JP6595581B2 - 電気化学反応単位および燃料電池スタック - Google Patents

電気化学反応単位および燃料電池スタック Download PDF

Info

Publication number
JP6595581B2
JP6595581B2 JP2017508394A JP2017508394A JP6595581B2 JP 6595581 B2 JP6595581 B2 JP 6595581B2 JP 2017508394 A JP2017508394 A JP 2017508394A JP 2017508394 A JP2017508394 A JP 2017508394A JP 6595581 B2 JP6595581 B2 JP 6595581B2
Authority
JP
Japan
Prior art keywords
air electrode
current collector
bonding layer
coat
electrochemical reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017508394A
Other languages
English (en)
Other versions
JPWO2016152923A1 (ja
Inventor
吉晃 佐藤
誠 栗林
朋来 村田
貴宏 桝本
智雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Publication of JPWO2016152923A1 publication Critical patent/JPWO2016152923A1/ja
Application granted granted Critical
Publication of JP6595581B2 publication Critical patent/JP6595581B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0236Glass; Ceramics; Cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Fuel Cell (AREA)

Description

本明細書によって開示される技術は、電気化学反応単位に関する。
水素と酸素との電気化学反応を利用して発電を行う燃料電池の種類の1つとして、固体酸化物を含む電解質層を備える固体酸化物形の燃料電池(以下、「SOFC」ともいう)が知られている。SOFCの発電の最小単位である燃料電池発電単位(以下、単に「発電単位」ともいう)は、電解質層と電解質層を挟んで互いに対向する空気極および燃料極とを含む単セルと、単セルで発生した電力を集めるために単セルの空気極側および燃料極側のそれぞれに配置される導電性の集電部材とを備える。一般に、単セルの空気極側に配置される集電部材は、空気極に向けて突出する突出部を有する。空気極と集電部材の突出部とが導電性の接合層によって接合されることにより、空気極と集電部材とが電気的に接続される。
単セルの空気極側に配置される集電部材は、例えば、フェライト系ステンレスのようなCr(クロム)を含む金属により形成される。このような集電部材が、SOFCの作動中に例えば摂氏700度から1000度程度の高温の雰囲気にさらされると、集電部材の表面からCrが放出されて拡散する「Cr拡散」と呼ばれる現象が発生することがある。Cr拡散が発生すると、集電部材がCr欠乏によって異常酸化したり、拡散したCrが空気極の表面に付着して空気極での電極反応速度が低下する「空気極のCr被毒」と呼ばれる現象が発生したりすることがあるため、好ましくない。Cr拡散を抑制するため、集電部材の表面を導電性のコートによって覆う技術が知られている(例えば特許文献1参照)。
特開2011−99159号公報
集電部材の突出部における角部は、突出部における角部以外の部分と比較して、より多くの表面を有している。また、突出部を覆うコートの厚さは、突出部における角部の位置で薄くなりやすい。そのため、集電部材の突出部における角部では、突出部における角部以外の部分と比較して、Cr拡散が発生しやすい。そのため、上記従来技術のように、単に集電部材の表面をコートによって覆うだけでは、集電部材の突出部における角部からのCr拡散を十分に抑制できないという問題がある。
なお、このような問題は、水の電気分解反応を利用して水素の生成を行う固体酸化物形の電解セル(以下、「SOEC」ともいう)の最小単位である電解セル単位にも共通の課題である。なお、本明細書では、発電単位と電解セル単位とをまとめて電気化学反応単位と呼ぶ。
本明細書では、上述した課題を解決することが可能な技術を開示する。
本明細書に開示される技術は、例えば、以下の形態として実現することが可能である。
(1)本明細書に開示される電気化学反応単位は、固体酸化物を含む電解質層と、前記電解質層を挟んで第1の方向に互いに対向する空気極および燃料極と、を含む単セルと、前記単セルの前記空気極の側に配置され、前記空気極に向けて突出する突出部を有する集電部材と、前記集電部材の表面を覆う導電性のコートと、前記コートに覆われた前記突出部と前記空気極とを接合する導電性の接合層と、を備える電気化学反応単位において、前記突出部の前記第1の方向に平行なすべての断面において、前記コートに覆われた前記突出部の角部が前記接合層に覆われていることを特徴とする。本電気化学反応単位によれば、集電部材の突出部の角部が全周にわたって接合層に覆われるため、多くの表面を有し、かつ、コートが薄くなりやすいためにCr拡散が発生しやすい突出部の角部からのCr拡散を効果的に抑制することができる。
(2)上記電気化学反応単位において、前記集電部材は、前記突出部を複数有し、複数の前記突出部のそれぞれについての前記第1の方向に平行なすべての断面において、前記コートに覆われた前記突出部の前記角部が前記接合層に覆われている構成としてもよい。本電気化学反応単位によれば、集電部材における複数の突出部のそれぞれの角部が全周にわたって接合層に覆われるため、突出部の角部からのCr拡散をより効果的に抑制することができる。
(3)上記電気化学反応単位において、前記コートと前記接合層とは、スピネル型酸化物により形成されていることを特徴とする構成としてもよい。本電気化学反応単位によれば、コートに加えて接合層もCr拡散抑制効果の高いスピネル型酸化物により形成されているため、集電部材の突出部の角部からのCr拡散を一層効果的に抑制することができる。また、コートや接合層を例えばペロブスカイト型酸化物等の他の材料によって形成する場合と比較して、熱処理温度を下げることができるため、その点からも集電部材の突出部の角部からのCr拡散を一層効果的に抑制することができる。さらに、コートと接合層とが共にスピネル型酸化物により形成されているため、コートと接合層との熱膨張差を低減することができ、熱膨張差によるコートと接合層との界面でのクラック発生を抑制することができる。また、コートや接合層を他の材料によって形成する場合と比較して、コートや接合層の導電抵抗を低くすることができる。
(4)上記電気化学反応単位において、前記コートと前記接合層とは、ZnとMnとCoとCuとの少なくとも1つを含むスピネル型酸化物により形成されていることを特徴とする構成としてもよい。本電気化学反応単位によれば、ZnとMnとCoとCuとの少なくとも1つを含むスピネル型酸化物は、長期間、比較的高温環境におかれてもスピネル構造を維持しやすい材料であるため、コートと接合層とがそのようなスピネル型酸化物により形成されていると、集電部材の突出部の角部からのCr拡散を抑制する効果や導電抵抗を低くできる効果を長期間維持することができる。
(5)上記電気化学反応単位において、前記コートと前記接合層とは、主成分元素が互いに同一であるスピネル型酸化物により形成されていることを特徴とする構成としてもよい。本電気化学反応単位によれば、コートと接合層とが主成分元素が互いに同一であるスピネル型酸化物により形成されているため、コートと接合層との熱膨張差をより小さくすることができ、熱膨張差によるコートと接合層との界面でのクラック発生をより効果的に抑制することができる。
(6)上記電気化学反応単位において、前記突出部の前記第1の方向に平行なすべての断面における、前記突出部の前記角部における前記空気極に最も近い点と前記空気極の表面とを最短距離で結ぶ線分上において、前記接合層の平均厚さが前記コートの平均厚さより厚く、前記コートの気孔率<前記接合層の気孔率という関係を満たすことを特徴とする構成としてもよい。本電気化学反応単位によれば、コートより気孔率の高い接合層の平均厚さがコートの平均厚さより厚いため、応力を緩衝する効果をより大きく得ることができ、コートと接合層との界面でのクラック発生をより効果的に抑制することができる。
なお、本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、燃料電池発電単位、複数の燃料電池発電単位を備える燃料電池スタック、燃料電池スタックを備える発電モジュール、発電モジュールを備える燃料電池システム、電解セル単位、複数の電解セル単位を備える電解セルスタック、電解セルスタックを備える水素生成モジュール、水素生成モジュールを備える水素生成システム等の形態で実現することが可能である。
燃料電池スタック100の構成を概略的に示す外観斜視図である。 発電単位102の構成を概略的に示す説明図(XZ断面図)である。 発電単位102の構成を概略的に示す説明図(YZ断面図)である。 発電単位102の構成を概略的に示す説明図(XY断面図)である。 発電単位102の構成を概略的に示す説明図(XY断面図)である。 空気極側集電体134の周りの構成を示す説明図である。 変形例における空気極側集電体134aの周りの構成を示す説明図である。 他の変形例における空気極側集電体134bの周りの構成を示す説明図である。 他の変形例における空気極側集電体134cの周りの構成を示す説明図である。 他の変形例における空気極側集電体134dの周りの構成を示す説明図である。 他の変形例における空気極側集電体134eの周りの構成を示す説明図である。 他の変形例における燃料電池スタックの構成を概略的に示す説明図である。 他の変形例における燃料電池スタックを構成する燃料電池セル1の構成を概略的に示す説明図である。 図12および図13に示した他の変形例の燃料電池スタックにおける集電体20の詳細構成を示す説明図である。 図12および図13に示した他の変形例の燃料電池スタックにおける集電体20の詳細構成を示す説明図である。 図12および図13に示した他の変形例の燃料電池スタックにおける集電体20の変形例を示す説明図である。
A.実施形態:
A−1.装置の基本構成:
(燃料電池スタック100の構成)
図1は、燃料電池スタック100の構成を概略的に示す外観斜視図である。図1には、方向を特定するための互いに直交するXYZ軸を示している。本明細書では、便宜的に、Z軸正方向を上方向と呼び、Z軸負方向を下方向と呼ぶものとするが、燃料電池スタック100がそのような向きとは異なる向きで設置されてもよい。図2以降についても同様である。
燃料電池スタック100は、所定の配列方向(本実施形態では上下方向)に並べて配置された複数の燃料電池発電単位(以下、単に「発電単位」ともいう)102と、複数の発電単位102を上下から挟むように配置された一対のエンドプレート104,106とを備える。図1に示す燃料電池スタック100に含まれる発電単位102の個数は、あくまで一例であり、発電単位102の個数は燃料電池スタック100に要求される出力電圧等に応じて適宜決められる。なお、上記配列方向(上下方向)は第1の方向に相当する。
燃料電池スタック100のZ方向回りの周縁部には、上側のエンドプレート104から下側のエンドプレート106にわたって上下方向に延びる複数の(本実施形態では8つの)貫通孔108が形成されている。各貫通孔108に挿入されたボルト22とボルト22にはめられたナット24とによって、燃料電池スタック100を構成する各層は締め付けられて固定されている。
各ボルト22の軸部の外径は各貫通孔108の内径より小さい。そのため、各ボルト22の軸部の外周面と各貫通孔108の内周面との間には、空間が確保されている。燃料電池スタック100のZ方向回りの外周における1つの辺(Y軸に平行な2つの辺の内のX軸正方向側の辺)の中点付近に位置するボルト22(ボルト22A)と貫通孔108とにより形成された空間は、各発電単位102に酸化剤ガス(各図において「OG」と表す)を供給する酸化剤ガス供給マニホールド161として機能し、該辺の反対側の辺(Y軸に平行な2つの辺の内のX軸負方向側の辺)の中点付近に位置するボルト22(ボルト22B)と貫通孔108とにより形成された空間は、各発電単位102から未反応の酸化剤ガス(以下、「酸化剤オフガス」といい、各図において「OOG」と表す)を排出する酸化剤ガス排出マニホールド162として機能する(図2参照)。また、燃料電池スタック100のZ方向回りの外周における他の辺(X軸に平行な2つの辺の内のY軸正方向側の辺)の中点付近に位置するボルト22(ボルト22D)と貫通孔108とにより形成された空間は、各発電単位102に燃料ガス(各図において「FG」と表す)を供給する燃料ガス供給マニホールド171として機能し、該辺の反対側の辺(X軸に平行な2つの辺の内のY軸負方向側の辺)の中点付近に位置するボルト22(ボルト22E)と貫通孔108とにより形成された空間は、各発電単位102から未反応の燃料ガス(以下、「燃料オフガス」といい、各図において「OFG」と表す)を排出する燃料ガス排出マニホールド172として機能する。なお、本実施形態では、酸化剤ガスとして例えば空気が使用され、燃料ガスとして例えば都市ガスを改質した水素リッチなガスが使用される。
(エンドプレート104,106の構成)
一対のエンドプレート104,106は、方形の平板形の導電性部材であり、例えばステンレスにより形成されている。各エンドプレート104,106のZ軸周りの周縁部には、上述したボルト22が挿入される貫通孔108に対応する孔が形成されている。一方のエンドプレート104は、最も上に位置する発電単位102の上側に配置され、他方のエンドプレート106は、最も下に位置する発電単位102の下側に配置されている。一対のエンドプレート104,106によって複数の発電単位102が押圧された状態で挟持されている。上側のエンドプレート104(または上側のエンドプレート104に接続された別部材)は、燃料電池スタック100のプラス側の出力端子として機能し、下側のエンドプレート106(または下側のエンドプレート106に接続された別部材)は、燃料電池スタック100のマイナス側の出力端子として機能する。
(発電単位102の構成)
図2から図5は、発電単位102の構成を概略的に示す説明図である。図2には、図1、図4および図5のII−IIの位置における発電単位102の断面構成を示しており、図3には、図1、図4および図5のIII−IIIの位置における発電単位102の断面構成を示しており、図4には、図2のIV−IVの位置における発電単位102の断面構成を示しており、図5には、図2のV−Vの位置における発電単位102の断面構成を示している。なお、図2および図3には、一部の断面を拡大して示している。
図2および図3に示すように、発電の最小単位である発電単位102は、単セル110と、セパレータ120と、空気極側フレーム130と、空気極側集電体134と、燃料極側フレーム140と、燃料極側集電体144と、発電単位102の最上層および最下層を構成する一対のインターコネクタ150とを備えている。セパレータ120、空気極側フレーム130、燃料極側フレーム140、インターコネクタ150のZ軸周りの周縁部には、上述したボルト22が挿入される貫通孔108に対応する孔が形成されている。
インターコネクタ150は、方形の平板形の導電性部材であり、例えばフェライト系ステンレス等のCr(クロム)を含む金属により形成されている。インターコネクタ150は、発電単位102間の電気的導通を確保すると共に、発電単位102間でのガスの混合を防止する。なお、1つのインターコネクタ150は、2つの発電単位102に共用されている。すなわち、ある発電単位102における上側のインターコネクタ150は、その発電単位102の上側に隣接する他の発電単位102における下側のインターコネクタ150と同一部材である。また、燃料電池スタック100は一対のエンドプレート104,106を備えているため、燃料電池スタック100において最も上に位置する発電単位102における上側のインターコネクタ150、および、最も下に位置する発電単位102における下側のインターコネクタ150は省略可能である。
単セル110は、電解質層112と、電解質層112を挟んで上下方向に互いに対向する空気極114および燃料極116とを備える。なお、本実施形態の単セル110は、燃料極116で電解質層112および空気極114を支持する燃料極支持形の単セルである。
電解質層112は、方形の平板形部材であり、例えば、YSZ(イットリア安定化ジルコニア)、ScSZ(スカンジア安定化ジルコニア)、SDC(サマリウムドープセリア)、GDC(ガドリニウムドープセリア)、ペロブスカイト型酸化物等の固体酸化物により形成されている。空気極114は、X−Y平面で見た場合に電解質層112より小さい方形の平板形部材であり、例えば、ペロブスカイト型酸化物(例えばLSCF(ランタンストロンチウムコバルト鉄酸化物)、LSM(ランタンストロンチウムマンガン酸化物)、LNF(ランタンニッケル鉄))により形成されている。燃料極116は、X−Y平面で見た場合に電解質層112と同一の大きさの方形の平板形部材であり、例えば、Ni(ニッケル)、Niとセラミック粒子からなるサーメット、Ni基合金等により形成されている。このように、本実施形態の単セル110は、固体酸化物を含む電解質層112を備える固体酸化物形燃料電池(SOFC)である。
セパレータ120は、中央付近に方形の貫通孔121が形成されたフレーム状の部材であり、例えば、金属により形成されている。セパレータ120における貫通孔121の周囲部分は、電解質層112における空気極114の側の表面の周縁部に対向している。セパレータ120は、その対向した部分に配置されたロウ材(例えばAgロウ)により形成された接合部124により、電解質層112(単セル110)と接合されている。セパレータ120により、空気極114に面する空気室166と燃料極116に面する燃料室176とが区画され、一方の電極側から他方の電極側へのガスのリークが抑制される。なお、セパレータ120が接合された単セル110をセパレータ付き単セルともいう。
図2から図4に示すように、空気極側フレーム130は、中央付近に方形の貫通孔131が形成されたフレーム状の部材であり、例えば、マイカ等の絶縁体により形成されている。空気極側フレーム130は、セパレータ120における電解質層112に対向する側とは反対側の表面の周縁部と、インターコネクタ150における空気極114に対向する側の表面の周縁部とに接触している。空気極側フレーム130によって、空気極114とインターコネクタ150との間に空気室166が確保されると共に、発電単位102に含まれる一対のインターコネクタ150間が電気的に絶縁される。また、空気極側フレーム130には、酸化剤ガス供給マニホールド161と空気室166とを連通する酸化剤ガス供給連通孔132と、空気室166と酸化剤ガス排出マニホールド162とを連通する酸化剤ガス排出連通孔133とが形成されている。
図2、図3および図5に示すように、燃料極側フレーム140は、中央付近に方形の貫通孔141が形成されたフレーム状の部材であり、例えば、金属により形成されている。燃料極側フレーム140は、セパレータ120における電解質層112に対向する側の表面の周縁部と、インターコネクタ150における燃料極116に対向する側の表面の周縁部とに接触している。燃料極側フレーム140によって、燃料極116とインターコネクタ150との間に燃料室176が確保される。また、燃料極側フレーム140には、燃料ガス供給マニホールド171と燃料室176とを連通する燃料ガス供給連通孔142と、燃料室176と燃料ガス排出マニホールド172とを連通する燃料ガス排出連通孔143とが形成されている。
図2、図3および図5に示すように、燃料極側集電体144は、燃料室176内に配置されている。燃料極側集電体144は、インターコネクタ対向部146と、複数の電極対向部145と、各電極対向部145とインターコネクタ対向部146とをつなぐ連接部147とを備えており、例えば、ニッケルやニッケル合金、ステンレス等により形成されている。具体的には、燃料極側集電体144は、方形の平板形部材に切り込みを入れ、複数の方形部分を曲げ起こすように加工することにより製造される。曲げ起こされた方形部分が電極対向部145となり、曲げ起こされた部分以外の穴あき状態の平板部分がインターコネクタ対向部146となり、電極対向部145とインターコネクタ対向部146とをつなぐ部分が連接部147となる。なお、図5における部分拡大図では、燃料極側集電体144の製造方法を示すため、複数の方形部分の一部の曲げ起こし加工が完了する前の状態を示している。各電極対向部145は、燃料極116における電解質層112に対向する側とは反対側の表面に接触し、インターコネクタ対向部146は、インターコネクタ150における燃料極116に対向する側の表面に接触する。そのため、燃料極側集電体144は、燃料極116とインターコネクタ150とを電気的に接続する。なお、本実施形態では、電極対向部145とインターコネクタ対向部146との間に、例えばマイカにより形成されたスペーサ149が配置されている。そのため、燃料極側集電体144が温度サイクルや反応ガス圧力変動による発電単位102の変形に追随し、燃料極側集電体144を介した燃料極116とインターコネクタ150との電気的接続が良好に維持される。
図2から図4に示すように、空気極側集電体134は、空気室166内に配置されている。空気極側集電体134は、複数の四角柱状の集電体要素135から構成されており、例えばフェライト系ステンレス等のCr(クロム)を含む金属により形成されている。空気極側集電体134は、空気極114における電解質層112に対向する側とは反対側の表面と、インターコネクタ150における空気極114に対向する側の表面とに接触することにより、空気極114とインターコネクタ150とを電気的に接続する。なお、本実施形態では、空気極側集電体134とインターコネクタ150とは一体の部材として形成されている。すなわち、該一体の部材の内の、上下方向(Z軸方向)に直交する平板形の部分がインターコネクタ150として機能し、該平板形の部分から空気極114に向けて突出するように形成された複数の集電体要素135が空気極側集電体134として機能する。空気極側集電体134、または空気極側集電体134とインターコネクタ150との一体部材は、集電部材の一例である。また、空気極側集電体134を構成する各集電体要素135は、空気極114に向けて突出する突出部の一例である。
図2および図3に示すように、空気極側集電体134の表面は、導電性のコート136によって覆われている。コート136は、Zn(亜鉛)とMn(マンガン)とCo(コバルト)とCu(銅)との少なくとも1つを含むスピネル型酸化物(例えば、Mn1.5Co1.5やMnCo、ZnCo、ZnMnCoO、CuMn)により形成されている。空気極側集電体134の表面へのコート136の形成は、例えば、スプレーコート、インクジェット印刷、スピンコート、ディップコート、めっき、スパッタリング、溶射等の周知の方法で実行される。なお、上述したように、本実施形態では、空気極側集電体134とインターコネクタ150とは一体の部材として形成されている。そのため、実際には、空気極側集電体134の表面の内、インターコネクタ150との境界面はコート136により覆われていない一方、インターコネクタ150の表面の内、少なくとも酸化剤ガスの流路に面する表面(すなわち、インターコネクタ150における空気極114側の表面や酸化剤ガス供給マニホールド161および酸化剤ガス排出マニホールド162を構成する貫通孔108に面した表面等)はコート136により覆われている。また、空気極側集電体134に対する熱処理によって酸化クロムの被膜ができることがあるが、その場合には、コート136は、当該被膜ではなく、当該被膜が形成された空気極側集電体134を覆うように形成された層である。以下の説明では、特記しない限り、空気極側集電体134(または集電体要素135)は「コート136に覆われた空気極側集電体134(または集電体要素135)」を意味する。
空気極114と空気極側集電体134とは、導電性の接合層138により接合されている。接合層138は、コート136と同様に、ZnとMnとCoとCuとの少なくとも1つを含むスピネル型酸化物(例えば、Mn1.5Co1.5やMnCo、ZnCo、ZnMnCoO、CuMn)により形成されている。なお、本実施形態では、コート136と接合層138とは、主成分元素が互いに同一であるスピネル型酸化物により形成されている。接合層138は、例えば、接合層用のペーストが空気極114の表面の内、空気極側集電体134を構成する各集電体要素135の先端部と対向する部分に印刷され、各集電体要素135の先端部がペーストに押し付けられた状態で所定の条件で焼成されることにより形成される。接合層138により、空気極114と空気極側集電体134とが電気的に接続される。先に、空気極側集電体134は空気極114の表面と接触していると述べたが、正確には、(コート136に覆われた)空気極側集電体134と空気極114との間には接合層138が介在している。
A−2.燃料電池スタック100における発電動作:
図2に示すように、酸化剤ガス供給マニホールド161に酸化剤ガスOGが供給されると、酸化剤ガスOGは、酸化剤ガス供給マニホールド161から各発電単位102の酸化剤ガス供給連通孔132を経て、空気室166に供給される。また、図3に示すように、燃料ガス供給マニホールド171に燃料ガスFGが供給されると、燃料ガスFGは、燃料ガス供給マニホールド171から各発電単位102の燃料ガス供給連通孔142を経て、燃料室176に供給される。
各発電単位102の空気室166に酸化剤ガスOGが供給され、燃料室176に燃料ガスFGが供給されると、単セル110において酸化剤ガスOGおよび燃料ガスFGの電気化学反応による発電が行われる。各発電単位102において、単セル110の空気極114は空気極側集電体134(およびコート136、接合層138)を介して一方のインターコネクタ150に電気的に接続され、燃料極116は燃料極側集電体144を介して他方のインターコネクタ150に電気的に接続されている。また、燃料電池スタック100に含まれる複数の発電単位102は、直列に接続されている。そのため、燃料電池スタック100の出力端子として機能するエンドプレート104,106から、各発電単位102において生成された電気エネルギーが取り出される。なお、SOFCは、比較的高温(例えば摂氏700度から1000度)で発電が行われることから、起動後、発電により発生する熱で高温が維持できる状態になるまで、燃料電池スタック100が加熱器により加熱されてもよい。
酸化剤オフガスOOG(各発電単位102において発電反応に利用されなかった酸化剤ガス)は、図2に示すように、空気室166から酸化剤ガス排出連通孔133、酸化剤ガス排出マニホールド162を経て、燃料電池スタック100の外部に排出される。また、燃料オフガスOFG(各発電単位102において発電反応に利用されなかった燃料ガス)は、図3に示すように、燃料室176から燃料ガス排出連通孔143、燃料ガス排出マニホールド172を経て、燃料電池スタック100の外部に排出される。
A−3.空気極側集電体134および接合層138の詳細構成:
図2および図3に示すように、空気極側集電体134を構成する各集電体要素135の上下方向に平行な各断面において、接合層138は、空気極114と集電体要素135における空気極114と対向する面(以下、「底面BF」という)との間の領域に存在すると共に、当該領域から外側(上下方向に直交する方向側)まで延び、さらに、集電体要素135における底面BFから空気極114とは反対側に延びる面(以下、「側面LF」という)に沿って上側に延伸している。すなわち、接合層138は、(コート136に覆われた)集電体要素135の角部CPを覆っている。ここで、集電体要素135の角部CPは、図2および図3に示すような底面BFと側面LFとが共に単一の平面である形態では、底面BFと側面LFとの境界付近の部分である。また、集電体要素135の角部CPが接合層138に覆われているとは、接合層138が集電体要素135の底面BFに加えて、側面LFの内の少なくとも底面BFに連なる一部も覆っていることを意味する。
本実施形態では、集電体要素135の上下方向に平行な任意の断面において、図2および図3に示す断面と同様に、集電体要素135の角部CPが接合層138に覆われている。すなわち、空気極114側から見ると、集電体要素135の角部CPの全周が接合層138に覆われている。また、図2および図3には、空気極側集電体134を構成する一部の集電体要素135の構成を示しているが、本実施形態では、空気極側集電体134を構成するすべての集電体要素135について、同様に、集電体要素135の角部CPの全周が接合層138に覆われている。このような構成は、燃料電池スタック100を製造する際に、接合層用のペーストを、空気極114の表面の内、各集電体要素135の底面BFと対向する領域と、当該領域を取り囲む所定の大きさの領域とに印刷し、各集電体要素135の底面BFによって接合層用のペーストを押し潰すことにより接合層用のペーストを各集電体要素135の側面LFに沿うように盛り上がらせ、その状態で焼成することにより実現される。
以上説明したように、本実施形態の燃料電池スタック100では、空気極側集電体134を構成する各集電体要素135の上下方向に平行なすべての断面において、(コート136に覆われた)集電体要素135の角部CPが接合層138に覆われている。すなわち、各集電体要素135の角部CPの全周が接合層138に覆われている。ここで、図6に示すように、集電体要素135の角部CPは、底面BFに加えて側面LFも有する部分であるため、角部CP以外の部分と比較してより多くの拡散表面を有していると言える。また、集電体要素135を覆うコート136の厚さは、角部CPの位置で薄くなりやすい。特に、コート136の形成が、スプレーコート、インクジェット印刷、スピンコート、ディップコート、めっき、スパッタリング、溶射等の方法で実行される場合には、その傾向が顕著である。そのため、図6に矢印で示すように、集電体要素135の角部CPでは、角部CP以外の部分と比較して、Crが放出されて拡散しやすい。しかし、本実施形態では、各集電体要素135の角部CPの全周が接合層138に覆われているため、仮に集電体要素135の角部CPからコート136を通過してCrが拡散しようとしても、接合層138の存在によりCr拡散が妨げられ、角部CPからのCr拡散を効果的に抑制することができる。
なお、例えば各集電体要素135の角部CPのコート136の厚さを他の部分より厚くすることにより角部CPからのCr拡散を抑制することも考えられるが、このような構成では、空気極114とコート136に覆われた各集電体要素135とを接合層138によって接合する際に、接合層138の厚さが不均一となり、コート136に覆われた各集電体要素135と空気極114とが局所的に接触することとなり、導電性の低下や応力集中によるクラックの発生のおそれがあるため、好ましくない。
また、本実施形態では、コート136に加えて接合層138も、Cr拡散抑制効果の高いスピネル型酸化物により形成されているため、接合層138がコート機能を有することとなり、集電体要素135の角部CPからのCr拡散を一層効果的に抑制することができる。また、コート136や接合層138を例えばペロブスカイト型酸化物等の他の材料によって形成する場合と比較して、熱処理温度を下げることができるため、その点からも集電体要素135の角部CPからのCr拡散を一層効果的に抑制することができる。さらに、コート136と接合層138とが共にスピネル型酸化物により形成されているため、コート136と接合層138との熱膨張差を低減することができ、熱膨張差によるコート136と接合層138との界面でのクラック発生を抑制することができる。また、コート136や接合層138を他の材料によって形成する場合と比較して、コート136や接合層138の導電抵抗を低くすることができる。
また、本実施形態では、コート136および接合層138の形成材料であるスピネル型酸化物は、共に、ZnとMnとCoとCuとの少なくとも1つを含むスピネル型酸化物である。ZnとMnとCoとCuとの少なくとも1つを含むスピネル型酸化物は、長期間、比較的高温環境におかれてもスピネル構造を維持しやすい材料であるため、コート136と接合層138とがそのようなスピネル型酸化物により形成されていると、集電体要素135の角部CPからのCr拡散を抑制する効果や導電抵抗を低くできる効果を長期間維持することができる。
さらに、本実施形態では、コート136および接合層138の形成材料であるスピネル型酸化物は、主成分元素が互いに同一であるスピネル型酸化物により形成されている。そのため、コート136と接合層138との熱膨張差をより小さくすることができ、熱膨張差によるコート136と接合層138との界面でのクラック発生をより効果的に抑制することができる。なお、ここでいう主成分元素とは、スピネル型酸化物を構成する金属元素のことをいう。また、スピネル型酸化物の同定は、X線回折と元素分析を行うことで実現できる。
また、本実施形態では、図2および図3に示すように、集電体要素135の上下方向に平行な断面において、集電体要素135の角部CPにおける空気極114に最も近い点と空気極114の表面とを最短距離で結ぶ線分LS上において、接合層138の平均厚さtpはコート136の平均厚さtcより厚い。本実施形態では、各集電体要素135の上下方向に平行なすべての断面において、線分LS上における接合層138の平均厚さtpがコート136の平均厚さtcより厚くなっている。また、本実施形態では、コート136の気孔率と接合層138の気孔率との関係は、コート136の気孔率<接合層138の気孔率という関係を満たす。このように、本実施形態では、コート136より気孔率の高い接合層138の平均厚さtpがコート136の平均厚さtcより厚いため、応力を緩衝する効果をより大きく得ることができ、コート136と接合層138との界面でのクラック発生をより効果的に抑制することができる。
なお、各部材の気孔率は、以下のようにして特定するものとする。酸化剤ガス流れ方向(図2に示すように本実施形態ではX軸方向)に沿って並ぶ3つの位置で、酸化剤ガス流れ方向に直交する発電単位102の断面を設定し、各断面の任意の3カ所で、空気極114、接合層138、コート136が写ったSEM画像(500倍)を得る。つまり、9つのSEM画像が得られる。得られた各SEM画像において、発電単位102の並び方向(本実施形態ではZ軸方向)に直交する複数の線を所定の間隔(例えば1から5μm間隔)で引く。各直線上の気孔にあたる部分の長さを測定し、直線の全長に対する気孔にあたる部分の長さの合計の比を、当該線上における気孔率とする。各部材(空気極114、接合層138、コート136)の部分に引かれた複数の直線における気孔率の平均値を、そのSEM画像における各部材の気孔率とする。各部材について、9つのSEM画像において求められた気孔率の平均値を取ることにより、最終的な気孔率とする。
また、集電体要素135(突出部)の角部CPにおける空気極114に最も近い点と空気極114の表面とを最短距離で結ぶ線分LS上におけるコート136および接合層138の平均厚さは、以下のようにして求めることができる。まず、集電体要素135とコート136と接合層138と空気極114とを含むように発電単位102の並び方向(本実施形態ではZ軸方向)に平行な方向の断面画像(例えばSEM画像)を取得する。なお、取得する断面画像は、例えば、取得する断面に垂直な方向の集電体要素135全体の長さを略等間隔で6等分する位置の断面画像(5枚)とすることができる。集電体要素135の大きさ等によって取得する断面画像の数は変更可能であるが、集電体要素135全体の長さを略等間隔で区切り複数個所において取得することとする。取得した断面画像について、集電体要素135の角部CPにおける空気極114に最も近い点と空気極114の表面とを最短距離で結ぶ線分LS上におけるコート136および接合層138の長さを取得し、それぞれをコート136および接合層138の厚さとする。厚さの測定を、取得する複数の断面画像(例えば5枚)において行い、複数の断面画像から得られるコート136の厚さの算術平均をコート136の平均厚さtcとし、複数の断面画像から得られる接合層138の厚さの算術平均を接合層138の平均厚さtpとする。
B.変形例:
本明細書で開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
上記実施形態では、図2および図3に示すように、空気極側集電体134を構成する各集電体要素135の底面BFと側面LFとが共に単一の平面であるが、必ずしもこのような形態である必要は無い。図7は、変形例における空気極側集電体134aの周りの構成を示す説明図である。図7には、空気極側集電体134aの周囲の部分についてのZ軸およびY軸に平行な断面構成を示している。なお、後述の図8から図11についても同様である。図7に示す変形例では、空気極側集電体134aを構成する集電体要素135aの側面LFに突起BUが存在する。この変形例においても、集電体要素135aの角部CPは、集電体要素135aにおける底面BFと側面LFとの境界付近の部分である。図7に示す構成では、接合層138によって集電体要素135aの側面LFの一部が覆われているため、集電体要素135aの角部CPが接合層138に覆われていると言える。
図8は、他の変形例における空気極側集電体134bの周りの構成を示す説明図である。図8に示す変形例では、空気極側集電体134bを構成する集電体要素135bの側面LFが平面ではなく曲面である。集電体要素135bの側面LFにおける底面BFとの境界付近は、集電体要素135bの外側に凸な曲面となっている。この変形例においても、集電体要素135bの角部CPは、集電体要素135bにおける底面BFと側面LFとの境界付近の部分である。図8に示す構成では、接合層138によって集電体要素135bの側面LFの一部が覆われているため、集電体要素135bの角部CPが接合層138に覆われていると言える。
図9は、他の変形例における空気極側集電体134cの周りの構成を示す説明図である。図9に示す変形例では、空気極側集電体134cを構成する集電体要素135cの側面LFが平面ではなく曲面である。集電体要素135cの側面LFにおける底面BFとの境界付近は、集電体要素135cの内側に凸な曲面となっている。この変形例においても、集電体要素135cの角部CPは、集電体要素135cにおける底面BFと側面LFとの境界付近の部分である。図9に示す構成では、接合層138によって集電体要素135cの側面LFの一部が覆われているため、集電体要素135cの角部CPが接合層138に覆われていると言える。
図10は、他の変形例における空気極側集電体134dの周りの構成を示す説明図である。図10に示す変形例では、空気極側集電体134dを構成する集電体要素135dの側面LFおよび底面BFが平面ではなく曲面である。集電体要素135dの側面LFにおける底面BFとの境界付近は、集電体要素135dの内側に凸な曲面となっている。また、集電体要素135dの底面BFにおける側面LFとの境界付近は、集電体要素135dの外側に凸な曲面となっている。この変形例においても、集電体要素135dの角部CPは、集電体要素135dにおける底面BFと側面LFとの境界付近の部分である。図10に示す構成では、接合層138によって集電体要素135dの側面LFの一部が覆われているため、集電体要素135dの角部CPが接合層138に覆われていると言える。
図11は、他の変形例における空気極側集電体134eの周りの構成を示す説明図である。図11に示す変形例では、空気極側集電体134eを構成する集電体要素135eの底面BFが平面ではなく曲面である。集電体要素135eの底面BFは、1つまたは複数の平面または曲面から構成されているが、全体として下側に凸形状の面を構成している。この変形例においても、集電体要素135eの角部CPは、集電体要素135eにおける底面BFと側面LFとの境界付近の部分である。図11に示す構成では、接合層138によって集電体要素135eの側面LFの一部が覆われているため、集電体要素135eの角部CPが接合層138に覆われていると言える。
また、上記実施形態では、燃料電池スタック100が複数の平板形の発電単位102が積層された構成であるが、本発明は、他の構成、例えば特開2008−59797号に記載されているように、複数の略円筒形の燃料電池単セルが直列に接続された構成にも同様に適用可能である。図12は、他の変形例における燃料電池スタックの構成を概略的に示す説明図であり、図13は、他の変形例における燃料電池スタックを構成する燃料電池セル1の構成を概略的に示す説明図である。図12および図13に示すように、この変形例における燃料電池スタックは、複数の中空平板形の燃料電池セル1と、集電体20とを備える。燃料電池セル1は、中空平板状の支持基板10と、中空平板状の支持基板10の周囲に設けられた多孔質の燃料極2と、緻密な電解質層3と、多孔質の空気極4と、緻密なインターコネクタ5と、空気極材料層14とを備える。支持基板10は、内部に、燃料電池セル1の配列方向に交わる方向(セル長さ方向)に伸びた複数の燃料ガス通路16を有している。集電体20は、一方の燃料電池セル1の空気極4に接合層25により接合されると共に、隣設する他方の燃料電池セル1の空気極材料層14に接合層25により接合され、これにより、複数の燃料電池セル1が電気的に直列に接続される。空気極4の外側に酸化剤ガスが供給され、支持基板10内のガス通路16に燃料ガスが供給され、所定の作動温度まで加熱されると、燃料電池スタックにおいて発電が行われる。
図14および図15は、図12および図13に示した他の変形例の燃料電池スタックにおける集電体20の詳細構成を示す説明図である。図14および図15において、集電体20の下側に燃料電池セル1の空気極4が配置されているものとする。集電体20は、例えばCrを含む金属により形成され、その表面が導電性のコート203で覆われている。ここで、図14および図15に示すように、集電体20における空気極4に向けて突出する突出部の空気極4に近い側の角部CPは、接合層25に覆われている。そのため、仮に集電体20の突出部の角部CPからコート203を通過してCrが拡散しようとしても、空気極4に近い側の角部CPにおいては、接合層25の存在によりCr拡散が妨げられる。よって、角部CPからのCr拡散を効果的に抑制することができる。なお、図16は、図12および図13に示した他の変形例の燃料電池スタックにおける集電体20の変形例を示す説明図である。図16に示す変形例では、集電体20における空気極4に向けて突出する突出部の角部CPのすべてが接合層25に覆われている。このような構成とすれば、集電体20の突出部の角部CPからのCr拡散をさらに効果的に抑制することができるため、より好ましい。
また、上記実施形態では、燃料ガスに含まれる水素と酸化剤ガスに含まれる酸素との電気化学反応を利用して発電を行うSOFCを対象としているが、本発明は、水の電気分解反応を利用して水素の生成を行う固体酸化物形の電解セル(SOEC)の最小単位である電解セル単位や、複数の電解セル単位を備える電解セルスタックにも同様に適用可能である。なお、電解セルスタックの構成は、例えば特開2014−207120号に記載されているように公知であるためここでは詳述しないが、概略的には上述した実施形態における燃料電池スタック100と同様の構成である。すなわち、上述した実施形態における燃料電池スタック100を電解セルスタックと読み替え、発電単位102を電解セル単位と読み替えればよい。ただし、電解セルスタックの運転の際には、空気極114がプラス(陽極)で燃料極116がマイナス(陰極)となるように両電極間に電圧が印加されると共に、貫通孔108を介して原料ガスとしての水蒸気が供給される。これにより、各電解セル単位において水の電気分解反応が起こり、燃料室176で水素ガスが発生し、貫通孔108を介して電解セルスタックの外部に水素が取り出される。このような構成の電解セル単位および電解セルスタックにおいても、上記実施形態と同様に、空気極側集電体134を構成する各集電体要素135の上下方向に平行なすべての断面において集電体要素135の角部CPが接合層138に覆われた構成を採用すれば、角部CPからのCr拡散を効果的に抑制することができる。
また、上記実施形態(または変形例、以下同様)では、燃料電池スタック100(または電解セルスタック、以下同様)に含まれるすべての発電単位102(または電解セル単位、以下同様)について、空気極側集電体134を構成するすべての集電体要素135の上下方向に平行なすべての断面において角部CPが接合層138に覆われているとしているが、燃料電池スタック100に含まれる少なくとも1つの発電単位102について、そのような構成となっていれば、集電体要素135の角部CPからのCr拡散抑制という効果を奏する。また、空気極側集電体134を構成する複数の集電体要素135の内、少なくとも1つの集電体要素135についてそのような構成となっていれば、当該集電体要素135の角部CPからのCr拡散抑制という効果を奏する。
また、上記実施形態では、コート136および接合層138は、主成分元素が互いに同一であるスピネル型酸化物により形成されているが、主成分元素が互いに異なるスピネル型酸化物により形成されていてもよい。また、上記実施形態では、コート136および接合層138は、ZnとMnとCoとCuとの少なくとも1つを含むスピネル型酸化物により形成されているが、これらの元素を含まないスピネル型酸化物により形成されていてもよい。また、上記実施形態では、コート136および接合層138は、スピネル型酸化物により形成されているが、ペロブスカイト型酸化物等の他の材料により形成されていてもよい。
また、上記実施形態において、電解質層112は固体酸化物により形成されているとしているが、電解質層112は固体酸化物の他に他の物質を含んでいてもよい。また、上記実施形態における各部材を形成する材料は、あくまで例示であり、各部材が他の材料により形成されてもよい。例えば、上記実施形態では、空気極側集電体134は、Crを含む金属により形成されているが、空気極側集電体134は、コート136により覆われていれば他の材料により形成されていてもよい。また、空気極側集電体134を構成する各集電体要素135の形状は、四角柱状に限らず、インターコネクタ150側から空気極114側に突出するような形状であれば他の形状であってもよい。
また、上記実施形態において、電解質層112と空気極114との間に、例えばセリアを含む反応防止層を設け、電解質層112内のジルコニウム等と空気極114内のストロンチウム等とが反応することによる電解質層112と空気極114との間の電気抵抗の増大を抑制するとしてもよい。また、上記実施形態において、空気極側集電体134と、隣接するインターコネクタ150とが別部材であってもよい。また、燃料極側集電体144は、空気極側集電体134と同様の構成であってもよく、燃料極側集電体144と、隣接するインターコネクタ150とが一体部材であってもよい。また、空気極側フレーム130ではなく燃料極側フレーム140が絶縁体であってもよい。また、空気極側フレーム130や燃料極側フレーム140は、多層構成であってもよい。
また、上記実施形態では、エンドプレート104,106が出力端子として機能するとしているが、エンドプレート104,106の代わりに、エンドプレート104,106のそれぞれと発電単位102との間に配置された導電板が出力端子として機能するとしてもよい。また、上記実施形態では、各ボルト22の軸部の外周面と各貫通孔108の内周面との間の空間を各マニホールドとして利用しているが、これに代えて、各ボルト22に軸方向の孔を設け、その孔を各マニホールドとして利用してもよいし、各マニホールドを各ボルト22が挿通される各貫通孔108とは別に設けてもよい。
1:燃料電池セル 2:燃料極 3:電解質層 4:空気極 5:インターコネクタ 10:支持基板 14:空気極材料層 16:燃料ガス通路 20:集電体 22:ボルト 24:ナット 25:接合層 100:燃料電池スタック 102:燃料電池発電単位 104:エンドプレート 106:エンドプレート 108:貫通孔 110:単セル 112:電解質層 114:空気極 116:燃料極 120:セパレータ 121:貫通孔 124:接合部 130:空気極側フレーム 131:貫通孔 132:酸化剤ガス供給連通孔 133:酸化剤ガス排出連通孔 134:空気極側集電体 135:集電体要素 136:コート 138:接合層 140:燃料極側フレーム 141:貫通孔 142:燃料ガス供給連通孔 143:燃料ガス排出連通孔 144:燃料極側集電体 145:電極対向部 146:インターコネクタ対向部 147:連接部 149:スペーサ 150:インターコネクタ 161:酸化剤ガス供給マニホールド 162:酸化剤ガス排出マニホールド 166:空気室 171:燃料ガス供給マニホールド 172:燃料ガス排出マニホールド 176:燃料室 203:コート

Claims (9)

  1. 固体酸化物を含む電解質層と、前記電解質層を挟んで第1の方向に互いに対向する空気極および燃料極と、を含む単セルと、
    Crを含有し、前記単セルの前記空気極の側に配置され、前記空気極に向けて突出する突出部を有する集電部材と、
    前記集電部材の表面を覆う導電性のコートであって、ZnとMnとCoとCuとの少なくとも1つを含むスピネル型酸化物により形成されているコートと、
    前記コートに覆われた前記突出部と前記空気極とを接合する導電性の接合層と、を備える電気化学反応単位において、
    前記突出部の前記第1の方向に平行なすべての断面において、前記コートに覆われた前記突出部の角部が前記接合層に覆われており、
    前記集電部材は、複数の前記突出部を有し、
    一の前記突出部と前記空気極とを接合する前記接合層と、他の前記突出部と前記空気極とを接合する前記接合層とは、互いに独立していることを特徴とする、電気化学反応単位。
  2. 請求項1に記載の電気化学反応単位において、
    前記集電部材は、前記突出部を複数有し、
    複数の前記突出部のそれぞれについての前記第1の方向に平行なすべての断面において、前記コートに覆われた前記突出部の前記角部が前記接合層に覆われていることを特徴とする、電気化学反応単位。
  3. 請求項1または請求項2に記載の電気化学反応単位において、
    記接合層は、スピネル型酸化物により形成されていることを特徴とする、電気化学反応単位。
  4. 請求項3に記載の電気化学反応単位において、
    記接合層は、ZnとMnとCoとCuとの少なくとも1つを含むスピネル型酸化物により形成されていることを特徴とする、電気化学反応単位。
  5. 請求項3または請求項4に記載の電気化学反応単位において、
    前記コートと前記接合層とは、主成分元素が互いに同一であるスピネル型酸化物により形成されていることを特徴とする、電気化学反応単位。
  6. 請求項1から請求項5までのいずれか一項に記載の電気化学反応単位において、
    前記突出部の前記第1の方向に平行なすべての断面における、前記突出部の前記角部における前記空気極に最も近い点と前記空気極の表面とを最短距離で結ぶ線分上において、前記接合層の平均厚さが前記コートの平均厚さより厚く、
    前記コートの気孔率<前記接合層の気孔率という関係を満たすことを特徴とする、電気化学反応単位。
  7. 請求項1から請求項6までのいずれか一項に記載の電気化学反応単位において、
    前記電解質層と、前記空気極と、前記燃料極とは、平板形状であることを特徴とする、電気化学反応単位。
  8. 請求項1から請求項までのいずれか一項に記載の電気化学反応単位において、
    前記電気化学反応単位は、発電を行う燃料電池発電単位であることを特徴とする、電気化学反応単位。
  9. 複数の燃料電池発電単位を備える燃料電池スタックにおいて、
    前記複数の燃料電池発電単位の少なくとも1つは、請求項に記載の電気化学反応単位であることを特徴とする、燃料電池スタック。
JP2017508394A 2015-03-26 2016-03-23 電気化学反応単位および燃料電池スタック Active JP6595581B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015064315 2015-03-26
JP2015064315 2015-03-26
PCT/JP2016/059214 WO2016152923A1 (ja) 2015-03-26 2016-03-23 電気化学反応単位および燃料電池スタック

Publications (2)

Publication Number Publication Date
JPWO2016152923A1 JPWO2016152923A1 (ja) 2017-10-05
JP6595581B2 true JP6595581B2 (ja) 2019-10-23

Family

ID=56978337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017508394A Active JP6595581B2 (ja) 2015-03-26 2016-03-23 電気化学反応単位および燃料電池スタック

Country Status (6)

Country Link
US (1) US10665870B2 (ja)
EP (1) EP3276720B1 (ja)
JP (1) JP6595581B2 (ja)
KR (1) KR102072374B1 (ja)
CN (1) CN107431216B (ja)
WO (1) WO2016152923A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3370290B1 (en) * 2015-10-28 2020-09-30 Morimura Sofc Technology Co., Ltd. Interconnector-electrochemical reaction unit cell composite body, electrochemical reaction cell stack, and production method for interconnector-electrochemical reaction unit cell composite body
JP6867852B2 (ja) * 2017-04-11 2021-05-12 森村Sofcテクノロジー株式会社 集電部材−電気化学反応単セル複合体および電池化学反応セルスタック
JP7085314B2 (ja) * 2017-06-14 2022-06-16 森村Sofcテクノロジー株式会社 電気化学反応単位および電気化学反応セルスタック
JP6773628B2 (ja) * 2017-11-01 2020-10-21 森村Sofcテクノロジー株式会社 電気化学反応単位および電気化学反応セルスタック
JP6800546B2 (ja) * 2018-04-23 2020-12-16 森村Sofcテクノロジー株式会社 複合体、および、電気化学反応セルスタック
JP6554588B1 (ja) * 2018-06-12 2019-07-31 日本碍子株式会社 電気化学セル用金属部材、及びこれを用いた電気化学セル組立体
WO2020050251A1 (ja) * 2018-09-07 2020-03-12 日本碍子株式会社 合金部材、セルスタック及びセルスタック装置
JP6827091B1 (ja) * 2019-10-11 2021-02-10 日本碍子株式会社 セルスタック装置
JP7280991B1 (ja) 2022-03-15 2023-05-24 日本碍子株式会社 電気化学セル

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5035571B2 (ja) * 2003-07-24 2012-09-26 日産自動車株式会社 燃料電池用集電構造及び固体酸化物形燃料電池スタック
JP4492119B2 (ja) 2003-07-24 2010-06-30 日産自動車株式会社 燃料電池用集電構造及び固体酸化物形燃料電池スタック
CN101300700B (zh) * 2005-10-27 2011-02-09 京瓷株式会社 燃料电池用耐热合金构件、集电构件、电池组及燃料电池
JP5090800B2 (ja) * 2007-06-25 2012-12-05 日本電信電話株式会社 インターコネクタ及び固体酸化物形燃料電池
US8741500B2 (en) * 2007-08-02 2014-06-03 Sharp Kabushiki Kaisha Fuel cell stack and fuel cell system
DE102007058907A1 (de) * 2007-11-30 2009-06-04 Elringklinger Ag Chromhaltiges, metallisches Substrat und Verfahren zu dessen Herstellung
KR100950673B1 (ko) * 2007-12-24 2010-04-02 주식회사 포스코 평판형 고체산화물 연료전지용 분리판 및 제조방법
JP2010157387A (ja) * 2008-12-26 2010-07-15 Nissan Motor Co Ltd 固体電解質形燃料電池用インターコネクタ
JP5327712B2 (ja) * 2009-06-25 2013-10-30 日産自動車株式会社 固体電解質型燃料電池
JP4901976B2 (ja) * 2009-08-26 2012-03-21 日本碍子株式会社 接合剤
JP5483714B2 (ja) * 2009-08-26 2014-05-07 日本碍子株式会社 接合剤
JP5044628B2 (ja) * 2009-11-09 2012-10-10 日本碍子株式会社 コーティング体
JP5885579B2 (ja) * 2012-05-15 2016-03-15 日本特殊陶業株式会社 固体酸化物形燃料電池およびその製造方法
JP2014041705A (ja) * 2012-08-21 2014-03-06 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池とその製造方法
US20140178795A1 (en) * 2012-12-24 2014-06-26 Samsung Electro-Mechanics Co., Ltd. Solid oxide fuel cell and method of manufacturing interconnector for solid oxide fuel cell
JP5522870B1 (ja) 2013-04-12 2014-06-18 日本碍子株式会社 燃料電池セル
JP6125940B2 (ja) * 2013-07-30 2017-05-10 日本特殊陶業株式会社 燃料電池セル及び燃料電池セルスタック
JP6161983B2 (ja) * 2013-07-30 2017-07-12 日本特殊陶業株式会社 燃料電池セル及び燃料電池セルスタック

Also Published As

Publication number Publication date
US20180076468A1 (en) 2018-03-15
KR20170117189A (ko) 2017-10-20
KR102072374B1 (ko) 2020-02-03
CN107431216B (zh) 2020-08-11
WO2016152923A1 (ja) 2016-09-29
US10665870B2 (en) 2020-05-26
EP3276720A1 (en) 2018-01-31
JPWO2016152923A1 (ja) 2017-10-05
EP3276720A4 (en) 2018-10-03
CN107431216A (zh) 2017-12-01
EP3276720B1 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
JP6595581B2 (ja) 電気化学反応単位および燃料電池スタック
JP6147441B2 (ja) 電気化学反応単位および燃料電池スタック
JP6283330B2 (ja) 電気化学反応単位および燃料電池スタック
JP6514772B2 (ja) 電気化学反応セルスタック
JP6839022B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP6177836B2 (ja) 接合材前駆体の製造方法および電気化学反応セルスタックの製造方法
JP7236966B2 (ja) 電気化学反応セルスタック
JP7096645B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP6821613B2 (ja) 導電性部材、電気化学反応単位および電気化学反応セルスタック
JP7187382B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP2017154968A (ja) 接合材前駆体、電気化学反応セルスタックおよびそれらの製造方法
JP6878257B2 (ja) 集電部材−電気化学反応単セル複合体および電気化学反応セルスタック
JP2018206693A (ja) 導電性部材、電気化学反応単位、および、電気化学反応セルスタック
JP2018181568A (ja) 集電部材−電気化学反応単セル複合体および電池化学反応セルスタック
JP2018018694A (ja) 電気化学反応単位および電気化学反応セルスタック
JP6734707B2 (ja) 集電部材−電気化学反応単セル複合体および電気化学反応セルスタック
JP6839021B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP7096644B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP2017224524A (ja) 集電部材−電気化学反応単セル複合体および電気化学反応セルスタック
JP2018174039A (ja) 電気化学反応単位および電気化学反応セルスタック
JP2018174040A (ja) 電気化学反応単位および電気化学反応セルスタック
JP2018041570A (ja) 電気化学反応単位および電気化学反応セルスタック

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190926

R150 Certificate of patent or registration of utility model

Ref document number: 6595581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250