JP6600919B2 - 集光機構、太陽光発電装置及び窓構造 - Google Patents

集光機構、太陽光発電装置及び窓構造 Download PDF

Info

Publication number
JP6600919B2
JP6600919B2 JP2018036167A JP2018036167A JP6600919B2 JP 6600919 B2 JP6600919 B2 JP 6600919B2 JP 2018036167 A JP2018036167 A JP 2018036167A JP 2018036167 A JP2018036167 A JP 2018036167A JP 6600919 B2 JP6600919 B2 JP 6600919B2
Authority
JP
Japan
Prior art keywords
angle
light
incident
optical element
reflection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018036167A
Other languages
English (en)
Other versions
JP2018151626A (ja
Inventor
秀嘉 堀米
寿宏 加瀬澤
力 加瀬澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Holomedia
Original Assignee
Holomedia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Holomedia filed Critical Holomedia
Publication of JP2018151626A publication Critical patent/JP2018151626A/ja
Application granted granted Critical
Publication of JP6600919B2 publication Critical patent/JP6600919B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/67Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light
    • E06B3/6715Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light specially adapted for increased thermal insulation or for controlled passage of light
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/67Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light
    • E06B3/6715Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light specially adapted for increased thermal insulation or for controlled passage of light
    • E06B3/6722Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light specially adapted for increased thermal insulation or for controlled passage of light with adjustable passage of light
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B7/00Special arrangements or measures in connection with doors or windows
    • E06B7/28Other arrangements on doors or windows, e.g. door-plates, windows adapted to carry plants, hooks for window cleaners
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/63Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of windows
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • G02B19/0023Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors) at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0038Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
    • G02B19/0042Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light for use with direct solar radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/142Coating structures, e.g. thin films multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/144Beam splitting or combining systems operating by reflection only using partially transparent surfaces without spectral selectivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0891Ultraviolet [UV] mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • G02B5/282Interference filters designed for the infrared light reflecting for infrared and transparent for visible light, e.g. heat reflectors, laser protection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/283Interference filters designed for the ultraviolet
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2417Light path control; means to control reflection
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2476Solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、集光機構に関し、特に、太陽光発電用の集光機構、かかる集光機構を用いた太陽光発電装置、窓構造、及び集光機構に利用可能な機能性窓ガラスに関する。
近年、自然エネルギーの有効活用の観点から、ビル、各種施設、住宅などへの太陽光発電装置の設置が進められている。太陽光発電装置は、大別すると、太陽光をそのまま太陽電池セルに照射する非集光型のものと、レンズなどの集光手段を用いて集光された太陽光を太陽電池セルに照射する集光型のものがある。
具体的には、ビル躯体の窓構造に組み込まれる非集光型の装置が提案されている(例えば、特許文献1参照)。特許文献1には、躯体開口部に嵌め込まれた窓枠に、外ガラスと、開閉可能な内ガラスとを設けた窓構造において、窓枠に透光性太陽電池パネルを着脱可能に取り付けた窓構造が記載されている。
また、住宅に設置される集光型の発電窓ガラスが提案されている(例えば、特許文献2参照)。特許文献2に記載の発電窓ガラスは、透明基板と、この透明基板の光入射面側に設けられた光制御フィルムと、透明基板の端部に配置された太陽電池とを備える。光制御フィルムでは、所定の角度で光が入射したときのみ散乱が生じ、散乱後の光の一部が、基体内部を伝播して、その端部Dに配置された太陽電池において受光される。一方、上記と異なる特定の角度で光制御フィルムへ光が入射したときには、散乱は生じず、入射光は、光制御フィルム及び透明基板を透過して光出射面から出射する。
特開2010−144375号 特開2012−23089号
特許文献1に記載の窓構造には、二重窓の窓ガラス面積に対応する面積の透光性太陽電池パネルが設けられている。しかしながら、入射光の大部分が光電変換層に取り込まれるため、屋内への透過率が低下し、また、外界の景色が損なわれることがある。さらに、シースルー型の太陽電池は、製造コストが高い。また、一般に、太陽電池が受容可能なエネルギー密度よりも、実際に照射される太陽光のエネルギー密度はずっと低いため、最大の発電能力を発揮していない。このように、非集光型の太陽光発電装置は、窓に照射される光エネルギーを最大限に利用することが難しい。
一方、特許文献2に記載の発電窓ガラスでは、一枚ガラスの窓において光制御フィルムが設けられおり、窓における各層の屈折率を利用してある程度照射される光を集光することができる。また、特許文献1に記載の装置に比べて透光性は確保でき、小さな太陽電池セルを利用することもできる。しかしながら、太陽電池モジュールへの導光に際して、光制御フィルムで散乱した光の一部を利用しているに過ぎず、依然として、集光機構としては効率が低い。さらに、光制御フィルム又は太陽電池モジュールが外部に露出しているので、物理的な力により損傷することがあり、湿度、温度の変化の繰り返しによって、太陽電池モジュールの経年劣化が進むおそれがある。
本発明は、前述した問題に鑑みてなされたものであって、かかる問題の少なくとも一部を解決することができる集光機構、かかる集光機構を利用した太陽光発電装置、窓構造、又はかかる集光機構に利用可能な機能性窓ガラスを提供することを目的とする。
前述した課題を解決するため、本発明の集光機構は、第1閾値角度以上の入射角の光を反射し、前記第1閾値角度より小さい入射角の光の少なくとも一部を透過する角度選択反射手段と、入射した光をその入射角よりも大きい角度で反射する角度増加反射手段とを間隙をあけて配置し、前記角度増加反射手段が、前記角度選択反射手段を透過した光の少なくとも一部を、前記第1閾値角度以上の角度で反射し、前記角度選択反射手段が、前記角度増加反射手段によって反射された前記第1閾値角度以上の角度の光を反射し、前記角度選択反射手段と前記角度増加反射手段との間隙で光を伝搬させて集光する。
上記集光機構において、前記角度選択反射手段は、増角性を有し、前記角度増加反射手段から反射され、前記角度選択反射手段に入射した光をその入射角よりも大きい角度で反射することが好ましい。前記角度選択反射手段は、屈折性を有し、前記角度選択反射手段を透過する光に対し、その入射角よりも大きな角度で屈折させることが好ましい。
また、前記角度増加反射手段は、角度選択性を有し、第2閾値角度以上の入射角で入射する光を反射し、前記第2閾値角度より小さい入射角で入射する光を透過することが好ましい。前記角度選択反射手段又は前記角度増加反射手段は、偏向性を有し、前記角度選択反射手段又は前記角度増加反射手段に入射する光の進行方向を偏向させて透過又は反射することが好ましい。前記角度選択反射手段及び前記角度増加反射手段は、波長選択性を有し、所定の波長範囲の光を透過することが好ましい。
さらに、前記角度増加反射手段は、平坦なホログラフィック光学素子を含み、前記平坦なホログラフィック光学素子が、前記角度選択反射手段からの光をその入射角よりも大きい角度で反射してもよい。前記角度増加反射手段は、反射膜、誘電体多層膜ミラー又は反射型ホログラフィック光学素子の傾斜面を含み、前記傾斜面が、入射した光をその入射角よりも大きい角度で反射するように設けられてもよい。
さらに、上記集光機構は、ガラスの表面に前記角度選択反射手段を設け、前記ガラスの裏面に前記角度増加反射手段を設け、前記ガラスの端部に光を伝搬させて集光するものであってもよい。また、前記角度選択反射手段が前記ガラスの表面それ自体であってもよい。
前記角度選択反射手段は、平坦なホログラフィック光学素子又は誘電体多層膜を含み、前記平坦なホログラフィック光学素子又は誘電体多層膜は、前記第1閾値角度以上の入射角の光を反射し、前記第1閾値角度よりも小さい入射角の光を透過してもよい。前記角度選択反射手段は、誘電体多層膜ミラー又は反射型ホログラフィック光学素子の傾斜面を含み、前記傾斜面が、前記角度増加反射手段からの光をその入射角よりも大きい角度で反射するように設けられてもよい。
本発明の太陽光発電装置は、上記いずれかの集光機構を備え、前記集光機構によって集光した光を受光し、発電する太陽電池セルを備える。
本発明の集光機構を備える窓構造は、間隙をあけて平行に配置された二枚のガラスと、前記二枚のガラスの一方に、所定の閾値角度以上の入射角の光を反射し、所定の閾値角度よりも小さい入射角の光を透過する角度選択反射手段を設け、前記二枚のガラスの他方に、前記角度選択反射手段からの光をその入射角よりも大きい角度で反射する角度増加反射手段を設け、前記角度増加反射手段が、前記角度選択反射手段を透過した光の少なくとも一部を、前記第1閾値角度以上の角度で反射し、前記角度選択反射手段が、前記角度増加反射手段によって反射された前記第1閾値角度以上の角度の光を反射し、前記角度選択反射手段と前記角度増加反射手段との間で光を伝搬させて集光する。
上記窓構造において、前記角度選択反射手段は、平坦なホログラフィック光学素子又は誘電体多層膜であり、前記一方のガラスの間隙側に貼付又は蒸着されてもよい。また、前記角度選択反射手段は、誘電体多層膜ミラー又は反射型ホログラフィック光学素子の傾斜面を含み、前記傾斜面が、前記角度増加反射手段からの光をその入射角よりも大きい角度で反射するように設けられてもよい。
また、前記角度増加反射手段は、平坦なホログラフィック光学素子であり、前記他方のガラスの間隙側に貼付又は蒸着されてもよい。前記角度増加反射手段は、反射膜、誘電体多層膜ミラー又は反射型ホログラフィック光学素子の傾斜面を含み、前記傾斜面が、前記角度選択反射手段からの光をその入射角よりも大きい角度で反射するように設けられてもよい。
上記窓構造は、前記角度増加反射手段及び前記角度増加反射手段によって所定の方向へ集光する光を受光し、発電する太陽電池セルを備えることが好ましい。
本発明の機能性窓ガラスは、複数の傾斜面が繰り返し配置された反射膜、誘電体多層膜ミラー又は反射型ホログラフィック光学素子を封入し、入射した光をその入射角よりも大きい角度で反射する増角性を持たせたものである。
上記機能性窓ガラスにおいて、所定の閾値角度よりも大きい入射角の光を反射し、前記閾値角度よりも小さい入射角の光を透過する角度選択性を持った平坦なホログラフィック光学素子又は誘電体多層膜を封入することが好ましい。
本発明の機能性窓ガラスを製造する方法は、所定の傾斜角を有する複数の傾斜面が繰り返し配置された表面形状を有するガラス基材を準備し、前記ガラス基材に形成された複数の傾斜面に、誘電体多層膜を蒸着し、前記蒸着した誘電体多層膜に光学接着剤を塗布して、平板ガラスを接着し、入射した光をその入射角よりも大きい角度で反射する増角性を持たせる。
本発明によれば、角度選択反射手段及び角度増加反射手段を用いることによって、簡易な構成の集光機構を実現することができる。また、かかる集光機構を用いた高効率の太陽光発電装置を構成することができる。また、かかる集光機構を窓構造に配置することによって、高効率の集光機能を備えた窓構造を提供することができる。かかる窓構造の集光機構のための機能性窓ガラスを提供することができる。その他の効果については、発明を実施するための形態において述べる。
本発明の集光機構の概略構成図 第1の実施形態の二重の窓構造の概略構成図 第1の実施形態の三重の窓構造の概略構成図 角度増加反射手段の機能を示す説明図 第2の実施形態の窓構造及びそれに用いられる窓ガラスの概略構成図 第2の実施形態の窓構造の別の例 鋸歯型の誘電体多層膜を含む機能性窓ガラスを作製する方法の例
以下、本発明の実施形態について図面を参照して説明する。ただし、本発明は、以下の例に限定されるものではない。
[集光機構の構成]
図1は、本発明の集光機構の概略構成図である。本発明の集光機構20は、角度選択反射手段3と角度増加反射手段5とを備え、各手段は間隙をあけて配置される。本発明の集光機構20は、光源100からの光を角度選択反射手段3の表面(受光面)で受け、角度選択反射手段3の受光面を透過した光の少なくとも一部を当該機構内の間隙に閉じ込め、その間隙内を端縁に向けて光を伝搬させることで、集光機構20の端縁において集光させる機構である。本発明の集光機構20は、集光した光を、太陽光発電のための光電変換手段(太陽電池セル10)に供給することができる。ただし、これに限定されない。本発明の集光機構20は、集光した光を、光から熱エネルギーに変換可能な手段(例えば、ヒートパイプなど)に供給してもよいし、照明のための手段に供給してもよい。また、集光機能を備えた導光板として利用することもできる。
以下、本明細書においては、集光機構20又は集光機構20を備える太陽光発電装置1などの光源100側を表側、光源100とは反対の方向を裏側という。また、本明細書においては、集光機構20の寸法を高さ、幅及び厚さで表わしたときの高さ×幅によって規定される平面を基準とし、その平面の法線Nに対して、後述する閾値角度θth、入射光又は出射光θn(n=1,2,3,4・・・)、方位角、増角角度α、傾斜角度βなどの角度を規定する。
本発明の集光機構20は、窓構造と一体に配置されることが好ましい(図2参照)。ここで窓構造とは、住宅、ビル、各種施設の外部と接する面に窓として組み込まれるものや、乗り物(車、電車など)の窓部に取付けられるものであり、開閉可能な構造及び固定の構造を含む。ただし、これに限定されない。本集光機構20は、換気、採光を目的としないもの、例えば、移動可能な衝立、間仕切りなどに適用してもよい。また、建築物の壁材又は屋根材として適用することもできる。さらに、通常の太陽光発電用のパネルとして用いられるものも含む。本集光機構20は、壁に垂直に配置することもできるし、屋根、屋上、地面などに、斜めに又は水平に配置することもできる。また、本集光機構20は、屋外に接する部分だけでなく、室内、屋内、商業施設内などに配置してもよい。本発明の集光機構20は、角度選択反射手段3と角度増加反射手段5とを略平行に配置されることが好ましいが、必ずしも両者が平行である必要はない。図1において集光機構20は、角度選択反射手段3も角度増加反射手段5も平板状であり、全体的な形状としても平板状であるが、各構成を歪曲させてもよく、例えば、角度選択反射手段3及び角度増加反射手段5を同じ方向に歪曲させて、アーチ状の屋根材や曲面の壁材として利用することもできるし、角度選択反射手段3及び角度増加反射手段5の何れか一方だけを歪曲させてもよいし、角度選択反射手段3及び角度増加反射手段5を反対方向に歪曲させてもよい。
図1では、光源100は太陽として例示しているが、これに限定されず、太陽光以外の光(例えば、照明)を用いることもできる。また、本発明の集光機構20は、光源100からの光の照射量が小さくても、光源100からの光を集光機構の受光面(角度選択反射手段3の表面全体)で受光し、角度選択反射手段3及び角度増加反射手段5によって効率的に集光することができるので、南東乃至南西以外の向きや屋内などに配置することもできる。この場合、太陽などからの光を光ファイバー又はミラーによって導く構成としてもよい。
角度選択反射手段3は、第1閾値角度θth(好ましくは、30〜70°の範囲のうちの一つ)と同じかそれよりも大きい入射角で入射する光を反射し、第1閾値角度θthより小さい入射角θ1で入射する光を透過する角度選択性を有するものである。角度選択反射手段3は、光源100側からの光の少なくとも一部を透過し、角度増加反射手段5との間隙に光を入射させる機能と、角度増加反射手段5側からの光の少なくとも一部を反射させて間隙内に光を閉じ込める機能を有する。このために角度選択反射手段3は角度選択性を具備しており、光源100側から第1閾値角度θthより小さい入射角θ1で角度選択反射手段3に入射した光を透過させて間隙内に光を入射させ、角度増加反射手段5によって角度が増加した光のうち、第1閾値角度θth以上の光を反射させることで、間隙内に光を閉じ込めるのである。なお、角度選択反射手段3は、光源100側からの光だけでなく、角度増加反射手段5からの光についても、その入射角が第1閾値角度θthよりも大きければ反射し、小さければ透過する。このため、後述する角度増加反射手段5によって、角度選択反射手段3への入射角が第1閾値角度θthよりも大きくなった光を閉じ込めることができる。
角度選択反射手段3は、角度選択性のほか、さらに、波長選択性、屈折性、増角性、偏向性の一つ又は複数を有してもよい。角度選択反射手段3に波長選択性を持たせた場合は、所定の波長範囲の光のみを透過又は反射させ、その他の波長の光を反射又は透過させることができ、例えば、可視光の光を透過させることで窓の一部として使用し、その他の波長の光を反射させて集光することもできる。角度選択反射手段3に屈折性を持たせた場合、透過する光を屈折させることができ、例えば、光源からの光を透過する際、角度θ1で入射する光を角度θ1より大きな角度に屈折させる(図2参照)。このように構成すると、後述する角度増加反射手段5の増角角度が小さく設定される場合でも、角度増角反射手段によって反射され角度選択反射手段3に入射する光の入射角が、所定の第1閾値角度θthを超えることが容易となるので、集光率を高めることができる。また、角度選択反射手段3に増角性を持たせた場合、角度増加反射手段5から角度θ2で角度選択反射手段3に入射する光は、角度θ2より大きな角度で反射させることができる。また、角度選択反射手段3に偏向性を持たせた場合、透過する光を予め定めた方向に偏向させることができ、例えば、方位角(東西南北の方向)が斜めの入射光に対して、方位角を予め定めた方向に偏向させて透過させたり、入射角が小さい光(例えば垂直の光)について透過光に大きな角度を付けたりすることができ、集光率を高めることができる。
角度選択反射手段3の機能は、ホログラムによって実現することができる。ホログラムは、二つの光(一般的には物体光と参照光と呼ばれる)の干渉パターンを記録したものであり、一方の光をホログラムに照射することによって他方の光を回折によって再生することができる。また、記録する際の二つの光の向きによって、反射型(二つの光がホログラムに対して反対の面から入射)とすることも透過型(二つの光がホログラムに対して同一面側から入射)とすることもできる。このため、一方の光として特定の角度範囲の光を選択し、他方の光として必要な所定方向の光を選択することにより、特定の角度範囲の光が照射された際に、所定方向の反射光又は透過光を再生させることができ、角度選択性を持たせることができる。また、一方の光の入射角と他方の光の入射角を異ならせることで、屈折性を持たせることもできる。さらに、一方の光の進行方向と他方の光の進行方向とを異ならせること、例えば方位角において異ならせれば、偏向性を持たせることもできる。さらに、ホログラムは、同一の位置に異なる性質のホログラムを多重記録することもでき、例えば、同一の位置において、角度選択性の角度範囲が異なる複数のホログラムを多重記録させたり、透過型のホログラムと反射型のホログラムとを多重記録させたりすることもできるのである。なお、ホログラムは、その回折効率に応じて回折する光の強度が異なる。
また、角度選択反射手段3の機能は、反射面、例えば、誘電体多層膜ミラー、屈折率の異なる媒質間の境界面(例えばガラスの表面それ自体)などによって実現することもできる。誘電体多層膜ミラーは、所望の波長の1/4の厚みを有する屈折率の高い誘電体の薄膜と屈折率の低い誘電体の薄膜とを交互に積層したものであり、各層の境界面からの反射光が相加的に重なって、高い効率の反射を実現することができる。屈折率の大きい媒質から小さい媒質へ光が進むとき、入射角が臨界角より大きい光は境界面で全反射されることから、臨界角を閾値角度とする角度選択反射手段を境界面として機能させることができる。ただし、屈折率の小さい媒質から屈折率の大きい媒質へ光が進む場合には、全反射は生じない。境界面として、ガラスの表面それ自体を使用することもでき、ガラス内の屈折率とガラス外の空気等の屈折率との比によって定まるガラスの臨界角が閾値角度となり、ガラス表面は、ガラス内からの光の入射角が、臨界角よりも大きい場合は全反射してガラス外には透過せず、臨界角よりも小さな場合はガラス外に透過する。ただし、この方法では、ガラス内に光を閉じ込めることになるので、ガラスの材質にもよるが、ガラス内で光が減衰するため、光を長距離伝搬させることができず、大型の集光機構を実現するのは難しい。このため、角度選択反射手段と角度増加反射手段との間隙は、ガラスなどの媒質ではなく、空気であるほうが好ましい。
ホログラムと反射面との違いは、ホログラムでは、光が回折効果によって透過又は反射した際に、所定の角度αだけ変化させることが可能(変化させないことも可能)であるのに対し、反射面(反射ミラー、誘電体多層膜ミラーなどを含む)では、常に反射面への入射角と同じ角度で反射される点で異なるものである。ホログラム及び反射膜を合わせて使用することもできる。
具体的には、角度選択反射手段3は、例えば、ホログラフィック光学素子(Holographic Optical Element:以下、単に「HOE」と記載することもある)、誘電体多層膜、及び適宜の透過率が設定された補助反射層(ハーフミラー)を含んでもよい。HOE、誘電体多層膜、補助反射層などは、平板状のものを用いても、フィルム状のものを用いてもよい。窓構造を構成するガラス上に感光材料を塗布してホログラフィック光学素子を形成してもよい。フィルム状のHOEは、加工も容易であり、窓ガラスに貼付することができるので好ましい。また、誘電体多層膜も、適宜の種類を使用することができるが、ガラスの表面及び裏面の少なくとも一方に、蒸着して形成してもよい。さらに、HOE、誘電体多層膜、補助反射層などは、ガラス内に封入して形成してもよい。なお、本明細書では、説明のため、窓の材料を単にガラスと記載しているが、これに限定されるものではない。他に樹脂材料で構成されてもよく、少なくとも一部の波長において透光性を有する材料であればよい。
角度増加反射手段5は、ある方向(図1では下方向:以下「増角方向」)について、入射角よりも大きな反射角で光を反射するものであり、角度増加反射手段5によって、第1閾値角度θthよりも小さい入射角θ1で角度選択反射手段3を透過した光の少なくとも一部を、入射角θ1よりも大きい角度θ2で反射する増角性を有し、その増角性によって、入射した光を第1閾値角度θthよりも大きな入射角θ1の光として角度選択反射手段3に入射させる。
角度増加反射手段5には、増角性のほか、さらに、角度選択性、波長選択性、偏向性の一つ又は複数を有してもよい。角度増加反射手段5に角度選択性を持たせた場合は、法線Nに対して所定の第2閾値角度φth(好ましくは20〜40°の範囲の一つ)より大きな角度で入射する光を反射させ、所定の第2閾値角度φthより小さな角度で入射する光を透過させることができる。この場合、光源100からの光の少なくとも一部が集光機構の裏側へ透過するため、外景を視認することができ、採光も可能な窓の一部として使用することができる。また、角度増加反射手段5に波長選択性を持たせた場合は、所定の波長範囲の光のみを透過又は反射させ、その他の波長の光を反射又は透過させることができ、例えば、可視光の光を透過させることで窓の一部として使用し、その他の波長の光を反射させて集光することもできる。ただし、外景の視認、採光を目的とせずに、単なる集光機構として使う場合は、角度増加反射手段5は、角度選択性及び波長選択性を持たない全反射ミラーで構成してもよい。角度増加反射手段5に偏向性を持たせた場合、反射する光を予め定めた方向に偏向させることができ、例えば、方位角(東西南北の方向)が斜めの入射光に対して、方位角を予め定めた方向に偏向させて反射させたり、入射角が小さい光(例えば垂直の光)について反射光に大きな角度を付けたりすることができ、集光率を高めることができる。
角度増加反射手段5の機能は、反射面(角度選択性の有無を問わない)及び/又はホログラムによって実現することができる。法線に対して傾斜角を有する反射面を設けた場合、入射光は、反射した際に、所定の角度αだけ変化して出力される(増角性)。また、ホログラムを使用した場合も、入射光は、その回折効果によって所定の角度αだけ変化して反射させることができる(増角性)。
具体的には、角度増加反射手段5は、例えば、HOE、傾斜した誘電体多層膜、傾斜した反射膜を含んでもよい。また、適宜の透過率が設定された補助反射層と組み合わせて使用してもよい。HOEは、平板状のものを用いても、フィルム状のものを用いてもよい。窓構造を構成するガラス上に感光材料を塗布してホログラフィック光学素子を形成してもよい。フィルム状のHOEは、加工も容易であり、窓ガラスに貼付することができるので好ましい。誘電体多層膜又は反射膜も、適宜の種類を使用することができるが、ガラスの表面及び裏面の少なくとも一方に、蒸着あるいは塗布によって形成してもよい。さらに、HOE、誘電体多層膜、反射膜などは、ガラス内に封入して形成してもよい。
このように、本発明の集光機構20では、角度選択反射手段3の表面に第1閾値角度θthより小さい角度θ1で入射した光を透過し、角度選択反射手段3の裏面において、角度増加反射手段5によって閾値角度θthより大きい角度θ2で反射させ、角度選択反射手段3の裏面に角度θ2で入射した光を反射させることができるので、集光機構内に一度取り込んだ光を角度選択反射手段3と角度増加反射手段5との間で反射させながら所定の増角方向へ伝搬させることができる。すなわち、本発明の集光機構は、受光面(角度選択反射手段3の表面全体)に入射する光を効率的に集光させることができる。
ここで、本発明の集光機構20の角度選択反射手段3及び角度増加反射手段5の機能を簡単に説明するため、角度選択反射手段3及び角度増加反射手段5の概念図を図4に示した。
角度選択反射手段3は、少なくとも角度選択性を有し、所定の第1閾値角度θthよりも大きな角度で入射する光を反射し、所定の閾値角度θthよりも小さい角度で入射する光を透過する反射ミラーとして表わすことができる。角度増加反射手段5は、少なくとも増角性を有し、角度θ1で入射した光を、その角度θ1よりも角度αだけ大きい角度θ2で反射する。角度増加反射手段5は、角度選択反射手段3の法線Nに対して傾斜角βを持った反射ミラーとして表わすことができる。この場合、増角角度αは、α=(90°−β)×2として表わすことができる。
図4において、角度選択反射手段3を透過する初回入射角θ1(ただしθ1≧0とする)の光が、角度増加反射手段5によって、第1閾値角度θthよりも大きい角度で反射されるためには、角度選択反射手段3の第1閾値角度θthと想定する初回入射角θ1に対して、増角角度αはα>θth−θ1の範囲に設定することが好ましく、すなわち、(90°−β)×2>θth−θ1の範囲が好ましい。したがって、角度増加反射手段5の傾斜角βの上限は、θth−θ1が最大となるθ1=0を想定すると、β<90°−(θth÷2)の関係で設定することができる。ただし、図2に示すように、角度選択反射手段3に屈折性を持たせた場合、角度選択反射手段3は、光源からの光を透過させる際、入射角θ1より大きい角度θ2で出射することもできる。この場合、α>θth−θ2の範囲に設定することもできる。
このように、角度増加反射手段5は、所定の傾斜角βで配置された増角性を有する反射ミラーと等価なものとして、簡単に構成することができる。さらに言えば、本集光機構20は、角度選択性を持つ反射ミラーと傾斜した反射ミラーを用い、一方の反射ミラーを所定の傾斜角βで他方の反射ミラー側に傾けて配置するだけで、簡単に構成することができる。したがって、本集光機構20は、広い空間に設置する場合、図4に示すように断面略三角形または台形の態様で、複数を配列して使用することもできる。
しかしながら、省スペースが求められる場合、傾斜角βが85°(増角角度αが10°に相当する)程度である反射ミラーであっても断面略三角形の態様で使用することが難しいことがある。例えば、傾斜した反射ミラーをそのまま窓構造40に配置すると、連続する反射ミラーの傾斜面が厚さ方向において、窓構造40の厚さ(例えば、汎用品のペアガラスの場合、ペアガラス間の間隙は6mm又は12mm)よりも大きくなるため実現することは困難である。このため、反射ミラーを細分化して、傾斜面を不連続に配置させる(例えば、断面鋸歯型に形成する)ことにより、薄い窓構造やガラス中に反射ミラー9による角度増加反射手段5を構成してもよい。かかる断面鋸歯型の構成については、図5乃至図7を用いて後述する。
[光の伝搬経路]
次いで、以下に、図1又は図4を用いて、光源100からの光が集光機構20に入射してから太陽電池セル10で受光されるまでの光路について説明する。光源100からの光は、一日の中で仰角及び方位角が変化するが、ここでは、簡単のため、光源100からの光は、集光機構20の法線Nを含み地面に対して垂直な面(以下、基準面という。)において仰角θ1をもって照射されるものとして取り扱う。
また、角度選択反射手段3及び角度増加反射手段5への入射又はそれからの反射については、簡単のため、上記基準面内にあるものとする。ただし、光源100から光の照射の態様、角度選択反射手段3及び角度増加反射手段5における入射と反射の態様は、これに限定されない。実際には、光源100からの光は、周囲からの反射を含めて、あらゆる方向から伝搬するものである。また、角度選択反射手段3及び角度増加反射手段5における入射と反射の方向は同一面内でなくてもよく、窓構造40の配置(光源100に対する向き)、窓構造40に対する太陽電池セル10の位置などに応じて、かかる入射と反射との関係を規定すればよい。
はじめに、光源100からの光が法線N(水平)から第1閾値角度θthより小さい仰角θ1で本集光機構20に入射すると、入射光は角度選択反射手段3を透過し、角度θ1で角度増加反射手段5に入射する。次いで、角度増加反射手段5に角度θ1で入射した光は、角度増加反射手段5の増角性によって、角度θ1よりも大きい角度θ2で反射する(1回目の反射)。
次いで、角度選択反射手段3にθ2で入射した光は、角度θ2が角度選択反射手段3の第1閾値角度θthより大きいので、角度選択反射手段3によって角度θ2で反射される(2回目の反射)。なお、角度選択反射手段3に増角性を持たせると、2回目の反射では、反射角は、入射角θ2よりも大きくなる。そして、角度増加反射手段5に角度θ2で入射した光は、角度増加反射手段5の増角性によって、角度θ2よりも大きい角度θ3で反射する(3回目の反射)。
このように、角度選択反射手段3と角度増加反射手段5との間で、光は、反射角を増しながら、反射を繰り返して所定の方向へ伝搬し、最終的には、太陽電池セル10に入射する。
図1又は図4の場合、増角角度αは、角度θ2と角度θ1との差、角度θ3と角度θ2との差、又は角度θ4と角度θ3との差である。増角角度αは、常に一定の角度(例えば10°)であってもよいし、初回入射時の角度θ1の値、光の波長又は光の方位角などによって異なる角度(例えば、5°、10°又は15°など)となるように設定されてもよい。後者の場合はホログラムを用いて実現できる。
また、角度増加反射手段5に角度選択性を持たせた場合、所定の第2閾値角度φthより大きい角度で入射する光は反射され、それより小さい角度で入射する光は透過する。すなわち、角度増加反射手段5の第2閾値角度φthより大きな角度で入射する光を発電に用い、第2閾値角度φthより小さな角度で入射する光を室内に向けて透過させる。このため、光源からの光の少なくとも一部は屋内側へ伝搬することができ、外景の視認性及び採光性を確保することができる。角度増加反射手段5の第2閾値角度φthは、室内側へ到達する光量、外景の視認性、窓構造が配置される環境に応じて適宜設定してよい。
角度選択反射手段3又は角度増加反射手段5は、光源100からの光のすべての波長帯を使用してもよいし、波長選択性を有し、太陽電池セルの性能、種類に応じて、発電に適した波長帯の光を選択的に使用するように構成してよい。例えば、一般的なアモルファスシリコン型の太陽電池を使用するのであれば、おおよそ400〜700nmの範囲の波長を選択してもよい。また、所望の室内環境に応じて、紫外線領域又は赤外線領域の光を遮断するように構成してもよい。角度選択反射手段3及び角度増加反射手段5の波長選択範囲は、室内側へ到達する光の種別、光量、外観の景色の視認性を、窓構造が配置される環境に応じて適宜設定してよい。
角度選択反射手段3又は角度増加反射手段5に使用されるHOEは、入射方向からの物体光と出射方向からの参照光との干渉によってホログラム記録媒体へ露光形成することが可能である。その際、露光に使うレーザーの波長を選択することにより波長選択性を持たせることが可能である。また、物体光と参照光をそれぞれ平行光で干渉させるだけでなく、収束光や発散光及び平行光など波面を制御した組み合わせで干渉させることにより、入射方向が変化した際にも角度の増加を行えるようにすることが可能である。
太陽電池セル10は、集光機構20の所定の増角方向(図1では下側)に配置されるか、増角方向に集光した光を伝搬させた位置に配置され、角度選択反射手段3と角度増加反射手段5との間を伝搬する光を受光し、その受光した光エネルギーを電力に変換する。太陽電池セル10としては、例えば、シリコン薄膜(結晶シリコン、多結晶シリコン、微結晶シリコン等)を用いたもの、III−V族系、CdTe系、ClGS系の無機化合物を用いたもの、導電性ポリマーやフラーレン等の有機化合物を用いたもの、及び色素増感型などの各種形態のものを使用することができる。太陽電池セル10は、単一のセルでもよいし、複数のセルを連接して使用してもよい。
太陽電池セル10は、角度選択反射手段3及び角度増加反射手段5の周辺の少なくとも一部において、角度選択反射手段3と角度増加反射手段5との間の間隙からの光が光電変換層に入射可能に設けられている。太陽電池セル10は、集光機構の下側に配置されることが好ましいが、これに限定されない。光源100と集光機構20との位置関係に応じて、集光機構20の左右側、又は上側部に配置されてもよい。集光機構20の内部又は外部において角度選択反射手段3と角度増加反射手段5との間の間隙に接するように配置すればよい。さらに、角度選択反射手段3と角度増加反射手段5との間の間隙から離隔した位置に配置してもよい。この場合、角度選択反射手段3と角度増加反射手段5との間の間隙から太陽電池セル10まで光を伝搬する導光手段(導光板、光ファイバーなど)を設けることで、太陽電池セルの配置は集光機構近傍に限定されず、自由に設計することが可能となる。
このように、本集光機構によれば、角度選択反射手段3と角度増加反射手段5との間で、光の反射角を増しながら太陽電池セル10に導光させることができるので、太陽光のエネルギーを集約して無駄なく活用し、効率的な発電を行うことができる。
本集光機構は、太陽光発電のために、略平行な平板の態様、又は断面三角形の態様で、地表面、施設の壁面又は屋上、高速道路及び鉄道などの防音壁に連続的に配置してすることができる。また、太陽への追従装置と組み合わせて、本集光機構の受光面に垂直に太陽光を受けるように構成することもできる。
また、本集光機構は、窓構造において、一枚の窓ガラスの両面に角度選択反射手段3と角度増加反射手段5とを配置してもよい。具体的には、窓ガラスの表面に、例えばフィルム状の角度選択反射手段3を設け、窓ガラスの裏面に、フィルム状の角度増加反射手段5を設けて、窓ガラスの端部に太陽電池セル10を設けてもよい。窓ガラスに入射した光は、角度選択反射手段3を透過し、角度選択反射手段3と角度増加反射手段5との間のガラス媒質を伝搬し、太陽電池セル10に到達する。さらに、前述したように、角度選択反射手段3は、ガラス表面それ自体として構成することもできる。ガラス表面は、一種の角度選択性を備えるので、所定の閾値角度より大きい角度で入射する光源からの光を反射し、所定の閾値角度より小さい角度で入射する光を透過する。また、ガラス媒質の屈折率を適宜設定すれば、例えば、光源からの光が低仰角で窓ガラスに入射する際、その入射光を、所定の角度選択範囲内の角度で屈折させて角度増加反射手段に入射させることもできる。すなわち、屈折性を有するものとすることもできる。
さらに、本集光機構は、二重ガラス(ペアガラス)の内部(間隙)に角度選択反射手段3と角度増加反射手段5とを配置してもよい。二重ガラスの間隙において、光源からの光は空気中を伝搬するので、一枚ガラスのガラス媒質中を伝搬する場合よりも伝搬損失が少なく、高効率の集光を実現できる。さらに、二重ガラスの間隙は環境条件が安定しており劣化しにくく、外部からの物理的な力によって破損することも防止できる。
加えて、本集光機構は、三重ガラスにも適用することができる。以下、本発明の集光機構を二重ガラス及び三重ガラスの窓構造に適用した形態について説明する。
[実施形態1]
図2は、第1の実施形態の集光機構を備える二重の窓構造の概略構成図である。図2において、窓構造40Aは、住宅、ビルなどの建築物の壁面に略垂直に配置されている。説明のため、光源100の方向を屋外側、それとは反対の方向を屋内側という。また、屋外側から観て、窓構造の鉛直上を上側、鉛直下を下側、水平右を右側、水平左を左側という。本実施形態の窓構造40Aは、窓枠22、屋外側の窓ガラス24、及び屋内側の窓ガラス26を備え、窓ガラス24と窓ガラス26との間隙に集光機構20を含み、集光機構20によって導光される光を受光可能な適宜の位置(例えば、角度選択反射手段3及び角度増加反射手段5の間隙に接する位置)に太陽電池セル10を備えてもよい。窓構造40Aは、屋外側から、窓ガラス24、角度選択反射手段3(32、34)、角度増加反射手段5(52、54)、窓ガラス26の順で配置される。
なお、本明細書では、説明のため、窓の材料を単にガラスと記載しているが、これに限定されるものではない。他に樹脂材料で構成されてもよく、少なくとも一部の波長において透光性を有する材料であればよい。
太陽電池セル10は、窓構造40の内部の下側に配置されることが好ましい。ただし、これに限定されず、下側に代えて、または下側に加えて、左右両側又は上側に太陽電池セル10を配置してもよいし、窓構造40Aの外部(例えば建築物側)に配置してもよい。太陽電池セル10は、角度選択反射手段3及び角度増加反射手段5によって導光される光を受光可能な適宜の位置に配置すればよい。
また、窓構造40Aは、太陽電池セル10で発電した電気を取り出すための電力出力手段を設けることが好ましい。電力出力手段として電源コネクタ12を設けてもよいし、非接触式の電力出力手段を設けてもよい。電源コネクタ12は、太陽電池セル10によって光電変換されて発生した電力を出力する。電源コネクタ12は、窓構造の左右の一端にオス型を、他端にメス型を設け、隣接して配置される他の窓構造に設けられた電源コネクタと相互に接続可能に構成されてもよい。さらに、外部装置(例えば、電力制御装置、蓄電装置、電力供給先の装置など)にケーブルなどを介して接続可能に構成されることが好ましい。電力制御装置(図示省略)は、直流/交流変換の機能を有してもよく、室内への交流電力の供給、電力販売などを行ってもよい。
また、太陽電池セル10の温度上昇による影響を低減するため、太陽電池セル10に接して放熱部材28を設けることが好ましい。例えば、放熱部材28として窓構造のアルミフレーム等を利用してもよいし、別途、熱伝導性の高い材料の放熱部材28を太陽電池セル10に接して設けてもよい。
また、窓構造40Aの内部の上側及び左右側には、反射ミラー21が設けられることが好ましい。反射ミラー21は、樹脂、ガラス、アルミ又はステンレスの鏡面研磨したものなどを適宜組み合わせてよい。また、窓構造40Aのフレーム内面を鏡面研磨して反射ミラーとしてもよい。反射ミラーによって、いったん集光機構20に導光された光が、上側又は左右側からは外部に漏れることがないので、太陽の光を効果的に集光することができる。さらに、窓構造40Aの内部には、吸湿剤(図示省略)が載置されてもよい。これによって、密閉された窓構造の内部空間の湿度の変化が少なくなるため、経年劣化によって太陽電池セル10の性能が低下する虞が少ない。
角度選択反射手段3は、HOE34から構成され、補助反射層32を含んでもよい。HOE34は、角度選択性及び屈折性を有し、所定の第1閾値角度θth(例えば70°)より小さい角度θ1(例えば45°)で入射する光源100からの光を、角度θ1より大きい角度θ2(例えば70°)で回折して透過し、第1閾値角度θth以上の角度で入射する光を反射させる。HOE34はフィルム状であり、窓ガラス24の裏面に塗布又は貼付されることが好ましい。
HOE34は、角度選択性及び屈折性のほか、増角性、波長選択性などの付加が可能で複数のホログラムを多重記録可能な体積ホログラムによって構成することが好ましい。また、HOE34に波長選択性を持たせる場合、少なくとも太陽電池セル10の発電に適当な特定の波長の光を透過させるように選択波長を設定する。補助反射層32は、光源100からの光の一部を透過し、屋内側からの光を反射する。本集光機構20内で上側又は左右側の反射ミラーを経由して、HOE34に入射する光の角度は、第1閾値角度θthより小さくなる可能性がある。この場合、入射した光はHOE34を透過するが補助反射層32によって再び反射され、集光機構20内で反射を繰り返す。このため、補助反射層32を設けることによって、集光効率を向上させることができる。補助反射層32は、例えば、誘電体多層ミラー、ハーフミラー、HOEなどを使用することができる。補助反射層32はフィルム状であり、窓ガラス24の裏面に塗布又は貼付されることが好ましい。
角度増加反射手段5は、反射型HOE52から構成され、補助反射層54を含んでもよい。反射型HOE52は、その増角性によって角度θ1(例えば70°)で入射する光を、その角度θ1より大きい角度θ2(例えば80°)で回折して反射する。また、反射型HOE52は、角度選択性を有し、所定の第2閾値角度φth(例えば30°)より小さい角度で入射する光を透過させてもよい。反射型HOE52はフィルム状であり、窓ガラスなどに貼付できることが好ましい。
また、反射型HOE52は、増角性及び角度選択性を得るために体積ホログラムを使用することが好ましい。さらに、反射型HOE52は、波長選択性を有し、少なくとも太陽電池セル10の発電に適当な特定の波長の光の一部を反射するように構成してもよい。また、反射型HOE52は、入射した光を反射時には増角方向に偏向させる偏向性を有していてもよい。
補助反射層54は、反射型HOE52を透過した光の少なくとも一部を角度選択反射手段3へ向けて反射させる。補助反射層54は、例えば、誘電体多層ミラー、ハーフミラーなどを使用することができる。補助反射層54の反射率(透過率)は、窓の設置場所及び向き、室内に必要な明るさ、外界の景色を取り込む必要性などに応じて適宜設定してよい。
以下、図2において、光源100からの光が窓構造40(集光機構20)に入射してから太陽電池セル10で受光されるまでの光路について説明する。
まず、光源100からの仰角θ1(例えば、45°)の光は、補助反射層32を透過する。次いで、HOE34に入射した光は、HOE34の第1閾値角度θth(例えば、70°)より小さいので、HOE34を透過する。この際、HOE34の屈折性によってθ1より大きい角度θ2(例えば、70°)に回折される。反射型HOE52に角度θ2で入射した光は、反射型HOE52の増角性によって、角度θ2より増角角度α(例えば、10°)だけ大きい角度θ3(例えば、80°)で回折され、反射する。
なお、反射型HOE52に角度選択性を持たせた場合、反射型HOE52の第2閾値角度φthより小さい角度で入射する光は、反射型HOE52で回折せずにそのまま透過することがある。こ場合、透過した光の少なくとも一部は、補助反射層54で反射されてもよく、再び角度選択反射手段3と角度増加反射手段5との間に導光されてもよい。
その後、角度θ3でHOE34に入射した光は、HOE34の第1閾値角度θthより大きいので、HOE34によって角度θ3で反射される。なお、HOE34の閾値角度θthより小さい角度でHOE34に入射する光がある場合は、入射した光は、HOE34を透過することがある。この場合、透過した光の少なくとも一部は、補助反射層32で反射してもよく、反射した光は再びHOE34を透過して、角度選択反射手段3と角度増加反射手段5との間に導光されてもよい。
このように、窓構造40A(集光機構20)に入射した光は、角度増加反射手段5と角度選択反射手段3との間で反射を繰り返しながら伝搬する。少なくとも、反射型HOE52において増角角度αだけ反射の角度が増加するので、最終的には、角度θnは、90°近くになり、光がほぼ鉛直下方に伝搬して太陽電池セル10で受光される。
ところで、図2では、簡単のため、前述した基準面内における反射を取り扱っているが、実際には、太陽の光は、周囲からの反射を含めて、あらゆる方向から伝搬してくる。窓構造の平面に対して斜めの方位角(東西南北の方向)から入射した光についても、入射光と法線Nとを含む平面で見れば、基準面内における伝搬と同様に取り扱うことができ、斜めから入射した光は、入射の方向に従って反射を繰り返して伝搬する。本実施形態では、窓構造内部の上側及び左右側に反射ミラー21が設けられており、上側又は左右側に到達した光は、この反射ミラー21によって、適宜の方向へ向かい、再び角度選択反射手段3と角度増加反射手段5との間に導光され、最終的には、その大部分が太陽電池セル10に向かう。
さらに、HOE34には、多重ホログラムを形成することによって偏向性を持たせることができ、方位角が斜めの入射光に対して、方位角を変更して透過させることができる。反射型HOE52にも、多重ホログラムを形成することによって偏向性を持たせることができ、反射時の光の方位角を適宜の方向に変更することができる。このようなホログラムは、方位角が斜めの物体光と異なる方位角の参照光との干渉によって形成することが可能である。これによって、集光機構内を伝搬する光がより太陽電池セルに集光させることができる。
なお、本実施形態において、角度選択反射手段3及び角度増加反射手段5には、ホログラフィック光学素子を用いたが、これに限定されない。例えば、角度選択反射手段3及び角度増加反射手段5の一方をホログラフィック光学素子で、他方を誘電体多層膜で構成してもよい。また、本実実施形態では、角度選択反射手段3及び角度増加反射手段5は、窓ガラスに貼付して配置されているが、角度選択反射手段3及び角度増加反射手段5の少なくとも一方を、図6で後述する態様のように、窓ガラスと一体に(窓ガラスに封入して)構成してもよい。
以上説明したとおり、本実施形態の窓構造によれば、光源100からの光が、二重ガラスの窓構造に設けられた集光機構の間隙(角度選択反射手段3と角度増加反射手段5との間)を反射しながら伝搬し、太陽電池セル10において受光されるので、太陽光のエネルギーを集約して無駄なく活用し、効果的な発電を行うことができる。また、角度選択反射手段、角度増加反射手段、及び太陽電池セルは、二重ガラスの間隙に配置されるので、周囲の環境の変化の影響を受けることが少ない。また、物理的な衝撃などによって破損する虞が少ない。さらに、安価な小型の太陽電池セルを複数並べて配置することもできるので、コストを低減できる。
上記実施形態では、太陽光発電装置を二重ガラスの窓構造に適用したが、近年では、防犯機能を強化する目的の三重ガラスの窓構造も普及している。
図3は、第1の実施形態の集光機構を備える三重の窓構造の概略構成図である。本例の窓構造40Bは、窓ガラス24の屋外側に窓ガラス23を設け、窓ガラス23と窓ガラス24との間に、角度選択性の補正用の透過型HOE31を設けた点で図2の窓構造40Aと異なる。その他の構成については図2と同様であるので、詳細な説明は省略する。本例は、HOE34に設定される所定の第1閾値角度θthより大きい角度で入射する光もさらに利用して発電する場合に好ましい。例えば、第1閾値角度θthを70°に設定した図2に示す窓構造を作製した場合、低緯度地域又は夏季の高仰角(80°以上)の太陽の光は、かかる閾値角度θthを越えるので利用することができない。しかし、本例の角度選択性の補正用の透過型HOE31によれば、あらかじめ設定された第1閾値角度θthを越える太陽の光も利用することができる。
屋外側に配置される補正用の透過型HOE31は、フィルム状であり、最も屋外側の窓ガラス23の裏面に塗布又は貼付することが好ましい。補正用の透過型HOE31は、屈折性を有し、第1閾値角度θthより大きい角度θ0(例えば、80°)で入射する光を、その角度θより小さい角度θ1(例えば、70°)で回折して透過する。HOE34に入射した後の光の伝搬経路については、図2に示したものと同様となる。なお、HOE34の第1閾値角度θthより小さな角度で入射した光については、補正用の透過型HOE31をそのまま透過するので、図2に示したものと同様となる。
さらに、上記のとおり、閾値角度θthを70°に設定した図2に示す窓構造を作製した場合、高緯度地域又は冬季の低仰角(例えば、30°以下)の太陽の光は、角度増加反射手段5における1回目の反射の際の増角角度αの付与によっては、第1閾値角度θthを超える値を得られないこともある。この場合、補正用の透過型HOE31は、所定の第1閾値角度θthよりもかなり小さな角度θO(例えば、25°)で入射する光を、その角度θOよりも十分に大きく所定の閾値角度θthに近い角度θ1(例えば、50°)で回折して透過してもよい。角度θ1(例えば、50°)でHOE34に入射する光は、HOE34の屈折性によってさらに大きな角度θ2(例えば、60°)で出射するので、反射型HOE52による増角角度αが小さい場合(例えば、10°)でも、所定の第1閾値角度θthを超えることができ、HOE34によって反射され、集光機構20の間隙で伝搬する光とすることができる。
このように、図3の集光機構を備えた窓構造40Bによれば、補正用の透過型HOE31によって、HOE34の閾値角度θthよりも大きい角度で入射する光についても利用することが可能となる。また、所定の第1閾値角度θthよりもかなり小さな角度θOで入射する光についても利用することが可能となる。かかる三重窓構造によれば、HOE34に標準的な(例えば、中緯度地域用の)閾値角度θthを設定して、窓ガラス24と窓ガラス26とのペアによる二重ガラスの窓構造40Aを基本構成とし、地域や季節に合わせて、屋外側の補正用の透過型HOE31を備えた窓ガラス23を取り換え可能とすることで、図2に示す窓構造40Aに適用した集光機構の基本的な設計を援用して、高緯度又は低緯度地域用の窓構造40Bを構成することができる。
[実施形態2]
上記では、集光機構の角度選択反射手段3及び角度増加反射手段5に、ホログラフィック光学素子を用い、かかるホログラフィック光学素子を二重の窓ガラスの間隙に配置した。本集光機構の角度選択反射手段3及び角度増加反射手段5は、反射ミラー(誘電体多層膜ミラー)によっても構成することができ、さらに、かかる反射ミラーを窓ガラス中に封入することもできる。これによって、集光機能を備える窓構造を構成することができる。
図5は、第2の実施形態の窓構造及びそれに用いられる窓ガラスの概略構成図である。本窓構造40Cは、窓枠22、屋外側の第1の機能性窓ガラス8A、及び屋内側の第2の機能性窓ガラス9を備える。
第1の機能性窓ガラス8Aは、少なくとも角度選択性を備える角度選択反射手段3をガラス中に含む。角度選択反射手段3は、平坦な誘電体多層膜による反射ミラー又はホログラフィック光学素子によって構成される。なお、図5に示す第1の機能性窓ガラス8Aの構成は、単なる例示であってこれに限定されない。ガラス自体の臨界角を利用して、ガラス表面自体を所定の閾値角度以上で入射する光を反射する角度選択反射手段3としてもよく、また、誘電体多層膜などからなる角度選択反射手段3をガラス中に設けるのではなく、ガラス表面に設ける構成としてもよい。
第2の機能性窓ガラス9は、少なくとも増角性を備える角度増加反射手段5をガラス中に含む。角度増加反射手段5は、例えば、鋸歯型に形成された誘電体多層膜53の反射ミラーによって構成される。この誘電体多層膜53による反射ミラーは、後述する図7に示すように、一定の傾斜角βで傾斜する複数の傾斜面56を含む鋸歯型に形成される。なお、図5に示す第2の機能性窓ガラス9の構成は、単なる例示であって、これに限定されない。外景の視認性の良さを考慮しなくてよい場合には、誘電体多層膜53による鋸歯型の反射ミラーをガラス中に設けるのではなく、ガラス表面に設ける構成としてもよい。
なお、図5では鋸歯型に形成された反射ミラーを示したが、不連続に配置させた傾斜面の形状は、所定の傾斜角の傾斜面が含まれていれば足り、断面鋸歯型に限定されるものではなく、周期的又は不定期に傾斜面が配置される形状(例えば三角状の突起が連続した三角波や周期的に傾斜面が表れる台形波等)としてもよい。
また、角度増加反射手段5にも、角度選択性を持たせることが好ましい。これにより、光源からの光の少なくとも一部は第2の機能性窓ガラス9を透過するので、採光性と外景の視認性を確保することができる。なお、かかる角度選択反射手段3は、鋸歯型の誘電体多層膜ミラーの代わりに、増角性を実現するような平坦なホログラフィック光学素子を用いて構成することもできる。
本窓構造40Cでは、第1の機能性窓ガラス8Aと第2の機能性窓ガラス9とが集光機構20を構成しており、かかる集光機構20によって導光される光を受光可能な適宜の位置(例えば、窓構造40の下側)に太陽電池セル10を備えてもよい。また、本窓構造40Cは、外部に配置された太陽電池セルに接続するように構成されてもよい。本窓構造40Cは、光源からの光を、各機能性窓ガラスの間を伝搬する光として集光可能に構成されればよい。
なお、本実施形態では、閾値角度θth、入射角、反射角などは、角度選択反射手段3又は角度増加反射手段5の鋸歯型の傾斜面に関わらず、機能性窓ガラス8、9あるいは窓構造40の法線Nに対して規定するものとする。
また、第1の機能性窓ガラス8Aの表面、第2の機能性窓ガラス9の裏面には、各々、補助反射層32、54を配置してもよい。図5では、補助反射層32は、平坦な角度選択反射手段3とは別に設けられているが、角度選択反射手段3に接合してガラス中に設けてもよい。また、補助反射層54は、鋸歯型の誘電体多層膜53とは別に設けられているが、誘電体多層膜53の傾斜面に接合してガラス中に設けてもよい。
本窓構造40Cの第1の機能性窓ガラス8Aと第2の機能性窓ガラス9との間の光の伝搬経路については、図2に示した伝搬経路と同様であるので、詳細な説明は省略する。
図6は、第2の実施形態の窓構造の別の例の概略構成図である。図6の窓構造40Dは、図5に示した第1の機能性窓ガラス8Aの代わりに、鋸歯型の誘電体多層膜53による角度選択反射手段3を含む第1の機能性窓ガラス8Bを用いた点で、図5の窓構造40Cと異なる。第1の機能性窓ガラス8Bは、角度選択性に加えて、増角性を有する。その他の構成は、図5に示した構成と同様であるので、説明は省略する。
ところで、図5に示した第2の機能性窓ガラス9の角度増加反射手段5は、角度選択性を有し、所定の第2閾値角度φthよりも小さい角度で入射する屋外側からの光を透過する。第2の機能性窓ガラス9中の角度増加反射手段5は傾斜角β(増角角度α=(90°−β)×2)で傾斜しているので、仮に、屋内側から角度(φth+α)よりも小さい角度で光が入射したとすると、入射した光は屋外側に透過する。
換言すると、第2の機能性窓ガラス9は、屋内側から観れば、閾値角度(θth=φth+α)よりも大きい角度で入射する光を反射し、閾値角度(θth=φth+α)よりも小さい角度で入射する光を透過する角度選択性を持った手段である。
このため、単に第2の機能性窓ガラス9を裏表反対に用いれば、角度選択反射手段3を含む第1の機能性窓ガラス8Bとして利用することができる。ただし、閾値角度(θth=φth+α)が集光機構として望ましい範囲よりも小さい場合、例えば、φthが30°程度、αが5°程度として合計35°程度となる場合、第1の機能性窓ガラス8Bの角度選択反射手段3の第1閾値角度θthを、角度増加反射手段5の第2閾値φth及び増角角度αによって設定される値とは異なるもの(例えば70°)にしてもよい。
図6に示すように、第1の機能性窓ガラス8B中の角度選択反射手段3(鋸歯型の誘電体多層膜53)と、第2の機能性窓ガラス9中の角度増加反射手段5(鋸歯型の誘電体多層膜53)とは、各窓ガラスの間の中心線Cに対して左右対称であり、その傾斜面56が内向き(すなわち、所定の方向(太陽電池セル10の方向))に傾斜するようにハの字型に配置される。ただし、これに限定されず、角度選択反射手段3と角度増加反射手段5の傾斜面の傾斜角が異なるように、すなわち左右対称とならないように構成してもよい。
光源100から第1の機能性窓ガラス8Bに斜め上方から入射する光は、誘電体多層膜53の傾斜面56の法線に対して小さな角度で入射するので(窓構造の法線Nに対する第1閾値角度θthよりも小さい)、そのまま第1の機能性窓ガラス8Bを透過する。第2の機能性窓ガラス9の誘電体多層膜53に第1の角度θ1で入射した光は、誘電体多層膜53の傾斜面56の法線に対して大きな角度を持つので(窓構造の法線Nに対する第2閾値角度φthよりも大きいので)、傾斜角βに対応する増角角度αだけ増した角度θ2(=θ1+α)で反射する。
次いで、第1の機能性窓ガラス8Bの誘電体多層膜53に角度θ2で入射する光は、誘電体多層膜53の傾斜面56の法線に対しては、大きな角度を持つため、さらに増角角度αだけ増した角度θ3(=θ2+α)で反射する。このように、各窓ガラスの間に導光された光は、第1の機能性窓ガラス8B、第2の機能性窓ガラス9における誘電体多層膜の傾斜角βによって、かかる傾斜角βに対応する増角角度αだけ角度を増しながら所定の方向に伝搬し、最終的には太陽電池セル10に入射する。
なお、本実施形態では、角度選択反射手段3及び角度増加反射手段5として鋸歯型に形成された誘電体多層膜を窓ガラスのガラスに封入する構成を説明したが、これに限定されない。第1の機能性窓ガラス8及び第2の機能性窓ガラス9の少なくとも一方は、誘電体多層膜に代えて、鋸歯構造に合わせた形状に形成されたホログラフィック光学素子を封入することによって構成してもよい。さらに、第1の機能性窓ガラス8及び第2の機能性窓ガラス9の少なくとも一方は、図2に示したような平面的なホログラフィック光学素子を窓ガラスのガラス部材に封入することによって構成してもよい。
図7は、鋸歯型の誘電体多層膜を含む機能性窓ガラスを作製する方法の例である。まず、図7(A)に示すように、ガラス基材の片面に所定の形状の傾斜面を形成する。ガラス基材26Bの鋸歯構造は、断面が傾斜角βを有する傾斜面の直角三角形が上下方向に連続して配置された構造であり、ガラス基材26B表面に左右方向に細長い三角状の溝を繰り返し設けて形成される。上下方向の傾斜面の長さlは、1〜20mmの範囲であることが好ましく、最も肉厚の部分の厚さd1は、1〜3mmの範囲であることが好ましい。
次いで、鋸歯構造が形成されたガラス基材26Bを成膜装置に搬入し、蒸着又はスパッタリングによって誘電体の薄膜55をガラス基材の傾斜面上に形成する。そして、蒸着又はスパッタリングを繰り返して誘電体の薄膜を積層すると、図7(B)に示すように、ガラス基材26Bの傾斜面上に誘電体多層膜53が形成される。
誘電体多層膜53は、所望の波長の1/4の厚みを有する屈折率の高い誘電体の薄膜と屈折率の低い誘電体の薄膜とを交互に積層したものであり、各層の境界面からの反射光が相加的に重なって、高い効率の反射を実現することができる。各層の屈折率、厚み、層数などは、発電に利用する入射光の波長(例えば、400〜700nm)などに基づいて適宜設定してよく、入射光の角度選択範囲又は波長選択範囲を制御することができる。
図7(B)に示す鋸歯型の傾斜面(傾斜角β)を有する誘電体多層膜53が形成されたガラス基材は、図4に示した傾斜角βで配置された反射ミラーの機能を有する。図7(B)の片面接着の状態でも反射ミラーとして使用できるが、誘電体多層膜53を外部からの衝撃などから保護するため、さらにガラス材料などで封入することが好ましい。
図7(C)では、誘電体多層膜53の鋸歯構造の傾斜面56が光学接着剤27によって平板ガラス26Aと接着されて、誘電体多層膜53は、ガラス中に封入されている。ここで、封入とは、誘電体多層膜(角度選択反射手段又は角度増加反射手段)などがガラス材料中に完全に閉じ込められる態様が好ましいが、誘電体多層膜などの少なくとも一部(例えば、周辺の端部)が露出する態様も含む。平板ガラス26Aの厚さd3は、1〜3mmの範囲であることが好ましく、増角性を有する機能性窓ガラス9の全体の厚さは、3〜6mmの範囲であることが好ましい。これによって、角度増加反射手段5として機能する誘電体多層膜53を含む機能性窓ガラスが構成される。
図7(C)の両面接着の態様では、誘電体多層膜53を含む機能性窓ガラス9の両平面は平坦であり、表面と裏面とが平行な一枚板であるので、少なくともこの機能性窓ガラスを透過してくる光の光軸それ自体は屈折することがなく、屋内側から見る屋外の景色に歪みが生じることが少ない。
なお、図7では、増角性を有する角度増加反射手段として、又は増角性を付加した角度選択反射手段として、鋸歯型の傾斜面を有する誘電体多層膜をガラス中に封入する例を説明したが、本発明の機能性窓ガラスはこれに限定されない。角度増加反射手段として、鋸歯型の傾斜面を形成するようにホログラムシートをガラス部材に封入してもよいし、増角性を実現する平面状のホログラムシートをガラス部材に封入してもよい。さらに、角度選択手段として、平面状の誘電体多層膜又はホログラムシートをガラス部材に封入してもよい。
以上説明したとおり、本実施形態によれば、二枚の窓ガラスに集光機構を持たせることでき、集光機能を有する窓構造を構成することができる。また、集光機構に用いられる機能性窓ガラスを作製することができる。かかる機能性窓ガラスにおいて、集光機構として機能する角度増加反射手段及び角度選択反射手段は、ガラス部材に封入されているので、外部からの物理的な衝撃に強い。また、第1の実施形態の窓構造に比べて、二重ガラスの間隙を有効に利用することができ、角度選択性を大きく設定することができる。なお、本明細書では複数の形態について説明したが、本発明の適用範囲は、それぞれの実施形態に限定されるものではない。例えば、これら複数の形態を組み合せることもできる。
1 太陽光発電装置
3 角度選択反射手段
5 角度増加反射手段
8 第1の機能性窓ガラス
9 第2の機能性窓ガラス
10 太陽電池セル
12 電源コネクタ
20 集光機構
40 窓構造

Claims (8)

  1. 第1閾値角度以上の入射角の光を反射し、前記第1閾値角度より小さい入射角の光の少なくとも一部を透過する角度選択反射手段と、入射した光をその入射角よりも大きい角度で反射する反射型ホログラフィック光学素子とを間隙をあけて配置し、
    前記反射型ホログラフィック光学素子は、入射する光の方位角を変更して反射できる偏向性を有し、前記角度選択反射手段を透過した光の少なくとも一部を、前記偏向性によって、反射型ホログラフィック光学素子から反射した光と反射型ホログラフィック光学素子の法線とを含む反射面が、反射型ホログラフィック光学素子に入射する光と反射型ホログラフィック光学素子の法線とを含む入射面とは異なるように、所定の方向に方位角を変更して前記第1閾値角度以上の角度で反射し、
    前記角度選択反射手段は、前記反射型ホログラフィック光学素子によって反射された前記第1閾値角度以上の角度の光を反射し、
    前記角度選択反射手段と前記反射型ホログラフィック光学素子との間隙で光を伝搬させて集光する集光機構。
  2. 前記角度選択反射手段は少なくとも一部の波長において透光性を有する材料の表面であり、
    前記材料の裏面に前記反射型ホログラフィック光学素子が設けられていることを特徴とする請求項1に記載の集光機構。
  3. 前記材料は、ガラス又は樹脂材料であることを特徴とする請求項2に記載の集光機構。
  4. 前記反射型ホログラフィック光学素子は、角度選択性を有し、第2閾値角度以上の入射角で入射する光を反射し、前記第2閾値角度より小さい入射角で入射する光を透過することを特徴とする請求項1乃至3の何れか1項に記載の集光機構。
  5. 前記反射型ホログラフィック光学素子は、波長選択性を有し、所定の波長範囲の光を透過することを特徴する請求項1乃至4の何れか1項に記載の集光機構。
  6. 請求項1乃至5の何れか1項に記載の集光機構を備える太陽光発電装置であって、
    前記集光機構によって集光した光を受光し、発電する太陽電池セルを備えることを特徴とする太陽光発電装置。
  7. 集光機構を備える窓構造であって、
    少なくとも一部の波長において透光性を有する材料の裏面に入射した光を前記材料の臨界角よりも大きい角度で反射する反射型ホログラフィック光学素子を設け、
    前記反射型ホログラフィック光学素子は、入射する光の方位角を変更して反射できる偏向性を有し、前記材料の表面から材料内に入射した光の少なくとも一部を、前記偏向性によって、反射型ホログラフィック光学素子から反射した光と反射型ホログラフィック光学素子の法線とを含む反射面が、反射型ホログラフィック光学素子に入射する光と反射型ホログラフィック光学素子の法線とを含む入射面とは異なるように、所定の方向に方位角を変更して前記臨界角以上の角度で反射し、
    前記材料の表面は、前記反射型ホログラフィック光学素子によって反射された光を全反射し、
    前記材料の表面と前記反射型ホログラフィック光学素子との間で光を伝搬させて集光する窓構造。
  8. 前記材料の表面及び前記反射型ホログラフィック光学素子によって前記所定の方向へ集光する光を受光し、発電する太陽電池セルを備えることを特徴とする請求項7に記載の窓構造。
JP2018036167A 2013-01-21 2018-03-01 集光機構、太陽光発電装置及び窓構造 Active JP6600919B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013008745 2013-01-21
JP2013008745 2013-01-21

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014557528A Division JP6304768B2 (ja) 2013-01-21 2014-01-20 集光機構、太陽光発電装置及び窓構造

Publications (2)

Publication Number Publication Date
JP2018151626A JP2018151626A (ja) 2018-09-27
JP6600919B2 true JP6600919B2 (ja) 2019-11-06

Family

ID=51209706

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014557528A Active JP6304768B2 (ja) 2013-01-21 2014-01-20 集光機構、太陽光発電装置及び窓構造
JP2018036167A Active JP6600919B2 (ja) 2013-01-21 2018-03-01 集光機構、太陽光発電装置及び窓構造

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014557528A Active JP6304768B2 (ja) 2013-01-21 2014-01-20 集光機構、太陽光発電装置及び窓構造

Country Status (5)

Country Link
US (2) US10355156B2 (ja)
EP (1) EP2947701A4 (ja)
JP (2) JP6304768B2 (ja)
HK (1) HK1217816A1 (ja)
WO (1) WO2014112620A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6511240B2 (ja) * 2014-09-12 2019-05-15 株式会社カネカ 壁面構造
JP6510037B2 (ja) * 2015-04-27 2019-05-08 シャープ株式会社 蛍光集光型太陽電池
JPWO2016182009A1 (ja) * 2015-05-12 2018-04-26 株式会社エガリム 集光装置、光発電装置、集光用シート、光発電シート及び集光装置又は光発電装置の製造方法
CN104989249A (zh) * 2015-07-15 2015-10-21 上海龙人建设集团有限公司 新型百叶窗安装结构
US10067346B2 (en) * 2015-10-23 2018-09-04 Microsoft Technology Licensing, Llc Holographic display
CN105672843A (zh) * 2016-04-12 2016-06-15 合肥学院 一种兼顾阳台、遮阳及光伏发电功能的外窗
JP6892777B2 (ja) * 2017-04-03 2021-06-23 矢崎エナジーシステム株式会社 太陽光利用装置及び太陽光利用システム
US11227964B2 (en) 2017-08-25 2022-01-18 California Institute Of Technology Luminescent solar concentrators and related methods of manufacturing
ES2706397B2 (es) * 2017-09-28 2020-07-28 Abellan Pedro Mas Elemento óptico holográfico hibrido de control espectral de iluminación
JP2019174503A (ja) * 2018-03-27 2019-10-10 京セラ株式会社 集光機能を有する表示装置およびその製造方法、発電装置、並びに電子機器
US11362229B2 (en) 2018-04-04 2022-06-14 California Institute Of Technology Epitaxy-free nanowire cell process for the manufacture of photovoltaics
WO2020041522A1 (en) * 2018-08-21 2020-02-27 California Institute Of Technology Windows implementing effectively transparent conductors and related methods of manufacturing
WO2020205800A1 (en) 2019-03-29 2020-10-08 California Institute Of Technology Apparatus and systems for incorporating effective transparent catalyst for photoelectrochemical application
JPWO2021132615A1 (ja) * 2019-12-26 2021-07-01
CN112054081A (zh) * 2020-09-03 2020-12-08 成都中建材光电材料有限公司 一种保温隔音防水的发电玻璃及其制备方法
JP2022059954A (ja) * 2020-10-02 2022-04-14 株式会社ジャパンディスプレイ 太陽光発電装置
KR102569346B1 (ko) * 2021-11-23 2023-08-21 경상국립대학교산학협력단 차광효과를 위한 상하좌우 평면 개폐형 무창기공형 집열기

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108540A (en) * 1976-06-17 1978-08-22 Minnesota Mining And Manufacturing Company Refractor-reflector radiation concentrator
US4863224A (en) * 1981-10-06 1989-09-05 Afian Viktor V Solar concentrator and manufacturing method therefor
US5877874A (en) * 1995-08-24 1999-03-02 Terrasun L.L.C. Device for concentrating optical radiation
GB9913466D0 (en) * 1999-06-10 1999-08-11 3M Innovative Properties Co Panel-like structure for collecting radiant energy
JP2007027150A (ja) * 2003-06-23 2007-02-01 Hitachi Chem Co Ltd 集光型光発電システム
JP2007183317A (ja) * 2006-01-04 2007-07-19 Fuji Electric Holdings Co Ltd 採光装置
WO2008131566A1 (en) * 2007-05-01 2008-11-06 Morgan Solar Inc. Illumination device
JP2011515017A (ja) * 2008-02-12 2011-05-12 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド 2層式薄膜ホログラフィック太陽光コレクタ及び太陽光コンセントレータ
WO2009121180A1 (en) * 2008-04-02 2009-10-08 Morgan Solar Inc. Solar panel window
JP2012503221A (ja) * 2008-09-18 2012-02-02 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド 太陽光収集器/集光器における光収集の角度範囲の増大化
JP5608973B2 (ja) 2008-12-17 2014-10-22 株式会社大林組 窓構造
JP5493150B2 (ja) * 2009-09-30 2014-05-14 独立行政法人産業技術総合研究所 調光透明窓用部材
CN102742031A (zh) * 2009-10-21 2012-10-17 毕达哥拉斯太阳公司 窗口
JP5258805B2 (ja) * 2010-02-01 2013-08-07 三菱電機株式会社 太陽光発電装置、及び太陽光発電装置の製造方法
JP5560860B2 (ja) * 2010-04-06 2014-07-30 トヨタ自動車株式会社 太陽電池モジュール
JP2012023089A (ja) 2010-07-12 2012-02-02 Sony Corp 発電装置
JP2012099681A (ja) * 2010-11-04 2012-05-24 Toyota Industries Corp 集光構造体及び光発電装置

Also Published As

Publication number Publication date
JP2018151626A (ja) 2018-09-27
US20160087135A1 (en) 2016-03-24
JPWO2014112620A1 (ja) 2017-01-19
EP2947701A4 (en) 2017-02-08
WO2014112620A1 (ja) 2014-07-24
JP6304768B2 (ja) 2018-04-04
US10355156B2 (en) 2019-07-16
US20190288145A1 (en) 2019-09-19
EP2947701A1 (en) 2015-11-25
HK1217816A1 (zh) 2017-01-20

Similar Documents

Publication Publication Date Title
JP6600919B2 (ja) 集光機構、太陽光発電装置及び窓構造
TW477900B (en) Device for concentrating optical radiation
US20090126792A1 (en) Thin film solar concentrator/collector
JP6416333B2 (ja) 太陽電池モジュール
US20160043259A1 (en) Non-Imaging Light Concentrator
US20140159636A1 (en) Solar energy harvesting skylights and windows with integrated illumination
WO1999004296A1 (en) Device for concentrating optical radiation
US20140261621A1 (en) Window solar harvesting means
RU2008129791A (ru) Фотоэлектрическое устройство и установка с избирательным концентрированием падающего излучения
JP2009289832A (ja) 太陽電池モジュール
US20150009568A1 (en) Light collection system and method
CA2738647A1 (en) Solar collector panel
US8884156B2 (en) Solar energy harvesting device using stimuli-responsive material
JP5929578B2 (ja) 太陽電池モジュール及び太陽電池モジュール集合体
JP2004519700A (ja) 多角反射式導光膜
RU2689144C2 (ru) Полноспектральное устройство для захвата электромагнитной энергии
US20130319524A1 (en) Solar energy concentrator with multiplexed diffraction gratings
JP6086778B2 (ja) 太陽電池用プリズム部材および太陽電池モジュール
RU201526U1 (ru) Голографическая пленка на основе призмаконов
CN205232141U (zh) 光能输出装置
TW201428363A (zh) 供用於集中光學輻射之裝置
WO2014116498A1 (en) Solar waveguide concentrator
TW202025616A (zh) 螢光太陽能集光器
US20140247498A1 (en) Compact concentrator assembly
JP2009290037A (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190920

R150 Certificate of patent or registration of utility model

Ref document number: 6600919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250