JP6597481B2 - GaN基板 - Google Patents
GaN基板 Download PDFInfo
- Publication number
- JP6597481B2 JP6597481B2 JP2016104578A JP2016104578A JP6597481B2 JP 6597481 B2 JP6597481 B2 JP 6597481B2 JP 2016104578 A JP2016104578 A JP 2016104578A JP 2016104578 A JP2016104578 A JP 2016104578A JP 6597481 B2 JP6597481 B2 JP 6597481B2
- Authority
- JP
- Japan
- Prior art keywords
- gan
- substrate
- plane
- crystal
- gan substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims description 282
- 239000013078 crystal Substances 0.000 claims description 219
- 239000000758 substrate Substances 0.000 claims description 94
- 238000002441 X-ray diffraction Methods 0.000 claims description 40
- 229910052783 alkali metal Inorganic materials 0.000 claims description 7
- 150000001340 alkali metals Chemical class 0.000 claims description 7
- 229910052736 halogen Inorganic materials 0.000 claims description 5
- 150000002367 halogens Chemical class 0.000 claims description 5
- 238000010521 absorption reaction Methods 0.000 claims description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 3
- 238000000862 absorption spectrum Methods 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 229910002601 GaN Inorganic materials 0.000 description 139
- 238000000034 method Methods 0.000 description 59
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 24
- 239000004065 semiconductor Substances 0.000 description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- 238000000227 grinding Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 150000004767 nitrides Chemical class 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 239000012535 impurity Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 3
- 229910017855 NH 4 F Inorganic materials 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 125000001153 fluoro group Chemical group F* 0.000 description 3
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 3
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 3
- 239000012808 vapor phase Substances 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000007716 flux method Methods 0.000 description 2
- 229910000043 hydrogen iodide Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 238000010897 surface acoustic wave method Methods 0.000 description 2
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000004854 X-ray topography Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052795 boron group element Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- -1 nitride compound Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/20—Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/04—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
- H01L29/045—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
GaN基板は、GaN結晶のみで構成された基板である。C面GaN基板は商業的に生産されており、主にInGaN系発光デバイス(レーザダイオードおよび発光ダイオード)用の基板として使用されている。
一方、非極性または半極性GaN基板が、発光デバイスを含む窒化物半導体デバイスのための新たな基板として注目されている(非特許文献1)。
非極性GaN基板の中で特に注目されているのは、M面基板すなわち(10−10)基板である。半極性GaN基板の中で特に注目されているのは、(20−21)基板、(20−2−1)基板、(30−31)基板および(30−3−1)基板である。
故に、M面基板または(10−10)基板と呼ばれるGaN基板は、おもて面と平行または最も平行に近い低指数面がM面すなわち{10−10}であるGaN基板のことである。通常は、ミラー指数{hkml}における整数h、k、mおよびlの絶対値がいずれも3以下である結晶面が、低指数面とされる。
ただし、この方法で作製される非極性または半極性GaN基板は、細長い形状となり、主表面上におけるc軸の正射影の方向のサイズはmmオーダーである。なぜなら、C面GaNテンプレート上にHVPE法で安定的に成長させ得る、低転位密度のバルクGaN結晶の厚さはmmオーダーだからである。この方法では、2インチ基板(直径2インチの円盤形基板)のような大面積基板を得ることは不可能である。
図1を参照すると、4枚のタイルシード10が平坦面上に並べられて、ひとつの集合シードS10を構成している。HVPE法を用いると、図2に示すように、GaN結晶20を集合シードS10の主表面上に、該主表面の法線方向に成長させることができる。すなわち、複数のタイルシード10を一括して覆うGaN結晶20を成長させることができる(特許文献1および2)。
集合シード上に成長したGaN結晶が、円盤形のGaN基板に加工される。あるいは、このGaN結晶から再びシード基板が作製され、そのシード基板上に気相法でエピタキシャル成長させたGaN結晶が、円盤形のGaN基板に加工される。
OF)と呼ばれる平坦面が設けられる。
基板を平面視したとき、OFが設けられた部分では外周が直線となる。この外周が直線となった部分の長さを、OF長と呼ぶ。OF長について、直径が公称2インチ(約5cm)の基板であれば20mm未満、公称4インチ(約10cm)の基板であれば40mm未満、公称6インチ(約15cm)の基板であれば60mm未満であることが求められる。
本発明は、この問題を解決するために本発明者等が行った検討の過程で完成されたものであり、その主たる目的は、c軸に直交する方向の端部に結晶性の著しく低下した部分を有さない、直径が公称2インチ(約5cm)以上の非極性または半極性GaN基板を提供することにある。
(1)(0001)面に対し、傾斜角度が45°以上135°以下で、傾斜方向が<10−10>方向を中心とする±5°の範囲内の方向であるおもて面と、該おもて面とは反対側の主表面である裏面とを有する、直径45mm以上80mm以下の円盤形GaN基板であって、単一の単結晶領域から構成されているか、または、該おもて面上におけるc軸の正射影の方向に一列に並び、各々が該おもて面と該裏面の両方に露出する、複数の単結晶領域を含んでおり、さらに、当該基板の中心から見てc軸と直交する方向に位置する第1の点を当該基板の側面上に有し、該第1の点にX線(CuKα1:波長0.1542nm
)を入射して、回折X線の2θ角を{11−20}面のブラッグ角28.99°の2倍に固定しつつ入射X線の入射角θを変化させるθスキャンを行うことにより得られるX線回折パターンに、単一の回折ピークが現われることを特徴とするGaN基板。
(2)当該基板の外周に設けられた長さ20mm未満のオリエンテーション・フラットの上に、前記第1の点を有する、(1)に記載のGaN基板。
(3)(0001)面に対し、傾斜角度が45°以上135°以下で、傾斜方向が<10−10>方向を中心とする±5°の範囲内の方向であるおもて面と、該おもて面とは反対側の主表面である裏面とを有する、直径70mm以上の円盤形GaN基板であって、当該基板の中心から見てc軸と直交する方向に位置する第1の点を当該基板の側面上に有し、該第1の点にX線(CuKα1:波長0.1542nm)を入射して、回折X線の2θ角
を{11−20}面のブラッグ角28.99°の2倍に固定しつつ入射X線の入射角θを変化させるθスキャンを行うことにより得られるX線回折パターンに、単一の回折ピークが現われることを特徴とするGaN基板。
(4)直径が95mm以上105mm以下であり、前記おもて面上におけるc軸の正射影の方向に一列または二列に並ぶ複数の単結晶領域を含んでおり、該複数の単結晶領域の各々は前記おもて面および前記裏面の両方に露出している、(3)に記載のGaN基板。
(5)直径が105mm以下であり、当該基板の外周に設けられた長さ40mm未満のオリエンテーション・フラットの上に、前記第1の点を有する、(3)または(4)に記載のGaN基板。
(6)直径が145mm以上155mm以下であり、前記おもて面上におけるc軸の正射影の方向に二列または三列に並ぶ複数の単結晶領域を含んでおり、該複数の単結晶領域の各々は前記おもて面および前記裏面の両方に露出している、(3)に記載のGaN基板。(7)直径が145mm以上155mm以下であり、当該基板の外周に設けられた長さ60mm未満のオリエンテーション・フラットの上に、前記第1の点を有する、(3)または(6)に記載のGaN基板。
(8)前記回折ピークの半値幅が0.5°未満である、(1)〜(7)のいずれかに記載のGaN基板。
(9)前記おもて面と最も平行に近い低指数面が、{10−10}、{30−31}、{30−3−1}、{20−21}、{20−2−1}、{30−32}、{30−3−2}、{10−11}または{10−1−1}から選ばれるいずれかの結晶面である、(1)〜(8)のいずれかに記載のGaN基板。
(10)アルカリ金属およびハロゲンの濃度が1×1015cm-3未満、かつ450nmにおける吸収係数が2cm-1以下のGaN結晶を含む、(1)〜(9)のいずれかに記載のGaN基板。
(11)赤外吸収スペクトルの3100〜3500cm−1にガリウム空孔‐水素複合体(gallium vacancy‐hydrogen complex)に帰属するピークが観察されないGaN結晶を
含む、(1)〜(10)のいずれかに記載のGaN基板。
以下において、結晶軸、結晶面、結晶方位等に言及する場合には、特に断らない限り、GaN結晶の結晶軸、結晶面、結晶方位等を意味するものとする。
1.GaN基板
本発明のGaN基板は、GaN結晶のみから構成される。GaN結晶の導電率および導電型に限定はない。
GaN結晶は、アンドープでも弱いn型導電性を示すが、十分なn型キャリア濃度が必要な場合には、酸素(O)、ケイ素(Si)、ゲルマニウム(Ge)等を不純物として添加すればよい。GaN結晶にp型導電性を付与するために添加される不純物としては、マグネシウム(Mg)、亜鉛(Zn)等が知られている。GaN結晶を絶縁体とするために添加される不純物として、鉄(Fe)等が知られている。
HVPE法では、フラックス法やアモノサーマル法に比べ、所望しない不純物の濃度を低く抑えたGaN結晶を成長させることが容易である。
例えば、フラックス法では、アルカリ金属濃度が低減されたGaN結晶を得ることが課題となっている(特開2009−18961号公報)。アルカリ金属を鉱化剤に用いたアモノサーマル法においても同じである(特開2011−523931号公報)。それに対し、HVPE法で成長させたGaN結晶は、通常、リチウム(Li)、ナトリウム(Na)およびカリウム(K)を合わせたアルカリ金属濃度が1×1015cm-3未満となる。
更に、HVPE法で成長させたGaN結晶は、塩素、フッ素等のハロゲンの濃度も、通常、1×1015cm-3未満である。
アルカリ金属およびハロゲンの濃度は、ダイナミックSIMS(Secondary Ion Mass Spectroscopy)で測定することができる。GaN基板を構成する結晶中のアルカリ金属お
よびハロゲンの濃度が低いことは、その上に形成される窒化物半導体デバイスの信頼性向上にとって有利である。
その他、HVPE法で成長させたGaN結晶は、その赤外吸収スペクトルの3100〜3500cm−1に、ガリウム空孔−水素複合体(gallium vacancy‐hydrogen complex
)に帰属するピークが観察されない点においても、アモノサーマル法で成長させたGaN結晶と異なっている(国際公開WO2004/061923号)。
本発明のGaN基板は、おもて面を有する。おもて面とは、基板の2つの主表面のうち、半導体デバイスの形成や結晶のエピタキシャル成長に使用することが意図された面である。おもて面とは反対側の主表面は、裏面と呼ばれる。両方の主表面を、半導体デバイスの形成や結晶のエピタキシャル成長に使用できるように仕上げることも可能であり、その場合はいずれか一方の主表面がおもて面で、他方が裏面であるとみなせばよい。
本発明のGaN基板のおもて面と最も平行に近い低指数面は、{10−11}、{30−32}、{20−21}、{30−31}、{10−10}、{30−3−1}、{20−2−1}、{30−3−2}または{10−1−1}から選ばれるいずれかであり得る。これらの結晶面は、いずれも(0001)面に対する傾斜方向が<10−10>方向である。(0001)面に対する傾斜角度は、例えば、{10−11}が62°、{10−10}が90°、{10−1−1}が118°である。
図4(a)に示すように、基板の側面上の点Aが「第1の点」である場合、すなわち、基板の中心Cから見てc軸と直交する方向に位置する場合には、点Aと基板の中心Cを結ぶ直線ACが、基板の中心Cを通り[0001]に平行な直線と、基板の中心Cにおいて直角に交わる。
更に、図4(b)に示すように、基板の側面上の点Aが「第1の点」である場合、同じ基板の側面上の、基板の中心Cを挟んで点Aの反対側に位置する点A´、すなわち直線ACの延長線が基板の側面と交わる点も、「第1の点」に該当する。
例えば、(0001)面に対するおもて面の傾斜方向が<10−10>方向である場合には、「第1の点」とは、a軸に平行で基板の中心を通る直線と、基板の側面との交点である。
:波長0.1542nm)を入射して、回折X線の2θ角を{11−20}面のブラッグ角28.99°の2倍(2θyagg)に固定しつつ入射X線の入射角θを変化させるθス
キャンを行うことにより得られるX線回折パターンが、単一の回折ピークを示す点にある。
θスキャンにより得られるX線回折パターンとは、横軸を入射角、縦軸を回折強度とする座標平面に、θスキャンの結果をプロットして得られるパターンである。該パターンが単一の回折ピークを示すということは、すなわち、上記のθスキャンによって{11−20}面の方位が特定できる程度に、第1の点を含む基板端部における結晶品質が良好であることを意味している。
この回折ピークの半値幅(半値全幅)も、第1の点を含む基板端部における結晶品質の指標となる。結晶品質が良好である程、半値幅は狭くなるので、この回折ピークの半値幅は、好ましくは0.5°以下、より好ましくは0.4°以下、より好ましくは0.3°以下、より好ましくは0.2°以下である。
基板をおもて面側から見たとき、OFが設けられた部分では外周が直線となる。この直線の方向を、OFの方向と呼ぶとき、第1の点をOFの表面に有するGaN基板では、OFの方向と、おもて面上におけるc軸の正射影との、平行度が高いことが好ましい。OFの方向と、おもて面上におけるc軸の正射影とがなす角度の絶対値は、好ましくは1°以下、より好ましくは0.5°以下、より好ましくは0.2°以下である。
GaN基板の直径が公称4インチ(95〜105mm)の場合、OF長は40mm未満であることが求められる。
GaN基板の直径が公称6インチ(145〜155mm)の場合、OF長は60mm未満であることが求められる。
図6を参照して説明すると、タイリング法を用いた場合、図6(a)に示すように、集合シードS10の主表面上に成長するバルクGaN結晶20は、各タイルシード10の上方に形成される単結晶領域と、単結晶領域間の境界に存在する境界領域とを備えるものとなる。図6(a)では、境界領域を点線で表示している。
境界領域は単結晶領域に比べて結晶欠陥の密度が高いことから、GaN基板21のおもて面における境界領域の位置は、PLマッピングにより見つけられる場合がある。転位密
度が高い領域では、PL(フォトルミネッセンス)強度が相対的に低下するからである。
また、大抵の場合、隣接する単結晶領域の間では結晶方位が僅かに異なっており、境界領域において結晶方位が不連続となるため、X線トポグラフィ分析により境界領域を検知することが可能である。
このバルクGaN結晶30を、図7(b)に示すように、各境界領域が分断されるようにスライスすると、得られるGaN基板31においては、単結晶領域と境界領域のそれぞれがおもて面と裏面に露出する。
複数の単結晶領域がc軸の正射影の方向に沿って並ぶとは、その並んだ複数の単結晶領域から隣接する2つを任意に選んだとき、その2つの単結晶領域間の境界と、おもて面上におけるc軸の正射影とが、おもて面内において形成する角度が90°±10°の範囲内であることをいう。
図15に、4個の単結晶領域がおもて面上におけるc軸の正射影の方向に沿って一列に並んだ構造を備える、GaN(20−21)基板の斜視図を示す。
直径95〜105mmのGaN基板に含まれる複数の単結晶領域が、おもて面上におけるc軸の正射影の方向に沿って一列に並ぶ場合、該複数の単結晶領域の数は、好ましくは2〜8個、より好ましくは2〜4個である。
直径95〜105mmのGaN基板に含まれる複数の単結晶領域が、おもて面上におけるc軸の正射影の方向に沿って二列に並ぶ場合、各列に含まれる単結晶領域の数は、好ましくは2〜8個、より好ましくは2〜4個である。一方の列に含まれる単結晶領域の数と、他方の列に含まれる単結晶領域の数は、同じであってもよいし、異なっていてもよい。
図16に、8個の単結晶領域がおもて面上におけるc軸の正射影の方向に沿って二列に並んだ構造を備える、GaN(20−21)基板の斜視図を示す。この例では、各列に含まれる単結晶領域の数が4個である。
本発明のGaN基板は、窒化物半導体デバイスの製造に使用される。
窒化物半導体は、窒化物系III−V族化合物半導体、III族窒化物系化合物半導体、Ga
N系半導体、などとも呼ばれ、GaN(窒化ガリウム)を含む他に、GaNのGaの一部または全部が、他の周期表13族元素(B、Al、In等)に置換された化合物を含む。例えば、AlN、InN、AlGaN、AlInN、GaInN、AlGaInN等である。
窒化物半導体デバイスの具体例としては、発光ダイオード、レーザダイオードなどの発光デバイス、整流器、バイポーラトランジスタ、電界効果トランジスタ、HEMT(High
Electron Mobility Transistor)などの電子デバイス、温度センサ、圧力センサ、放射
線センサ、可視−紫外光検出器などの半導体センサ、SAW(Surface Acoustic Wave)
デバイス、振動子、共振子、発振器、MEMS(Micro Electro Mechanical System)部
品、電圧アクチュエータ、太陽電池などがある。
本発明のGaN基板は、シードの主表面上にバルクGaN結晶を成長させ、そのバルクGaN結晶を加工することにより製造することができる。
GaN結晶からなるタイルシードを複数集めて構成した集合シード、または、GaN基板が、シードとして用いられる。集合シードは、タイルシードを2つの異なる方向に並べて構成したものであってもよい。例えば、図8に示す集合シードS10は、方向Aと方向Bという2つの方向に並べられたタイルシード10で構成されている。
シード上にバルクGaN結晶を成長させる際には、HVPE法、MOVPE法のような気相成長法を用いる。好ましくはHVPE法を用いる。
特に重要なのは、シードの、c軸に直交する方向のサイズである。例えば、シードの主表面が、(0001)面に対してちょうど<10−10>方向に傾斜している場合、シードのc軸に直交する方向のサイズとは、a軸方向のサイズを意味する。
以下の説明では、便宜のために、「c軸に直交する方向」のことを「⊥c方向」と略称する。
本発明のGaN基板を製造するには、⊥c方向のサイズに余裕を持たせたシード上にバ
ルクGaN結晶を成長させ、そのバルクGaN結晶のうち、⊥c方向の端部を除いた部分を用いて、GaN基板を作製する。
具体的には、シードの⊥c方向のサイズは、製造すべきGaN基板の直径に好ましくは8mm以上、より好ましくは10mm以上、より好ましくは12mm以上を加えたサイズとする。そして、シード上に成長したバルクGaN結晶のうち、⊥c方向の各端部から好ましくは4mm以上、より好ましくは5mm以上、より好ましくは6mm以上離れた部分を、GaN基板の作製に用いる。
オリエンテーション・フラット(OF)となる部分を形成するための加工は、インゴットに対して行ってもよいし、あるいは、ウエハに対して行ってもよい。
それに対し、本発明のGaN基板の製造過程では、シード上に成長したバルクGaN結晶が⊥c方向の端部に有する結晶品質の低い部分が、インゴットまたはウエハに含まれないようにするので、前述の2ステップの加工によって、方位精度の高いOFを形成することが可能となる。
(態様1)
アモノサーマル法で成長させたGaN結晶からなる単結晶基板を、シードとして準備する。このシードは単一の単結晶領域からなり、2辺が⊥c方向に平行で他の2辺が⊥c方向に垂直な、矩形の主表面を有するものとする。該主表面の⊥c方向のサイズは58mm以上とし、⊥c方向に直交する方向のサイズは52mm以上とする。
かかるシードの主表面上に、HVPE法でバルクGaN結晶を成長させ、得られたバルクGaN結晶のうち、⊥c方向の末端から好ましくは4mm以上離れた部分を加工して、GaN基板を作製する。
得られるGaN基板は、単一の単結晶領域から構成されたものとなる。
シード基板として、それぞれがアモノサーマル法で成長させたGaN結晶からなる、3枚の単結晶基板を準備する。いずれも、単一の単結晶領域からなり、2辺が⊥c方向に平行で他の2辺が⊥c方向に垂直な、矩形の主表面を有するものとする。3枚のうち1枚は、主表面の⊥c方向のサイズを52mm、⊥c方向に直交する方向のサイズを52mm以
上とする。他の2枚は、主表面の⊥c方向のサイズを5〜10mm、⊥c方向に直交する方向のサイズを52mm以上とする。主表面の面方位は3枚とも同じである。
この3枚のシード基板(GaN単結晶基板)を、図17に示すように、⊥c方向に並べて、集合シードを構成する。その集合シード上に、HVPE法でバルクGaN結晶を成長させ、得られたバルクGaN結晶のうち、中央の大型単結晶基板上に成長した部分を加工して、GaN基板を作製する。
得られるGaN基板は、単一の単結晶領域から構成されたものとなる。
それぞれがアモノサーマル法で成長させたGaN結晶からなる、4枚の単結晶基板を準備する。いずれも、単一の単結晶領域からなり、2辺が⊥c方向に平行で他の2辺が⊥c方向に垂直な、矩形の主表面を有するものとする。いずれも、主表面の⊥c方向のサイズは58mm以上であり、⊥c方向に直交する方向のサイズは15mmである。主表面の面方位は4枚とも同じである。
この4枚の単結晶基板(タイルシード)を、その主表面上におけるc軸の正射影の方向に並べて集合シードを構成し、その集合シード上に、HVPE法でバルクGaN結晶を成長させる。得られたバルクGaN結晶のうち、⊥c方向の末端から好ましくは4mm以上離れた部分を加工して、GaN基板を作製する。
得られるGaN基板は、おもて面上におけるc軸の正射影の方向に一列に並んだ4個の単結晶領域を含むものとなる。
態様3で集合シード上に成長させたバルクGaN結晶をスライスして、2辺が⊥c方向に略平行で他の2辺が⊥c方向に略垂直な、略矩形の主表面を有するシード基板を作製する。このシード基板は、主表面の⊥c方向のサイズを58mm以上、⊥c方向に直交する方向のサイズを約60mmとする。集合シード上に成長したGaN結晶から作製されるので、このシード基板は、主表面上におけるc軸の正射影の方向に並んだ4個の単結晶領域を含む。
このシード基板の主表面上に、HVPE法でバルクGaN結晶を成長させ、得られたバルクGaN結晶のうち、⊥c方向の末端から好ましくは4mm以上離れた部分を加工して、GaN基板を作製する。
得られるGaN基板は、おもて面上におけるc軸の正射影の方向に一列に並んだ4個の単結晶領域を含むものとなる。
態様3で集合シード上に成長させたバルクGaN結晶を加工して、3枚のシード基板を準備する。いずれも、2辺が⊥c方向に平行で他の2辺が⊥c方向に垂直な、矩形の主表面を有するものとする。3枚のうち1枚は、主表面の⊥c方向のサイズを52mm、⊥c方向に直交する方向のサイズを約60mmとする。他の2枚は、主表面の⊥c方向のサイズを5〜10mm、⊥c方向に直交する方向のサイズを約60mmとする。主表面の面方位は3枚とも同じである。また、3枚とも同じ集合シード上に成長したGaN結晶から作製されるので、主表面上におけるc軸の正射影の方向に並んだ4個の単結晶領域を含む。
この3枚のシード基板を図18に示すように並べて、集合シードを構成する。その集合シード上に、HVPE法でバルクGaN結晶を成長させ、得られたバルクGaN結晶のうち、中央の大型シード基板上に成長した部分を加工して、GaN基板を作製する。
得られるGaN基板は、おもて面上におけるc軸の正射影の方向に一列に並んだ4個の単結晶領域を含むものとなる。
以下では、本発明者等が行った実験の結果について説明する。
4.1.M面GaN基板の作製(その1)
以下に述べる手順で、M面GaN基板を作製した。作製したM面GaN基板は、直径50mmの円盤形基板である。
[1]タイルシードの作製
C面サファイア基板の表面にMOVPE法でGaN膜をエピタキシャル成長させてなるGaNテンプレートを準備した。その上に、HVPE法によって、c軸配向したバルクGaN結晶を成長させた。このバルクGaN結晶をスライスして、C面GaN基板を作製した。次の工程でエピタキシャル成長の下地面として用いるために、このC面GaN基板の窒素極性面をラッピングおよびCMPにより平坦化した。
原料には多結晶GaNを用い、鉱化剤にはフッ化アンモニウム(NH4F)およびヨウ
化水素(HI)を用いた。NH4FおよびHIの仕込み量は、NH3に対するフッ素原子のモル比が0.5〜1.5%、NH3に対するヨウ素原子のモル比が1.5〜3.5%とな
るように、かつ、ヨウ素原子に対するフッ素原子のモル比が0.2〜0.5となるように決定した。
前記成長マスクを窒素極性面上に設けたC面GaN基板を成長容器内に設置し、上記条件下でトータル100日間の結晶成長を行うことにより(途中、原料が消費されたら成長容器を交換して、再成長を行った)、m軸方向を厚さ方向とする板状で、c軸方向に最大で20mmの寸法を有するGaN結晶を得ることができた。
次いで、このM面GaN基板をシードに用いて、再びアモノサーマル法でGaN結晶を成長させた。この2回目のアモノサーマル成長では、NH4FおよびHIの仕込み量を、
NH3に対するフッ素原子とヨウ素原子のモル比が、それぞれ0.5%および1.5%と
なるようにし、成長容器内の平均温度を600〜611℃、結晶成長ゾーンと原料溶解ゾーンの温度差を9〜13℃、成長容器内の圧力を200〜220MPaとした。
タイルシードの主表面の面方位はM面とし、主表面の長辺はa軸に平行、短辺はc軸に平行とした。
タイルシードのサイズは、a軸方向52mm、c軸方向5〜15mm、m軸方向約330μmとした。
タイルシードのおもて面は、ラッピングとCMPにより平坦化した。
前記[1]で作製したタイルシードを、HVPE装置のサセプター上にc軸方向に一列に並べて、集合シードを構成した。並べる際、隣接するタイルシード間では、一方の[0001]側の側面と他方の[000−1]側の側面とが接するようにした。
次いで、この集合シード上に、窒素ガスをキャリアガスに用いて塩化ガリウムとアンモ
ニアを供給し、成長温度1050℃で、GaN結晶をm軸方向に5mm成長させた。
次の工程では、この角型M面GaN基板をシード基板に用いて、更にバルクGaN結晶を成長させた。
前記[2]で作製した角型M面GaN基板をシード基板に用いて、再びHVPE法でバルクGaN結晶を成長させた。成長条件は、先に集合シード上にGaN結晶を成長させたときと同じとした。
得られたバルクGaN結晶を加工して、直径50mm、厚さ約300μmの円盤形M面GaN基板を作製した。
次いで、そのウエハのa軸方向(=⊥c方向)の端部から一部分を回転ブレードで切り落として、オリエンテーョン・フラット(OF)を形成した。OF形成工程の詳細については後述する。
次いで、ウエハ表面のダメージ層をエッチングにより除去し、更に、主表面の一方にグラインディング、ラッピングおよびCMPを順次施して、M面GaN基板を完成させた。
前記4.1.[3]で、ウエハにオリエンテーション・フラット(OF)を形成する際には、図9に示すように、まず第1ステップでウエハの外周部の一部を浅く切り落として仮OFを形成し、次いで、その仮OFの方位をX線回折により調べ、続く第2ステップで、仮OFの方位を基準として方位を修正した最終OFを形成する予定であった。
ところが、実際には、仮OFの方位をX線回折により特定することができなかったため、方位精度の高い最終OFを形成することができなかった。
回折X線の2θ角を{11−20}面のブラッグ角28.99°の2倍に固定しつつ入射X線の入射角θを変化させるθスキャンを行った。そして、θスキャンの結果を、横軸を入射角、縦軸を回折強度とする座標平面にプロットした。しかし、得られたX線回折パターンに全くピークが現われなかったため、仮OFの方位を特定することができなかった。
前記4.2.で述べたように、仮OFの表面では{11−20}面のX線回折ピークが得られなかった。その原因について、本発明者等は、前記4.1.[3]で成長させたバルクGaN結晶が、⊥c方向の端部に結晶品質の低い部分を含んでおり、仮OFを形成したのがその結晶品質の低い部分だったからであるという仮説を立てた。
本発明者等は、この仮説を検証するために、更に、以下に述べる実験を行った。
前記4.1.[1]〜[2]と同様の手順で、主表面のサイズが52mm×52mmの角型M面GaN基板を作製した。次いで、この角型M面GaN基板上に、窒素ガスをキャリアガスに用いて塩化ガリウムとアンモニアを供給し、成長温度1050℃でGaN結晶
を成長させることにより、前記4.1.[3]で円盤形GaN基板の素材に用いたものと同品質のバルクGaN結晶を得た。
本実験では、このバルクGaN結晶をM面に平行にスライスして、厚さ約300μmの板状試験片を作製した。試験片のa軸方向(=⊥c方向)のサイズは55mmであった。試験片のa軸方向の端にある側面(試験片の中心から見て⊥c方向に位置する側面)はアズグロン表面であった。
最初に、試験片のa軸方向の端にある側面にX線を入射したときに、{11−20}面のX線回折ピークが得られるかどうかを調べた。測定には、(株)リガク製の「自動X線結晶方位測定装置 FSAS III」を用いた。
具体的には、試験片の該側面に、入射方向が試験片の主表面と平行となるようにX線(CuKα1:波長0.1542nm)を入射し、回折X線の2θ角を{11−20}面の
ブラッグ角28.99°の2倍に固定しつつ入射X線の入射角θを変化させるθスキャンを行った。スキャンは、入射角が略ブラッグ角となる角度を中心に、その前後±5°の範囲で行った。
θスキャンの結果を、横軸を入射角、縦軸を回折強度とする座標平面にプロットして、X線回折パターンを得た。
図11に示すX線回折パターンには、回折ピークが全く現れておらず、結晶品質が低いことが分る。注記すると、図11のX線回折パターンの、θ=1°〜θ=4°の範囲に見られるピーク様形状は、スキャン方向を180°反転させて取得したX線回折パターンにおいても同じ位置に現われたことから、回折ピークではないことが確認された。
その結果、研削長3mmのときには、新しく現われた表面においても、アズグロン表面と同様、X線回折パターンに回折ピークが認められなかったが、研削長4mmでは、半値幅0.64°で肩のある回折ピークがひとつだけX線回折パターンに現われた。
なお、実験結果にはバラツキがあり、研削長が6mmを超えたときに初めて、X線回折パターンに回折ピークが現われる試験片もあった。
回折ピークの半値幅は、研削長とともに減少した後、所定値に収束する傾向があった。
この結果から、仮説通り、前記4.1.[3]で成長させたバルクGaN結晶は、a軸方向(=⊥c方向)の端部、具体的には、a軸方向の末端からの距離が6mmまでの部分に、結晶品質の著しく低い部分を含んでいたと考えられた。
本検証実験の結果から、M面GaN基板に設けるOFの位置を⊥c方向の端部とする場合には、出発素材であるバルクGaN結晶の⊥c方向の末端から、好ましくは4mm以上、より好ましくは5mm以上、より好ましくは6mm以上離れた位置に、仮OFを形成すればよいことが分る。
かかる位置に形成した仮OFの方位はX線回折により特定できるので、それを基準に用いて、方位精度の高い最終OFを形成することが可能となる。その最終OFの方位も、X線回折により精密に評価することが可能である。
詳しくいうと、図14に示すように、⊥c方向のサイズが、取得すべきGaN基板の直径より好ましくは8mm、好ましくは10mm以上、より好ましくは12mm以上大きなバルクGaN結晶を成長させる。そして、そのバルクGaN結晶のうち、⊥c方向の末端から好ましくは4mm以上、より好ましくは5mm以上、より好ましくは6mm以上離れた部分(図14において、二つの破線に挟まれた部分)のみを用いて、GaN基板を作製する。そうすれば、得られるGaN基板は、⊥c方向のいずれの端部にも、結晶品質の著しく低い部分を有さないものとなる。
このようなバルクGaN結晶を歩留りよく成長させるためには、主表面の⊥c方向のサイズが、取得すべきGaN基板の直径より好ましくは8mm、より好ましくは10mm以上、より好ましくは12mm以上大きなシードを用いればよいと考えられる。
前記4.1.[1]に記した手順と同じ手順により、M面に平行な長方形の主表面を有し、その長辺がa軸に平行、短辺がc軸に平行であるタイルシードを作製した。
このタイルシードを、HVPE装置のサセプター上にc軸方向に一列に並べて集合シードを構成し、その上にHVPE法でバルクGaN結晶を成長させた。
次いで、この角型M面GaN基板をシード基板に用いてバルクGaN結晶を成長させ、そのバルクGaN結晶を加工して、2辺がa軸に平行で他の2辺がc軸に平行な矩形の主表面を有する、角型M面GaN基板を作製した。この基板のa軸方向のサイズは55.1mmであった。
このバルクGaN結晶のうち、a軸方向の各末端から7mm以上離れた部分のみを用いて、直径40mmの円盤形M面GaN基板を作製した。
作製したM面GaN基板の側面上の、基板の中心から見てa軸方向(=⊥c方向)に位置する点に、入射方向が主表面と平行となるようにX線(CuKα1:波長0.1542
nm)を入射して、回折X線の2θ角を{11−20}面のブラッグ角28.99°の2倍に固定しつつ入射X線の入射角θを変化させるθスキャンを行った。基板の中心を挟んで向かい合う2つの点で行ったθスキャンから取得したX線回折パターンを、図19(a)および(b)にそれぞれ示す。図19(a)および(b)から分かるように、各点での測定から得たX線回折パターンに単一の回折ピークが認められ、その半値幅は0.15°であった。
最初に作製するC面GaN基板のサイズを大きくしたこと以外は前記4.1.[1]と同じ手順により、M面に平行な長方形の主表面を有し、その長辺がa軸に平行、短辺がc軸に平行であるタイルシードを作製した。得られたタイルシードは、主表面のa軸方向のサイズが60mmであった。
このタイルシードを、HVPE装置のサセプター上にc軸方向に一列に並べて集合シードを構成し、その上に窒素ガスをキャリアガスに用いて塩化ガリウムとアンモニアを供給し、成長温度1050℃でバルクGaN結晶を成長させた。得られたバルクGaN結晶は、厚さが約5mmで、a軸方向のサイズは62mm、c軸方向のサイズは52mm超であった。
該M面GaNウエハのa軸方向(=⊥c方向)の端にある側面に、入射面が主表面と平行となるようにX線(CuKα1:波長0.1542nm)を入射して、回折X線の2θ
角を{11−20}面のブラッグ角28.99°の2倍に固定しつつ入射X線の入射角θを変化させるθスキャンを行った。該θスキャンから取得したX線回折パターンを、図20に示す。
図20に示す通り、得られたX線回折パターンには、回折ピークを見出すことができなかった。上記M面GaNウエハの、a軸方向の他方端側の側面にて同様の測定を行って得たX線回折パターンにも、回折ピークは現れなかった。
この新たに形成した側面に、入射面が該M面GaNウエハの主表面と平行となるようにX線(CuKα1:波長0.1542nm)を入射して、回折X線の2θ角を{11−2
0}面のブラッグ角28.99°の2倍に固定しつつ入射X線の入射角θを変化させるθスキャンを行った。上記新たに形成した側面の各々におけるθスキャンから取得したX線回折パターンを、図21(a)および(b)にそれぞれ示す。
図21(a)および(b)から分かるように、各側面での測定から得たX線回折パターンに単一の回折ピークが認められ、半値幅は0.16°であった。
この結果は、c軸に直交する方向の端部に結晶性の著しく低下した部分を有さない、直径54mmの円盤形基板を、上記バルクGaN結晶から切り出し得ることを示している。
S10 集合シード
20 バルクGaN結晶
21 GaN基板
S21 シード基板
30 バルクGaN結晶
31 GaN基板
Claims (7)
- (0001)面に対し、傾斜角度が45°以上135°以下で、傾斜方向が<10−10>方向を中心とする±5°の範囲内の方向であるおもて面と、該おもて面とは反対側の主表面である裏面と、当該基板の中心から見て⊥c方向に位置する第1の側面と、を有するGaN基板であって、
該おもて面または裏面の面方位とのズレが10°以下の主表面を持つGaNシードの該主表面上に成長したバルクGaN結晶で形成されており、
該第1の側面にX線を入射したときに{11−20}面のX線回折ピークが得られることを特徴とするGaN基板。 - 前記第1の側面にX線を入射したときに得られる{11−20}面のX線回折ピークが、X線としてCuKα 1 を用い回折X線の2θ角を{11−20}面のブラッグ角の2倍に固定しつつ入射X線の入射角θを変化させるθスキャンを行うことにより得られる回折ピークである、請求項1に記載のGaN基板。
- 前記第1の側面とは反対側に第2の側面を有し、該第2の側面にX線を入射したときに{11−20}面のX線回折ピークが得られる、請求項1または2に記載のGaN基板。
- 前記第2の側面にX線を入射したときに得られる{11−20}面のX線回折ピークが、X線としてCuKα 1 を用い回折X線の2θ角を{11−20}面のブラッグ角の2倍に固定しつつ入射X線の入射角θを変化させるθスキャンを行うことにより得られる回折ピークである、請求項3に記載のGaN基板。
- 前記おもて面が略矩形である、請求項1〜4のいずれか一項に記載のGaN基板。
- 前記バルクGaN結晶は、アルカリ金属およびハロゲンの濃度が1×10 15 cm -3 未満かつ450nmにおける吸収係数が2cm -1 以下である、請求項1〜5のいずれか一項に記載のGaN基板。
- 前記バルクGaN結晶の赤外吸収スペクトルの3100〜3500cm −1 には、ガリウム空孔−水素複合体(gallium vacancy‐hydrogen complex)に帰属するピークが観察さ
れない、請求項1〜6のいずれか一項に記載のGaN基板。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014254462 | 2014-12-16 | ||
JP2014254462 | 2014-12-16 | ||
JP2015010670 | 2015-01-22 | ||
JP2015010670 | 2015-01-22 | ||
JP2015140702 | 2015-07-14 | ||
JP2015140702 | 2015-07-14 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016512147A Division JP5950070B1 (ja) | 2014-12-16 | 2015-11-18 | GaN基板 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2017019709A JP2017019709A (ja) | 2017-01-26 |
JP2017019709A5 JP2017019709A5 (ja) | 2018-11-29 |
JP6597481B2 true JP6597481B2 (ja) | 2019-10-30 |
Family
ID=56126416
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016512147A Active JP5950070B1 (ja) | 2014-12-16 | 2015-11-18 | GaN基板 |
JP2016104578A Active JP6597481B2 (ja) | 2014-12-16 | 2016-05-25 | GaN基板 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016512147A Active JP5950070B1 (ja) | 2014-12-16 | 2015-11-18 | GaN基板 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10612161B2 (ja) |
JP (2) | JP5950070B1 (ja) |
WO (1) | WO2016098518A1 (ja) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9564320B2 (en) | 2010-06-18 | 2017-02-07 | Soraa, Inc. | Large area nitride crystal and method for making it |
KR102335452B1 (ko) * | 2015-06-16 | 2021-12-07 | 서울바이오시스 주식회사 | 발광 소자 |
JP7084123B2 (ja) * | 2017-11-06 | 2022-06-14 | 古河機械金属株式会社 | Iii族窒化物半導体基板 |
CN108922849B (zh) * | 2018-07-13 | 2019-07-12 | 苏州汉骅半导体有限公司 | 半导体结构制造方法 |
US11466384B2 (en) | 2019-01-08 | 2022-10-11 | Slt Technologies, Inc. | Method of forming a high quality group-III metal nitride boule or wafer using a patterned substrate |
US11195973B1 (en) * | 2019-05-17 | 2021-12-07 | Facebook Technologies, Llc | III-nitride micro-LEDs on semi-polar oriented GaN |
EP3978656A4 (en) * | 2019-05-30 | 2022-08-10 | Mitsubishi Chemical Corporation | GAN SUBSTRATE WAFER AND PROCESS FOR ITS MANUFACTURE |
US11175447B1 (en) | 2019-08-13 | 2021-11-16 | Facebook Technologies, Llc | Waveguide in-coupling using polarized light emitting diodes |
US11721549B2 (en) | 2020-02-11 | 2023-08-08 | Slt Technologies, Inc. | Large area group III nitride crystals and substrates, methods of making, and methods of use |
CN115104175A (zh) * | 2020-02-11 | 2022-09-23 | Slt科技公司 | 大面积iii族氮化物晶体和衬底、制备方法和使用方法 |
CN115104174A (zh) | 2020-02-11 | 2022-09-23 | Slt科技公司 | 改进的iii族氮化物衬底、制备方法和使用方法 |
US12091771B2 (en) | 2020-02-11 | 2024-09-17 | Slt Technologies, Inc. | Large area group III nitride crystals and substrates, methods of making, and methods of use |
US20240183065A1 (en) * | 2022-12-01 | 2024-06-06 | Bae Systems Information And Electronic Systems Integration Inc. | METHOD OF PRODUCING LARGE GaAs AND GaP INFRARED WINDOWS |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7053413B2 (en) * | 2000-10-23 | 2006-05-30 | General Electric Company | Homoepitaxial gallium-nitride-based light emitting device and method for producing |
JP4915128B2 (ja) | 2005-04-11 | 2012-04-11 | 日亜化学工業株式会社 | 窒化物半導体ウエハ及びその製造方法 |
US20100163931A1 (en) * | 2006-03-20 | 2010-07-01 | Kanagawa Academy Of Science And Technology | Group iii-v nitride layer and method for producing the same |
JP5332168B2 (ja) | 2006-11-17 | 2013-11-06 | 住友電気工業株式会社 | Iii族窒化物結晶の製造方法 |
JP5040977B2 (ja) * | 2009-09-24 | 2012-10-03 | 住友電気工業株式会社 | 窒化物半導体基板、半導体装置およびそれらの製造方法 |
JP5445105B2 (ja) * | 2009-12-18 | 2014-03-19 | 三菱化学株式会社 | Iii族窒化物結晶の製造方法及びiii族窒化物結晶 |
JP5821164B2 (ja) * | 2010-04-27 | 2015-11-24 | 住友電気工業株式会社 | GaN基板および発光デバイス |
US8253162B2 (en) | 2010-04-27 | 2012-08-28 | Sumitomo Electric Industries, Ltd. | GaN substrate and light-emitting device |
US9564320B2 (en) * | 2010-06-18 | 2017-02-07 | Soraa, Inc. | Large area nitride crystal and method for making it |
JP5808208B2 (ja) * | 2011-09-15 | 2015-11-10 | 株式会社サイオクス | 窒化物半導体基板の製造方法 |
US8471366B2 (en) * | 2011-11-30 | 2013-06-25 | Sumitomo Electric Industries, Ltd. | Nitride semiconductor substrate |
JP2014043388A (ja) * | 2012-07-31 | 2014-03-13 | Mitsubishi Chemicals Corp | 第13族窒化物結晶の製造方法 |
JP2014028720A (ja) * | 2012-07-31 | 2014-02-13 | Mitsubishi Chemicals Corp | 第13族窒化物基板 |
JP2014118323A (ja) * | 2012-12-17 | 2014-06-30 | Mitsubishi Chemicals Corp | 周期表第13族金属窒化物半導体結晶の製造方法及び周期表第13族金属窒化物半導体結晶 |
-
2015
- 2015-11-18 WO PCT/JP2015/082439 patent/WO2016098518A1/ja active Application Filing
- 2015-11-18 JP JP2016512147A patent/JP5950070B1/ja active Active
-
2016
- 2016-05-25 JP JP2016104578A patent/JP6597481B2/ja active Active
-
2017
- 2017-06-16 US US15/625,019 patent/US10612161B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20170362739A1 (en) | 2017-12-21 |
US10612161B2 (en) | 2020-04-07 |
JPWO2016098518A1 (ja) | 2017-04-27 |
WO2016098518A1 (ja) | 2016-06-23 |
JP2017019709A (ja) | 2017-01-26 |
JP5950070B1 (ja) | 2016-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6597481B2 (ja) | GaN基板 | |
US10655244B2 (en) | GaN substrate, method for producing GaN substrate, method for producing GaN crystal, and method for manufacturing semiconductor device | |
US10301745B2 (en) | Large area, low-defect gallium-containing nitride crystals, method of making, and method of use | |
JP7347555B2 (ja) | 導電性C面GaN基板 | |
US20110215440A1 (en) | Method of Manufacturing III Nitride Crystal, III Nitride Crystal Substrate, and Semiconductor Device | |
CN109563641B (zh) | GaN结晶生长方法和C面GaN基板 | |
JP6292080B2 (ja) | 非極性または半極性GaN基板 | |
JP6885547B2 (ja) | GaN結晶の製造方法 | |
TW201512472A (zh) | 自立GaN基板、GaN結晶、GaN單結晶之製造方法及半導體裝置之製造方法 | |
US20150093318A1 (en) | Periodic table group 13 metal nitride crystals and method for manufacturing periodic table group 13 metal nitride crystals | |
JP6759831B2 (ja) | C面GaN基板 | |
WO2021002349A1 (ja) | バルクGaN結晶、c面GaNウエハおよびバルクGaN結晶の製造方法 | |
JP7074168B2 (ja) | C面GaN基板 | |
US11236439B2 (en) | Non-polar or semi-polar GaN wafer | |
JP2017088430A (ja) | GaNウエハ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20170424 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181012 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181012 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190612 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190618 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190903 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190916 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6597481 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |