JP6588938B2 - 導電性粒子、導電材料及び接続構造体 - Google Patents

導電性粒子、導電材料及び接続構造体 Download PDF

Info

Publication number
JP6588938B2
JP6588938B2 JP2017092440A JP2017092440A JP6588938B2 JP 6588938 B2 JP6588938 B2 JP 6588938B2 JP 2017092440 A JP2017092440 A JP 2017092440A JP 2017092440 A JP2017092440 A JP 2017092440A JP 6588938 B2 JP6588938 B2 JP 6588938B2
Authority
JP
Japan
Prior art keywords
particles
conductive
conductive particles
layer
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017092440A
Other languages
English (en)
Other versions
JP2017147239A (ja
Inventor
暁舸 王
暁舸 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of JP2017147239A publication Critical patent/JP2017147239A/ja
Application granted granted Critical
Publication of JP6588938B2 publication Critical patent/JP6588938B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Description

本発明は、基材粒子と、該基材粒子の表面上に配置された導電層とを有する導電性粒子に関する。また、本発明は、上記導電性粒子を用いた導電材料及び接続構造体に関する。
異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。
上記異方性導電材料は、各種の接続構造体を得るために、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等に使用されている。
上記異方性導電材料に用いられる導電性粒子の一例として、下記の特許文献1には、樹脂粒子と、該樹脂粒子の表面上に設けられた銅層とを備える導電性粒子が開示されている。特許文献1では、このような導電性粒子は、具体的な実施例では開示されていないが、対向する回路の接続において良好な電気的接続が得られることが記載されている。
また、銅を含む導電層を有する導電性粒子として、下記の特許文献2には、錫−銀−銅の三元系の合金被膜を有する導電性粒子が開示されている。特許文献2の実施例では、導電性粒子を得るために、銅金属粒子の表面に錫めっき被膜を形成し、次いで、銀めっき被膜を形成し、240℃以上に加熱することにより金属熱拡散を起こさせ、錫−銀−銅の三元系合金被膜を形成している。
上記特許文献2では、錫−銀−銅の三元系の合金被膜における組成の含有割合に関しては、錫が80〜99.8重量%、銀が0.1〜10重量%、銅が0.1〜10重量%であることが記載されている。具体的には、上記特許文献2の全ての実施例では、錫が96.5重量%、銀が3重量%、銅が0.5重量%である合金被膜が形成されている。
特開2003−323813号公報 WO2006/080289A1
特許文献1,2に記載のような従来の導電性粒子を用いて、電極間を電気的に接続した場合に、接続抵抗が高くなることがある。
本発明の目的は、電極間を電気的に接続した場合に、接続抵抗を低くすることができる導電性粒子を提供することである。また、本発明の目的は、上記導電性粒子を用いた導電材料及び接続構造体を提供することである。
本発明の広い局面によれば、基材粒子と、前記基材粒子の表面上に配置されたニッケル層と、前記ニッケル層の外表面上に配置された銅層とを備える、導電性粒子が提供される。
本発明に係る導電性粒子のある特定の局面では、前記基材粒子が、樹脂粒子であるか、又は有機コアと前記有機コアの表面上に配置された無機シェルとを有する有機無機ハイブリッド粒子である。
本発明に係る導電性粒子のある特定の局面では、前記基材粒子が、前記有機無機ハイブリッド粒子である。
本発明に係る導電性粒子のある特定の局面では、前記基材粒子が外表面にシラノール基を有する。
本発明に係る導電性粒子のある特定の局面では、前記無機シェルがシランアルコキシドにより形成されており、前記無機シェルに含まれるケイ素原子に直接結合した官能基の全個数100%中、前記官能基が水酸基である個数の割合が20%以上である。
本発明に係る導電性粒子のある特定の局面では、前記銅層の外表面が防錆処理されている。
本発明に係る導電性粒子のある特定の局面では、前記導電性粒子は、前記銅層の外表面に突起を有する。
本発明に係る導電性粒子のある特定の局面では、前記導電性粒子は、前記銅層の外表面上に配置された絶縁物質を備える。
本発明の広い局面によれば、上述した導電性粒子と、バインダー樹脂とを含む、導電材料が提供される。
本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、前記接続部が、上述した導電性粒子により形成されているか、又は前記導電性粒子とバインダー樹脂とを含む導電材料により形成されており、前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体が提供される。
本発明に係る導電性粒子は、基材粒子と、該基材粒子の表面上に配置されたニッケル層と、該ニッケル層の外表面上に積層された銅層とを備えるので、電極間を電気的に接続した場合に、接続抵抗を低くすることができる。
図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。 図2は、本発明の第2の実施形態に係る導電性粒子を示す断面図である。 図3は、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体を模式的に示す断面図である。
以下、本発明の詳細を説明する。
(導電性粒子)
本発明に係る導電性粒子は、基材粒子と、上記基材粒子の表面上に配置されたニッケル層と、上記ニッケル層の外表面上に配置された銅層とを備える。
本発明に係る導電性粒子における上述した構成の採用により、本発明に係る導電性粒子を用いて、電極間を電気的に接続した場合に、接続抵抗を低くすることができる。導電性粒子により接続される電極の表面には、酸化被膜が形成されていることが多い。ニッケル層は比較的硬い。内側にニッケル層を有する導電性粒子の使用により、電極間に導電性粒子を配置した後、圧着させることにより、ニッケル層により酸化被膜が効果的に排除される。このため、電極と導電性粒子とをより一層確実に接触させることができ、電極間の接続抵抗を低くすることができる。さらに、電極間を電気的に接続する際には、電極間に導電性粒子を配置した後、圧着させる。外側の上記銅層は比較的柔らかいので、上記圧着により、電極と導電性粒子との接触面積が大きくなる。この結果、電極間の接続抵抗を低くすることができる。
さらに、本発明に係る導電性粒子における上述した構成の採用により、高温下又は高湿下に晒された後の導電性粒子を用いて接続構造体を作製しても、また導電性粒子を用いた接続構造体が高温下又は高湿下に晒されても、接続抵抗を上昇し難くし、接続抵抗を低く維持することができる。
従って、上記導電性粒子がニッケル層と銅層との双方を備えること、並びにニッケル層と銅層とが上述した順序で形成されていることは、電極間の接続抵抗の低減に大きく寄与し、さらに、高温下又は高湿下での低い接続抵抗の維持にも大きく寄与する。
以下、図面を参照しつつ、本発明の具体的な実施形態及び実施例を説明することにより、本発明を明らかにする。
図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。
図1に示すように、導電性粒子1は、基材粒子2と、ニッケル層3と、銅層4とを備える。ニッケル層3と銅層4とは導電層である。導電性粒子1では、多層の導電層が形成されている。
ニッケル層3は、基材粒子2の表面上に配置されている。基材粒子2と銅層4との間に、ニッケル層3が配置されている。銅層4は、ニッケル層3の外表面上に配置されている。銅層4は、ニッケル層3と接している。導電性粒子1は、基材粒子2の表面がニッケル層3及び銅層4により被覆された被覆粒子である。
導電性粒子1は、芯物質を有さない。導電性粒子1は、導電性の表面に突起を有さない。導電性粒子1は球状である。ニッケル層3及び銅層4は外表面に突起を有さない。このように、本発明に係る導電性粒子は導電性の突起を有していなくてもよく、球状であってもよい。また、導電性粒子1は、絶縁物質を有さない。但し、導電性粒子1は、銅層4の外表面上に配置された絶縁物質を有していてもよい。
図2は、本発明の第2の実施形態に係る導電性粒子を示す断面図である。
図2に示す導電性粒子21は、基材粒子2と、ニッケル層22と、銅層23と、芯物質24と、絶縁物質25とを備える。ニッケル層22は、基材粒子2の表面上に配置されている。銅層23は、ニッケル層22の外表面上に配置されている。銅層23は、ニッケル層22と接している。
導電性粒子21は、導電性の表面に突起21aを有する。突起21aは複数である。ニッケル層22及び銅層23は外表面に、複数の突起22a,23aを有する。複数の芯物質24が、基材粒子2の表面上に配置されている。複数の芯物質24はニッケル層22及び銅層23内に埋め込まれている。芯物質24は、突起21a,22a,23aの内側に配置されている。ニッケル層22及び銅層23は、複数の芯物質24を被覆している。複数の芯物質24によりニッケル層22及び銅層23の外表面が隆起されており、突起21a,22a,23aが形成されている。このように、本発明に係る導電性粒子は導電性の表面に突起を有していてもよい。本発明に係る導電性粒子は、ニッケル層及び銅層を含む導電層の外表面に、突起を有していてもよい。また、本発明に係る導電性粒子は、ニッケル層の外表面に突起を有さず、かつ銅層の外表面に突起を有していてもよい。
導電性粒子21は、銅層23の外表面上に配置された絶縁物質25を有する。銅層23の外表面の少なくとも一部の領域が、絶縁物質25により被覆されている。絶縁物質25は絶縁性を有する材料により形成されており、本実施形態では、絶縁性粒子である。このように、本発明に係る導電性粒子は、銅層の外表面上に配置された絶縁物質を有していてもよい。
[基材粒子]
上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、金属粒子を除く基材粒子であることが好ましく、樹脂粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子であることがより好ましい。
上記基材粒子は、樹脂粒子又は有機無機ハイブリッド粒子であることが更に好ましく、樹脂粒子であってもよく、有機無機ハイブリッド粒子であってもよい。これらの好ましい基材粒子の使用により、電極間の電気的な接続により一層適した導電性粒子が得られる。
上記導電性粒子を用いて電極間を接続する際には、上記導電性粒子を電極間に配置した後、圧着することにより上記導電性粒子を圧縮させる。基材粒子が樹脂粒子又は有機無機ハイブリッド粒子であると、上記圧着の際に上記導電性粒子が変形しやすく、導電性粒子と電極との接触面積が大きくなる。このため、電極間の接続抵抗がより一層低くなる。
上記樹脂粒子を形成するための樹脂として、種々の有機物が好適に用いられる。上記樹脂粒子を形成するための樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂;ポリアルキレンテレフタレート、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、及び、エチレン性不飽和基を有する種々の重合性単量体を1種もしくは2種以上重合させて得られる重合体等が挙げられる。導電材料に適した任意の圧縮時の物性を有する樹脂粒子を設計及び合成することができ、かつ基材粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子を形成するための樹脂は、エチレン性不飽和基を複数有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。
上記樹脂粒子を、エチレン性不飽和基を有する単量体を重合させて得る場合、上記エチレン性不飽和基を有する単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。
上記非架橋性の単量体としては、例えば、スチレン、α−メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート類;2−ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート類;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル類;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル類;エチレン、プロピレン、イソプレン、ブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、クロルスチレン等のハロゲン含有単量体等が挙げられる。
上記架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート類;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、γ−(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、ビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。
上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記樹脂粒子を得ることができる。この方法としては、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法等が挙げられる。
上記基材粒子が金属粒子を除く無機粒子又は有機無機ハイブリッド粒子である場合に、上記基材粒子を形成するための無機物としては、シリカ、アルミナ、チタン酸バリウム、ジルコニア及びカーボンブラック等が挙げられる。上記シリカにより形成された粒子としては特に限定されないが、例えば、加水分解性のアルコキシシリル基を2つ以上持つケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。
上記有機無機ハイブリッド粒子は、コアと、該コアの表面上に配置されたシェルとを有するコアシェル型の有機無機ハイブリッド粒子であることが好ましい。上記コアが有機コアであることが好ましい。上記シェルが無機シェルであることが好ましい。電極間の接続抵抗を効果的に低くする観点からは、上記基材粒子は、有機コアと上記有機コアの表面上に配置された無機シェルとを有する有機無機ハイブリッド粒子であることが好ましい。
上記有機コアを形成するための材料としては、上述した樹脂粒子を形成するための樹脂等が挙げられる。
上記無機シェルを形成するための材料としては、上述した基材粒子を形成するための無機物が挙げられる。この無機物は金属ではないことが好ましい。上記無機シェルを形成するための材料は、シリカであることが好ましい。上記無機シェルは、上記コアの表面上で、金属アルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を焼成させることにより形成されていることが好ましい。上記金属アルコキシドはシランアルコキシドであることが好ましい。上記無機シェルはシランアルコキシドにより形成されていることが好ましい。
上記ゾルゲル法の具体的な方法としては、コア、水やアルコール等の溶媒、界面活性剤、及びアンモニア水溶液等の触媒を含む分散液に、テトラエトキシシラン等の無機モノマーを共存させて界面ゾル反応を行う方法、並びに水やアルコール等の溶媒、及びアンモニア水溶液と共存させたテトラエトキシシラン等の無機モノマーによりゾルゲル反応を行った後、コアにゾルゲル反応物をヘテロ凝集させる方法等が挙げられる。上記ゾルゲル法において、上記金属アルコキシドを、加水分解及び重縮合させることが好ましい。
上記無機シェルは、上記有機コアの表面上で、上記シランアルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を焼成させることにより形成されていることが好ましい。ゾルゲル法では、上記有機コアの表面上にシェル状物を配置することが容易である。上記焼成を行う場合に、上記有機無機ハイブリッド粒子では、焼成後に、上記有機コアは、揮発等により除去されずに、残存している。上記有機無機ハイブリッド粒子は、焼成後に、上記有機コアを有する。なお、仮に焼成後に上記有機コアが揮発等により除去されると、導電性粒子における導電層の形成が困難になり、導電層の割れが生じやすくなる。
上記ゾルゲル法の具体的な方法としては、有機コア、水やアルコール等の溶媒、界面活性剤、及びアンモニア水溶液等の触媒を含む分散液に、テトラエトキシシラン等の無機モノマーを共存させて界面ゾル反応を行う方法、並びに水やアルコール等の溶媒、及びアンモニア水溶液と共存させたテトラエトキシシラン等の無機モノマーによりゾルゲル反応を行った後、有機コアにゾルゲル反応物をヘテロ凝集させる方法等が挙げられる。上記ゾルゲル法において、上記シランアルコキシドは、加水分解及び重縮合することが好ましい。
上記ゾルゲル法では、界面活性剤を用いることが好ましい。界面活性剤の存在下で、上記シランアルコキシドをゾルゲル法によりシェル状物にすることが好ましい。上記界面活性剤は特に限定されない。上記界面活性剤は、良好なシェル状物を形成するように適宜選択して用いられる。上記界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤及びノニオン性界面活性剤等が挙げられる。なかでも、良好な無機シェルを形成できることから、カチオン性界面活性剤が好ましい。
上記カチオン性界面活性剤としては、4級アンモニウム塩及び4級ホスホニウム塩等が挙げられる。上記カチオン性界面活性剤の具体例としては、ヘキサデシルアンモニウムブロミド等が挙げられる。
上記有機コアの表面上で、上記無機シェルを形成するために、上記シェル状物は焼成されることが好ましい。焼成条件により、無機シェルにおける架橋度を調整可能である。また、焼成を行うことで、焼成を行わない場合と比べて、電極間の電気的な接続により一層適した導電性粒子が得られる。
上記無機シェルは、ケイ素原子を50重量%以上含むことが好ましく、この場合には、上記無機シェルは、ケイ素原子を主成分として含む無機シェルである。上記無機シェルは、炭素原子を含んでいてもよいが、炭素原子を含む場合でもケイ素原子が主成分であれば無機シェルと呼ぶ。
上記無機シェルは、上記有機コアの表面上で、上記シランアルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を100℃以上(焼成温度)で焼成させることにより形成されていることが好ましい。上記焼成温度はより好ましくは150℃以上、更に好ましくは200℃以上である。上記焼成温度が上記下限以上であると、無機シェルにおける架橋度がより一層適度になり、電極間の電気的な接続により一層適した導電性粒子が得られる。
上記無機シェルは、上記有機コアの表面上で、上記シランアルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を上記有機コアの分解温度以下(焼成温度)で焼成させることにより形成されていることが好ましい。上記焼成温度は、上記有機コアの分解温度よりも5℃以上低い温度であることが好ましく、上記有機コアの分解温度よりも10℃以上低い温度であることがより好ましい。また、上記焼成温度は、好ましくは800℃以下、より好ましくは600℃以下、更に好ましくは500℃以下である。上記焼成温度が上記上限以下であると、上記有機コアの熱劣化及び変形を抑制でき、電極間の電気的な接続により一層適した導電性粒子が得られる。
良好な無機シェルを形成する観点からは、上記シランアルコキシドは、下記式(1A)で表されるシランアルコキシドであることが好ましい。
Si(R1)(OR2)4−n ・・・式(1A)
上記式(1A)中、R1はフェニル基、炭素数1〜30のアルキル基、重合性二重結合を有する炭素数1〜30の有機基又はエポキシ基を有する炭素数1〜30の有機基を表し、R2は炭素数1〜6のアルキル基を表し、nは0〜2の整数を表す。nが2であるとき、複数のR1は同一であってもよく、異なっていてもよい。複数のR2は同一であってもよく、異なっていてもよい。シェルに含まれるケイ素原子の含有量を効果的に高めるために、上記式(1A)中のnは0又は1を表すことが好ましく、0を表すことがより好ましい。シェルに含まれるケイ素原子の含有量が高いと、本発明の効果により一層優れる。
上記R1が炭素数1〜30のアルキル基である場合、R1の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、イソブチル基、n−ヘキシル基、シクロヘキシル基、n−オクチル基、及びn−デシル基等が挙げられる。このアルキル基の炭素数は好ましくは10以下、より好ましくは6以下である。なお、アルキル基には、シクロアルキル基が含まれる。
上記重合性二重結合としては、炭素−炭素二重結合が挙げられる。上記R1が重合性二重結合を有する炭素数1〜30の有機基である場合に、R1の具体例としては、ビニル基、アリル基、イソプロペニル基、及び3−(メタ)アクリロキシアルキル基等が挙げられる。上記(メタ)アクリロキシアルキル基としては、(メタ)アクリロキシメチル基、(メタ)アクリロキシエチル基及び(メタ)アクリロキシプロピル基等が挙げられる。上記重合性二重結合を有する炭素数1〜30の有機基の炭素数は好ましくは2以上、好ましくは30以下、より好ましくは10以下である。上記「(メタ)アクリロキシ」は、メタクリロキシ又はアクリロキシを意味する。
上記R1がエポキシ基を有する炭素数1〜30の有機基である場合、R1の具体例としては、1,2−エポキシエチル基、1,2−エポキシプロピル基、2,3−エポキシプロピル基、3,4−エポキシブチル基、3−グリシドキシプロピル基、及び2−(3,4−エポキシシクロヘキシル)エチル基等が挙げられる。上記エポキシ基を有する炭素数1〜30の有機基の炭素数は好ましくは8以下、より好ましくは6以下である。なお、上記エポキシ基を有する炭素数1〜30の有機基は、炭素原子及び水素原子に加えて、エポキシ基に由来する酸素原子を含む基である。
上記R2の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、及びイソブチル基等が挙げられる。シェルに含まれるケイ素原子の含有量を効果的に高めるために、上記R2は、メチル基又はエチル基を表すことが好ましい。
上記シランアルコキシドの具体例としては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、イソプロピルトリメトキシシラン、イソブチルトリメトキシシラン、シクロヘキシルトリメトキシシラン、n−ヘキシルトリメトキシシラン、n−オクチルトリエトキシシラン、n−デシルトリメトキシシラン、フェニルトリメトキシシラン、ジメチルジメトキシシラン、及びジイソプロピルジメトキシシラン等が挙げられる。これら以外のシランアルコキシドを用いてもよい。
シェルに含まれるケイ素原子の含有量を効果的に高めるために、上記シェルの材料として、テトラメトキシシラン又はテトラエトキシシランを用いることが好ましい。上記シェルの材料の100重量%中、テトラメトキシシランとテトラエトキシシランとの合計の含有量は好ましくは50重量%以上である(全量でもよい)。上記シェル100重量%中、テトラメトキシシランに由来する骨格とテトラエトキシシランに由来する骨格との合計の含有量は好ましくは50重量%以上である(全量でもよい)。
上記シランアルコキシドは、ケイ素原子に4つの酸素原子が直接結合している構造を有するシランアルコキシドを含むことが好ましい。このシランアルコキシドでは、一般にケイ素原子に4つの酸素原子が単結合により結合している。上記シランアルコキシドは、下記式(1Aa)で表されるシランアルコキシドを含むことが好ましい。
Si(OR2) ・・・式(1Aa)
上記式(1Aa)中、R2は炭素数1〜6のアルキル基を表す。複数のR2は同一であってもよく、異なっていてもよい。
電極間の電気的な接続により一層適した導電性粒子を得る観点からは、上記無機シェルを形成するために用いる上記シランアルコキシド100モル%中、上記ケイ素原子に4つの酸素原子が直接結合している構造を有するシランアルコキシド、又は上記式(1Aa)で表されるシランアルコキシドの各含有量は、好ましくは20モル%以上、より好ましくは40モル%以上、更に好ましくは50モル%以上、更に一層好ましくは55モル%以上、特に好ましくは60モル%以上、100モル%以下である。上記無機シェルを形成するために用いる上記シランアルコキシドの全量が、上記ケイ素原子に4つの酸素原子が直接結合している構造を有するシランアルコキシド、又は上記式(1Aa)で表されるシランアルコキシドであってもよい。
電極間の電気的な接続により一層適した導電性粒子を得る観点からは、上記無機シェルに含まれる上記シランアルコキシドに由来するケイ素原子の全個数100%中、4つの−O−Si基が直接結合しておりかつ4つの上記−O−Si基における4つの酸素原子が直接結合しているケイ素原子の個数の割合は、好ましくは20%以上、より好ましくは40%以上、更に好ましくは50%以上、特に好ましくは60%以上である。但し、本発明では、耐アルカリ性を高めるために、上記無機シェルに含まれる上記シランアルコキシドに由来するケイ素原子の全個数100%中、4つの−O−Si基が直接結合しておりかつ4つの上記−O−Si基における4つの酸素原子が直接結合しているケイ素原子の個数の割合は、好ましくは50%以上、より好ましくは55モル%以上、更に好ましくは60%以上である。
上記無機シェルに含まれているケイ素原子の全個数100%中、4つの−O−Si基が直接結合しておりかつ4つの上記−O−Si基における4つの酸素原子が直接結合しているケイ素原子の個数の割合は、好ましくは20%以上、より好ましくは40%以上、更に好ましくは50%以上、更に一層好ましくは55モル%以上、特に好ましくは60%以上である。
なお、4つの−O−Si基が直接結合しておりかつ4つの上記−O−Si基における4つのケイ素原子が直接結合しているケイ素原子は、例えば、下記式(11)で表される構造におけるケイ素原子である。具体的には、下記式(11X)で表される構造における矢印Aを付して示すケイ素原子である。
Figure 0006588938
なお、上記式(11)における酸素原子は、一般に隣接するケイ素原子とシロキサン結合を形成している。
Figure 0006588938
本発明における上述した構成の採用により、電極間の接続抵抗のより一層低くする効果がより一層得られることから、上記基材粒子が表面にシラノール基を有することが好ましく、上記無機シェルが外表面にシラノール基を有することが好ましい。銅層を無電解めっきにより形成する際には、pHが比較的高い無電解銅めっき液が用いられることが多い。この場合に、銅層の下地層としてニッケル層が存在しない場合には、pHが比較的高い無電解銅めっき液の作用により、基材粒子の表面が無電解銅めっき液中に溶出しやすい。基材粒子の表面が無電解銅めっき液中に溶出して、基材粒子の表面状態にむらが生じると、電極間の接続抵抗が高くなる。本発明では、銅層の下地層としてニッケル層を形成するので、銅層を形成するためにpHが比較的高い無電解銅めっき液を用いても、電極間の接続抵抗の上昇を抑えることができる。
上記無電解めっき液のpHは8を超えていても、本発明に係る導電性粒子の使用により、基材粒子と導電層との密着性を高めることができ、電極間の接続抵抗を低くすることができる。一方で、上記銅層はpHが8以下である無電解銅めっき液を用いて形成されていることが好ましい。銅層の下地層としてニッケル層が存在する場合には、基材粒子の表面の溶出を防ぐことができるが、ニッケル層にピンホールが存在する場合には、基材粒子の表面の溶出を完全には防ぐことができない可能性がある。
これに対して、上記銅層がpHが8.0以下である無電解銅めっき液を用いて形成されており、かつ、銅層の下地層としてニッケル層が存在することによって、基材粒子と導電層との密着性をより一層高めることができ、電極間の接続抵抗をより一層低くすることができる。
上記無電解銅めっき液のpHは、好ましくは6.0以上、より好ましくは7.0以上、好ましくは8.0以下、より好ましくは7.5以下である。上記pHが上記下限以上及び上記上限以下であると、基材粒子と導電層との密着性がより一層高くなり、接続抵抗がより一層低くなり、銅層をより一層効率的に形成できる。
本発明における上述した構成の採用により、電極間の接続抵抗を低くする効果がより一層得られることから、上記無機シェルに含まれるケイ素原子に直接結合した官能基の全個数100%中、上記官能基が水酸基である個数の割合が20%以上であることが好ましい。
上記コアの粒径は、好ましくは0.5μm以上、より好ましくは1μm以上、好ましくは500μm以下、より好ましくは100μm以下、更に好ましくは50μm以下、特に好ましくは20μm以下、最も好ましくは10μm以下である。上記コアの粒径が上記下限以上及び上記上限以下であると、電極間の電気的な接続により一層適した導電性粒子が得られ、基材粒子を導電性粒子の用途に好適に使用可能になる。例えば、上記コアの粒径が上記下限以上及び上記上限以下であると、上記導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が充分に大きくなり、かつ導電層を形成する際に凝集した導電性粒子が形成されにくくなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電層が基材粒子の表面から剥離し難くなる。上記コアの粒径は3μm以下であることも好ましい。
上記コアの粒径は、上記コアが真球状である場合には直径を意味し、上記コアが真球状以外の形状である場合には、最大径を意味する。また、コアの粒径は、コアを任意の粒径測定装置により測定した平均粒径を意味する。例えば、レーザー光散乱、電気抵抗値変化、撮像後の画像解析などの原理を用いた粒度分布測定機が利用できる。
上記シェルの厚みは、好ましくは100nm以上、より好ましくは200nm以上、好ましくは5μm以下、より好ましくは3μm以下である。上記シェルの厚みが上記下限以上及び上記上限以下であると、電極間の電気的な接続により一層適した導電性粒子が得られ、基材粒子を導電性粒子の用途に好適に使用可能になる。上記シェルの厚みは、基材粒子1個あたりの平均厚みである。ゾルゲル法の制御によって、上記シェルの厚みを制御可能である。
上記基材粒子が金属粒子である場合に、該金属粒子を形成するための金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。但し、上記基材粒子は金属粒子ではないことが好ましい。
上記基材粒子の粒子径は、0.1μm以上、5μm以下であることが特に好ましい。上記基材粒子の粒子径が0.1〜5μmの範囲内であると、電極間の間隔が小さくなり、かつ導電層の厚みを厚くしても、小さい導電性粒子が得られる。電極間の間隔をより一層小さくしたり、導電層の厚みを厚くしても、より一層小さい導電性粒子を得たりする観点からは、上記基材粒子の粒子径は、好ましくは0.5μm以上、より好ましくは2μm以上、好ましくは3μm以下である。
上記基材粒子の粒子径は、基材粒子が真球状である場合には、直径を示し、基材粒子が真球状ではない場合には、最大径を示す。
上記基材粒子を10%圧縮したときの圧縮弾性率(10%K値)は好ましくは2500N/mm以上、より好ましくは5000N/mm以上、好ましくは10000N/mm以下、より好ましくは7000N/mm以下である。上記10%K値が上記下限以上及び上記上限以下であると、電極間の接続抵抗がより一層低くなる。また、高温下及び高湿下での接続抵抗の上昇をより一層抑える観点からは、上記10%K値は、好ましくは2500N/mm以上、より好ましくは5000N/mm以上、更に好ましくは8000N/mm以上である。高温下及び高湿下での接続抵抗の上昇をより一層抑える観点からは、上記10%K値は、8000N/mm以上であることが特に好ましい。
上記基材粒子における上記圧縮弾性率(10%K値)は、以下のようにして測定できる。
微小圧縮試験機を用いて、円柱(直径100μm、ダイヤモンド製)の平滑圧子端面で、25℃、圧縮速度0.3mN/秒、及び最大試験荷重20mNの条件下で基材粒子を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、上記圧縮弾性率を下記式により求めることができる。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH−100」等が用いられる。
10%K値(N/mm)=(3/21/2)・F・S−3/2・R−1/2
F:基材粒子が10%圧縮変形したときの荷重値(N)
S:基材粒子が10%圧縮変形したときの圧縮変位(mm)
R:基材粒子の半径(mm)
上記圧縮弾性率は、基材粒子の硬さを普遍的かつ定量的に表す。上記圧縮弾性率の使用により、基材粒子の硬さを定量的かつ一義的に表すことができる。
[導電層]
上記導電層はニッケル層を有する。上記ニッケル層には、金属として、ニッケルのみを用いた場合だけでなく、ニッケルと他の金属とを用いた場合も含まれる。上記ニッケル層は、ニッケル合金層であってもよい。
上記ニッケル層におけるニッケル以外の金属としては、銀、銅、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、インジウム、パラジウム、クロム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、ケイ素、タングステン、モリブデン、錫ドープ酸化インジウム(ITO)及びはんだ等が挙げられる。これらの金属は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記ニッケル層はニッケルを主金属として含むことが好ましい。上記ニッケル層100重量%中、ニッケルの含有量は50重量%以上であることが好ましい。上記ニッケル層100重量%中、ニッケルの含有量は好ましくは75重量%以上、より好ましくは85重量%以上、更に好ましくは95重量%以上である。ニッケルの含有量が上記下限以上であると、電極の表面の酸化被膜がより一層効果的に除去され、電極間の接続抵抗がより一層低くなる。
上記ニッケル層はリン又はボロンを含んでいてもよい。上記ニッケル層100重量%中、リン又はボロンの含有量は好ましくは0.1重量%以上、より好ましくは1重量%以上、好ましくは10重量%以下、より好ましくは5重量%以下である。リン又はボロンの含有量が上記下限及び上記上限以下であると、上記ニッケル層の抵抗がより一層低くなり、上記ニッケル層が接続抵抗の低減に寄与する。
上記導電層は銅層を有する。上記銅層には、金属として、銅のみを用いた場合だけでなく、銅と他の金属とを用いた場合も含まれる。上記銅層は、銅合金層であってもよい。上記銅層の外表面上に、他の導電層が積層されていてもよい。上記導電層の最表面に銅層が配置されていることが好ましい。
上記銅層における銅以外の金属としては、例えば、金、銀、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、インジウム、ニッケル、パラジウム、クロム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、ケイ素、タングステン、モリブデン、錫ドープ酸化インジウム(ITO)及びはんだ等が挙げられる。これらの金属は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記銅層は銅を主金属として含むことが好ましい。上記銅層100重量%中、銅の含有量は50重量%以上であることが好ましい。上記銅層100重量%中、銅の含有量は好ましくは70重量%以上、より好ましくは80重量%以上、更に好ましくは99重量%以上である。銅の含有量が上記下限以上であると、電極と導電性粒子とがより一層適度に接触し、電極間の接続抵抗がより一層低くなる。
導電性粒子における導電層全体100重量%中並びに上記ニッケル層と上記銅層との全体100重量%中、ニッケルの含有量は好ましくは40重量%以上、より好ましくは60重量%以上、好ましくは92重量%以下、より好ましくは80重量%以下である。ニッケルの含有量が上記下限以上であると、電極の表面の酸化被膜がより一層効果的に除去され、電極間の接続抵抗がより一層低くなる。
導電性粒子における導電層全体100重量%中並びに上記ニッケル層と上記銅層との全体100重量%中、銅の含有量は好ましくは5重量%以上、より好ましくは10重量%以上、好ましくは60重量%以下、より好ましくは25重量%以下である。銅の含有量が上記下限以上であると、電極と導電性粒子とがより一層適度に接触し、電極間の接続抵抗がより一層低くなる。
上記導電層を形成する方法は特に限定されない。上記導電層を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的蒸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを粒子の表面にコーティングする方法等が挙げられる。なかでも、上記導電層の形成が簡便であるので、無電解めっきによる方法が好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。
上記ニッケル層の厚みは、好ましくは36nm以上、より好ましくは60nm以上、好ましくは295nm以下、より好ましくは130nm以下である。上記ニッケル層の厚みが上記下限以上及び上記上限以下であると、電極の表面の酸化被膜がより一層効果的に除去され、電極間の接続抵抗がより一層低くなる。
上記銅層の厚みは、好ましくは5nm以上、より好ましくは15nm以上、好ましくは100nm以下、より好ましくは40nm以下である。上記銅層の厚みが上記下限以上及び上記上限以下であると、電極と導電性粒子とがより一層適度に接触し、電極間の接続抵抗がより一層低くなる。
上記導電層全体の厚み及び上記ニッケル層と上記銅層との合計の厚みは、好ましくは5nm以上、より好ましくは10nm以上、更に好ましくは20nm以上、特に好ましくは41nm以上、最も好ましくは50nm以上、好ましくは1000nm以下、より好ましくは800nm以下、より一層好ましくは500nm以下、更に好ましくは400nm以下、特に好ましくは395nm以下、最も好ましくは300nm以下である。上記導電層全体の厚み及び上記ニッケル層と上記銅層との合計の厚みが上記下限以上であると、導電性粒子の導電性がより一層良好になる。上記導電層全体の厚みが及び上記ニッケル層と上記銅層との合計の厚み上記上限以下であると、基材粒子と導電層との熱膨張率の差が小さくなり、基材粒子から導電層が剥離し難くなる。
上記導電性粒子の粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上、好ましくは100μm以下、より好ましくは20μm以下、更に好ましくは5μm以下である。導電性粒子の粒子径が上記下限以上及び上記上限以下であると、導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が充分に大きくなり、かつ導電層を形成する際に凝集した導電性粒子が形成されにくくなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電層が基材粒子の表面から剥離し難くなる。
上記導電性粒子の粒子径は、導電性粒子が真球状である場合には、直径を示し、導電性粒子が真球状ではない場合には、最大径を示す。
本発明に係る導電性粒子は、導電性の表面に突起を有することが好ましい。上記ニッケル層は、外表面に突起を有することが好ましい。上記銅層は、外表面に突起を有することが好ましい。導電性粒子により接続される電極の表面には、酸化被膜が形成されていることが多い。導電性の突起を有する導電性粒子の使用により、電極間に導電性粒子を配置した後、圧着させることにより、突起により酸化被膜が効果的に排除される。このため、電極と導電性粒子とをより一層確実に接触させることができ、電極間の接続抵抗を低くすることができる。さらに、導電性粒子が表面に絶縁物質を有する場合、又は導電性粒子が樹脂中に分散されて導電材料として用いられる場合に、導電性粒子の突起によって、導電性粒子と電極との間の絶縁物質又は樹脂を効果的に排除できる。このため、電極間の導通信頼性を高めることができる。
上記突起は複数であることが好ましい。上記導電性粒子1個当たりの上記導電層の外表面の突起は、好ましくは3個以上、より好ましくは5個以上である。上記突起の数の上限は特に限定されない。突起の数の上限は導電性粒子の粒子径等を考慮して適宜選択できる。
複数の上記突起の平均高さは、好ましくは0.001μm以上、より好ましくは0.05μm以上、好ましくは0.9μm以下、より好ましくは0.2μm以下である。上記突起の平均高さが上記下限以上及び上記上限以下であると、電極間の接続抵抗が効果的に低くなる。
[芯物質]
上記芯物質が上記導電層中に埋め込まれていることによって、上記導電層が外表面に複数の突起を有するようにすることが容易である。但し、導電性粒子及び導電層の表面に突起を形成するために、芯物質を必ずしも用いなくてもよい。
上記突起を形成する方法としては、基材粒子の表面に芯物質を付着させた後、無電解めっきにより導電層を形成する方法、並びに基材粒子の表面に無電解めっきにより導電層を形成した後、芯物質を付着させ、更に無電解めっきにより導電層を形成する方法等が挙げられる。
上記基材粒子の表面上に芯物質を配置する方法としては、例えば、基材粒子の分散液中に、芯物質を添加し、基材粒子の表面に芯物質を、例えば、ファンデルワールス力により集積させ、付着させる方法、並びに基材粒子を入れた容器に、芯物質を添加し、容器の回転等による機械的な作用により基材粒子の表面に芯物質を付着させる方法等が挙げられる。なかでも、付着させる芯物質の量を制御しやすいため、分散液中の基材粒子の表面に芯物質を集積させ、付着させる方法が好ましい。
上記芯物質を構成する物質としては、導電性物質及び非導電性物質が挙げられる。上記導電性物質としては、例えば、金属、金属の酸化物、黒鉛等の導電性非金属及び導電性ポリマー等が挙げられる。上記導電性ポリマーとしては、ポリアセチレン等が挙げられる。上記非導電性物質としては、シリカ、アルミナ、チタン酸バリウム及びジルコニア等が挙げられる。なかでも、導電性を高めることができ、更に接続抵抗を効果的に低くすることができるので、金属が好ましい。上記芯物質は金属粒子であることが好ましい。
上記金属としては、例えば、金、銀、銅、白金、亜鉛、鉄、鉛、錫、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム等の金属、並びに錫−鉛合金、錫−銅合金、錫−銀合金、錫−鉛−銀合金及び炭化タングステン等の2種類以上の金属で構成される合金等が挙げられる。なかでも、ニッケル、銅、銀又は金が好ましい。上記芯物質を形成するための金属は、上記導電層を形成するための金属と同じであってもよく、異なっていてもよい。上記芯物質を形成するための金属は、上記導電層を形成するための金属を含むことが好ましい。上記芯物質を形成するための金属は、ニッケルを含むことが好ましい。上記芯物質を形成するための金属は、ニッケルを含むことが好ましい。
上記芯物質の形状は特に限定されない。芯物質の形状は塊状であることが好ましい。芯物質としては、例えば、粒子状の塊、複数の微小粒子が凝集した凝集塊、及び不定形の塊等が挙げられる。
上記芯物質の平均径(平均粒子径)は、好ましくは0.001μm以上、より好ましくは0.05μm以上、好ましくは0.9μm以下、より好ましくは0.2μm以下である。上記芯物質の平均径が上記下限以上及び上記上限以下であると、電極間の接続抵抗が効果的に低くなる。
上記芯物質の「平均径(平均粒子径)」は、数平均径(数平均粒子径)を示す。芯物質の平均径は、任意の芯物質50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。
[絶縁物質]
本発明に係る導電性粒子は、上記導電層の外表面上に配置された絶縁物質を備えることが好ましい。すなわち、本発明に係る導電性粒子は、上記銅層の外表面上に配置された絶縁物質を備えることが好ましい。この場合には、導電性粒子を電極間の接続に用いると、隣接する電極間の短絡を防止できる。具体的には、複数の導電性粒子が接触したときに、複数の電極間に絶縁物質が存在するので、上下の電極間ではなく横方向に隣り合う電極間の短絡を防止できる。なお、電極間の接続の際に、2つの電極で導電性粒子を加圧することにより、導電性粒子の導電層と電極との間の絶縁物質を容易に排除できる。導電性粒子が導電層の外表面に複数の突起を有する場合には、導電性粒子の導電層と電極との間の絶縁物質を容易に排除できる。
電極間の圧着時に上記絶縁物質をより一層容易に排除できることから、上記絶縁物質は、絶縁性粒子であることが好ましい。
上記絶縁物質の材料である絶縁性樹脂の具体例としては、ポリオレフィン類、(メタ)アクリレート重合体、(メタ)アクリレート共重合体、ブロックポリマー、熱可塑性樹脂、熱可塑性樹脂の架橋物、熱硬化性樹脂及び水溶性樹脂等が挙げられる。
上記ポリオレフィン類としては、ポリエチレン、エチレン−酢酸ビニル共重合体及びエチレン−アクリル酸エステル共重合体等が挙げられる。上記(メタ)アクリレート重合体としては、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート及びポリブチル(メタ)アクリレート等が挙げられる。上記ブロックポリマーとしては、ポリスチレン、スチレン−アクリル酸エステル共重合体、SB型スチレン−ブタジエンブロック共重合体、及びSBS型スチレン−ブタジエンブロック共重合体、並びにこれらの水素添加物等が挙げられる。上記熱可塑性樹脂としては、ビニル重合体及びビニル共重合体等が挙げられる。上記熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂及びメラミン樹脂等が挙げられる。上記水溶性樹脂としては、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリビニルピロリドン、ポリエチレンオキシド及びメチルセルロース等が挙げられる。なかでも、水溶性樹脂が好ましく、ポリビニルアルコールがより好ましい。
上記導電層の表面上に絶縁物質を配置する方法としては、化学的方法、及び物理的もしくは機械的方法等が挙げられる。上記化学的方法としては、例えば、界面重合法、粒子存在下での懸濁重合法及び乳化重合法等が挙げられる。上記物理的もしくは機械的方法としては、スプレードライ、ハイブリダイゼーション、静電付着法、噴霧法、ディッピング及び真空蒸着による方法等が挙げられる。なかでも、絶縁物質が脱離し難いことから、上記導電層の表面に、化学結合を介して上記絶縁物質を配置する方法が好ましい。
上記絶縁物質の平均径(平均粒子径)は、導電性粒子の粒子径及び導電性粒子の用途等によって適宜選択できる。上記絶縁物質の平均径(平均粒子径)は好ましくは0.005μm以上、より好ましくは0.01μm以上、好ましくは1μm以下、より好ましくは0.5μm以下である。絶縁物質の平均径が上記下限以上であると、導電性粒子がバインダー樹脂中に分散されたときに、複数の導電性粒子における導電層同士が接触し難くなる。絶縁性粒子の平均径が上記上限以下であると、電極間の接続の際に、電極と導電性粒子との間の絶縁物質を排除するために、圧力を高くしすぎる必要がなくなり、高温に加熱する必要もなくなる。
上記絶縁物質の「平均径(平均粒子径)」は、数平均径(数平均粒子径)を示す。絶縁物質の平均径は、粒度分布測定装置等を用いて求められる。
[防錆処理]
導電性粒子の腐食を抑え、電極間の接続抵抗をより一層低くする観点からは、上記銅層の外表面は防錆処理されていることが好ましい。
導通信頼性をより一層高める観点からは、上記銅層の外表面は、炭素数6〜22のアルキル基を有する化合物により、防錆処理されていることが好ましい。導通信頼性をより一層高める観点からは、上記銅層の外表面は、アルキルリン酸化合物又はアルキルチオールにより、防錆処理されていることが好ましい。防錆処理により、銅層の表面に、防錆膜を形成できる。
上記防錆膜は、炭素数6〜22のアルキル基を有する化合物(以下、化合物Aともいう)により形成されていることが好ましい。上記銅層の外表面は、上記化合物Aにより表面処理されていることが好ましい。上記アルキル基の炭素数が6以上であると、銅層の外表面に錆がより一層生じ難くなる。上記アルキル基の炭素数が22以下であると、導電性粒子の導電性が高くなる。導電性粒子の導電性をより一層高める観点からは、上記化合物Aにおける上記アルキル基の炭素数は16以下であることが好ましい。上記アルキル基は直鎖構造を有していてもよく、分岐構造を有していてもよい。上記アルキル基は、直鎖構造を有することが好ましい。
上記化合物Aは、炭素数6〜22のアルキル基を有していれば特に限定されない。上記化合物Aは、炭素数6〜22のアルキル基を有するリン酸エステル又はその塩、炭素数6〜22のアルキル基を有する亜リン酸エステル又はその塩、炭素数6〜22のアルキル基を有するアルコキシシラン、炭素数6〜22のアルキル基を有するアルキルチオール、及び炭素数6〜22のアルキル基を有するジアルキルジスルフィドからなる群より選択される少なくとも1種であることが好ましい。すなわち、上記炭素数6〜22のアルキル基を有する化合物Aは、リン酸エステル又はその塩、亜リン酸エステル又はその塩、アルコキシシラン、アルキルチオール及びジアルキルジスルフィドからなる群より選択される少なくとも1種であることが好ましい。これらの好ましい化合物Aの使用により、銅層に錆をより一層生じ難くすることができる。錆をより一層生じ難くする観点からは、上記化合物Aは、上記リン酸エステルもしくはその塩、亜リン酸エステルもしくはその塩、又は、アルキルチオールであることが好ましく、上記リン酸エステルもしくはその塩、又は、亜リン酸エステルもしくはその塩であることがより好ましい。上記化合物Aは、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記化合物Aは、銅層の外表面と反応可能な反応性官能基を有することが好ましい。上記化合物Aは、上記絶縁物質と反応可能な反応性官能基を有することが好ましい。上記防錆膜は、銅層と化学結合していることが好ましい。上記防錆膜は、上記絶縁物質と化学結合していることが好ましい。上記防錆膜は、上記銅層及び上記絶縁物質の双方と化学結合していることがより好ましい。上記反応性官能基の存在により、及び上記化学結合により、上記防錆膜の剥離が生じ難くなり、この結果、銅層に錆がより一層生じ難くなり、かつ導電性粒子の表面から絶縁物質が意図せずにより一層脱離し難くなる。
上記炭素数6〜22のアルキル基を有するリン酸エステル又はその塩としては、例えば、リン酸ヘキシルエステル、リン酸ヘプチルエステル、リン酸モノオクチルエステル、リン酸モノノニルエステル、リン酸モノデシルエステル、リン酸モノウンデシルエステル、リン酸モノドデシルエステル、リン酸モノトリデシルエステル、リン酸モノテトラデシルエステル、リン酸モノペンタデシルエステル、リン酸モノヘキシルエステルモノナトリウム塩、リン酸モノヘプチルエステルモノナトリウム塩、リン酸モノオクチルエステルモノナトリウム塩、リン酸モノノニルエステルモノナトリウム塩、リン酸モノデシルエステルモノナトリウム塩、リン酸モノウンデシルエステルモノナトリウム塩、リン酸モノドデシルエステルモノナトリウム塩、リン酸モノトリデシルエステルモノナトリウム塩、リン酸モノテトラデシルエステルモノナトリウム塩及びリン酸モノペンタデシルエステルモノナトリウム塩等が挙げられる。上記リン酸エステルのカリウム塩を用いてもよい。
上記炭素数6〜22のアルキル基を有する亜リン酸エステル又はその塩としては、例えば、亜リン酸ヘキシルエステル、亜リン酸ヘプチルエステル、亜リン酸モノオクチルエステル、亜リン酸モノノニルエステル、亜リン酸モノデシルエステル、亜リン酸モノウンデシルエステル、亜リン酸モノドデシルエステル、亜リン酸モノトリデシルエステル、亜リン酸モノテトラデシルエステル、亜リン酸モノペンタデシルエステル、亜リン酸モノヘキシルエステルモノナトリウム塩、亜リン酸モノヘプチルエステルモノナトリウム塩、亜リン酸モノオクチルエステルモノナトリウム塩、亜リン酸モノノニルエステルモノナトリウム塩、亜リン酸モノデシルエステルモノナトリウム塩、亜リン酸モノウンデシルエステルモノナトリウム塩、亜リン酸モノドデシルエステルモノナトリウム塩、亜リン酸モノトリデシルエステルモノナトリウム塩、亜リン酸モノテトラデシルエステルモノナトリウム塩及び亜リン酸モノペンタデシルエステルモノナトリウム塩等が挙げられる。上記亜リン酸エステルのカリウム塩を用いてもよい。
上記炭素数6〜22のアルキル基を有するアルコキシシランとしては、例えば、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、ヘプチルトリメトキシシラン、ヘプチルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、ノニルトリメトキシシラン、ノニルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、ウンデシルトリメトキシシラン、ウンデシルトリエトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、トリデシルトリメトキシシラン、トリデシルトリエトキシシラン、テトラデシルトリメトキシシラン、テトラデシルトリエトキシシラン、ペンタデシルトリメトキシシラン及びペンタデシルトリエトキシシラン等が挙げられる。
上記炭素数6〜22のアルキル基を有するアルキルチオールとしては、例えば、ヘキシルチオール、ヘプチルチオール、オクチルチオール、ノニルチオール、デシルチオール、ウンデシルチオール、ドデシルチオール、トリデシルチオール、テトラデシルチオール、ペンタデシルチオール及びヘキサデシルチオール等が挙げられる。上記アルキルチオールは、アルキル鎖の末端にチオール基を有することが好ましい。
上記炭素数6〜22のアルキル基を有するジアルキルジスルフィドとしては、例えば、ジヘキシルジスルフィド、ジヘプチルジスルフィド、ジオクチルジスルフィド、ジノニルジスルフィド、ジデシルジスルフィド、ジウンデシルジスルフィド、ジドデシルジスルフィド、ジトリデシルジスルフィド、ジテトラデシルジスルフィド、ジペンタデシルジスルフィド及びジヘキサデシルジスルフィド等が挙げられる。
(導電材料)
本発明に係る導電材料は、上述した導電性粒子と、バインダー樹脂とを含む。上記導電性粒子は、バインダー樹脂中に分散され、導電材料として用いられることが好ましい。上記導電材料は、異方性導電材料であることが好ましい。上記導電材料は、電極の電気的な接続に好適に用いられる。上記導電材料は、回路接続材料であることが好ましい。
上記バインダー樹脂は特に限定されない。上記バインダー樹脂として、公知の絶縁性の樹脂が用いられる。
上記バインダー樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記バインダー樹脂は1種のみが用いられてもよく、2種以上が併用されてもよい。
上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン−酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。上記熱可塑性ブロック共重合体としては、例えば、スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、スチレン−ブタジエン−スチレンブロック共重合体の水素添加物、及びスチレン−イソプレン−スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、例えば、スチレン−ブタジエン共重合ゴム、及びアクリロニトリル−スチレンブロック共重合ゴム等が挙げられる。
上記導電材料は、上記導電性粒子及び上記バインダー樹脂の他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
本発明に係る導電材料は、導電ペースト及び導電フィルム等として使用され得る。本発明に係る導電材料が、導電フィルムである場合には、導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されていてもよい。上記導電ペーストは、異方性導電ペーストであることが好ましい。上記導電フィルムは、異方性導電フィルムであることが好ましい。
上記導電材料100重量%中、上記バインダー樹脂の含有量は好ましくは10重量%以上、より好ましくは30重量%以上、更に好ましくは50重量%以上、特に好ましくは70重量%以上、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記バインダー樹脂の含有量が上記下限以上及び上記上限以下であると、電極間に導電性粒子が効率的に配置され、導電材料により接続された接続対象部材の接続信頼性がより一層高くなる。
上記導電材料100重量%中、上記導電性粒子の含有量は好ましくは0.01重量%以上、より好ましくは0.1重量%以上、好ましくは40重量%以下、より好ましくは20重量%以下、更に好ましくは10重量%以下である。上記導電性粒子の含有量が上記下限以上及び上記上限以下であると、電極間の導通信頼性がより一層高くなる。
(接続構造体)
上記導電性粒子を用いて、又は上記導電性粒子とバインダー樹脂とを含む導電材料を用いて、接続対象部材を接続することにより、接続構造体を得ることができる。
上記接続構造体は、第1の接続対象部材と、第2の接続対象部材と、第1,第2の接続対象部材を接続している接続部とを備え、該接続部が上述した導電性粒子により形成されているか、又は上述した導電性粒子とバインダー樹脂とを含む導電材料により形成されている接続構造体であることが好ましい。導電性粒子が用いられた場合には、接続部自体が導電性粒子である。すなわち、第1,第2の接続対象部材が導電性粒子により接続される。
図3に、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体を模式的に断面図で示す。
図3に示す接続構造体51は、第1の接続対象部材52と、第2の接続対象部材53と、第1,第2の接続対象部材52,53を接続している接続部54とを備える。接続部54は、導電性粒子1を含む導電材料を硬化させることにより形成されている。なお、図3では、導電性粒子1は、図示の便宜上、略図的に示されている。導電性粒子1にかえて、導電性粒子21等を用いてもよい。
第1の接続対象部材52は表面(上面)に、複数の第1の電極52aを有する。第2の接続対象部材53は表面(下面)に、複数の第2の電極53aを有する。第1の電極52aと第2の電極53aとが、1つ又は複数の導電性粒子1により電気的に接続されている。従って、第1,第2の接続対象部材52,53が導電性粒子1により電気的に接続されている。
上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例としては、第1の接続対象部材と第2の接続対象部材との間に上記導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記加圧の圧力は9.8×10〜4.9×10Pa程度である。上記加熱の温度は、120〜220℃程度である。
上記接続対象部材としては、具体的には、半導体チップ、コンデンサ及びダイオード等の電子部品、並びにプリント基板、フレキシブルプリント基板、ガラスエポキシ基板及びガラス基板等の回路基板などの電子部品等が挙げられる。上記接続対象部材は電子部品であることが好ましい。上記導電性粒子は、電子部品における電極の電気的な接続に用いられることが好ましい。
上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、銀電極、モリブデン電極及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。
以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。
(実施例1)
粒子径が3.0μmであるジビニルベンゼン共重合体樹脂粒子(積水化学工業社製「ミクロパールSP−203」)の表面を、ゾルゲル反応による縮合反応を用いて無機シェル(厚み250nm)により被覆したコアシェル型の有機無機ハイブリッド粒子(基材粒子)を用意した。得られた有機無機ハイブリッド粒子では、表面にシラノール基が存在し、上記無機シェルに含まれるケイ素原子に直接結合した官能基の全個数100%中、上記官能基が水酸基である個数の割合が50%以上であった。
基材粒子として上記有機無機ハイブリッド粒子を用いて、ジメチルアミンボランを還元剤とした無電解ニッケルめっき処理を行うことにより、基材粒子の表面上にニッケル層(厚み100nm)を形成した。次に、無電解銅めっき処理することにより、ニッケル層の外表面上に銅層(厚み40nm)を形成した。このようにして、導電性粒子を得た。
参考例2)
粒子径が3.0μmであるジビニルベンゼン共重合体樹脂粒子(積水化学工業社製「ミクロパールSP−203」)を用意した。
基材粒子を上記樹脂粒子に変更したこと以外は実施例1と同様にして、導電性粒子を得た。
(実施例3)
ニッケル層を形成する際に、還元剤であるジメチルアミンボランを次亜リン酸ナトリウムに変更したこと以外は実施例1と同様にして、導電性粒子を得た。
(実施例4)
銅層を形成する際に、無電解ニッケルめっき処理に用いる銅めっき液をチタン酸ナトリウムを含む銅めっき液に変更したこと以外は実施例1と同様にして、導電性粒子を得た。
参考例5)
ニッケル層の厚みを50nmに変更したこと以外は実施例1と同様にして、導電性粒子を得た。
参考例6)
銅層の厚みを5nmに変更したこと以外は実施例1と同様にして、導電性粒子を得た。
(実施例7)
実施例1で得られた有機無機ハイブリッド粒子を用意した。この有機無機ハイブリッド粒子をエッチングし、水洗した。次に、パラジウム触媒を8重量%含むパラジウム触媒化液100mL中に有機無機ハイブリッド粒子を添加し、攪拌した。その後、ろ過し、洗浄した。pH6の0.5重量%ジメチルアミンボラン液に有機無機ハイブリッド粒子を添加し、パラジウムが付着された有機無機ハイブリッド粒子を得た。
パラジウムが付着された有機無機ハイブリッド粒子をイオン交換水300mL中で3分間攪拌し、分散させ、分散液を得た。次に、金属ニッケル粒子スラリー(平均粒子径100nm)1gを3分間かけて上記分散液に添加し、芯物質が付着された有機無機ハイブリッド粒子を得た。
基材粒子を上記芯物質が付着された有機無機ハイブリッド粒子に変更したこと以外は実施例1と同様にして、導電性粒子を得た。
(実施例8)
4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブが取り付けられた1000mLのセパラブルフラスコに、メタクリル酸メチル100mmolと、N,N,N−トリメチル−N−2−メタクリロイルオキシエチルアンモニウムクロライド1mmolと、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩1mmolとを含むモノマー組成物を固形分率が5重量%となるようにイオン交換水に秤取した後、200rpmで攪拌し、窒素雰囲気下70℃で24時間重合を行った。反応終了後、凍結乾燥して、表面にアンモニウム基を有し、平均粒子径220nm及びCV値10%の絶縁性粒子を得た。
絶縁性粒子を超音波照射下でイオン交換水に分散させ、絶縁性粒子の10重量%水分散液を得た。
実施例7で得られた導電性粒子10gをイオン交換水500mLに分散させ、絶縁性粒子の水分散液4gを添加し、室温で6時間攪拌した。3μmのメッシュフィルターでろ過した後、更にメタノールで洗浄し、乾燥し、絶縁性粒子が付着した導電性粒子を得た。
走査型電子顕微鏡(SEM)により観察したところ、導電性粒子の表面に絶縁性粒子による被覆層が1層のみ形成されていた。画像解析により導電性粒子の中心より2.5μmの面積に対する絶縁性粒子の被覆面積(即ち絶縁性粒子の粒子径の投影面積)を算出したところ、被覆率は30%であった。
(実施例9)
粒子径が2.25μmであるジビニルベンゼン共重合体樹脂粒子の表面を、ゾルゲル反応による縮合反応を用いて無機シェル(厚み250nm)により被覆したコアシェル型の有機無機ハイブリッド粒子(基材粒子)を用意した。得られた有機無機ハイブリッド粒子では、表面にシラノール基が存在し、上記無機シェルに含まれるケイ素原子に直接結合した官能基の全個数100%中、上記官能基が水酸基である個数の割合が50%以上であった。この有機無機ハイブリッド粒子を用いたこと以外、実施例1と同様にして、導電性粒子を得た。
(比較例1)
ニッケル層を形成しなかったこと、すなわち有機無機ハイブリッド粒子の表面に銅層を直接形成したこと以外は実施例1と同様にして、導電性粒子を得た。
(比較例2)
銅層を形成しなかったこと以外は実施例1と同様にして、導電性粒子を得た。
(比較例3)
ニッケル層を形成しなかったこと、すなわち樹脂粒子の表面に銅層を直接形成したこと以外は参考例2と同様にして、導電性粒子を得た。
(比較例4)
銅層を形成しなかったこと以外は参考例2と同様にして、導電性粒子を得た。
(評価)
(1)基材粒子の上記圧縮弾性率(10%K値)
基材粒子の上記圧縮弾性率(10%K値)を、上述した方法により、微小圧縮試験機(フィッシャー社製「フィッシャースコープH−100」)を用いて測定した。
(2)導電層の全体100重量%中のニッケルの含有量及び銅の含有量
60%硝酸5mLと37%塩酸10mLとの混合液に、導電性粒子5gを加え、導電層を完全に溶解させ、溶液を得た。得られた溶液を用いて、ニッケル及び銅の含有量をICP−MS分析器(日立製作所社製)により分析した。
(3)ニッケル層100重量%中のニッケルの含有量及び銅層100重量%中の銅の含有量
SII社製「FIB(SMI500)」を用いて粒子断面を切り出し、日本電子社製「FE−TEM(JEM−2010FEF)」を用いてEDS線分析して、ニッケル及び銅の各含有量を測定した。
(4)接続抵抗
ビスフェノールA型エポキシ樹脂(三菱化学社製「エピコート1009」)10重量部と、アクリルゴム(重量平均分子量約80万)40重量部と、メチルエチルケトン200重量部と、マイクロカプセル型硬化剤(旭化成ケミカルズ社製「HX3941HP」)50重量部と、シランカップリング剤(東レダウコーニングシリコーン社製「SH6040」)2重量部とを混合し、導電性粒子を含有量が3重量%となるように添加し、分散させ、樹脂組成物を得た。
得られた樹脂組成物を、片面が離型処理された厚さ50μmのPET(ポリエチレンテレフタレート)フィルムに塗布し、70℃の熱風で5分間乾燥し、異方性導電フィルムを作製した。得られた異方性導電フィルムの厚さは12μmであった。
得られた異方性導電フィルムを5mm×5mmの大きさに切断した。切断された異方性導電フィルムを、一方に抵抗測定用の引き回し線を有するアルミニウム電極(高さ0.2μm、L/S=20μm/20μm)を有するガラス基板(幅3cm、長さ3cm)のアルミニウム電極側のほぼ中央に貼り付けた。次いで、同じアルミニウム電極を有する2層フレキシブルプリント基板(幅2cm、長さ1cm)を、電極同士が重なるように位置合わせをしてから貼り合わせた。このガラス基板と2層フレキシブルプリント基板との積層体を、10N、180℃、及び20秒間の圧着条件で熱圧着し、接続構造体を得た。なお、ポリイミドフィルムにアルミニウム電極が直接形成されている2層フレキシブルプリント基板を用いた。
接続抵抗の測定:
得られた接続構造体の対向する電極間の接続抵抗を4端子法により測定した。また、接続抵抗から接続抵抗を下記の基準で判定した。
[接続抵抗の判定基準]
○○:接続抵抗が2.0Ω以下
○:接続抵抗が2.0Ωを超え、3.0Ω以下
△:接続抵抗が3.0Ωを超え、5.0Ω以下
×:接続抵抗が5.0Ωを超える
(5)信頼性試験後の抵抗
信頼性試験後の抵抗の測定:
上記(4)接続抵抗の評価で得られた接続構造体を85℃85%環境下で500時間放置した。放置後、対向する電極間の接続抵抗を4端子法により測定した。また、信頼性試験後の抵抗を下記の基準で判定した。
[信頼性試験後の抵抗の判定基準]
○○○:接続抵抗が2.5Ω以下
○○:接続抵抗が2.5Ωを超え、3.0Ω以下
○:接続抵抗が3.0Ωを超え、5.0Ω以下
△:接続抵抗が5.0Ωを超え、10.0Ω以下
×:接続抵抗が10.0Ωを超える
結果を下記の表1に示す。
Figure 0006588938
1…導電性粒子
2…基材粒子
3…ニッケル層
4…銅層
21…導電性粒子
21a…突起
22…ニッケル層
22a…突起
23…銅層
23a…突起
24…芯物質
25…絶縁性物質
51…接続構造体
52…第1の接続対象部材
52a…第1の電極
53…第2の接続対象部材
53a…第2の電極
54…接続部

Claims (8)

  1. 基材粒子と、前記基材粒子の表面上に配置されたニッケル層と、前記ニッケル層の外表面上に配置された銅層とを備え、
    前記基材粒子を10%圧縮したときの圧縮弾性率(10%K値)が、2500N/mm以上、10000N/mm以下であり、
    前記基材粒子が、有機コアと前記有機コアの表面上に配置された無機シェルとを有する有機無機ハイブリッド粒子であり、
    前記ニッケル層の厚みが60nm以上、295nm以下であり、かつ、前記銅層の厚みが15nm以上、100nm以下である、導電性粒子。
  2. 前記銅層の外表面が防錆処理されている、請求項1に記載の導電性粒子。
  3. 前記銅層の外表面に突起を有する、請求項1又は2に記載の導電性粒子。
  4. 前記銅層の外表面上に配置された絶縁物質を備える、請求項1〜3のいずれか1項に記載の導電性粒子。
  5. 前記基材粒子が外表面にシラノール基を有する、請求項1〜4のいずれか1項に記載の導電性粒子。
  6. 前記無機シェルがシランアルコキシドにより形成されており、前記無機シェルに含まれるケイ素原子に直接結合した官能基の全個数100%中、前記官能基が水酸基である個数の割合が20%以上である、請求項1〜5のいずれか1項に記載の導電性粒子。
  7. 請求項1〜6のいずれか1項に記載の導電性粒子と、バインダー樹脂とを含む、導電材料。
  8. 第1の電極を表面に有する第1の接続対象部材と、
    第2の電極を表面に有する第2の接続対象部材と、
    前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、
    前記接続部が、請求項1〜6のいずれか1項に記載の導電性粒子により形成されているか、又は前記導電性粒子とバインダー樹脂とを含む導電材料により形成されており、
    前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体。
JP2017092440A 2013-04-04 2017-05-08 導電性粒子、導電材料及び接続構造体 Active JP6588938B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013078275 2013-04-04
JP2013078275 2013-04-04

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014074256A Division JP6374689B2 (ja) 2013-04-04 2014-03-31 導電性粒子、導電材料及び接続構造体

Publications (2)

Publication Number Publication Date
JP2017147239A JP2017147239A (ja) 2017-08-24
JP6588938B2 true JP6588938B2 (ja) 2019-10-09

Family

ID=51931684

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014074256A Active JP6374689B2 (ja) 2013-04-04 2014-03-31 導電性粒子、導電材料及び接続構造体
JP2017092440A Active JP6588938B2 (ja) 2013-04-04 2017-05-08 導電性粒子、導電材料及び接続構造体

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014074256A Active JP6374689B2 (ja) 2013-04-04 2014-03-31 導電性粒子、導電材料及び接続構造体

Country Status (1)

Country Link
JP (2) JP6374689B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111383793B (zh) * 2018-12-31 2021-10-26 德山金属株式会社 导电粒子、导电材料以及接触结构体
KR102174943B1 (ko) * 2018-12-31 2020-11-05 덕산하이메탈(주) 도전입자, 도전재료 및 접속 구조체

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3696429B2 (ja) * 1999-02-22 2005-09-21 日本化学工業株式会社 導電性無電解めっき粉体とその製造方法並びに該めっき粉体からなる導電性材料
JP3603945B2 (ja) * 1999-10-06 2004-12-22 信越化学工業株式会社 導電性シリコーンゴム組成物
JP4052832B2 (ja) * 2001-12-26 2008-02-27 積水化学工業株式会社 導電性微粒子、導電性微粒子の製造方法及び異方性導電材料
JP2006156068A (ja) * 2004-11-29 2006-06-15 Sanyo Chem Ind Ltd 導電性微粒子
JP5617322B2 (ja) * 2009-04-30 2014-11-05 富士通株式会社 導電性粒子の製造方法
JP5554077B2 (ja) * 2009-09-15 2014-07-23 株式会社日本触媒 絶縁性微粒子被覆導電性微粒子、異方性導電接着剤組成物、および異方性導電成形体
JP5580729B2 (ja) * 2010-12-28 2014-08-27 積水化学工業株式会社 導電性粒子、異方性導電材料及び接続構造体
JP2012142223A (ja) * 2011-01-05 2012-07-26 Sekisui Chem Co Ltd 導電性粒子、異方性導電材料及び接続構造体
CN103329217B (zh) * 2011-01-25 2016-06-29 株式会社日本触媒 导电性微粒和树脂粒子以及使用了它们的各向异性导电材料
JP5583611B2 (ja) * 2011-01-27 2014-09-03 株式会社日本触媒 導電性微粒子
JP5883679B2 (ja) * 2011-02-25 2016-03-15 積水化学工業株式会社 接続構造体の製造方法、異方性導電材料及び接続構造体
JP5596767B2 (ja) * 2011-11-02 2014-09-24 積水化学工業株式会社 異方性導電材料及び接続構造体

Also Published As

Publication number Publication date
JP6374689B2 (ja) 2018-08-15
JP2017147239A (ja) 2017-08-24
JP2014212105A (ja) 2014-11-13

Similar Documents

Publication Publication Date Title
JP6188456B2 (ja) 絶縁性粒子付き導電性粒子、導電材料及び接続構造体
WO2014115468A1 (ja) 基材粒子、導電性粒子、導電材料及び接続構造体
JPWO2014007238A1 (ja) 絶縁性粒子付き導電性粒子、導電材料及び接続構造体
JP7421580B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6927933B2 (ja) 導電性粒子、導電材料及び接続構造体
JP2019075380A (ja) 導電性粒子、導電材料及び接続構造体
JP6588938B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6931691B2 (ja) 導電性粒子、導電材料及び接続構造体
JP2016012560A (ja) 導電材料及び接続構造体
JP6357347B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6317997B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6445833B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6470518B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6364220B2 (ja) 導電性粒子、導電性粒子の製造方法、導電材料及び接続構造体
JP6491446B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6739894B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6592235B2 (ja) 絶縁性粒子付き導電性粒子、絶縁性粒子付き導電性粒子の製造方法、導電材料及び接続構造体
JP6382493B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6596137B2 (ja) 導電性粒子、導電材料及び接続構造体
WO2020189776A1 (ja) 導電性粒子、導電材料及び接続構造体
JP2015118932A (ja) 導電性粒子、導電材料及び接続構造体
JP2021057103A (ja) 導電性粒子、導電材料及び接続構造体

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181106

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181114

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190913

R151 Written notification of patent or utility model registration

Ref document number: 6588938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151