置された単数または複数のロッド状の内装誘導加熱部材DLや、また図22(b)に示すように、加熱域Ha〜Hdに沿って配置されて複数または多数の蒸散孔25が形成されたプレート状の内装誘導加熱部材DLにより構成される。   The interior induction heating material DL disposed inside the vapor deposition material E in the crucible Pb is, for example, as shown in FIG. 22A, a single or a plurality of rod-shaped interiors disposed along the heating zones Ha to Hd. As shown in FIG. 22 (b), the induction heating member DL is configured by a plate-shaped interior induction heating member DL arranged along the heating zones Ha to Hd and having a plurality of or a large number of evaporation holes 25 formed therein. The

上記実施例9によれば、実施例7の作用効果に加えて、ロッド状やプレート状の内装誘導加熱部材DLが蒸着材料Eと接触する面が広く、伝導熱および輻射熱をより効果的に蒸着材料Eに伝達することができ、誘導加熱される内装誘導加熱材DLの熱効率を向上させることができる。   According to the ninth embodiment, in addition to the effects of the seventh embodiment, the rod-shaped or plate-shaped interior induction heating member DL has a wide surface in contact with the vapor deposition material E, and the conductive heat and the radiant heat are vaporized more effectively. The thermal efficiency of the interior induction heating material DL that can be transmitted to the material E and is induction-heated can be improved.

[実施例10]
本発明に係る真空蒸着用るつぼ装置の実施例10を、図23および図24を参照して説明する。なお、先の実施例と同一部材には同一符号を付して説明を省略する。
[Example 10]
Example 10 of the crucible apparatus for vacuum evaporation according to the present invention will be described with reference to FIGS. The same members as those in the previous embodiment are denoted by the same reference numerals and description thereof is omitted.

実施例8では誘導加熱部材DをるつぼホルダDKbとしたのに対して、この実施例10では、図5(h)に示す輻射誘導加熱タイプvとしたもので、他の構造は実施例8と同じである。   In the eighth embodiment, the induction heating member D is the crucible holder DKb, whereas in this tenth embodiment, the radiation induction heating type v shown in FIG. The same.

るつぼPbの上方には、蒸着材料Eから一定距離を隔てて輻射誘導加熱材DNが支持部材を介して配置されている。この輻射誘導加熱材DNは、たとえば図24(a)に示すように、加熱域Ha〜Hdに沿って配置された単数または複数のロッド状の輻射誘導加熱部材DNや、また図24(b)に示すように、加熱域Ha〜Hdに沿って配置されて複数または多数の蒸散孔26が形成されたプレート状の輻射誘導加熱部材DNにより構成される。   Above the crucible Pb, a radiation induction heating material DN is disposed via a support member at a certain distance from the vapor deposition material E. For example, as shown in FIG. 24 (a), the radiation induction heating material DN includes one or a plurality of rod-shaped radiation induction heating members DN arranged along the heating zones Ha to Hd, and FIG. 24 (b). As shown in FIG. 4, the plate-shaped radiation induction heating member DN is disposed along the heating zones Ha to Hd and formed with a plurality of or many evaporation holes 26.

上記実施例9によれば、実施例8の作用効果に加えて、ロッド状やプレート状の輻射誘導加熱部材DNが蒸着材料Eに対して一定距離をあけて配置されていることから、輻射熱を各加熱域Ha〜Hdの全体にわたって均一に供給することができ、安定した加熱と蒸散を行うことができる。   According to the ninth embodiment, in addition to the function and effect of the eighth embodiment, since the rod-shaped or plate-shaped radiation induction heating member DN is arranged at a certain distance from the vapor deposition material E, the radiant heat is reduced. It can supply uniformly over the whole heating zone Ha-Hd, and can perform stable heating and transpiration.

A 真空蒸着容器
B 高周波電源装置
C 誘導コイル
Ca〜Cd,Ce〜Ch 分割誘導コイル
Cma,Cmb 可動誘導コイル
D 誘導加熱部材
DPa,DPb 導電性のるつぼ
DKa,DKb るつぼホルダ
DL 内装誘導加熱部材
DM 上面加熱プレート
DN 輻射誘導加熱部材
E 蒸着材料
G ノズル
Q,R 全体冷却ジャケット
Qa〜Qd 分割冷却ジャケット
Ra〜Rd 分割冷却ジャケット
Ha〜Hd,He〜Hh 加熱域
Pa,Pb るつぼ
SWa〜SWd,SWe〜SWh スイッチ
S コイル移動装置
T 基板
11 蒸散データテーブル
12 操作器
13 蒸散制御部
14 冷却液供給装置
23a〜23d 開閉弁
A Vacuum evaporation vessel B High frequency power supply device C Inductive coil Ca-Cd, Ce-Ch Split induction coil Cma, Cmb Movable induction coil D Induction heating member DPa, DPb Conductive crucible
DKa, DKb crucible holder
DL Internal induction heating member
DM Upper surface heating plate DN Radiation induction heating member E Evaporation material G Nozzle Q, R Whole cooling jacket Qa-Qd Split cooling jacket Ra-Rd Split cooling jacket Ha-Hd, He-Hh Heating area Pa, Pb Crucible SWa-SWd, SWe ˜SWh switch S coil moving device T substrate 11 transpiration data table 12 controller 13 transpiration control unit 14 coolant supply devices 23a-23d on-off valve

Claims (15)

真空蒸着容器内で被蒸着材の表面に蒸着材料の薄膜を蒸着するために、るつぼ内に収容された蒸着材料を加熱して蒸発または昇華させるに際し、
前記るつぼに、誘導加熱可能な材料により形成された誘導加熱るつぼを使用し、
前記誘導加熱るつぼに収容された蒸着材料に複数の加熱域を設定し、
るつぼの外側に設置された誘導加熱源から発生された磁界により、最初の加熱域に対応する前記誘導加熱るつぼの部位を誘導加熱して、当該加熱域の蒸着材料を蒸発または昇華させ、
最初の加熱域の蒸着材料が蒸発または昇華された後、前記誘導加熱源から発生される磁界を操作して、次の加熱域に対応する前記誘導加熱るつぼの所定部位を誘導加熱することにより、次の加熱域の蒸着材料を蒸発または昇華させ、
これを繰り返して蒸着作業を連続して行う
ことを特徴とする真空蒸着用蒸着材料の蒸発、昇華方法。
In order to deposit a thin film of a vapor deposition material on the surface of the material to be vapor-deposited in a vacuum vapor deposition container, when the vapor deposition material contained in the crucible is heated to evaporate or sublimate,
For the crucible, use an induction heating crucible formed of a material capable of induction heating,
Setting a plurality of heating zones in the vapor deposition material accommodated in the induction heating crucible;
The induction heating crucible part corresponding to the initial heating area is induction-heated by a magnetic field generated from an induction heating source installed outside the crucible to evaporate or sublimate the vapor deposition material in the heating area,
After the vapor deposition material in the first heating zone is evaporated or sublimated, by manipulating the magnetic field generated from the induction heating source, the predetermined portion of the induction heating crucible corresponding to the next heating zone is induction heated, Evaporate or sublimate the vapor deposition material in the next heating zone,
A method of evaporation and sublimation of a vapor deposition material for vacuum vapor deposition, characterized in that the vapor deposition operation is continuously performed by repeating this.
真空蒸着容器内で被蒸着材の表面に蒸着材料の薄膜を蒸着するために、るつぼ内に収容された蒸着材料を加熱して蒸発または昇華させるに際し、
蒸着材料に接して配置されるとともに誘導加熱可能な材料により形成された誘導加熱部材を内装したるつぼを使用し、
るつぼ内の蒸着材料に、複数の加熱域を設定し、
るつぼの外側に設けられた誘導加熱源から発生された磁界により、最初の加熱域に対応する前記誘導加熱部材の部位を誘導加熱して、当該加熱域の蒸着材料を蒸発または昇華させ、
当該加熱域に対応する蒸着材料が蒸発または昇華された後、前記誘導加熱源から発生される磁界を操作して、次の加熱域に対応する誘導加熱部材の部位誘導加熱し、次の加熱域の蒸着材料を蒸発または昇華させ、
これを繰り返して蒸着作業を連続して行う
ことを特徴とする真空蒸着用蒸着材料の蒸発、昇華方法。
In order to deposit a thin film of a vapor deposition material on the surface of the material to be vapor-deposited in a vacuum vapor deposition container, when the vapor deposition material contained in the crucible is heated to evaporate or sublimate,
Using a crucible that is placed in contact with the vapor deposition material and that is equipped with an induction heating member formed of a material capable of induction heating,
Set multiple heating zones for the vapor deposition material in the crucible,
By induction heating a portion of the induction heating member corresponding to the first heating area by a magnetic field generated from an induction heating source provided outside the crucible, the vapor deposition material in the heating area is evaporated or sublimated,
After the vapor deposition material corresponding to the heating area is evaporated or sublimated, the magnetic field generated from the induction heating source is operated to perform part induction heating of the induction heating member corresponding to the next heating area, and the next heating area Evaporate or sublimate the vapor deposition material
A method of evaporation and sublimation of a vapor deposition material for vacuum vapor deposition, characterized in that the vapor deposition operation is continuously performed by repeating this.
真空蒸着容器内で被蒸着材の表面に蒸着材料の薄膜を蒸着するために、るつぼ内に収容された蒸着材料を加熱して蒸発または昇華させるに際し、
誘導加熱可能な材料からなり蒸着材料の上面に支持される上面誘導加熱部材を設けたるつぼを使用し、
るつぼの外側に設けられた誘導加熱源から発生された磁界により、前記上面誘導加熱部材を誘導加熱して、当該上面誘導加熱部材下部の蒸着材料を蒸発または昇華させ、
蒸着材料の減少に従って下降する上面誘導加熱部材に対応して誘導加熱源から発生させる磁界を操作し、当該上面誘導加熱部材を連続して誘導加熱する
ことを特徴とする真空蒸着用蒸着材料の蒸発、昇華方法。
In order to deposit a thin film of a vapor deposition material on the surface of the material to be vapor-deposited in a vacuum vapor deposition container, when the vapor deposition material contained in the crucible is heated to evaporate or sublimate,
Using a crucible made of a material capable of induction heating and provided with an upper surface induction heating member supported on the upper surface of the vapor deposition material,
Inductively heating the upper surface induction heating member by a magnetic field generated from an induction heating source provided outside the crucible, evaporating or sublimating the evaporation material below the upper surface induction heating member,
Vaporization of vapor deposition material for vacuum deposition characterized by operating a magnetic field generated from an induction heating source corresponding to a top surface induction heating member that descends as the deposition material decreases, and continuously inductively heating the top surface induction heating member , Sublimation method.
真空蒸着容器内で被蒸着材の表面に蒸着材料の薄膜を蒸着するために、るつぼ内に収容された蒸着材料を加熱して蒸発、昇華させるに際し、
誘導加熱可能な材料からなる輻射加熱部材を、蒸着材料の上方に所定距離をあけて配置したるつぼを使用し、
るつぼ内の蒸着材料に複数の加熱域を設定し、
るつぼの外側に設けられた誘導加熱源から発生された磁界により、最初の加熱域に対応する輻射加熱部材の部位を誘導加熱して、当該輻射加熱部材からの輻射熱により最初の加熱域の蒸着材料を加熱して蒸発または昇華させ、
最初の加熱域の蒸着材料が蒸発または昇華された後、誘導加熱源から発生された磁界を操作して、次の加熱域に対応する前記輻射加熱部材の部位を誘導加熱し、次の加熱域の蒸着材料を蒸発または昇華させ、
これを繰り返して蒸着作業を連続して行う
ことを特徴とする真空蒸着用蒸着材料の蒸発、昇華方法。
In order to deposit a thin film of a vapor deposition material on the surface of the material to be vapor-deposited in a vacuum vapor deposition container, the vapor deposition material contained in the crucible is heated to evaporate and sublimate.
Using a crucible in which a radiant heating member made of a material capable of induction heating is arranged at a predetermined distance above the vapor deposition material,
Set multiple heating zones for the vapor deposition material in the crucible,
The material of the radiant heating member corresponding to the first heating area is induction-heated by the magnetic field generated from the induction heating source provided outside the crucible, and the vapor deposition material in the first heating area is radiated from the radiant heating member. Heat and evaporate or sublimate,
After the vapor deposition material in the first heating zone is evaporated or sublimated, the magnetic field generated from the induction heating source is operated to induction-heat the portion of the radiant heating member corresponding to the next heating zone, and the next heating zone Evaporate or sublimate the vapor deposition material
A method of evaporation and sublimation of a vapor deposition material for vacuum vapor deposition, characterized in that the vapor deposition operation is continuously performed by repeating this.
るつぼの外側に設けられた冷却手段により蒸着材料全体を冷却する
ことを特徴とする請求項1乃至4の何れかに記載の真空蒸着用蒸着材料の蒸発、昇華方法。
The evaporation material sublimation method for vacuum evaporation according to any one of claims 1 to 4, wherein the entire evaporation material is cooled by a cooling means provided outside the crucible.
るつぼの外側に設けられた冷却手段により、加熱域を非冷却領域として冷却せず、その他の加熱域の蒸着材料を冷却し、
前記加熱域の変位に対応して、前記非冷却領域を変位させる
ことを特徴とする請求項1乃至4の何れかに記載の真空蒸着用蒸着材料の蒸発、昇華方法。
The cooling means provided outside the crucible does not cool the heating zone as a non-cooling zone, but cools the vapor deposition material in other heating zones,
5. The evaporation and sublimation method for a vapor deposition material according to claim 1, wherein the non-cooling region is displaced corresponding to the displacement of the heating region.
真空蒸着容器内で被蒸着材の表面に薄膜を蒸着するために、蒸着材料を加熱して蒸発または昇華させる真空蒸着用るつぼ装置において、
るつぼを誘導加熱可能な導電性材料により形成された誘導加熱るつぼとするとともに、当該誘導加熱るつぼ内の蒸着材料に複数の加熱域を設定し、
前記誘導加熱るつぼの外側に、前記誘導加熱るつぼを誘導加熱して蒸着材料を蒸発または昇華可能な誘導加熱源を設け、
当該誘導加熱源から発生する磁界を操作して、加熱域に対応する前記誘導加熱るつぼの部位を選択的に誘導加熱可能な加熱域変位手段を設けた
ことを特徴とする真空蒸着用るつぼ装置。
In a vacuum evaporation crucible device for evaporating or sublimating a deposition material by heating in order to deposit a thin film on the surface of the deposition material in a vacuum deposition container,
The crucible is an induction heating crucible formed of a conductive material capable of induction heating, and a plurality of heating zones are set for the vapor deposition material in the induction heating crucible,
An induction heating source capable of evaporating or sublimating the deposition material by induction heating the induction heating crucible outside the induction heating crucible;
A crucible device for vacuum vapor deposition characterized in that a heating area displacing means capable of selectively inductively heating a portion of the induction heating crucible corresponding to a heating area by operating a magnetic field generated from the induction heating source.
真空蒸着容器内で被蒸着材の表面に薄膜を蒸着するために、蒸着材料を加熱して蒸発または昇華させる真空蒸着用るつぼ装置において、
るつぼ内に、蒸着材料を収容するとともに誘導加熱可能な導電性材料からなるるつぼホルダを設けるとともに、当該るつぼホルダ内の蒸着材料に複数の加熱域を設定し、
るつぼの外側に、前記るつぼホルダを誘導加熱して蒸着材料を蒸発または昇華可能な誘導加熱源を設け、
当該誘導加熱源から発生する磁界を操作して、前記加熱域に対応する前記るつぼホルダの部位を選択的に誘導加熱可能な加熱域変位手段を設けた
ことを特徴とする真空蒸着用るつぼ装置。
In a vacuum evaporation crucible device for evaporating or sublimating a deposition material by heating in order to deposit a thin film on the surface of the deposition material in a vacuum deposition container,
In the crucible, a crucible holder made of a conductive material capable of containing a vapor deposition material and capable of induction heating is provided, and a plurality of heating zones are set for the vapor deposition material in the crucible holder,
An induction heating source capable of evaporating or sublimating the vapor deposition material by induction heating the crucible holder outside the crucible,
A crucible device for vacuum vapor deposition characterized in that a heating area displacing means is provided that can selectively inductively heat a portion of the crucible holder corresponding to the heating area by operating a magnetic field generated from the induction heating source.
真空蒸着容器内で被蒸着材の表面に薄膜を蒸着するために、蒸着材料を加熱して蒸発または昇華させる真空蒸着用るつぼ装置において、
るつぼに収容された蒸着材料中に、誘導加熱可能な導電性材料からなる内装誘導加熱部材を設けるとともに、蒸着材料に複数の加熱域を設定し、
るつぼの外側に、前記内装誘導加熱部材を誘導加熱して蒸着材料を蒸発または昇華可能な誘導加熱源を設け、
当該誘導加熱源から発生する磁界を操作して、加熱域に対応する前記内装誘導加熱部材の部位を選択的に誘導加熱可能な加熱域変位手段を設けた
ことを特徴とする真空蒸着用るつぼ装置。
In a vacuum evaporation crucible device for evaporating or sublimating a deposition material by heating in order to deposit a thin film on the surface of the deposition material in a vacuum deposition container,
In the vapor deposition material accommodated in the crucible, an internal induction heating member made of a conductive material capable of induction heating is provided, and a plurality of heating zones are set in the vapor deposition material.
An induction heating source capable of evaporating or sublimating the vapor deposition material by induction heating the internal induction heating member on the outside of the crucible,
A crucible device for vacuum vapor deposition, characterized in that a heating area displacing means is provided that is capable of selectively inductively heating a portion of the interior induction heating member corresponding to a heating area by operating a magnetic field generated from the induction heating source. .
真空蒸着容器内で被蒸着材の表面に薄膜を蒸着するために、蒸着材料を加熱して蒸発または昇華させる真空蒸着用るつぼ装置において、
るつぼに収容された蒸着材料の上面に支持されて、誘導加熱可能な導電性材料からなる上面誘導加熱部材を設け、
るつぼの外側に、前記上面誘導加熱部材を誘導加熱して当該上面誘導加熱部材下部の蒸着材料を蒸発または昇華可能な誘導加熱源を設け、
当該誘導加熱源から発生する磁界を操作して、蒸着材料の減少に従って下降する上面誘導加熱部材を誘導加熱可能な加熱域変位手段を設けた
ことを特徴とする真空蒸着用るつぼ装置。
In a vacuum evaporation crucible device for evaporating or sublimating a deposition material by heating in order to deposit a thin film on the surface of the deposition material in a vacuum deposition container,
An upper surface induction heating member made of a conductive material capable of induction heating is provided on the upper surface of the vapor deposition material accommodated in the crucible,
An induction heating source capable of evaporating or sublimating the vapor deposition material under the upper surface induction heating member by induction heating the upper surface induction heating member outside the crucible,
A crucible device for vacuum vapor deposition, characterized in that a heating area displacing means is provided that operates the magnetic field generated from the induction heating source to inductively heat the upper surface induction heating member that descends as the vapor deposition material decreases.
真空蒸着容器内で被蒸着材の表面に薄膜を蒸着するために、蒸着材料を加熱して蒸発または昇華させる真空蒸着用るつぼ装置において、
るつぼに収容された蒸着材料の上方に離間して配置されて、誘導加熱可能な導電性材料からなる輻射誘導加熱部材を設け、
るつぼ内の蒸着材料に複数の加熱域を設定し、
るつぼの外側に、前記輻射誘導加熱部材を誘導加熱可能な誘導加熱源を設け、
当該誘導加熱源から発生する磁界を操作して、加熱域に対応する前記輻射誘導加熱部材の部位を選択的に誘導加熱可能な加熱域変位手段を設けた
ことを特徴とする真空蒸着用るつぼ装置。
In a vacuum evaporation crucible device for evaporating or sublimating a deposition material by heating in order to deposit a thin film on the surface of the deposition material in a vacuum deposition container,
A radiation induction heating member made of a conductive material capable of induction heating is provided spaced apart above the vapor deposition material housed in the crucible,
Set multiple heating zones for the vapor deposition material in the crucible,
An induction heating source capable of inductively heating the radiation induction heating member is provided outside the crucible,
A crucible device for vacuum vapor deposition, characterized in that a heating area displacing means is provided that can selectively heat the part of the radiation induction heating member corresponding to the heating area by operating a magnetic field generated from the induction heating source. .
誘導加熱源を、加熱域に対応して分割配置された複数の分割誘導コイルとし、
加熱域変位手段を、前記各分割誘導コイルにそれぞれ供給する高周波電流をオン、オフ制御する蒸散制御装置により構成した
ことを特徴とする請求項7乃至11の何れかに記載の真空蒸着用るつぼ装置。
The induction heating source is a plurality of divided induction coils divided and arranged corresponding to the heating area,
The crucible device for vacuum evaporation according to any one of claims 7 to 11, wherein the heating area displacing means is constituted by a transpiration control device that controls on and off of a high-frequency current supplied to each of the divided induction coils. .
誘導加熱源を、加熱域の配置方向に移動自在に配置された可動誘導コイルとし、
加熱域変位手段を、前記可動誘導コイルを移動可能なコイル移動装置と、当該コイル移動装置を操作し、加熱域に対応して前記可動誘導コイルを移動させる蒸散制御装置により構成した
ことを特徴とする請求項7乃至11の何れかに記載の真空蒸着用るつぼ装置。
The induction heating source is a movable induction coil arranged to be movable in the arrangement direction of the heating zone,
The heating area displacing means comprises a coil moving device that can move the movable induction coil, and a transpiration control device that operates the coil moving device to move the movable induction coil in response to the heating area. The crucible device for vacuum evaporation according to any one of claims 7 to 11.
るつぼの外側に冷却手段を設け、
前記冷却手段を、冷却液が給、排出されて蒸着材料全体を均一に冷却する全体冷却ジャケットにより構成した
ことを特徴とする請求項7乃至13の何れかに記載の真空蒸着用るつぼ装置。
Provide cooling means outside the crucible,
The crucible device for vacuum vapor deposition according to any one of claims 7 to 13, wherein the cooling means is constituted by an entire cooling jacket for uniformly cooling the whole vapor deposition material by supplying and discharging a cooling liquid.
るつぼの外側に冷却手段を設け、
前記冷却手段を、加熱域に対応して複数に分割配置され分割冷却ジャケットにより構成し、
前記加熱域に対応する前記分割冷却ジャケットへの冷却液の供給を停止するとともに、前記加熱域の変位に対応して、冷却液の供給を停止する分割冷却ジャケットを変更可能な蒸散制御装置を設けた
ことを特徴とする請求項7乃至13の何れかに記載の真空蒸着用るつぼ装置。
Provide cooling means outside the crucible,
The cooling means is divided and arranged in a plurality corresponding to the heating zone, and is constituted by a divided cooling jacket,
Provided is a transpiration control device capable of changing the divided cooling jacket for stopping the supply of the cooling liquid in response to the displacement of the heating area while stopping the supply of the cooling liquid to the divided cooling jacket corresponding to the heating area. The crucible device for vacuum evaporation according to any one of claims 7 to 13, wherein the crucible device is used for vacuum evaporation.
JP2009204190A 2009-09-04 2009-09-04 Evaporation/sublimation method for vapor deposition material for vacuum deposition, and crucible apparatus for vacuum deposition Pending JP2011052301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009204190A JP2011052301A (en) 2009-09-04 2009-09-04 Evaporation/sublimation method for vapor deposition material for vacuum deposition, and crucible apparatus for vacuum deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009204190A JP2011052301A (en) 2009-09-04 2009-09-04 Evaporation/sublimation method for vapor deposition material for vacuum deposition, and crucible apparatus for vacuum deposition

Publications (1)

Publication Number Publication Date
JP2011052301A true JP2011052301A (en) 2011-03-17

Family

ID=43941597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009204190A Pending JP2011052301A (en) 2009-09-04 2009-09-04 Evaporation/sublimation method for vapor deposition material for vacuum deposition, and crucible apparatus for vacuum deposition

Country Status (1)

Country Link
JP (1) JP2011052301A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107287A (en) * 2010-11-17 2012-06-07 Ulvac Japan Ltd Thin film deposition apparatus
CN102808167A (en) * 2011-06-02 2012-12-05 丽佳达普株式会社 Crucible device, control method of the crucible device, film thickness measuring device and thin film deposition apparatus
CN103409720A (en) * 2013-08-23 2013-11-27 深圳市华星光电技术有限公司 Crucible for film plating machine
KR101375842B1 (en) * 2011-06-02 2014-03-17 엘아이지에이디피 주식회사 Crucible Apparatus, Method for Controlling Crucible Apparatus, Film Thickness Measurement Apparatus, and Film Deposition Equipment with the Same
KR101489360B1 (en) * 2013-11-20 2015-02-06 엘아이지에이디피 주식회사 Crucible Apparatus
KR101488868B1 (en) 2014-09-22 2015-02-06 엘아이지에이디피 주식회사 Crucible Apparatus
KR20150121861A (en) * 2014-04-22 2015-10-30 엘지전자 주식회사 Device for providing deposition material and Deposition apparatus including the same
CN105441878A (en) * 2016-01-05 2016-03-30 京东方科技集团股份有限公司 Heating device for evaporation and evaporation equipment
WO2016122046A1 (en) * 2015-01-30 2016-08-04 Korea Research Institute Of Standards And Science Inductive heating linear evaporation deposition apparatus
JP2017197824A (en) * 2016-04-28 2017-11-02 キヤノントッキ株式会社 Vacuum evaporation system, and evaporation source cooling method
WO2018214783A1 (en) * 2017-05-23 2018-11-29 京东方科技集团股份有限公司 Vapor deposition crucible, vapor deposition source, vapor deposition device, and vapor deposition method
CN109468594A (en) * 2018-12-17 2019-03-15 武汉华星光电半导体显示技术有限公司 For making the evaporation coating device of Organic Light Emitting Diode
CN111508802A (en) * 2020-04-22 2020-08-07 北京北方华创微电子装备有限公司 Reaction chamber and etching method thereof
GB2586634A (en) * 2019-08-30 2021-03-03 Dyson Technology Ltd Multizone crucible apparatus
CN114667366A (en) * 2020-01-07 2022-06-24 应用材料公司 Assembly for material evaporation, vacuum deposition apparatus and method for material evaporation
KR20230085858A (en) 2021-12-07 2023-06-14 쵸슈 산교 가부시키가이샤 Deposition source and deposition apparatus
KR20230085857A (en) 2021-12-07 2023-06-14 쵸슈 산교 가부시키가이샤 Deposition crucible, deposition source and deposition apparatus
WO2023146232A1 (en) * 2022-01-27 2023-08-03 (주)알파플러스 Lateral type vacuum evaporation source and method for manufacturing organic light emitting display using same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122870A (en) * 1979-03-12 1980-09-20 Fujitsu Ltd Vacuum vapor deposition method
JPH0770739A (en) * 1993-09-07 1995-03-14 Mitsubishi Heavy Ind Ltd Temperature control device for crucible for vapor deposition
JP2005097661A (en) * 2003-09-24 2005-04-14 Kyosan Electric Mfg Co Ltd Heating equipment and heating method for film deposition material
JP2006059640A (en) * 2004-08-19 2006-03-02 Tdk Corp Vapor deposition device and vapor deposition method
JP2007056330A (en) * 2005-08-25 2007-03-08 Tokki Corp Method and apparatus for performing vacuum vapor deposition of organic material
JP2008150678A (en) * 2006-12-19 2008-07-03 Sony Corp Evaporation source, vapor deposition apparatus, vapor deposition method, apparatus for manufacturing organic electroluminescence display unit, and method for manufacturing organic electroluminescence display unit
JP2008274322A (en) * 2007-04-26 2008-11-13 Sony Corp Vapor deposition apparatus
JP2008305735A (en) * 2007-06-11 2008-12-18 Canon Inc Method of manufacturing organic electroluminescent element and vapor deposition apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122870A (en) * 1979-03-12 1980-09-20 Fujitsu Ltd Vacuum vapor deposition method
JPH0770739A (en) * 1993-09-07 1995-03-14 Mitsubishi Heavy Ind Ltd Temperature control device for crucible for vapor deposition
JP2005097661A (en) * 2003-09-24 2005-04-14 Kyosan Electric Mfg Co Ltd Heating equipment and heating method for film deposition material
JP2006059640A (en) * 2004-08-19 2006-03-02 Tdk Corp Vapor deposition device and vapor deposition method
JP2007056330A (en) * 2005-08-25 2007-03-08 Tokki Corp Method and apparatus for performing vacuum vapor deposition of organic material
JP2008150678A (en) * 2006-12-19 2008-07-03 Sony Corp Evaporation source, vapor deposition apparatus, vapor deposition method, apparatus for manufacturing organic electroluminescence display unit, and method for manufacturing organic electroluminescence display unit
JP2008274322A (en) * 2007-04-26 2008-11-13 Sony Corp Vapor deposition apparatus
JP2008305735A (en) * 2007-06-11 2008-12-18 Canon Inc Method of manufacturing organic electroluminescent element and vapor deposition apparatus

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107287A (en) * 2010-11-17 2012-06-07 Ulvac Japan Ltd Thin film deposition apparatus
CN102808167A (en) * 2011-06-02 2012-12-05 丽佳达普株式会社 Crucible device, control method of the crucible device, film thickness measuring device and thin film deposition apparatus
KR101375842B1 (en) * 2011-06-02 2014-03-17 엘아이지에이디피 주식회사 Crucible Apparatus, Method for Controlling Crucible Apparatus, Film Thickness Measurement Apparatus, and Film Deposition Equipment with the Same
CN103409720A (en) * 2013-08-23 2013-11-27 深圳市华星光电技术有限公司 Crucible for film plating machine
KR101489360B1 (en) * 2013-11-20 2015-02-06 엘아이지에이디피 주식회사 Crucible Apparatus
KR20150121861A (en) * 2014-04-22 2015-10-30 엘지전자 주식회사 Device for providing deposition material and Deposition apparatus including the same
KR102243764B1 (en) * 2014-04-22 2021-04-23 엘지전자 주식회사 Device for providing deposition material and Deposition apparatus including the same
KR101488868B1 (en) 2014-09-22 2015-02-06 엘아이지에이디피 주식회사 Crucible Apparatus
WO2016122046A1 (en) * 2015-01-30 2016-08-04 Korea Research Institute Of Standards And Science Inductive heating linear evaporation deposition apparatus
CN105441878A (en) * 2016-01-05 2016-03-30 京东方科技集团股份有限公司 Heating device for evaporation and evaporation equipment
US10870914B2 (en) 2016-01-05 2020-12-22 Boe Technology Group Co., Ltd. Heating device for evaporation, evaporation device and evaporation method
KR102190775B1 (en) * 2016-04-28 2020-12-14 캐논 톡키 가부시키가이샤 Vacuum deposition apparatus and method for cooling evaporation source
JP2017197824A (en) * 2016-04-28 2017-11-02 キヤノントッキ株式会社 Vacuum evaporation system, and evaporation source cooling method
KR20170123244A (en) * 2016-04-28 2017-11-07 캐논 톡키 가부시키가이샤 Vacuum deposition apparatus and method for cooling evaporation source
CN107338410A (en) * 2016-04-28 2017-11-10 佳能特机株式会社 The cooling means of vacuum deposition apparatus and evaporation source
WO2018214783A1 (en) * 2017-05-23 2018-11-29 京东方科技集团股份有限公司 Vapor deposition crucible, vapor deposition source, vapor deposition device, and vapor deposition method
CN109468594A (en) * 2018-12-17 2019-03-15 武汉华星光电半导体显示技术有限公司 For making the evaporation coating device of Organic Light Emitting Diode
GB2586634A (en) * 2019-08-30 2021-03-03 Dyson Technology Ltd Multizone crucible apparatus
WO2021038208A1 (en) * 2019-08-30 2021-03-04 Dyson Technology Limited Multizone crucible apparatus
GB2586634B (en) * 2019-08-30 2022-04-20 Dyson Technology Ltd Multizone crucible apparatus
JP2022546458A (en) * 2019-08-30 2022-11-04 ダイソン・テクノロジー・リミテッド Multi-zone crucible device
CN114667366A (en) * 2020-01-07 2022-06-24 应用材料公司 Assembly for material evaporation, vacuum deposition apparatus and method for material evaporation
CN111508802A (en) * 2020-04-22 2020-08-07 北京北方华创微电子装备有限公司 Reaction chamber and etching method thereof
CN111508802B (en) * 2020-04-22 2023-10-13 北京北方华创微电子装备有限公司 Reaction chamber and etching method thereof
KR20230085858A (en) 2021-12-07 2023-06-14 쵸슈 산교 가부시키가이샤 Deposition source and deposition apparatus
KR20230085857A (en) 2021-12-07 2023-06-14 쵸슈 산교 가부시키가이샤 Deposition crucible, deposition source and deposition apparatus
WO2023146232A1 (en) * 2022-01-27 2023-08-03 (주)알파플러스 Lateral type vacuum evaporation source and method for manufacturing organic light emitting display using same

Similar Documents

Publication Publication Date Title
JP2011052301A (en) Evaporation/sublimation method for vapor deposition material for vacuum deposition, and crucible apparatus for vacuum deposition
KR101814390B1 (en) Evaporation and sublimation method of vapor deposition materials in a vacuum vapor deposition apparatus, and crucible device for vacuum vaport deposition
EP1918413B1 (en) Method of organic material vacuum deposition and apparatus therefor
KR100874662B1 (en) Continuous vapor deposition system
JP2007123285A (en) Vapor deposition source for vapor-depositing organic electroluminescent film
JP2009108381A (en) Film-forming apparatus and film-forming method
US20130160712A1 (en) Evaporation cell and vacuum deposition system the same
JP3929397B2 (en) Method and apparatus for manufacturing organic EL element
JP2008184628A (en) Thin-film-forming apparatus and thin-film-forming method
KR20180047087A (en) Inductive Heating Evaporation Deposition Apparatus
US20100171068A1 (en) One-step method for the production of nanofluids
KR101974005B1 (en) Inductive Heating Evaporation Deposition Apparatus
JP4593008B2 (en) Vapor deposition source and thin film forming method and apparatus using the same
JP2011195916A (en) Vapor deposition apparatus
KR101562664B1 (en) Thin-film forming apparatus and thin-film forming method of using it
JP5789992B2 (en) Hearth liner with lid and deposition method using hearth liner with lid
JP2004353030A (en) Vapor deposition apparatus
JP5578345B2 (en) Evaporation source and vapor deposition apparatus in vapor deposition apparatus
JP3623587B2 (en) Vacuum deposition apparatus and vacuum deposition method using the vacuum deposition apparatus
JP5251015B2 (en) Heat treatment apparatus and heat treatment method
JP2013067845A (en) Device for heating deposition material, vapor deposition apparatus, vapor deposition method and substrate
CN101280417A (en) Apparatus for vapor plating of organic electroluminescent device
TW201250037A (en) Vacuum deposition equipment and vacuum deposition method
KR101580948B1 (en) Material Feeding Device and Evaporation Apparatus having the same
KR100556635B1 (en) Source for depositing electroluminescent layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131119