JP6625437B2 - 赤外線用結像レンズ - Google Patents

赤外線用結像レンズ Download PDF

Info

Publication number
JP6625437B2
JP6625437B2 JP2016006574A JP2016006574A JP6625437B2 JP 6625437 B2 JP6625437 B2 JP 6625437B2 JP 2016006574 A JP2016006574 A JP 2016006574A JP 2016006574 A JP2016006574 A JP 2016006574A JP 6625437 B2 JP6625437 B2 JP 6625437B2
Authority
JP
Japan
Prior art keywords
lens
infrared imaging
imaging lens
infrared
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016006574A
Other languages
English (en)
Other versions
JP2017126041A (ja
Inventor
暁彦 鈴木
暁彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2016006574A priority Critical patent/JP6625437B2/ja
Publication of JP2017126041A publication Critical patent/JP2017126041A/ja
Application granted granted Critical
Publication of JP6625437B2 publication Critical patent/JP6625437B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Description

本発明は、赤外線によってイメージセンサの撮像面に被写体の像を結像する赤外線用結像レンズに関する。
近年、いわゆる遠赤外線(波長3μm〜15μm程度の赤外線)で周辺環境等の被写体を撮影する監視カメラや車載カメラ等が普及している。これらのカメラが搭載する赤外線用結像レンズには、当然ながら、赤外線の透過率が高い材料からなるレンズを使用する。例えば、特許文献1〜5の赤外線用結像レンズは、Ge(ゲルマニウム)、カルコゲナイドガラス、または、ZnS(硫化亜鉛)を使用している。この他、サファイア等も赤外線に対して高い透過率を有しているので、赤外線用結像レンズに使用可能である。
特開2014−109638号公報 特開2012−173561号公報 特開2012−037697号公報 特開2012−173562号公報 特開2010−039243号公報
赤外線用結像レンズは、赤外線に対して高い透過率を有していなければならないので、使用できる硝材が比較的少数に限られているが、これらの硝材はいずれも高価である。特に、結晶の硝材を使用すると、非球面を研削によって形成するしかないので、赤外線用結像レンズは非常に高価になる。このような赤外線用結像レンズの高価さが、赤外線によって周辺環境等を撮影する監視カメラや車載カメラ等の普及を遅らせる原因の一つとなっているので、より安価に赤外線用結像レンズを製造販売することが求められている。
赤外線用結像レンズによく使用する硝材の中では、カルコゲナイドガラスは比較的安価であり、モールド成形によって非球面を形成して容易に所望の光学性能を得ることもできる。このため、特許文献1〜3の赤外線用結像レンズのように、近年の赤外線用結像レンズではカルコゲナイドガラスの使用頻度が高い。しかしながら、カルコゲナイドガラスは、従来、赤外線用結像レンズに使用されてきた硝材の中では比較的安価であるといっても、可視光によって被写体を撮像するためのレンズ(以下、可視光用結像レンズという)に使用する硝材と比較すれば、非常に高価であることに変わりはない。
可視光用結像レンズには、例えば、樹脂や合成石英(SiO)等の安価な硝材を使用するが、赤外線(特に遠赤外線)はこれらの硝材に非常に吸収されやすい。例えば、合成石英は、耐候性や温度依存性の点においては、赤外線用結像レンズにも使用可能であるが、9μm付近の赤外線を強く吸収するという欠点がある。このため、合成石英を赤外線用結像レンズに使用すると、撮影光量の不足等のために所望の画像が得られ難い。したがって、特許文献1〜5等で使用していないことからも分かるように、従来の赤外線用結像レンズでは合成石英を使用しない。
合成石英が9μm付近の赤外線を吸収するのは、シリコン(Si)に加えて、酸素を含んでいるからである。このため、合成石英に対して、酸素を含まないシリコンの結晶等であれば、9μm付近の赤外線の吸収が抑えられるので、赤外線用結像レンズの硝材として使用可能になる。しかし、酸素を含まないシリコン結晶は、通常は高価なFZ法(Floating Zone法)法で製造するので、むしろコスト高になる。このため、従来の赤外線用結像レンズではシリコンの結晶等を硝材としては使用しない。
FZ法の他にも、シリコンの結晶を製造する代表的な方法としては、例えばCZ法(Czochralski法)が知られている。CZ法は、FZ法よりも安価にシリコンの結晶を得ることができるが、酸素等の不純物を多く含み、純粋なシリコン結晶を得られないという欠点がある。しかし、近年では、CZ法でも、酸素等の不純物の混入量を制御できるようになってきており、安価なまま、含有する酸素の濃度(以下、酸素濃度という)を低下し、遠赤外線の吸収を抑えたシリコン結晶が得られるようになってきている。このため、遠赤外線の吸収を抑えたシリコン結晶を使用し、より安価に赤外線用結像レンズを提供することが望まれている。
なお、従来の赤外線用結像レンズではシリコンを使用できなかった経緯から、シリコンを使用した場合の赤外線用結像レンズが知られていない。また、レンズの性能は、使用する硝材によっても大きく変わるので、従来の高価な赤外線用硝材を単にシリコンに置き換えただけでは、監視カメラや車載カメラに求められる画質の画像は到底得られない。
本発明は、少なくとも赤外線での使用に堪える程度に酸素濃度が低く、9μm付近の赤外線の吸収を抑えたシリコンを使用して、従来よりも安価な赤外線用結像レンズを提供することを目的とする。
本発明の赤外線用結像レンズは、物体側から順に、1mm厚の場合に、波長8μm以上13μm以下の赤外線の最低透過率が40%以上であるシリコンで形成した第1レンズと、カルコゲナイドガラスで形成した第2レンズと、カルコゲナイドガラスで形成した第3レンズと、から構成され、第1レンズの物体側の面の曲率半径をR1、第1レンズの像側の面の曲率半径をR2とする場合に、
(式1)1.05≦R2/R1≦1.37
を満たす。
また、本発明の赤外線用結像レンズは、物体側から順に、1mm厚の場合に、波長8μm以上13μm以下の赤外線の最低透過率が40%以上であるシリコンで形成した第1レンズと、カルコゲナイドガラスで形成した第2レンズと、カルコゲナイドガラスで形成した第3レンズと、から構成され、第1レンズの焦点距離をf1、第1レンズの像側の面から第2レンズの物体側の面の距離をΔとする場合に、
(式2) 2.7≦f1/Δ≦5.8
を満たす。
第1レンズの物体側の面が球面であり、かつ、像側の面が球面であることが好ましい。
第2レンズは、物体側の面が非球面であり、かつ、像側の面が非球面であることが好ましい。
第3レンズは、物体側の面が非球面であり、かつ、像側の面が非球面であることが好ましい。
第1レンズと第2レンズの間に絞りを有することが好ましい。
第2レンズの物体側の面が回折面であることが好ましい。
第1レンズの物体側の面の曲率半径をR1、第1レンズの像側の面の曲率半径をR2とする場合に、
(式1)1.05≦R2/R1≦1.37
を満たすことが好ましい。
第1レンズの焦点距離をf1、第1レンズの像側の面から第2レンズの物体側の面の距離をΔとする場合に、
(式2) 2.7≦f1/Δ≦5.8
を満たすことが好ましい。
全系の焦点距離をf、第2レンズの焦点距離の絶対値を|f2|、第2レンズの像側の面から第3レンズの物体側の面の距離をD5、第3レンズの中心厚をD6とする場合に、
(式3) 0.75≦(|f2|/f)×(D5/D6)≦5.42
を満たすことが好ましい。
第1レンズの中心厚をD1、第3レンズの中心厚をD6とする場合に、
(式4) 0.8≦D6/D1≦3.0
を満たすことが好ましい。
第1レンズの中心厚をD1とする場合に、
(式5) 1.0mm≦D1≦2.5mm
を満たすことが好ましい。
本発明は、1mm厚の場合に、波長8μm以上13μm以下の赤外線の最低透過率が40%以上であるシリコンからなるレンズを使用したことで、従来よりも安価に赤外線用結像レンズを提供することができる。
赤外線用結像レンズの断面図である。 1mm厚のシリコンの透過率を示すグラフである。 反射防止コーティングを施した1mm厚のシリコンの透過率を示すグラフである。 実施例1の赤外線用結像レンズの断面図である。 実施例1の(A)球面収差、(B)非点収差、及び(C)ディストーションを示すグラフである。 実施例1の空間周波数に対するMTFを示すグラフである。 実施例2の赤外線用結像レンズの断面図である。 実施例2の(A)球面収差、(B)非点収差、及び(C)ディストーションを示すグラフである。 実施例2の空間周波数に対するMTFを示すグラフである。 実施例3の赤外線用結像レンズの断面図である。 実施例3の(A)球面収差、(B)非点収差、及び(C)ディストーションを示すグラフである。 実施例3の空間周波数に対するMTFを示すグラフである。 実施例4の赤外線用結像レンズの断面図である。 実施例4の(A)球面収差、(B)非点収差、及び(C)ディストーションを示すグラフである。 実施例4の空間周波数に対するMTFを示すグラフである。 実施例5の赤外線用結像レンズの断面図である。 実施例5の(A)球面収差、(B)非点収差、及び(C)ディストーションを示すグラフである。 実施例5の空間周波数に対するMTFを示すグラフである。 実施例6の赤外線用結像レンズの断面図である。 実施例6の(A)球面収差、(B)非点収差、及び(C)ディストーションを示すグラフである。 実施例6の空間周波数に対するMTFを示すグラフである。 実施例7の赤外線用結像レンズの断面図である。 実施例7の(A)球面収差、(B)非点収差、及び(C)ディストーションを示すグラフである。 実施例7の空間周波数に対するMTFを示すグラフである。 実施例8の赤外線用結像レンズの断面図である。 実施例8の(A)球面収差、(B)非点収差、及び(C)ディストーションを示すグラフである。 実施例8の空間周波数に対するMTFを示すグラフである。 実施例9の赤外線用結像レンズの断面図である。 実施例9の(A)球面収差、(B)非点収差、及び(C)ディストーションを示すグラフである。 実施例9の空間周波数に対するMTFを示すグラフである。 実施例10の赤外線用結像レンズの断面図である。 実施例10の(A)球面収差、(B)非点収差、及び(C)ディストーションを示すグラフである。 実施例10の空間周波数に対するMTFを示すグラフである。 実施例11の赤外線用結像レンズの断面図である。 実施例11の(A)球面収差、(B)非点収差、及び(C)ディストーションを示すグラフである。 実施例11の空間周波数に対するMTFを示すグラフである。
図1に示すように、赤外線用結像レンズ10は、イメージセンサ11の撮像面S10に遠赤外線によって被写体の像を結像するレンズである。赤外線用結像レンズ10は、光軸Z1に沿って、物体側から順に、第1レンズL1、第2レンズL2、及び、第3レンズの3枚のレンズを有する3枚構成のレンズ系である。また、赤外線用結像レンズ10は、第1レンズL1と第2レンズL2の間に絞りS3を備える。イメージセンサ11は、カバーガラスCGによって撮像面S10を保護しているので、赤外線用結像レンズ10は、カバーガラスCGを介して撮像面S10に被写体の像を結像する。
第1レンズL1は、1mm厚の場合に、波長8μm以上13μm以下の赤外線の最低透過率が40%以上であるシリコンによって形成する。1mm厚の場合に、波長8μm以上13μm以下の赤外線の最低透過率が40%以上という条件は、シリコンが含有する酸素の濃度が低い(例えば、従来のCZ法で製造する一般的なシリコンよりも酸素濃度が低い)ときに満たされる。以下、従来の酸素濃度が高いシリコンと区別するため、第1レンズL1の硝材を便宜的に低酸素シリコンといい、相対的に酸素濃度が高い従来のシリコンを高酸素シリコンという。
図2に破線で示すように、1mm厚の高酸素シリコンは、波長約9μm付近の赤外線の吸収が顕著である。このため、波長8μm以上13μm以下の波長帯域でみれば、高酸素シリコンの透過率は、波長約9μm付近で最低となり、その最低透過率は40%を下回る。一方、図2に実線で示すように、1mm厚の低酸素シリコンは、高酸素シリコンよりも酸素濃度を低下したことにより、波長約9μm付近の赤外線の透過率が上がり、波長8μm以上13μm以下の赤外線の最低透過率は40%以上になる。低酸素シリコンが、高酸素シリコンに対してどの程度赤外線の吸収(特に波長9μm付近の赤外線の吸収)抑えることができるかは、低酸素シリコンの酸素濃度によるが、少なくとも波長8μm以上13μm以下の赤外線の最低透過率が40%以上になっていれば、赤外線用結像レンズ10に使用可能である。
低酸素シリコンは、例えば、CZ法において、酸素濃度を制御することにより安価に得ることができる。低酸素シリコンは、より高価なFZ法によって得ることも可能ではあるが、同様の特性であれば、最も安価な方法で製造するのが通常である。したがって、低酸素シリコンは従来の赤外線用硝材よりも安価である。
なお、図3に示すように、低酸素シリコン(実線)及び高酸素シリコン(破線)に、それぞれ同じ反射防止コーティングを施すと、各々の硝材としての赤外線の透過率(図2参照)に対して、どちらも全体的に透過率が向上する。このため、反射防止コーティングを施せば、高酸素シリコン(破線)でも、波長8μm以上13μm以下の赤外線の最低透過率を40%以上にすることができる。しかし、反射防止コーティングによって、透過率が向上する波長帯域や透過率の向上の程度は、反射防止コーティングの性能による。また、波長約9μm付近の赤外線の吸収が顕著であるという硝材自体の特性には変わりがない。
このため、「波長8μm以上13μm以下の赤外線の最低透過率を40%以上である」という条件は、あくまでも第1レンズL1の硝材自体の特性に関する条件であり、反射防止コーティングの性能を含まない。但し、これは実際に赤外線用結像レンズ10を構成する際に、第1レンズL1に反射防止コーティングを施してはならないということではなく、第1レンズL1は当然に低酸素シリコンに反射防止コーティングを施して形成する。具体的には、赤外線用結像レンズ10では、第1レンズL1の物体側の面S1及び像側の面S2、またはこれらのうちいずれか一方の面に反射防止コーティングを施してある。このため、第1レンズL1は、例えば図3の実線で示す透過率特性を有する。
第1レンズL1を形成する低酸素シリコンは結晶であり、インゴット等から切り出して研削して使用することにより、酸素飽和度が低い状態を保つ。このため、第1レンズL1は、モールド成形等の加熱加圧による非球面形成はできず、第1レンズL1の物体側の面S1または像側の面S2を非球面にする場合には、研削により非球面を形成する必要がある。しかし、研削により非球面を形成すると第1レンズL1がコストアップし、その結果、赤外線用結像レンズ10を安価に製造することができなくなる。したがって、赤外線用結像レンズ10では、第1レンズL1を球面レンズとしている。すなわち、第1レンズL1は、物体側の面S1が球面であり、かつ、像側の面S2が球面である。
また、第1レンズL1は、赤外線用結像レンズ10の保護部材(例えばカバーガラス)を兼ねている。すなわち、赤外線用結像レンズ10は監視カメラや車載カメラ等の過酷な環境で使用するが、第1レンズL1よりも前に保護部材を置いて赤外線用結像レンズ10を保護する必要がない。
例えば、カルコゲナイドガラスは脆く、耐候性等も低いので、少なくとも最も物体側のレンズをカルコゲナイドガラスで形成した従来の赤外線量結像レンズは、赤外線量結像レンズの前に保護部材を置いて赤外線用結像レンズ(特に、最も物体側のカルコゲナイドガラスで形成したレンズ)を保護する必要がある。保護部材は、例えば、レンズとしてのパワーを有しない平行平板である。但し、保護部材は、撮影に必要な赤外線を十分に透過しなければならないので、保護部材にも、耐候性等が良い高価な赤外線用硝材等を使用する必要がある。このように保護部材に高価な材料を使用しなければならない点も、従来の赤外線用結像レンズのコストアップの原因の一つになっている。これに対し、赤外線用結像レンズ10では、最も物体側に位置する第1レンズL1が低酸素シリコンという耐候性等が高く、かつ、安価な材料でできているので、従来の赤外線用結像レンズに必要な高価な保護部材を使用しなくて済む。その結果、赤外線用結像レンズ10は従来の赤外線用結像レンズよりも安価に構成できる。
第2レンズL2及び第3レンズL3は、いずれもカルコゲナイドガラスで形成したレンズである。カルコゲナイドガラスとは、酸素(O)の代わりに、硫黄(S)やセレン(Se)、テルル(Te)といったカルコゲン元素と呼ばれる互いに性質の似通った一連の元素の少なくとも1つを主成分として含むガラスである。カルコゲナイドガラスは、種々の赤外線用硝材の中でも比較的安価であること。このため、赤外線用結像レンズ10は、第2レンズL2をカルコゲナイドガラスで形成したことで、赤外線用結像レンズ10全体としても安価な構成にしている。
また、カルコゲナイドガラスは、モールド成形によって容易に非球面を形成することができる。このため、赤外線用結像レンズ10では、カルコゲナイドガラスで形成した第2レンズL2及び第3レンズを非球面レンズにすることで、赤外線用結像レンズ10の各種収差を補正し、第1レンズL1を低酸素シリコンで形成した場合でも、赤外線用結像レンズ10全体として必要な結像性能が得られるようにしている。より具体的には、第2レンズL2は、物体側の面S4が非球面であり、かつ、像側の面S5が非球面である。また、第3レンズL3は、物体側の面S6が非球面であり、かつ、像側の面S7が非球面である。このように、第2レンズL2の両面を非球面とすることで、第1レンズL1を低酸素シリコンによって形成し、かつ、第1レンズL1の両面を球面とした場合でも、良好な結像性能が得られやすい。同様に、第3レンズL3の両面を非球面としたことで、第1レンズL1を低酸素シリコンによって形成し、かつ、第1レンズL1の両面を非球面とした場合でも、良好な結像性能が得られやすい。特に、赤外線用結像レンズ10では、第2レンズL2及び第3レンズがともに両面非球面となっていることで、第1レンズL1を低酸素シリコンによって形成し、かつ、第1レンズL1の両面を非球面としても、良好な結像性能が得られやすい。
さらに、第2レンズL2の物体側の面S4は、回折面になっている。これは色収差の補正のためである。なお、回折面によって色収差を補正する場合、回折面はできる限り絞りS3の近くにある方がより良好に色収差を補正できる。このため、赤外線用結像レンズ10では、回折面を形成し得る第2レンズL2の物体側の面S4及び像側の面S5のうち、より絞りS3に近い物体側の面S4を回折面にしている。
この他、赤外線用結像レンズ10が、第1レンズL1と第2レンズL2の間に絞りS3を配置しているのは、赤外線用結像レンズ10のコストダウンと良好な収差補正のためである。第1レンズL1と第2レンズL2の間に絞りS3を配置する代わりに、第1レンズL1の物体側に絞りS3を配置すると、第2レンズL2及び第3レンズL3が大径化する。第2レンズL2及び第3レンズL3が大径化すると、第2レンズL2及び第3レンズL3の硝材であるカルコゲナイドガラスの使用量が多くなるので、その分、コストアップしてしまう。また、第1レンズL1と第2レンズL2の間に絞りS3を配置する代わりに、第2レンズL2と第3レンズL3の間に絞りS3を配置すると、第1レンズL1と第2レンズL2の間に絞りS3を配置する場合よりも各種収差の補正が難しくなる。すなわち、赤外線用結像レンズ10のように、第1レンズL1と第2レンズL2の間に絞りS3を配置する方が、より容易かつ良好に各種収差の補正がしやすい。
また、赤外線用結像レンズ10は、下記の5個の条件を満たすように形成している。第1に、赤外線用結像レンズ10は、第1レンズL1の物体側の面S1の曲率半径をR1、第1レンズL1の像側の面S2の曲率半径をR2とする場合に、
(式1) 1.05≦R2/R1≦1.37
を満たす。
R2/R1の値が式1の下限を下回ると、第2レンズL2及び第3レンズL3が大径化しやすい。第2レンズL2及び第3レンズL3が大径化すると、その分、第2レンズL2及び第3レンズL3の硝材であるカルコゲナイドガラスの使用量が多くなる。このため、赤外線用結像レンズ10がコストアップしてしまう。
一方、R2/R1の値が式1の上限を上回ると、像面湾曲が増大する。具体的には、R2/R1の値が式1の上限を上回ると、第1レンズL1を低酸素シリコンで形成し、かつ、両面を球面にしたことに起因する像面湾曲を、第2レンズL2及び第3レンズL3によって補正することが難しくなる。
すなわち、式1は、赤外線用結像レンズ10のコストを抑えつつ、かつ、第1レンズL1の硝材及び形状に起因した像面湾曲を、第2レンズL2及び第3レンズL3によって良好に補正し得る範囲に抑えるための条件である。なお、式1のR2/R1は、1.10≦R2/R1≦1.25を満たすことがより好ましい。
第2に、赤外線用結像レンズ10は、第1レンズL1の焦点距離をf1、第1レンズL1の像側の面S2から第2レンズL2の物体側の面S4の距離(S2とS4の中心距離)をΔとする場合に、
(式2) 2.7≦f1/Δ≦5.8
を満たす。
f1/Δの値が式2の下限を下回ると、像面湾曲が増大してしまいやすい。具体的には、f1/Δの値が式2の下限を下回ると、第1レンズL1を低酸素シリコンで形成し、かつ、両面を球面にしたことに起因する像面湾曲を、第2レンズL2及び第3レンズL3では十分に補正できない場合がある。
一方、f1/Δの値が式2の上限を上回ると、球面収差が増大する。具体的には、f1/Δの値が式2の上限を上回ると、第1レンズL1を低酸素シリコンで形成し、かつ、両面を球面にしたことに起因する球面収差を、第2レンズL2及び第3レンズL3では十分に補正できない場合がある。また、f1/Δの値が式2の上限を上回ると、第2レンズL2及び第3レンズL3が大径化して、コストが増大する。
すなわち、式2は、赤外線用結像レンズ10のコストを抑えつつ、第1レンズL1の硝材及び形状に起因した像面湾曲及び球面収差を、第2レンズL2及び第3レンズL3によって良好に補正し得る範囲に抑えるための条件である。なお、式2のf1/Δは、3.0≦f1/Δ≦4.0を満たすことがより好ましい。
第3に、赤外線用結像レンズ10は、全系の焦点距離をf、第2レンズL2の焦点距離の絶対値を|f2|、第2レンズL2の像側の面S5から第3レンズL3の物体側の面S6の距離(S5とS6の中心距離)をD5、第3レンズL3の中心厚(S6とS7の中心距離)をD6とする場合に、
(式3) 0.75≦(|f2|/f)×(D5/D6)≦5.60
を満たす。
(|f2|/f)×(D5/D6)の値が式3の下限を下回ると、像面湾曲が増大する。具体的には、(|f2|/f)×(D5/D6)の値が式3の下限を下回ると、第1レンズL1を低酸素シリコンで形成し、かつ、両面を球面にしたことに起因する像面湾曲を、第2レンズL2及び第3レンズL3では十分に補正できない場合がある。また、(|f2|/f)×(D5/D6)の値が式3の下限を下回ると、第3レンズL3が大径化してコストが増大する。
一方、(|f2|/f)×(D5/D6)の値が式3の上限を上回ると、赤外線用結像レンズ10のバックフォーカスが短くなりすぎて、撮像システムへの組み込みが困難になる場合がある。また、(|f2|/f)×(D5/D6)の値が式3の上限を上回ると、第3レンズL3が大径化してコストが増大する。
すなわち、式3は、第3レンズL3の径を抑えて赤外線用結像レンズ10を低コスト化しつつ、第1レンズL1の硝材及び形状に起因した像面湾曲を、第2レンズL2及び第3レンズL3によって良好に補正し得る範囲に抑え、かつ、撮像システムへの赤外線用結像レンズ10の組み込みが容易な程度にバックフォーカスを確保するための条件である。なお、式4の(|f2|/f)×(D5/D6)は、1.00≦(|f2|/f)×(D5/D6)≦5.00を満たすことがより好ましい。
第4に、赤外線用結像レンズ10は、第1レンズL1の中心厚(S1とS2の中心距離)をD1、第3レンズL3の中心厚(S6とS7の中心距離)をD6とする場合に、
(式4) 0.8≦D6/D1≦3.0
を満たす。
D6/D1の値が式4の上限を上回ると、球面収差が増大する。具体的には、D6/D1の値が式4の上限を上回ると、第1レンズL1を低酸素シリコンで形成し、かつ、両面を球面にしたことに起因する球面収差を、第2レンズL2及び第3レンズL3では十分に補正できない場合がある。また、D6/D1の値が式4の上限を上回ると、第1レンズL1が厚くなりすぎて、加工性が悪化する。さらに、D6/D1が式4の上限を上回ると、第3レンズL3が厚くなって体積が大きくなるので、コストが増大する。
一方、D6/D1が式4の下限を下回ると、像面湾曲が増大する。具体的には、D6/D1が式4の下限を下回ると、第1レンズL1を低酸素シリコンで形成し、かつ、両面を球面にしたことに起因する像面湾曲を、第2レンズL2及び第3レンズL3では十分に補正できない場合がある。また、D6/D1が式4の下限を下回ると、第1レンズL1が厚くなりすぎたことによって赤外線の透過率が低下する。その結果、撮影した画像が暗くなってしまう場合がある。
すなわち、式4は、第3レンズL3の体積を抑えて赤外線用結像レンズ10を低コスト化しつつ、第1レンズL1の硝材及び形状に起因した球面収差及び像面湾曲を、第2レンズL2及び第3レンズL3によって良好に補正し得る範囲に抑え、かつ、第1レンズL1の加工性及び赤外線透過率を確保するための条件である。なお、式4のD6/D1は、0.8≦D6/D1≦2.5を満たすことがより好ましく、1.0≦D6/D1≦2.0を満たすことが特に好ましい。
第5に、赤外線用結像レンズ10は、第1レンズL1の中心厚(S1とS2の中心距離)をD1とする場合に、
(式5) 1.0mm≦D1≦2.5mm
を満たす。
第1レンズL1の中心厚D1が式5の上限を上回る場合、第1レンズL1が厚くなりすぎたことによって赤外線の透過率が低下する。その結果、撮影した画像が暗くなってしまう場合がある。一方、第1レンズL1の中心厚D1が式5の下限を下回る場合、第1レンズL1が薄くなりすぎて加工性が低下する。すなわち、式5は、第1レンズL1の赤外線の透過率を確保しつつ、かつ、第1レンズL1の加工性を確保するための条件である。なお、式5のD1は、1.0≦D1≦2.0を満たすことがより好ましい。
赤外線用結像レンズ10のように、第1レンズL1を低酸素シリコンで形成し、かつ、球面レンズとする場合には、上記式1〜式5の条件は少なくともいずれか1つを満たすことが好ましく、式1〜式5の全ての条件を満たすことが特に好ましい。
上記のように、赤外線用結像レンズ10は、第1レンズL1を低酸素シリコンで形成し、第2レンズL2及び第3レンズL3をカルコゲナイドガラスで形成したことで、従来の赤外線用結像レンズよりも安価である。また、赤外線用結像レンズ10は、第2レンズL2及び第3レンズL3をカルコゲナイドガラスによって形成した非球面のレンズとしたこと、及び、絞りS3を第1レンズL1及び第2レンズL3の間に配置したこと、式1〜式5の条件を満たすようにしたこと等により、低コストに第1レンズL1の硝材及び形状に起因した収差等のデメリットを改善し、安価かつ良好な結像性能を有する。
[実施例]
以下、上記赤外線用結像レンズ10の実施例を説明する。図4は、実施例1の赤外線用結像レンズ10の断面図を示す。面番号は第1レンズL1の物体側の面S1から順にSi(i=1〜10)で示す。S3は絞りであり、S8はカバーガラスCGの物体側の面であり、S9はカバーガラスCGの像側の面であり、S10はイメージセンサ11の撮像面である。面間隔Di(i=1〜10、単位mm)は、面Siから面Si+1の間隔である。
また、実施例1のレンズデータを下記表1〜表3に示す。表1は実施例1の赤外線用結像レンズ10の各面Siの面番号i、各面Siの曲率半径Ri(i=1〜10、単位mm)、面間隔Di、波長10μmの赤外線に対する屈折率ni(i=1〜10)、及び、第1レンズL1、第2レンズL2、及び第3レンズの材料を示す。また、面番号Siに付した「*」印は非球面であることを表し、「#」印は回折面であることを表す。「*」印及び「#」印がない曲面は全て球面である。
Figure 0006625437
非球面は、下記数1の非球面式によって表される。数1の非球面式において、「Z」は非球面の深さ(mm)、「h」は光軸からレンズ面までの距離(mm)、「C」は近軸曲率(すなわち近軸曲率半径をR(mm)とする場合にC=1/Rである)、「K」は円錐定数、「Ai」は非球面係数である。表2には、実施例1の各非球面(表1*印参照)の「K」及び「Ai」を示す。
Figure 0006625437
Figure 0006625437
回折面は、下記数2の光路差関数φにより表される。光路差関数φは、回折面が光路長差の負荷量を光軸からの距離「r」において、「r」は光軸からの距離(mm)であり、「Cn」(n=1〜10)は回折面係数である。表3には、実施例1の回折面(表1#印参照)の回折面係数Cnのうち零でないものを示す。
Figure 0006625437
Figure 0006625437
また、図5(A)は実施例1の波長8μm、波長10μm、及び波長12μmの各赤外線について球面収差を示す。図5(B)は、波長10μmの赤外線について、実施例1のサジタル(ラジカル)方向の非点収差Sと、タンジェンシャル(メリジオナル)方向の非点収差Tを示す。図5(C)は、波長10μmの赤外線について、実施例1のディストーションを示す。なお、実施例1の赤外線用結像レンズ10は、12μmピッチ、384画素×288画素のイメージセンサ11に使用するレンズであるため、最大像高は2.88mmである。
図6には、実施例1の赤外線用結像レンズ10について、空間周波数に対する軸上(像高0.0mm)のMTFと、最大像高2.88mmにおけるタンジェンシャル方向のMTF(符号T)とラジアル方向のMTF(符号R)を示す。
上記実施例1と同様に、実施例2〜11の赤外線用結像レンズ10の断面図、各種レンズデータ、各種収差、及びMTFを、図7〜図36及び表4〜表33に示す。但し、実施例2、及び実施例8〜11の赤外線用結像レンズ10は、実施例1と同様に、12μmピッチ、384画素×288画素のイメージセンサ11に使用するレンズであり、最大像高は2.88mmである。実施例3、実施例4、及び実施例7の赤外線用結像レンズ10は、QVGA(320画素×240画素)、17μmピッチのイメージセンサ11に使用するレンズであり、最大像高は3.40mmである。実施例5及び実施例6の赤外線用結像レンズ10は、384画素×288画素、17μmピッチのイメージセンサ11に使用するレンズであり、最大像高は4.08mmである。
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
Figure 0006625437
下記表34及び表35には、上記実施例1〜11のF値(FNo)等のその他の性能、式1〜式5の各値を算出するためのパラメータのうち上記レンズデータに記載していないパラメータ、及び、式1〜式5の各値を示す。「f」は赤外線用結像レンズ10の全系の焦点距離、「f1」は第1レンズL1の焦点距離、「f2」は第2レンズの焦点距離である。「Δ」は第1レンズL1の像側の面S2と第2レンズL2の物体側の面S4との距離、すなわち、上記レンズデータの面間隔D2と面間隔D3の合計である。表19から分かる通り、実施例1〜6の各赤外線用結像レンズ10は、いずれも式1〜式5の条件を満たす。また、表19と、上記各実施例の収差図及びMTFのグラフから分かる通り、実施例1〜6の各赤外線用結像レンズ10は、第1レンズL1を低酸素シリコンで形成し、かつ、両面を球面としたにもかかわらず、良好な結像性能を有する。
Figure 0006625437
Figure 0006625437
[比較例]
特許文献1〜5に記載された各実施例の従来の赤外線用結像レンズは、従来の高価な赤外線用硝材のみを使用するレンズであるため単純に本発明の赤外線用結像レンズ10と比較することはできないが、本発明の赤外線用結像レンズ10と同様に3枚構成の赤外線用結像レンズであるため、以下、比較例として説明する。
まず、特許文献1の実施例1(以下、比較例1という)〜実施例14(以下、比較例14という)の赤外線用結像レンズは、第1レンズL1と第2レンズL2の間に絞りを配置した3枚構成の赤外線用結像レンズである。そして、表36〜表38に示すように、第1レンズL1及び第2レンズL2は全てゲルマニウム(Ge)で形成されており、第3レンズL3がカルコゲナイドガラスで形成されている。そして、式1〜式5の条件については、太字及び下線で示すように、一部の条件を偶然に満たす場合があるが、全実施例で式1〜式5の条件を満たすわけではないことから、特許文献1では、赤外線用結像レンズが式1〜式5の条件を意図的に満たすようには構成していないことが分かる。
Figure 0006625437
Figure 0006625437
Figure 0006625437
特許文献2の実施例1(以下、比較例15という)〜実施例5(以下、比較例19という)の赤外線用結像レンズは、第1レンズL1と第2レンズL2の間に絞りを配置した3枚構成の赤外線用結像レンズである。そして、表39に示すように、第1レンズL1及び第3レンズL1はゲルマニウム(Ge)で形成し、第2レンズL2をカルコゲナイドガラスで形成している。そして、式1〜式5の条件については、太字及び下線で示すように、一部の条件を偶然に満たす場合があるが、全実施例で式1〜式5の条件を満たすわけではないことから、特許文献2も、赤外線用結像レンズが式1〜式5の条件を意図的に満たすように構成していないことが分かる。
Figure 0006625437
特許文献3の実施例1(以下、比較例20という)〜実施例5(以下、比較例24という)の赤外線用結像レンズは、最前面のレンズ径自体を絞りとした3枚構成の赤外線用結像レンズである。そして、表40に示すように、第1レンズL1、第2レンズL2、及び第3レンズL3を、カルコゲナイドガラスまたは硫化亜鉛(ZnS)で形成している。式1〜式5の条件については、太字及び下線で示すように、一部の条件を偶然に満たす場合があるが、全実施例で式1〜式5の条件を満たすわけではないことから、特許文献3もまた、式1〜式5の条件を意図的に満たすようには赤外線用結像レンズを構成していないことが分かる。
Figure 0006625437
特許文献4の実施例1(以下、比較例25という)及び実施例2(以下、比較例26という)の赤外線用結像レンズは第1レンズL1と第2レンズL2の間に絞りを配置した3枚構成の赤外線用結像レンズである。そして、表41に示すように、第1レンズL1、第2レンズL2、及び第3レンズL3は、全てゲルマニウム(Ge)で形成している。式1〜式5の条件については、太字及び下線で示すように、一部の条件を偶然に満たす場合があるが、実施例1及び実施例2で式1〜式5の条件を満たすわけではないことから、特許文献4もまた、式1〜式5の条件を意図的に満たすようには赤外線用結像レンズを構成していないことが分かる。
Figure 0006625437
また、特許文献5の実施例1(以下、比較例27という)〜実施例3(以下、比較例29という)は、第1レンズL1と第2レンズL2の間に絞りを配置した3枚構成の赤外線用結像レンズである。そして、表42に示すように、第1レンズL1、第2レンズL2、及び第3レンズL3を、全てゲルマニウム(Ge)で形成している。式1〜式5の条件については、太字及び下線で示すように、一部の条件を偶然に満たす場合があるが、全実施例で式1〜式5の条件を満たすわけではないことから、特許文献5もまた、式1〜式5の条件を意図的に満たすようには赤外線用結像レンズを構成していないことが分かる。
Figure 0006625437
上記のように、従来の赤外線用結像レンズが式1〜式5の条件を満たすように構成されていないのは、式1〜式5が、本発明の赤外線用結像レンズ10のように2枚構成のレンズ系で、第1レンズL1を低酸素シリコンで形成し、かつ、球面レンズとした場合に特有の条件であり、第1レンズL1、第2レンズL2、及び第3レンズL3に従来の高価な赤外線用硝材を使用する従来の赤外線用結像レンズは式1〜式5を満たすように構成する必要がないからである。
なお、上記実施形態及び実施例は、種々の変更が可能である。例えば、上記実施例に挙げた赤外線用結像レンズ10以外にも、曲率半径や屈折率、その他レンズデータを変えて、形状や配置及び結像性能が赤外線用結像レンズ10と同等の赤外線用結像レンズを構成することができる。
10 赤外線用結像レンズ
L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
S3 絞り
CG カバーガラス
S10 撮像面

Claims (11)

  1. 物体側から順に、
    1mm厚の場合に、波長8μm以上13μm以下の赤外線の最低透過率が40%以上であるシリコンで形成した第1レンズと、
    カルコゲナイドガラスで形成した第2レンズと、
    カルコゲナイドガラスで形成した第3レンズと、
    から構成され、
    前記第1レンズの物体側の面の曲率半径をR1、前記第1レンズの像側の面の曲率半径をR2とする場合に、
    (式1) 1.05≦R2/R1≦1.37
    を満たす赤外線用結像レンズ。
  2. 前記第1レンズの物体側の面が球面であり、かつ、像側の面が球面である請求項1に記載の赤外線用結像レンズ。
  3. 前記第2レンズは、物体側の面が非球面であり、かつ、像側の面が非球面である請求項1または2に記載の赤外線用結像レンズ。
  4. 前記第3レンズは、物体側の面が非球面であり、かつ、像側の面が非球面である請求項1〜3のいずれか1項に記載の赤外線用結像レンズ。
  5. 前記第1レンズと前記第2レンズの間に絞りを有する請求項1〜4のいずれか1項に記載の赤外線用結像レンズ。
  6. 前記第2レンズの物体側の面が回折面である請求項5に記載の赤外線用結像レンズ。
  7. 前記第1レンズの焦点距離をf1、前記第1レンズの像側の面から前記第2レンズの物体側の面の距離をΔとする場合に、
    (式2) 2.7≦f1/Δ≦5.8
    を満たす請求項1〜のいずれか1項に記載の赤外線用結像レンズ。
  8. 全系の焦点距離をf、前記第2レンズの焦点距離の絶対値を|f2|、前記第2レンズの像側の面から前記第3レンズの物体側の面の距離をD5、前記第3レンズの中心厚をD6とする場合に、
    (式3) 0.75≦(|f2|/f)×(D5/D6)≦5.60
    を満たす請求項1〜のいずれか1項に記載の赤外線用結像レンズ。
  9. 前記第1レンズの中心厚をD1、前記第3レンズの中心厚をD6とする場合に、
    (式4) 0.8≦D6/D1≦3.0
    を満たす請求項1〜のいずれか1項に記載の赤外線用結像レンズ。
  10. 前記第1レンズの中心厚をD1とする場合に、
    (式5) 1.0mm≦D1≦2.5mm
    を満たす請求項1〜のいずれか1項に記載の赤外線用結像レンズ。
  11. 物体側から順に、
    1mm厚の場合に、波長8μm以上13μm以下の赤外線の最低透過率が40%以上であるシリコンで形成した第1レンズと、
    カルコゲナイドガラスで形成した第2レンズと、
    カルコゲナイドガラスで形成した第3レンズと、
    から構成され、
    前記第1レンズの焦点距離をf1、前記第1レンズの像側の面から前記第2レンズの物体側の面の距離をΔとする場合に、
    (式2) 2.7≦f1/Δ≦5.8
    を満たす赤外線用結像レンズ。
JP2016006574A 2016-01-15 2016-01-15 赤外線用結像レンズ Active JP6625437B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016006574A JP6625437B2 (ja) 2016-01-15 2016-01-15 赤外線用結像レンズ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016006574A JP6625437B2 (ja) 2016-01-15 2016-01-15 赤外線用結像レンズ

Publications (2)

Publication Number Publication Date
JP2017126041A JP2017126041A (ja) 2017-07-20
JP6625437B2 true JP6625437B2 (ja) 2019-12-25

Family

ID=59365175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016006574A Active JP6625437B2 (ja) 2016-01-15 2016-01-15 赤外線用結像レンズ

Country Status (1)

Country Link
JP (1) JP6625437B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107390349B (zh) * 2017-08-30 2020-05-19 福建福光股份有限公司 一种长波制冷型无热化镜头
WO2023013574A1 (ja) * 2021-08-03 2023-02-09 日本電気硝子株式会社 レンズユニット、光学システム、及び分光特性測定装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5512457B2 (ja) * 2010-08-06 2014-06-04 富士フイルム株式会社 赤外線用結像レンズおよび撮像装置
JP5617642B2 (ja) * 2011-01-06 2014-11-05 ソニー株式会社 赤外線光学系、赤外線撮像装置
KR101290518B1 (ko) * 2011-11-16 2013-07-26 삼성테크윈 주식회사 적외선 광학 렌즈계
JP2017090786A (ja) * 2015-11-13 2017-05-25 株式会社タムロン 遠赤外線光学系

Also Published As

Publication number Publication date
JP2017126041A (ja) 2017-07-20

Similar Documents

Publication Publication Date Title
EP1821129B1 (en) Imaging lens
EP1840619B1 (en) Telephoto-type of imaging lens with five single lenses
JP5467896B2 (ja) 赤外線ズームレンズ
JP5252842B2 (ja) 撮像レンズ
JP5341265B2 (ja) 対物光学系
JP4796660B2 (ja) 2枚組撮像光学系およびそれを備えた撮像装置
US20160077313A1 (en) Wide angle lens
JP2009157402A (ja) 撮像レンズ及び撮像装置並びに携帯端末
JP6405757B2 (ja) 遠赤外線レンズ及び遠赤外線撮像装置
CN113640971A (zh) 摄像镜头
WO2013141284A1 (ja) 赤外線用光学系
JP2011186070A (ja) 赤外線ズームレンズ
JP6749632B2 (ja) 大口径レンズ
JP2016018162A5 (ja)
JP2019203990A (ja) 撮像レンズ
JP6397584B2 (ja) 赤外線用結像レンズシステム
JP2004271991A (ja) 撮像レンズ
US20100110547A1 (en) Imaging device, and diffraction grating lens for use in the device
JP6625437B2 (ja) 赤外線用結像レンズ
JPH11295590A (ja) 回折光学素子を有した光学系
WO2020262553A1 (ja) 撮像レンズ及び撮像装置
JP2017090786A (ja) 遠赤外線光学系
JP7098347B2 (ja) 光学系及びそれを有する撮像装置
JP6868424B2 (ja) 撮像レンズ
CN106019533B (zh) 内聚焦式透镜

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180829

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20181213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191127

R150 Certificate of patent or registration of utility model

Ref document number: 6625437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150