JP6622409B2 - リソグラフィ装置、リソグラフィアライメント方法およびデータ処理システム - Google Patents

リソグラフィ装置、リソグラフィアライメント方法およびデータ処理システム Download PDF

Info

Publication number
JP6622409B2
JP6622409B2 JP2018529723A JP2018529723A JP6622409B2 JP 6622409 B2 JP6622409 B2 JP 6622409B2 JP 2018529723 A JP2018529723 A JP 2018529723A JP 2018529723 A JP2018529723 A JP 2018529723A JP 6622409 B2 JP6622409 B2 JP 6622409B2
Authority
JP
Japan
Prior art keywords
alignment
optical
lithographic apparatus
radiation
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018529723A
Other languages
English (en)
Other versions
JP2018527630A (ja
Inventor
マテイッセン、シモン、ガイスベルト、ヨセフス
ボエフ、アリー、ジェフリー デン
ボエフ、アリー、ジェフリー デン
パンデイ、ニテシュ
ティンネマンス、パトリシウス、アロイシウス、ヤコブス
ウィッテ、ステファン、ミヒル
エイケマ、キエルド、セイブラント、エドゥアルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Publication of JP2018527630A publication Critical patent/JP2018527630A/ja
Application granted granted Critical
Publication of JP6622409B2 publication Critical patent/JP6622409B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7046Strategy, e.g. mark, sensor or wavelength selection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7092Signal processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

[関連出願へのクロスリファレンス]
本出願は、2015年8月28日に出願された欧州出願15183058.5号の利益を主張し、その全体が参照により本書に援用される。
[技術分野]
本発明は、アライメントセンサを有するリソグラフィ装置およびリソグラフィアライメント方法に関する。
リソグラフィ装置は、所望のパターンを基板に、たいていの場合基板のターゲット部分に与える機械である。リソグラフィ装置は、例えば、集積回路(IC)の製造に用いることができる。そのような場合、マスクまたはレチクルとも称されるパターニングデバイスがICの個々の層に形成されるべき回路パターンを生成するために用いられうる。このパターンは、基板(例えばシリコンウェハ)上の(例えば、ダイの一部、一つのダイまたはいくつかのダイを含む)ターゲット部分に転写されることができる。パターンの転写は、基板上に設けられる放射感受性材料(レジスト)の層への結像を典型的に介する。一般に、単一の基板は、連続してパターン化される隣接するターゲット部分のネットワークを含むであろう。従来のリソグラフィ装置は、いわゆるステッパを含み、これは一度にパターン全体をターゲット部分に露光することで各ターゲット部分が照射される。従来のリソグラフィ装置は、いわゆるスキャナを含み、これは放射ビームを通じてパターンをスキャンする一方、基板をこの方向に平行または反平行に同期してスキャンすることで各ターゲット部分が照射される。パターンを基板にインプリントすることでパターンをパターニングデバイスから基板に転写することも可能である。
リソグラフィにおいて、例えば複雑な半導体構造の製造を可能にするため、複数のパターンが基板に投影される。これら複数のパターンは、基板に連続的に投影される。複雑かつ小さな寸法でのパターンの製造を可能にするため、パターンの高精度のオーバレイが必要である。いわゆるオーバレイ誤差を低減するため、基板のアライメントを含む複数の技術が適用される。基板をアライメントするため、アライメント測定がアライメントセンサにより実行される。アライメントセンサは、基板上に設けられる一以上の既知の参照基準の位置を本質的に測定し、既知の参照基準は、例えばアライメント基準パターンといった既知のパターンを備える。
リソグラフィプロセスにおいて、製造コストおよびその低減は、重要な役割を果たしうる。その結果、基板(例えば半導体)構造の設計者は、一つの基板から可能な限り多くの製品が得られるように基板上に大きな利用可能エリアを得ようとし、基板表面で犠牲となる部分を可能な限り小さくしようとする。アライメントマークは、一般に利用可能エリアの隣、つまり、ターゲット部分とも称される基板表面上の(例えば半導体構造の)パターンの隣に配置される。高いアライメント精度を提供し、基板あたりの歩留合計の増大を可能にするため、基板上のパターン内に例えば下層内にアライメントマークを設ける傾向がみられ、これによりアライメントマークの頂部上に設けれる連続層が(例えば半導体)構造を提供しうる。したがって、利用可能な基板表面を効率的に用いることで、アライメントマークの頂部上にさらなる層が設けられうる。これにより、基板表面の利用可能なスペースが増大し、基準アライメントマークを設けるといった「オーバヘッド」の目的のみに用いられる基板表面が減少する。高いオーバレイ要件が課されると、基板表面上に設けられ、かつ、基板表面にわたって分布する多数のアライメントマークに対する要求が生じる。基板上に設ける層が増加する傾向がみられており、基板上に連続的に投影されるべきリソグラフィパターン数の増加を生じさせる。多数の層が基板上に設けられうるという事実に起因して、このようなアライメントマークは、リソグラフィ装置の使用中において、その頂部上に設けられる複数層に隠されてしまうかもしれない。
本発明のある態様によれば、リソグラフィ装置が提供される。この装置は、
基板を保持するよう構築される基板テーブルと、
基板テーブルにより保持される基板上に設けられるアライメントマークの位置を感知するよう構成されるセンサと、を備え、
センサは、
アライメントマークに放射ビームを照明するよう構成される放射源と、
アライメントマークと相互作用した放射ビームを焦点外光学パターンとして検出するよう構成される検出器と、
焦点外光学パターンを表す画像データを受信するよう構成され、焦点外光学パターンにレンズレス画像化アルゴリズムを適用し、画像データを処理してアライメント情報を決定するよう構成されるデータ処理システムと、を備える。
本発明の別の態様によれば、リソグラフィアライメント方法が提供される。この方法は、
アライメントマークを有する基板を提供することと、
アライメントマークに放射ビームを出射することと、
アライメントマークと相互作用した放射ビームを検出器により検出することであって、アライメントマークと相互作用した放射ビームが焦点外光学パターンとして検出器に投影されることと、
焦点外光学パターンを表す画像データを検出器から受信することと、
画像データを処理してアライメント情報を決定することであって、焦点外光学パターンにレンズレス画像化アルゴリズムを適用することを含むことと、を備える。
本発明のさらに別の態様によれば、データ処理システムが提供される。このシステムは、検出器から焦点外光学パターンを受信するデータ入力を備え、焦点外光学パターンは、アライメントマークと相互作用した放射ビームに由来し、
データ処理システムは、
データ入力にて、焦点外光学パターンを表す画像データを受信するよう構成され、
焦点外光学パターンにレンズレス画像化アルゴリズムを適用し、画像データを処理してアライメント情報を決定するよう構成される。
本発明のさらに別の態様によれば、データ処理システムにより実行される制御ソフトウェアが提供される。この制御ソフトウェアは、
焦点外光学パターンを表す画像データを受信するよう構成され、焦点外光学パターンはアライメントマークと相互作用した放射ビームに由来し、
焦点外光学パターンにレンズレス画像化アルゴリズムを適用し、画像データを処理してアライメント情報を決定するよう構成される。
本発明の実施の形態は、対応する参照符号が対応する部分を示す以下の添付図面を参照しながら、単なる例示を目的として説明されるであろう。
本発明が実施されうるリソグラフィ装置を示す図である。 図1のリソグラフィ装置に適用されうる発明に係るアライメントセンサを高度に概略的に示す図である。 別のアライメントセンサを高度に概略的に示す図である。 さらに別のアライメントセンサを高度に概略的に示す図である。 図5A−5Bは、さらに別のアライメントセンサを高度に概略的に示す図である。 さらに別のアライメントセンサを高度に概略的に示す図である。 さらに別のアライメントセンサを高度に概略的に示す図である。 図6および7に係るアライメントセンサの動作を模式的に示すフローチャートである。
図1は、本発明の一実施の形態に係るリソグラフィ装置を概略的に示す。この装置は、
−放射ビームB(例えばUV放射またはEUV放射)を調整するよう構成される照明システム(イルミネータ)ILと、
−パターニングデバイス(例えばマスク)MAを支持するよう構築され、パターニングデバイスを特定のパラメータにしたがって正確に位置決めするよう構成される第1位置決め装置PMに接続されるサポート構造(例えばマスクテーブル)MTと、
−基板(例えばレジストコートされたウェハ)Wを保持するよう構築され、基板を特定のパラメータにしたがって正確に位置決めするよう構成される第2位置決め装置PWに接続される基板テーブル(例えばウェハテーブル)WTと、
−パターニングデバイスMAにより放射ビームBに付与されるパターンを基板Wの(例えば一以上のダイを備える)ターゲット部分Cに投影するよう構成される投影システム(例えば屈折型投影レンズシステム)PSと、を備える。
照明システムは、放射を方向付け、成形または制御するための屈折型、反射型、磁気型、電磁気型、静電型または他の形式の光学素子といった各種光学素子もしくはそれらの任意の組み合わせを含んでもよい。
サポート構造は、パターニングデバイスを支持する。つまり、その重さに耐える。サポート構造は、パターニングデバイスの向き、リソグラフィ装置のデザインおよび他の条件に応じた方法でパターニングデバイスを保持する。サポート構造は、パターニングデバイスを保持するために機械式、真空式、静電式または他の固定技術を用いることができる。サポート構造は、フレームまたはテーブルであってよく、例えば必要に応じて固定式または可動式であってよい。サポート構造は、例えば投影システムに対して、パターニングデバイスが所望の位置にあることを確実にしてもよい。本書での「レチクル」または「マスク」の用語のいかなる使用も、より一般的な用語である「パターニングデバイス」と同義であるとみなされてもよい。
本書で用いる「パターニングデバイス」の用語は、放射ビームの断面にパターンを付与し、基板のターゲット部分にパターンを生成するために用いることができる任意のデバイスを参照するものとして広く解釈されるべきである。放射ビームに付与されるパターンは、例えばパターン位相シフトフィーチャまたはいわゆるアシストフィーチャを含む場合、基板のターゲット部分における所望のパターンに厳密に一致しなくてもよいことが留意されよう。この技術は、光近接効果補正(OPC)として知られている。光近接効果補正(OPC)は、回折またはプロセスの影響に起因する結像誤差を補償するために通常用いられるフォトリソグラフィ増強技術である。OPCの必要性は、主に半導体デバイスの作製時に見られ、プロセス後のシリコンウェハ上にエッチングされる像に元の設計のエッジ配置の完全性を維持するための光の限界に起因する。この投影像は、設計より細かったり太かったりするライン幅のような不均一性とともに生じ、結像に用いるフォトマスク上のパターンを変えることによる補償に適している。丸みを帯びた角などの他のディストーションは、光学結像ツールの解像度に支配され、補償することが難しい。このようなディストーションは、もし補正されなければ、製造物の電気的特性を顕著に変化させうる。光近接効果補正は、エッジを移動することにより、または、フォトマスクに描画されるパターンに追加のポリゴンを加えることにより、この誤差を補正する。これは、フィーチャ間の幅またはスペースに基づいてあらかじめ計算された参照テーブル(ルールベースOPCとして知られる)によって、または、最終的なパターンを動的にシミュレーションし、最適解を得るために、典型的にはセクションに分割して、エッジの移動を操作するための小型モデルを用いること(これはモデルベースOPCとして知られる)によって実行されうる。目的は、設計者により描画された元のレイアウトをシリコンウェハに可能な限り複製することである。一般に、放射ビームに付与されるパターンは、ターゲット部分に生成される集積回路といったデバイスの特定の機能層に対応するであろう。
パターニングデバイスは、透過型であっても反射型であってもよい。パターニングデバイスの例には、マスク、プログラマブルミラーアレイ、およびプログラマブルLCDパネルが含まれる。マスクはリソグラフィの分野では周知であり、バイナリマスクやレベンソン型位相シフトマスク、ハーフトーン型位相シフトマスク、さらに各種のハイブリッド型マスクが含まれる。プログラマブルミラーアレイの一例は、マトリックス状に配列される小型のミラーを採用し、各ミラーは入射する放射ビームを異なる方向に反射するように個別に傾斜できる。傾斜されるミラーは、ミラーマトリックスにより反射される放射ビームにパターンを付与する。
本書で用いる「投影システム」の用語は、用いられる露光放射に適切であれば、または、液浸液の使用といった他の要素について適切であれば、屈折型、反射型、磁気型、電磁気型および静電型の光学システムまたはこれらの任意の組み合わせを含む、任意の形式の投影システムを包含するものと解釈されるべきである。本書での「投影レンズ」の用語のいかなる使用も、より一般的な用語である「投影システム」と同義であるとみなされてよい。
図示されるように、装置は透過型である(例えば透過型マスクを用いる)。代わりに、装置が反射型であってもよい(例えば上述のような形式のプログラマブルミラーアレイを用いるか、反射型マスクを用いる)。
リソグラフィ装置は、二つの基板テーブル(デュアルステージ)を有する形式、または、それより多い基板テーブル(および/または二以上のマスクテーブル)を有する形式であってもよいが、これに限定される必要はない。このような「マルチステージ」の機械において、追加のテーブルが平行して用いられてもよいし、一以上のテーブルで準備工程が実行される一方で、一以上の他のテーブルが露光に用いられてもよい。
リソグラフィ装置は、投影システムと基板の間の隙間を埋めるように、基板の少なくとも一部が比較的高屈折率を有する液体(例えば水)により覆われる形式の装置であってもよい。液浸液は、リソグラフィ装置の他の隙間、例えばパターニングデバイスと投影システムの間に適用されてもよい。液浸技術は、投影システムの開口数を増やすために用いることができる。本書で用いられる「液浸」の用語は、基板などの構造が流体中に水没しなければならないこと意味するのではなく、むしろ露光中に投影システムと基板の間に流体が配置されることを意味するのみである。
図1を参照すると、イルミネータILは、放射源SOからの放射ビームを受ける。ソースおよびリソグラフィ装置は、ソースがエキシマレーザの場合、別体であってもよい。この場合、ソースがリソグラフィ装置の一部を形成するとみなされず、放射ビームがソースSOからイルミネータILに向けて、例えば適切な方向付けミラーおよび/またはビームエキスパンダを含むビームデリバリシステムBDの助けを借りて通過する。別の場合、例えばソースが水銀ランプの場合、ソースがリソグラフィ装置の一体的部分であってもよい。ソースSOおよびイルミネータILは、必要に応じてビームデリバリシステムBDとともに、放射システムと称されてもよい。
イルミネータILは、放射ビームの角度強度分布を調整するためのアジャスタADを含んでもよい。一般に、イルミネータの瞳面における強度分布の少なくとも外側半径範囲および/または内側半径範囲(通常それぞれσアウタ、σインナと呼ばれる)を調整できる。また、イルミネータILは、インテグレータINやコンデンサCOなどの様々な他の要素を含んでもよい。イルミネータは、ビーム断面における所望の均一性及び強度分布を有するように放射ビームを調整するために用いられてもよい。
放射ビームBは、サポート構造(例えばマスクテーブルMT)に保持されるパターニングデバイス(例えばマスクMA)に入射し、パターニングデバイスによりパターン化される。マスクMAの通過後、放射ビームBは、ビームを基板Wのターゲット部分Cに合焦させる投影システムPSを通過する。第2位置決め装置PWおよび位置センサIF(例えば干渉計デバイス、リニアエンコーダまたは静電容量センサ)の助けを借りて、例えば放射ビームBの経路上に異なるターゲット部分Cが位置するように、基板テーブルWTが正確に移動されることができる。同様に、第1位置決め装置PMおよび別の位置センサ(図1には明示されていない)は、例えばマスクライブラリからの機械検索後またはスキャン中に、放射ビームBの経路に対してマスクMAを正確に位置決めするために用いることができる。一般にマスクテーブルMTの動きは、第1位置決め装置PMの一部を形成するロングストロークモジュール(粗動位置決め)およびショートストロークモジュール(微動位置決め)の助けを借りて実現されうる。同様に、基板テーブルWTまたは「基板サポート」の動きは、第2位置決め装置PWの一部を形成するロングストロークモジュールおよびショートストロークモジュールを用いて実現されうる。(スキャナとは対照的に)ステッパの場合、マスクテーブルMTはショートストロークアクチュエータのみに接続されてもよいし、または、固定されてもよい。マスクMAおよび基板Wは、マスクアライメントマークM1,M2および基板アライメントマークP1,P2を用いてアライメントされうる。基板アライメントマークは専用のターゲット部分を占めるように図示されているが、これらはターゲット部分の間に位置してもよい(これはスクライブラインアライメントマークとして知られる)。同様に、マスクMA上に二以上のダイが設けられる状況では、マスクアライメントマークがダイの間に位置してもい。
図示される装置は以下のモードのうち少なくとも一つで使用することができる。
1.ステップモードでは、マスクテーブルMTおよび基板テーブルWTが実質的に静止状態とされる間、放射ビームに付与されたパターンの全体がターゲット部分Cに一度で投影される(つまり、単一静的露光)。その後、基板テーブルWTがX方向および/またはY方向にシフトされ、その結果、異なるターゲット部分Cを露光できる。ステップモードにおいて、露光フィールドの最大サイズは、単一静的露光にて結像されるターゲット部分Cのサイズを制限する。
2.スキャンモードでは、マスクテーブルMTおよび基板テーブルWTが同期してスキャンされる間、放射ビームに付与されるパターンがターゲット部分Cに投影される(つまり、単一動的露光)。マスクテーブルMTに対する基板テーブルWTの速度および方向は、投影システムPSの拡大(縮小)特性および像反転特性により決定されうる。スキャンモードにおいて、露光フィールドの最大サイズは、単一動的露光におけるターゲット部分の(非スキャン方向の)幅を制限する。一方で、スキャン動作の長さは、目標部分の(スキャン方向の)高さを決定する。
3.別のモードでは、マスクテーブルMTがプログラマブルパターニングデバイスを保持して実質的に静止状態を維持し、基板テーブルWTが移動またはスキャンされる間、放射ビームに付与されるパターンがターゲット部分Cに投影される。このモードにおいて、一般にパルス放射源が用いられ、基板テーブルWTの移動後またはスキャン中の一連の放射パルスの間に必要に応じてプログラマブルパターニングデバイスが更新される。この動作モードは、上述のタイプのプログラマブルミラーアレイなどのプログラマブルパターニングデバイスを使用するマスクレスリソグラフィに容易に適用可能である。
上記の使用モードを組み合わせて動作させてもよいし、使用モードに変更を加えて動作させてもよく、さらに全く別の使用モードを用いてもよい。
図2は、図1のリソグラフィ装置に組み込まれうる本発明に係るセンサ(アライメントセンサとも称する)を高度に概略的に示す図である。基板テーブルWTは、アライメントマークAMを有する基板Wを保持する。アライメントセンサは、基板上にアライメント放射ビームAB(放射ビームとも称する)を出射するよう構成されるアライメント放射源ASR(放射源とも称する)と、アライメントマークと相互作用したアライメントビームを検出するよう構成されるアライメント光学検出器AOD(検出器とも称する)と、を備える。アライメントセンサは、アライメントマークAMと相互作用したアライメントビームABを焦点外光学パターンODとしてアライメント光学検出器AODに投影するよう構成される。光学パターンODは、光検出器AODに向けて散乱される放射の強度(および可能であれば位相)の空間分布とみなしうる。アライメントセンサは、アライメント光学検出器に接続され、アライメント光学検出器により検出される焦点外光学パターンを表す画像データを受信するよう構成され、画像を処理して受信した画像データからアライメント情報を決定するよう構成されるデータ処理装置(またはデータ処理システム)DPDをさらに備える。データ処理装置は、受信した画像データから合成的に合焦させた画像(合成合焦画像、synthetically focused image)を計算し、計算した合成合焦画像からアライメント情報を決定してもよいし、または、受信した画像データから直接的にアライメント情報を決定してもよい。後者の場合、受信した画像データから合成合焦画像を計算する中間ステップが省略され、受信した画像データからアライメント情報が導出されてもよい。
アライメントセンサは、アライメントマークの位置を導出するために用いられる。アライメントマークは基板(ウェハとも称される)に設けられる。この文書において、「基板」および「ウェハ」の用語は置換可能に用いられることに留意されよう。アライメントマークは、アライメントグレーティングまたは任意の他の適切なアライメントマークを形成してもよい。感知されるアライメントマークの位置は、基準位置またはウェハ処理の以前のステップでの同じアライメントマークの位置と比較されてもよく、ウェハのアライメントは、アライメントセンサから得られる測定結果に基づいて実行されてもよい。アライメントビームは、レーザビームまたは単色ビーム(つまり、実質的に単一波長を有する放射)などの任意の適切な光学ビームであってよく、ビームはある波長範囲のある波長などを有する。例えば回折、散乱または任意の他の適切な相互作用によってアライメントマークと相互作用したビームは、アライメント光学検出器により検出される。アライメント光学検出器は、CCDまたはCMOS光検出器アレイなどの光検出器アレイ、または、アライメント光学検出器の撮像領域内で強度や色などの空間分布を検出するための任意の他の適切な光検出器などである。
本発明のある実施の形態によれば、図2を参照して上述したように、アライメントセンサが焦点外のビームをアライメント光学検出器に投影する。「焦点外」の表現は、フォーカス(ピント)がある程度欠落しており、アライメント光学検出器により受光される画像自体においてアライメントパターンが鮮明に見えないことであると理解される。焦点外光学パターンから利用可能なデータを導出するため、いわゆるレンズレス画像化技術が適用される。焦点外光学像の入射する電磁放射の属性(例えば、強度、位相)が検出され、放射から情報を抽出するための処理がなされるデジタルデータに変換される。つまり、レンズレス画像化はソフトウェアの光学系において実行(エミュレート)される。光学系がソフトウェアで実行されるため、レンズ、集光ミラーおよび/または他の光学素子を用いる光学系において生じる欠陥や収差などが除去されうる。したがって、原理上、レンズレス光学イメージングは、任意の波長の放射への作用について理論的に理想的な光学系をエミュレートしうる。
アライメントセンサは、いわゆるレンズレス光学系を用いてもよい。「レンズレス」の表現は、(必須ではないが)任意の屈折型または反射型の光学素子(例えば、レンズ、集光ミラーなど)を備えない光学撮像システムを指してもよい。
本発明に係るアライメントセンサを用いることで、広い範囲の波長をカバーしうる。例えば、0.1nmから1500nmの範囲の波長のアライメントビームが考えられうる。ソフトウェアでの合成光学像の処理は、波長依存の収差に影響されないか、その影響が小さく、(透過型レンズ、集光ミラー、偏光子などの)光学素子が存在しないか、部分的に存在しないため、広い波長範囲を適用しうる。このような広い波長範囲を用いることで、「隠れた」アライメントパターン、つまり、リソグラフィプロセスにて設けられる別の層によりカバーされるアライメントパターンをより容易に検出しうる。なぜなら、広い波長範囲内に存在する少なくともいくつかの波長に対してその別の層が透明である可能性が増えるからである。アライメントマークの頂部上に設けられる層は、その光透過特性が実質的に異なるかもしれない。例えば、金属膜を備える層は、特定の波長において、酸化物層とは異なる光透過特性を有するかもしれない。上述のアライメントセンサにおいて、広い波長範囲が適用されてもよい。アライメントパターンの頂部上の単層または複数層が特定の波長について透明であることを示す可能性は、広い波長範囲のアライメントビームを用いるときに増えるかもしれない。つまり、十分に高い透過性を提供する特定の波長が見つかるチャンスは、広い波長範囲を用いるときに増えるかもしれない。
レンズレス画像化アルゴリズムを用いることで、検出器上での光学像は、理論的に理想的な光学系をデジタルでエミュレートするためのデータに変換可能な入射する放射の関連属性が捕捉できるようでありさえすればよい。したがって、図2の検出器AODは、物理領域と光学領域との間のインターフェースを表す。マークAMから検出器までの放射経路に一以上の光学素子があってもよいが、必須ではない。
データ処理装置DPDは、適切なソフトウェア指令を備えるマイクロプロセッサなどの分離したデータ処理装置により形成されてもよく、または、リソグラフィ装置の他のデータ処理装置に一体化されてもよい。言い換えれば、データ処理装置により実行されるタスクは、例えば、リソグラフィ装置の実在するデータ処理装置で実行されるタスク(プロセス)として実装されてもよい。アライメントビームは、(光)レーザビームなどの任意の適切なアライメントビームであってもよい。アライメント放射源は、それに応じて、レーザなどの任意の適切な放射源であってもよい。現時点での開発では、たとえばUVからIRまでに及ぶ広い波長範囲にわたってアライメントビームの動作を可能にし、(広いスペクトルを提供する、または、調整可能な波長を有する)対応するアライメント放射源が適用されてもよい。アライメントマークは、任意の適切なアライメントマークであってよい。例えば、アライメントマークは、回折型のアライメントマークを備えてもよい。任意の他の適切なアライメントマークが用いられてもよい。
アライメント光学検出器により検出される像から、レンズレス画像化アルゴリズムを用いて、位相情報を取得するため、および/または、合成合焦画像を計算するために適用可能な様々な技術が考えられる。いくつかの例は、図3、4、5Aおよび5Bを参照しながら後述される。これらの例のそれぞれにおいて、合成画像が計算され、かつ、合成画像からアライメント情報が導出されるが、合成画像を計算するステップが省略されてもよく、つまり、レンズレス画像化アルゴリズムを用いて、合成画像の代わりに、アライメント情報が直接的に導出されてもよいことが留意されよう。
図3に概略的に示される実施の形態において、アライメント放射源ASRは、波長パラメータWPを受信し、波長パラメータWPに応じてアライメントビームの波長範囲を制御するよう構成される波長選択素子WSEを備える。したがって、データ処理装置DPDは、波長パラメータと、各波長パラメータについての受信した画像データ(つまり、波長パラメータの関数としての受信画像データ)とから、合成画像を計算するよう構成される。アライメント光学検出器により受光される光学像は波長に対する依存性を示すであろうから、この依存性は、位相情報を導出して合成合焦画像を計算するために用いられてもよい。例えば波長の変化は、アライメント光学検出器により検出される光学パターンの変化に変換されてもよく、(光路を変えずに)波長を変えることは、干渉するビーム部分間の互いの位相の変化につながるためである。波長パラメータWPは、ナノメートルの波長の数値を表すアナログまたはデジタルの信号といった任意の適切なパラメータにより提供されてもよい。波長選択素子は、例えば制御可能な(例えば波長可変の)バンドパス光学フィルタまたは制御可能な(波長可変の)ナローバンド光学フィルタなどの制御可能フィルタといった任意の適切な光学素子であってもよい。
図4に概略的に示される実施の形態において、リソグラフィ装置は、基板テーブルに保持される基板とアライメント光学検出器AODとの間の光学距離ODが変化するように、基板テーブルおよびアライメント光学検出器を互いに相対的に移動させるよう構成され、データ処理装置は、光学距離と、各光学距離における受信画像データ(つまり、光学距離の関数としての受信画像データ)とから、合成画像を計算するように構成される。したがって、光学距離を変えることにより、アライメント光学検出器上で合焦していない画像が変化し、これが位相情報の導出に用いられる。位相情報は、光学距離の変化に関連するアライメント光学検出器により検出される像の変化から取得されてもよい。この技術は、単色ビームが用いられてもよいし、ワイドバンドビームが用いられてもよい。基板テーブルを基板表面に直交する方向(一般に垂直方向)に移動させることによる基板の変位は、例えば(図1に示される)基板テーブル位置決め装置WPにより形成されうる基板テーブルアクチュエータWTAにより実行されてもよく、その結果、変位アクチュエータの観点で追加のハードウェアを必要としないかもしれない。代わりに、または、基板テーブルの垂直方向の変位に加えて、光学距離を変えるために基板テーブルが水平方向に移動されてもよい。
ある実施の形態において、データ処理装置は、逐次再構築アルゴリズムを用いて合成画像を計算するよう構成される。初期の仮定に基づいて、初期の合成画像が計算されうる。段階的手法によるステップを用いて、計算された画像が合成画像に向けて反復処理される。逐次再構築アルゴリズムを用いる合成画像の計算は、以下のように動作する。まず、パターンが充足しなければならない制約のセットが、測定結果を用いて、または、(アライメントマークがどのパターンを持つであるかを知っている場合)従前の知見を用いて、収集される。その後、これら全ての制約を満たす可能性のある解が特定される実現可能性の問題として、この再構築問題を考えることができる。この実現可能性の問題に対する解の特定は、候補解を各制約条件に対して一つずつ(高次元空間に直交して)投影し、投影アルゴリズムを切り替えることで実行できる。候補解が全ての制約条件を(十分に)満たすとき、アルゴリズムを終了できる。
図5Aに概略的に示される実施の形態において、アライメントセンサは、アライメント参照ビームARBを提供するよう構成されるアライメントビーム参照経路ABRPをさらに備え、アライメント参照ビームは、アライメント光学検出器AODにてアライメントビームABと相互作用し、データ処理装置DPDは、受信画像データから合成画像を計算するよう構成され、受信画像データは、アライメントビームとアライメント参照ビームの相互作用から生じる。したがって、アライメント光学検出器でのアライメント参照ビームとアライメントビームの相互作用は、アライメント光学検出器でのアライメントビームの位相に依存し、それらから位相情報が導出されうる。合成的に合焦させた光学像は、それらから計算されることができ、その例が以下に与えられる。第1の例において、参照ビームが伝搬する参照経路の光学長が変化する。第2の例において、参照ビームの波長が変化する。
第1の例において、図5Aに概略的に示されるように、アライメントビーム参照経路ABRPは、可動の参照構造MRSを備える。アライメントセンサは、参照ビームARBの伝搬経路の光学長が変化するように参照構造MRSを移動させるよう構成される。データ処理装置DPDは、光学長と、各光学長における受信画像データとから合成画像を計算するよう構成される。位相情報は、アライメントビーム光学検出器により検出される光学信号の変化から、参照ビームARBの伝搬経路の光学長の変化、したがって、アライメント光学検出器に入射する参照ビームの位相の変化の結果として導出されうる(光学経路長を変化させると、アライメント光学検出器での位相が光学経路長の関数として変化するからである)。
第2の例において、図5Bに概略的に示されるように、アライメント放射源ASRは、波長パラメータWPを受信し、波長パラメータWPに応じてアライメントビームの波長範囲を制御するよう構成される波長選択素子WSEを備える。データ処理装置DPDは、波長パラメータと、各波長パラメータにおける受信画像データ、つまり、波長パラメータの関数としての受信画像データとから、合成画像を計算するよう構成される。位相情報は、参照ビームARBの波長の変化、よって、アライメント光学検出器に入射する参照ビームの位相の変化の結果として、アライメントビーム光学検出器により検出される光学信号の変化から導出されうる(光学経路長を固定させると、アライメント光学検出器での位相が波長の関数として変化するからである)。
ある実施の形態において、データ処理装置は、合成画像とアライメントマークを表す予想画像とを相関させ、相関結果からアライメント情報を導出するよう構成される。予想画像は、基板上のアライメントマークの形状、光学特性および概算位置を知っているときに、予想されるであろう画像を表す。相関は、基板上のアライメントマークの様々な可能性のある位置について決定され、最も高い相関は、アライメントマーク位置に最も近接する可能性のある位置の一つについての情報を提供しうる。このプロセスは、逐次法により実行されることができ、基板上のアライメントマーク位置の決定精度を増大させる。この補正は、部分的に合成的に合焦させた画像のみを用いて、つまり、完全には合焦していない合成画像を用いて実行されうる。追加のフィルタリングが例えばそれに適用されてもよい。部分的に(光学的に)合焦させた画像の場合、位相が回復されれば、デジタル的に再合焦させることができる。もしこれができなければ、相関のピークはそれほど強くないが、(より低い精度で)アライメントを実行できる。代替的に、逐次再構成の代わりに、いわゆる「整合フィルタ」アルゴリズムが適用されてもよいことが留意されよう。
ある実施の形態において、アライメントセンサは、アライメントマークからアライメント光学検出器までの光学経路上に(レンズやミラーなどの)集光光学素子を備えない。
計算光学系を用いる可能性のある実施の形態は、図6−8を参照しながら以下に詳述される。
図6は、アライメント測定を実行するためのアライメントセンサを概略的に示す。変更された形態の「レンズレスイメージング」またはコヒーレント回折イメージング(CDI)が用いられる。CDIは、デジタルホログラフィにも関連し、顕微鏡での使用に提案されている技術である。本開示において、CDI技術は、回折構造上でのアライメントの実行に適用され、例えばグレーティング構造の非対称性の測定に適用される。アライメントセンサは、完全にレンズレスである必要性はないが、非常に複雑な高NAかつワイドバンドの対物レンズ、および、将来の応用での性能要件を満たすために必要とされる他の光学素子が必要となることを防ぐ。
図6(a)のアライメントセンサは、放射源611および画像センサ623を備える。放射源611は、この例において、空間的にコヒーレントな放射のビーム630を供給する。放射源611は、一以上のナローバンド(単色性)レーザ源により形成されてもよく、この場合、放射は、空間的にコヒーレントであり、かつ、時間的にコヒーレントであろう。代替的に、この例の想定において、放射源611は、空間的にコヒーレントであり、時間的に低コヒーレンスであるブロードバンド源であってもよい。このような放射源は、いわゆる超広帯域源または「白色光レーザ」であってもよい。所望の形状のビーム630を搬送するための照明システム612内の他の装置が放射源611に付随してもよい。例えば、放射源611および照明システムは、いくつかの実施の形態において、(破線で示される)波長選択器613を含んでもよい。このような波長選択器は、例えば、音響光学可変波長フィルタ(AOTF)であってもよい。
画像センサ623は、CCDまたはCMOSセンサであることができる。異なる照明モードは、アパチャデバイス、プログラマブル空間光変調器、または、空間分布型ファイバを設けることにより実装されることができる。
放射源611からターゲットTまでの照明経路において、照明光学システムは、単純なミラー640および低NAレンズ642を備える。レンズ642は、照明放射ビーム630を基板W上のアライメントターゲットTの位置にあるスポットSに集光させる。位置決めシステム(例えばリソグラフィ装置LAの位置決めシステムPWと同様)は、基板WおよびターゲットTをビーム630の焦点に移動させる。スポットは、10から80μmの範囲、例えば20から50μmまたは約40μmの直径のほぼ円形と同様のサイズおよび形状を例えば有しうる。照明放射ビーム630が図示されるような斜めの角度で入射する実施の形態において、スポットSは非円形であるか、または、円形スポットを実現するためにアナモルフィック光学系が適用されうる。ターゲットにより反射される(ゼロ次で回折される)放射646は、648に捨てられるように単純に描かれている。実際的な実施の形態において、反射される(ゼロ次の)放射は、例えば位置制御機構の一部として、基板の焦点位置を決定するために用いることができる。ターゲットTにより散乱された放射の所望の部分を備える放射650は、センサ623により収集される。対象となる放射を収集するための高NAの対物レンズは不要であり、放射はターゲットからセンサまで直接的に通過できる。実際的な実施の形態において、少なくともラフにビームをコリメート(発散を低減)するためのシンプルな収集光学システムが設けられてもよい。このような収集光学システムは、単純なレンズであってもよく、(b)の挿入図に概略的に示される。それでも、複雑な高NAの対物レンズは除去される。照明する放射は、収集光学システムを迂回して、ターゲットエリアに直接的に向けられることができる。これは、光学システムの素子内で照明する放射が散乱することにより生じるノイズの防止に役立つ。
収集される散乱放射650に加えて、参照放射652もセンサ623に搬送される。散乱放射650および参照放射652は、同じ放射源611から提供されるため、互いにコヒーレントであり、そのため、センサ上の各ピクセルでの相対位相に応じてセンサにて干渉パターンを形成する。図示される例において、参照放射652は、照明放射630の一部をビームスプリッタ654で分割し、それを可動ミラー656、発散レンズ658および折り返しミラー660を介してセンサに搬送することにより得られる。参照放射650は、センサ623のフィールドにわたって比較的均一な強度を有する「参照波」で画像センサ623を満たす。参照波は、システムの光軸に対して斜めの方向に明確に定義された角度で進行し、その結果、参照波は、明確に定義された強度および位相を有する。散乱放射650は、物体波とも称されることがあり、未知の強度および位相を有する。
照明放射の一部を分割して参照波を形成する代わりとして、いわゆる「自己参照」の構成も利用可能である。その場合、より高次で散乱されたフィールド自体の一部が分割されて参照波として用いられる。例えば自己参照構成は、散乱されたフィールドの切り取られたコピーを散乱されたフィールドと干渉させることにより機能しうる。
さらに後述されるように、参照波と物体波の干渉は、センサ623上で得られる強度分布を与え、散乱された物体波の複素放射場(ここでの「複素」は振幅と位相の双方を意味する)を計算するためにプロセッサPUにより用いることができる。これらの撮像された一以上の強度分布を表す画像データ662は、プロセッサPUに送られる。波動伝搬アルゴリズムは、結像光学系を用いることなく合成画像を計算するために用いることができる。
参照波が斜めの角度であることは必須ではない。しかしながら、斜めの角度を用いることにより、ターゲットにわたって高い空間周波数を有するフリンジパターンを生成することができ、位相情報を1回の画像取得で「決定」するために用いることができる。参照波の角度は大きすぎない必要があり、例えばピクセルアレイのピッチの2倍で波長を割った値(λ/2×ピクセルサイズ)より小さい。典型的なセットアップにおいて、例えば3−4度が十分でありうる。この高周波数フリンジパターンを用いない場合、例えば「位相ステッピング」により位相情報を取得できる。後述されるように、位相ステッピングのための一つの方法は、参照波の相対位相を変化させながら複数の画像を取得することである。これを実行できる間、セットアップの安定性に対してかなり厳しい要求が課されるため、斜めの参照波が有利であることができる。他の方法において、位相ステッピングは空間変調により実行でき、いわゆる「スーパーピクセル」内で異なる位相ステップが見出されるように実行できる。スーパーピクセルの用語は、ピクセルの集合として理解され、例えばそれらの近傍、位相、振幅、強度または相関などに基づく。
センサの配置およびそのピクセルアレイのピッチは、ピクセルアレイが干渉パターンの十分なサンプリングを提供するように決定されるべきである。大まかな指針として、ピクセル間隔(ピッチ)は、例えばλ/2dより小さい必要があり、ここでλは照明放射630の(最長の)波長であり、dはターゲットTから画像センサ623までの間隔である。実際的な例において、間隔dは、1cmのオーダであってもよい。センサ寸法は、各方向(XおよびY)についてdの数倍であってよく、例えば、dの5倍以上、10倍以上またはそれ以上であってもよい。この観点において、光学システムの明確な記載を可能にするため、図6および7はスケールが非常に歪められている。実際的なセンサは、図面の提案に比べて、ターゲットに非常に近接してもよく、または、幅が非常に広くてもよい。例えばセンサは、ターゲットTから見たときに比較的広い角度θを形成するような距離dおよび幅Lを有してもよい。角度θは、各寸法において100度を超えてもよいし、例えば135度を超えてもよいし、例えば約150度であってもよい。図6(b)の挿入図に示されるように、センサまでの物理的な距離を増大させながら、大きな角度範囲の散乱放射を捕捉するためにシンプルなコリメートレンズ664を用いることができる。センサの幅は、図示されるターゲット上でセンタリングされる必要はない。それは、照明放射の入射角、照明放射の波長および周期グレーティングのピッチに基づいて、所望の回折次数を捕捉するように位置決めされる必要があるのみである。
変形例は、例えば参照波の搬送において可能性がある。図示される例において、可動ミラー656は、経路長の補償に用いることができ、物体波と参照波の光路長の差を調整する。放射源611が白色光レーザのような広帯域源であれば、ミラーを段階的に移動させることで、広い波長範囲にわたる複素放射場の分光測定を可能にする。広帯域源のコヒーレンス長は比較的小さいため、装置は、広範な位置にわたって段階的に移動しながら画像を撮像することにより動作しうる。それらの位置のうち、経路長差がゼロに近いものに対応する一部のみがコヒーレンス長の範囲内となるであろう。その他の位置は、複素フィールド画像を生み出さないであろう。なお、経路長差は、ミラー656が所与の位置にあるとき、センサ上の異なる場所において異なりうる。その結果、サンプリングされる遠方場の各点は、ミラーの異なる位置にて最大のフリンジコントラストを有するであろう。特定波長における位相および/または振幅を計算するため、複数の画像からの情報を計算に含める必要があるだろう。低コヒーレンス源の場合、画像を横切るコントラストの変化を得るだろう。これは、テストターゲット上でのテスト測定を用いて較正しうる。
所与のサイズの画像フィールドに対する設計課題を緩和することに加えて、複雑な対物レンズを削除することは、より大きな視野の実現を可能にする。これは、従来の光学系では不可能であろう。2×2アレイのグレーティングの代わりに、例えば、5×2または5×4のグレーティングを用いる複合ターゲットを視野内で撮像できる。
不鮮明ではない複素放射場の情報を取得するため、可動ミラー656のステップ(段階的移動)は、照明放射の(最長の)波長より十分に小さくすることができる。半導体装置の製造といった大量製造の例でのターゲット測定において、測定ごとにかかる時間はクリティカルであり、画像自体の撮像にかかる時間のみならず、画像を撮像する前に各ターゲットの移動および取得にかかる時間も含まれる。いったんターゲットが取得されれば、可動ミラー656をステップさせながら複数の画像を取得することは、アライメント測定時間の全体に対する顕著な追加とはならないかもしれない。したがって、多数の撮像画像が後続の分析にそれほど寄与しないか、全く寄与しない場合であっても、ステップの回数は実際にはかなり多いかもしれない。また、より大きな視野が得られれば、より多くの個々のグレーティングまたは他のターゲット構造が1回の撮像動作で測定できる。
他の例において、位相ステッピングは、可動ミラー656などの可動部分を用いずに実現されることができる。例えば、反射型または透過型の空間光変調器は、より大きな「スーパーピクセル」内の異なるピクセル位置に異なる位相ステップを与えることができる。異なる位相ステップは、適切な材料へのエッチングステップにより、または、より特異な方法により実現されることができる。例えば液晶に基づく空間光変調器は、位相を変調するために用いることができる。他の例において、参照波の波長は、その経路長に代えてまたは加えて、変えることができる。波長および入射角が分かっていれば、複素放射場を計算できる。波長の選択は、照明経路にフィルタを挿入することにより、および/または、異なる放射源を選択することにより、または、波長可変源を調整することにより実現できる。
別の言い方をすれば、位相情報は、一定の波長で経路長差を変化させることにより、一定の経路長差で波長を変化させることにより、または、双方の変化を組み合わせることにより取得できる。波長の選択は、必要であれば、散乱された後に適用することができる。例えば、波長選択フィルタは、画像センサ623の前面に挿入することができ、撮像間で変化させることができる。波長選択ビームスプリッタにより分割される収集経路を有する複数の画像センサ623を設けることができる。同じ画像センサ623内の異なるピクセルが異なる波長に対して感度を有することもでき、例えば、単一チップのカラー画像センサ上のRGBフィルタアレイのようにすることができる。
図7は、別の変形例を示す。大部分は図6に示されるものと同様であり、同じ参照符号が用いられる。主な違いは、参照放射652が照明源630から直接的にもたらされるのではなく、ターゲットTにより反射されるゼロ次放射646からミラー670によりもたらされる。この変形例は、光学レイアウトを単純化してもよいし、しなくてもよい。この変形例の利点は、散乱放射650(物体波)および参照放射652(参照波)がそれぞれの光学経路の大部分にわたって同じ影響を受けることであろう。特に、ターゲットによる光学システムに対する任意の振動は、参照波および物体波の双方に実質的に等しく影響するであろう。したがって、記録される複素フィールド上でのこれら振動の影響は低減されるであろう。この構成での参照波は、ターゲット構造についてのいくつかの情報を運ぶであろう。しかしながら、これは平均の情報のみであり、したがって、物体波の複素放射場を測定する目的での位相の参照基準として有効である。
図8は、図6または7の装置を用いる測定プロセスの全体を示す。プロセスは、図示される光学ハードウェアの動作とプロセッサPUの組み合わせにより実現できる。レンズレス画像化アルゴリズムを用いる例が記載される。(i)ハードウェアの動作を制御する機能と、(ii)画像データ662を処理する機能とは、同じプロセッサで実行されてもよいし、異なる専用のプロセッサに分かれてもよい。画像データの処理は、同じ装置で実行される必要さえなく、また、同じ国で実行される必要さえない。
802a,802b,…802nにおいて、強度分布画像のセットが撮像され、画像センサ623からプロセッサPUにより受信される。各画像に関連する装置の動作パラメータ、例えば照明モードやミラー656の位置などを定義する補助データ(メタデータ)804も受信される。このメタデータは、各画像とともに受信されてもよいし、画像のセットについてあらかじめ定義および記憶されてもよい。メタデータは、基板およびターゲット構造の情報もまた含んでよい。画像センサ623にわたって変化するような参照波の既知の位相を定義する参照波仕様806も受信され、または事前に記憶される。画像センサにわたる相対位相、および/または、可動ミラーの任意の初期位置に対する相対位相のステップを正確に知る限りにおいて、絶対位相を知る必要はない。この情報を得るために、デザインおよび計算にだけ頼るのではなく、追加の較正手順を提供することができる。
受信画像データ802aなど、メタデータ804および参照波仕様806から、プロセッサPUは複素放射場810を計算する。これは、画像センサ623にわたる物体波(散乱放射650)の振幅および位相を表す。これは、ピクセルの位置毎の振幅および位相の値の形式で表現されてもよい。その他の等価形式の表現も利用可能である。この複素放射場から、プロセス812におけるプロセッサPUは、波動伝搬アルゴリズムを用いて、理想的な光学システムにより(図6のセンサ623と同様の)画像センサ上に合焦された場合に見られるであろうような合成画像814を計算できる。
図8に概略的に示されるように、合成画像814は、実際の画像と同じ形状を有することができる。複合ターゲット内の個々のグレーティングに対応する暗くて明るい矩形状は、単なる例示として示される。合成画像は、強度画像であってよく、従来の装置で撮像される実際の画像に類似する。しかしながら、合成画像が強度画像でなければならないことは必須ではない。それは、グレーティングの位相画像であることもでき、両方の強度および/または振幅と位相の画像を計算することもできる。すでに上述したように、二つの画像がターゲットの回折スペクトルの反対側の部分を用いて生成される場合、このような二つの画像は、各グレーティングの非対称性を計算するために用いることができる。図8に第2合成画像814’が示される。第2合成画像は、照明プロファイルまたはターゲットの向きが180度回転されたときに画像センサ623を用いて撮像される画像802a’などの第2セットに基づいて、画像814と同じプロセスにより取得されることが理解されよう。別の言い方をすれば、合成画像814は(例えば)+1次の回折放射を用いて生成される一方、合成画像814’は−1次の回折放射を用いて生成される。
ステップ820にてプロセッサPUは、画像814および814’内の異なるグレーティング画像の強度を比較し、各グレーティングの非対称性の測定結果を取得する。ステップ822にて、複合ターゲット内の複数のグレーティングの測定された非対称性は、所定の公式および/または較正曲線により、オーバレイOV、フォーカスFまたはドーズ量Dといった関心のある測定パラメータを得るために変換される。公式は、適用されるバイアス手法を含むターゲット構造の知見から導出される。較正曲線は、ターゲットの範囲での非対称性測定と、電子顕微鏡(SEM、TEM)などの他の技術によりなされる関心のあるパラメータの測定結果とを比較することにより得られうる。
図示されるプロセスは、関心のある全てのターゲットについて繰り返される。なお、プロセスの計算部分は、画像取得から時間的および空間的に分離できる。計算はリアルタイムに完了する必要はないが、そうであればもちろん望ましいであろう。画像802aなどの取得のみが基板の存在を必要とし、リソグラフィデバイス製造プロセスの全体の生産性(スループット)に影響を与える。
上述のように、撮像される画像802aの数は、複素放射場の計算に選択および使用される数より多くてもよい。用いられる数は、要求に応じて選択できる。原理上、物体波と参照波の間で異なる(既知の)位相ステップを用いて撮像される四つの画像があれば、不鮮明ではない振幅および位相情報を得るのに十分である。代替的に、異なる(既知)の波長の照明放射630を用いて撮像される四つの画像でも十分であろう。測定の正確性を向上させるためにより多くの数を用いることができる。計算に必要とされる画像数は、ターゲット構造および基板の知見を用いて計算が制約できれば、低減されうる。ノイズに対してより安定であることが証明されている位相ステッピングアルゴリズムが知られている。例えば、5ステップの位相シフトアルゴリズムは、位相シフタキャリブレーションに対してより安定である。位相ステップが同一である限り、位相ステップの知見を必要としないマルチステップアルゴリズムが存在する。ランダム位相ステップアルゴリズムも存在する。例えば、http://fp.optics.arizona.edu/jcwyant/Optics513/ChapterNotes/Chapter05/Notes/Phase%20Shifting%20Interferometry.nb.pdf.にて利用可能なJames C Wyant, "Phase Shifting Interferometry.nb.pdf", Optics 513 Chapter 5, Chapter Notes, 2011を参照されたい。
上述の例において、複素フィールド810の計算および合成画像814の計算ステップは、別個に連続的に示されている。これは、実際に進めるときに便利な方法であろう。しかしながら、原理上、明示的に複素フィールドを計算せずに、撮像画像802aなどから合成画像814に直接的に1回の計算で進めるように計算をマージすることができる。請求項は、区別されるデータのアレイとして複素フィールドを明示的に計算することを必須とするように解釈されるべきではない。
ターゲットの合成画像の計算に加えて、既知の暗視野像散乱計の画像センサ623により見られるであろうように、装置は、瞳画像センサにて見られるであろう回折パターンの合成画像を計算できる。従来の装置とは異なり、これらの異なる画像を取得するために、収集された放射を異なる光学分岐路に分割する必要はない。
レンズレス画像化アルゴリズムおよびアライメント情報の導出は、ソフトウェアを用いてもよいし、信号プロセッサのプログラミング、ゲートアレイのプログラミングなどといった他の任意のプログラミングを用いてもよい。ソフトウェアは、マイクロコントローラ、マイクロプロセッサ、デジタル信号プロセッサなどといった任意の適切なデータプロセッサ上で実行されてもよい。
本書ではICの製造におけるリソグラフィ装置の使用を例として説明しているが、本書に記載するリソグラフィ装置は、例えば集積光学システム、磁気ドメインメモリ用案内パターンおよび検出パターン、フラットパネルディスプレイ、液晶ディスプレイ(LCD)、薄膜磁気ヘッドの製造といった他の用途も有しうることが理解されよう。当業者であれば、このような代替的な用途において、本書における「ウェハ」または「ダイ」の用語の任意の使用がより一般的な用語である「基板」または「ターゲット部分」のそれぞれと同義とみなされうることが理解されよう。本書で参照される基板は、露光前または露光後において、例えばトラック(典型的にはレジスト層を基板に塗布し、露光後のレジストを現像する装置)、メトロロジツール、および/またはインスペクションツールにより処理されてもよい。適用可能であれば、本書の開示はこれらのまたは他の基板処理装置にも適用されうる。また、基板は例えば多層ICを製造するために複数回処理されてもよく、その場合には本書における基板という用語は既に処理されている多数の処理層を含む基板をも意味しうる。
上記では、光学リソグラフィとの関連で本発明の実施の形態の使用に特に言及しているが、本発明は、インプリントリソグラフィなどの他の用途においても使用可能であり、文脈上許されれば、光学リソグラフィに限定されないことが理解されよう。インプリントリソグラフィでは、パターニングデバイスの微細構成によって、基板上に生成されるパターンが画定される。パターニングデバイスの微細構成を基板に設けられたレジストの層に押しつけ、その後、電磁放射、熱、圧力またはその組合せにより、レジストを硬化する。レジストを硬化した後、パターニングデバイスがレジストから除去され、パターンが残される。
本書で用いられる「放射」および「ビーム」の用語は、いかなる種類の電磁的な放射を包含し、紫外(UV)放射(例えば、365nm、248nm、193nm、157nmもしくは126nm、または、その近傍の波長を有する)および極端紫外(EUV)放射(例えば、5−20nmの範囲の波長を有する)を含むとともに、イオンビームや電子ビームといった粒子ビームをも含む。
「レンズ」の用語は、文脈が許される場合において、屈折型、反射型、磁気型、電磁気型および静電型の光学素子を含む任意の種類の光学素子の任意の一つまたは組み合わせと称されてもよい。
本発明の特定の実施の形態が上記において示されたが、本発明が上述と異なるようにして実施されてもよいことが理解されるであろう。
上述の説明は例示であり、限定を意図しない。したがって、以下に述べる請求項の範囲から逸脱することなく既述の本発明に変更を加えることができるということは、当業者には明らかなことである。

Claims (15)

  1. 基板を保持するよう構築される基板テーブルと、
    前記基板テーブルにより保持される前記基板上に設けられるアライメントマークの位置を感知するよう構成されるセンサと、を備え、
    前記センサは、
    前記アライメントマークに放射ビームを照明するよう構成される放射源と、
    前記アライメントマークと相互作用した放射ビームの空間分布を表す光学パターンを検出するよう構成される検出器であって、前記アライメントマークから前記検出器までの光学経路内に集光光学素子が設けられていない検出器と、
    前記光学パターンを表す画像データを受信するよう構成され、前記受信した画像データをソフトウェアで光学系をエミューレートするためのデータに変換してアライメント情報を決定するよう構成されるデータ処理システムと、を備えることを特徴とするリソグラフィ装置。
  2. 前記データ処理システムは、
    前記受信した画像データから合成合焦画像を計算し、前記計算された合成合焦画像から前記アライメント情報を決定するよう構成されることにより、前記受信した画像データをソフトウェアで光学系をエミュレートするためのデータに変換するよう構成されることを特徴とする請求項に記載のリソグラフィ装置。
  3. 前記放射源は、波長パラメータを受信し、前記波長パラメータに応じて前記放射ビームの波長範囲を制御するよう構成される波長選択素子を備え、
    前記データ処理システムは、前記波長パラメータの関数として、前記受信した画像データから合成合焦画像を計算するよう構成されることを特徴とする請求項1または2に記載のリソグラフィ装置。
  4. 当該リソグラフィ装置は、前記基板テーブルにより保持される前記基板と前記検出器の間の光学距離が変化するよう前記基板テーブルおよび前記検出器を互いに対して移動させるよう構成され、
    前記データ処理システムは、前記受信した画像データから前記アライメント情報を前記光学距離の関数として決定するよう構成されることを特徴とする請求項1からのいずれか一項に記載のリソグラフィ装置。
  5. 前記データ処理システムは、逐次再構成アルゴリズムを用いて前記アライメント情報を決定するよう構成されることを特徴とする請求項1からのいずれか一項に記載のリソグラフィ装置。
  6. 前記センサは、参照ビームを提供するよう構成される放射ビーム参照経路をさらに備え、
    前記参照ビームは、前記検出器にて前記放射ビームと相互作用し、
    前記データ処理システムは、前記受信した画像データから前記アライメント情報を決定するよう構成され、前記受信した画像データは、前記放射ビームと前記参照ビームの相互作用により生じることを特徴とする請求項1からのいずれか一項に記載のリソグラフィ装置。
  7. 前記放射ビーム参照経路は、可動の参照構造を備え、
    前記センサは、前記参照ビームの伝搬経路の光路長が変化するように前記参照構造を移動させるよう構成され、
    前記データ処理システムは、前記受信した画像データから前記アライメント情報を前記光路長の関数として決定するよう構成されることを特徴とする請求項に記載のリソグラフィ装置。
  8. 前記放射源は、波長パラメータを受信し、前記波長パラメータに応じて前記放射ビームの波長範囲を制御するよう構成される波長選択素子を備え、
    前記データ処理システムは、前記受信した画像データから前記アライメント情報を前記波長パラメータの関数として決定するよう構成されることを特徴とする請求項またはに記載のリソグラフィ装置。
  9. 前記データ処理システムは、前記受信した画像データから合成画像を決定することにより前記受信した画像データから前記アライメント情報を決定するよう構成され、前記合成画像から前記アライメント情報を決定するよう構成されることを特徴とする請求項からのいずれか一項に記載のリソグラフィ装置。
  10. 前記データ処理システムは、合成画像と前記アライメントマークを表す予想画像とを相関させ、および/または、フィルタリングするよう構成され、前記相関および/またはフィルタリングの結果からアライメント情報を導出するよう構成されることを特徴とする請求項1からのいずれか一項に記載のリソグラフィ装置。
  11. 前記放射源は、一以上の空間的にコヒーレントな放射源を備えることを特徴とする請求項1から1のいずれか一項に記載のリソグラフィ装置。
  12. 前記放射源は、UVからIRまでの波長範囲に及ぶ超広帯域源を備えることを特徴とする請求項1から1のいずれか一項に記載のリソグラフィ装置。
  13. 前記放射源は、波長可変放射源を備えることを特徴とする請求項1から1のいずれか一項に記載のリソグラフィ装置。
  14. アライメントマークを有する基板を提供することと、
    前記アライメントマークに放射ビームを出射することと、
    前記アライメントマークと相互作用した放射ビームの空間分布を表す光学パターンを検出器により検出することであって、前記アライメントマークから前記検出器までの光学経路内に集光光学素子が設けられていないことと、
    前記検出器により検出された光学パターンを表す画像データを前記検出器から受信することと、
    前記受信した画像データをソフトウェアで光学系をエミュレートするために変換してアライメント情報を決定することと、を備えることを特徴とするリソグラフィアライメント方法。
  15. 検出器から光学パターンを受信するデータ入力を備えるデータ処理システムであって、
    記光学パターンは、アライメントマークと相互作用した放射ビームの空間分布を表し、前記アライメントマークから前記検出器までの光学経路内に集光光学素子が設けられておらず、
    前記データ処理システムは、
    前記データ入力にて、前記検出器により検出された光学パターンを表す画像データを受信するよう構成され、
    前記受信した画像データをソフトウェアで光学系をエミュレートするためのデータに変換してアライメント情報を決定するよう構成されることを特徴とするデータ処理システム。
JP2018529723A 2015-08-28 2016-08-22 リソグラフィ装置、リソグラフィアライメント方法およびデータ処理システム Active JP6622409B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP15183058.5 2015-08-28
EP15183058 2015-08-28
PCT/EP2016/069776 WO2017036833A1 (en) 2015-08-28 2016-08-22 Lithographic apparatus alignment sensor and method

Publications (2)

Publication Number Publication Date
JP2018527630A JP2018527630A (ja) 2018-09-20
JP6622409B2 true JP6622409B2 (ja) 2019-12-18

Family

ID=54012131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018529723A Active JP6622409B2 (ja) 2015-08-28 2016-08-22 リソグラフィ装置、リソグラフィアライメント方法およびデータ処理システム

Country Status (7)

Country Link
US (1) US10386735B2 (ja)
JP (1) JP6622409B2 (ja)
KR (1) KR102102242B1 (ja)
CN (1) CN107924146B (ja)
NL (1) NL2017343A (ja)
TW (1) TWI628521B (ja)
WO (1) WO2017036833A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11181835B2 (en) 2017-05-15 2021-11-23 Asml Netherlands B.V. Metrology sensor, lithographic apparatus and method for manufacturing devices
JP6979513B2 (ja) * 2017-09-11 2021-12-15 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置及び方法
TWI659258B (zh) * 2018-05-23 2019-05-11 亞智科技股份有限公司 蝕刻時間偵測方法及蝕刻時間偵測系統
CN113048905B (zh) * 2019-12-27 2022-08-19 上海微电子装备(集团)股份有限公司 对准标记图像制作方法、对准标记测量方法及测量装置
NL2026937B1 (en) * 2020-11-20 2022-07-01 Nearfield Instr B V Alignment system and method for aligning an object having an alignment mark

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2783604B2 (ja) * 1989-08-04 1998-08-06 キヤノン株式会社 位置合せ装置と位置合せ方法
US5822066A (en) * 1997-02-26 1998-10-13 Ultratech Stepper, Inc. Point diffraction interferometer and pin mirror for use therewith
JP2002062489A (ja) 2000-08-22 2002-02-28 Canon Inc 光変調装置、該装置による光スイッチ、移動量検出装置及び該装置による距離測定装置、位置合わせ装置及び該装置による半導体露光装置、並びにこれらの方法
JP2003224057A (ja) 2002-01-30 2003-08-08 Hitachi Ltd 半導体装置の製造方法
JP2005079249A (ja) * 2003-08-29 2005-03-24 Canon Inc 位置合わせ方法、露光方法、露光装置、及びデバイスの製造方法
JP2007281384A (ja) * 2006-04-12 2007-10-25 Sony Corp マーク形成方法,マーク計測装置およびマーク計測方法
US7643666B2 (en) * 2006-08-08 2010-01-05 Asml Netherlands B.V. Method and apparatus for angular-resolved spectroscopic lithography characterization
US7570358B2 (en) * 2007-03-30 2009-08-04 Asml Netherlands Bv Angularly resolved scatterometer, inspection method, lithographic apparatus, lithographic processing cell device manufacturing method and alignment sensor
JP2009094512A (ja) 2007-10-09 2009-04-30 Asml Netherlands Bv 位置合わせ方法及び装置、リソグラフィ装置、計測装置、及びデバイス製造方法
WO2010149403A1 (en) * 2009-06-22 2010-12-29 Asml Netherlands B.V. Object inspection systems and methods
US8947664B2 (en) * 2009-12-23 2015-02-03 Infineon Technologies Ag Apparatus and method for aligning a wafer's backside to a wafer's frontside
NL2008111A (en) 2011-02-18 2012-08-21 Asml Netherlands Bv Optical apparatus, method of scanning, lithographic apparatus and device manufacturing method.
JP5829499B2 (ja) * 2011-11-30 2015-12-09 株式会社Screenホールディングス アライメント方法およびパターン形成方法
JP5798017B2 (ja) 2011-11-30 2015-10-21 株式会社Screenホールディングス 転写装置、アライメント方法および転写方法
US9606442B2 (en) * 2012-07-30 2017-03-28 Asml Netherlands B.V. Position measuring apparatus, position measuring method, lithographic apparatus and device manufacturing method
GB201215558D0 (en) * 2012-08-31 2012-10-17 Phase Focus Ltd Improvements in phase retrieval
CN104534980A (zh) * 2015-02-04 2015-04-22 程灏波 一种反射型无透镜数字全息测量装置

Also Published As

Publication number Publication date
TWI628521B (zh) 2018-07-01
KR102102242B1 (ko) 2020-04-21
KR20180043354A (ko) 2018-04-27
US10386735B2 (en) 2019-08-20
CN107924146B (zh) 2020-11-13
WO2017036833A1 (en) 2017-03-09
NL2017343A (en) 2017-03-06
TW201719301A (zh) 2017-06-01
JP2018527630A (ja) 2018-09-20
US20180246423A1 (en) 2018-08-30
CN107924146A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
TWI692634B (zh) 用於檢測裝置之照明源、檢測裝置及檢測方法
CN113204173B (zh) 检查设备、检查方法和制造方法
JP5695153B2 (ja) プロセス変動検出方法、角度分解散乱計、リソグラフィシステムおよびリソグラフィセル
CN108292038B (zh) 物镜系统
JP6346296B2 (ja) メトロロジー方法及び装置、基板、リソグラフィシステム並びにデバイス製造方法
JP5232871B2 (ja) 回折ベースのオーバレイメトロロジーツール及びその方法
JP6622409B2 (ja) リソグラフィ装置、リソグラフィアライメント方法およびデータ処理システム
JP4745292B2 (ja) 波面センサを含むリソグラフィ装置
JP4456555B2 (ja) リソグラフィ機器、リソグラフィ機器の特性を測定する方法、及びコンピュータ・プログラム
JP6246330B2 (ja) アライメントセンサ、リソグラフィ装置およびアライメント方法
JP5284481B2 (ja) スキャトロメータおよびリソグラフィ装置
TW201734657A (zh) 使用調變技術的度量衡之替代目標設計
KR20220016950A (ko) 계측 방법 및 연관된 계측, 그리고 리소그래피 장치
US10514620B2 (en) Alignment method
TW201732452A (zh) 光學系統及方法
JP2010526435A (ja) イメージセンサ、イメージ検出方法、及びコンピュータプログラム
JP4590181B2 (ja) 測定方法及び装置、露光装置、並びに、デバイス製造方法
EP4187321A1 (en) Metrology method and associated metrology tool
WO2022100939A1 (en) Dark field digital holographic microscope and associated metrology method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191121

R150 Certificate of patent or registration of utility model

Ref document number: 6622409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250