JP6584007B2 - 単結晶の製造方法および単結晶製造装置 - Google Patents

単結晶の製造方法および単結晶製造装置 Download PDF

Info

Publication number
JP6584007B2
JP6584007B2 JP2015241372A JP2015241372A JP6584007B2 JP 6584007 B2 JP6584007 B2 JP 6584007B2 JP 2015241372 A JP2015241372 A JP 2015241372A JP 2015241372 A JP2015241372 A JP 2015241372A JP 6584007 B2 JP6584007 B2 JP 6584007B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating member
single crystal
crucible
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015241372A
Other languages
English (en)
Other versions
JP2017105676A (ja
Inventor
佑 高橋
佑 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2015241372A priority Critical patent/JP6584007B2/ja
Publication of JP2017105676A publication Critical patent/JP2017105676A/ja
Application granted granted Critical
Publication of JP6584007B2 publication Critical patent/JP6584007B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、単結晶の製造方法および単結晶製造装置に関する。
炭化珪素は高い耐熱性、大きな絶縁破壊電圧、広いエネルギーバンドギャップ、そして、高い熱伝導度等優れた性能を有するため、高周波半導体デバイス、高耐温半導体素子への応用が可能である。現在はシリコンを使用したデバイスや素子が主流となっているが、物性限界から性能向上にも限界が近づきつつあり、シリコンよりも優れた物性限界を持つ炭化珪素への期待は近年高まり続けている。最近では地球温暖化問題への対策として、各種電力変換時のエネルギーロスを低減する省エネルギー技術として、炭化珪素を用いたパワーエレクトロニクス技術への注目が高まっている。
従来、炭化珪素を含む種結晶及び昇華用原料より、炭化珪素単結晶(以下、適宜「単結晶」と略称する)を製造する炭化珪素単結晶の製造方法として、昇華再結晶法が知られている。
この昇華再結晶法は、昇華用原料を2000℃以上に加熱することで、原料を昇華させて昇華ガスを発生させ、その昇華ガスを原料収容部よりも数10〜数100℃低温にした種結晶へ供給することにより、この種結晶から炭化珪素の単結晶を成長させる方法である。
昇華再結晶法を利用して炭化珪素単結晶を成長させる際に、種結晶あるいは炭化珪素単結晶 (以下、適宜「インゴット」と略称する)の成長速度はそれらの温度が昇華用原料の温度との差の大きさにより変化し、その差が大きければ成長速度は増大し、逆に小さければ低下することが知られている (例えば、特許文献1参照) 。
また、昇華再結晶法を利用して製造した炭化珪素単結晶において、結晶成長におけるインゴットにおいて、結晶成長中あるいは成長終了時におけるインゴット形状は、インゴットの残留応力に対して影響を与えることが知られており、例えばインゴットの成長表面において、インゴット中央部が他の部分と比較して大きく成長する凸型成長の場合、成長後のインゴット内残留応力が大きくなり、加工時にインゴット割れが誘発されたり、歪が多くなることが知られている (例えば、特許文献2参照) 。
特開2014−5159号公報 特開2011−219294号公報
炭化珪素インゴットの成長形状は、結晶成長時のインゴットの温度分布に依存する。炭化珪素インゴットの成長形状は割れや歪といった不良だけではなく、インゴットから取得する基板の品質にも影響を与える。
例えば、インゴットの中心部が他の部分に比べて成長量が大きい凸型成長であれば、インゴット内部の残留応力が大きいことに起因してインゴット割れが発生し、加工歩留りの低下を招く。インゴット形状としては各部の成長量の差が小さい形状が好まれる。そのため、形状をコントロールしながら結晶成長させることが望ましい。
また、結晶成長においては、径の拡大や成長量の増加に伴い形状調整が困難になる傾向があるため、緻密な形状調整方法が求められている。
本発明は、上記事情を鑑みてなされたものであり、結晶成長中に種結晶やその上に成長した単結晶の径方向の温度分布を調整して単結晶の成長形状を制御できる単結晶の製造方法および単結晶製造装置を提供することを目的とする。
本発明は、上記課題を解決するために、以下の手段を提供する。
(1)本発明の一態様に係る単結晶の製造方法は、坩堝本体と蓋部とからなる坩堝内で、蓋部に種結晶を配置し、坩堝本体の下部に原料を収容し、該原料を昇華させて原料ガスを供給し、前記種結晶上に単結晶を成長させる単結晶の製造方法において、前記蓋部の上面に複数の断熱部材片に分割された構造を有する断熱部材を配置し、結晶成長中に前記複数の断熱部材片のうちの一部を垂直方向に移動させることにより坩堝内の温度分布を調整して単結晶の結晶成長を行うことを特徴とする。
(2)上記(1)に記載の単結晶の製造方法において、結晶成長中に前記複数の断熱部材片のうちの一部を脱着させてもよい。
(3)本発明の一態様に係る単結晶製造装置は、坩堝本体と蓋部とからなる坩堝内で、前記蓋部に種結晶を配置し、坩堝本体の下部に原料を収容し、該原料を昇華させて原料ガスを供給し、前記種結晶上に単結晶を成長させる単結晶製造装置であって、前記蓋部の上面に配置された断熱部材を備え、該断熱部材が複数の断熱部材片に分割された構造を有し、前記複数の断熱部材片のうちの少なくとも一部は垂直方向に移動可能であることを特徴とする。
(4)上記(3)に記載の単結晶製造装置において、前記断熱部材は平面視で円形であり、前記分割は前記円形の中心軸に対して軸対称になされていてもよい。
(5)上記(3)または(4)のいずれかに記載の単結晶製造装置において、前記複数の断熱部材片のうちの一つは、前記円形の中心を含み、中心軸に対して軸対称な形状を有してもよい。
(6)上記(3)〜(5)のいずれか一つに記載の単結晶製造装置において、前記分割のうちの一部は、円形の中心から放射状に延びる分割線に沿ってなされていてもよい。
(7)上記(3)〜(6)のいずれか一つに記載の単結晶製造装置において、前記断熱部材は、カーボンを主原料とするカーボン成形材、ポーラスカーボン、またはグラッシーカーボンのいずれかからなってもよい。
本発明の単結晶の製造方法によれば、結晶成長中に種結晶やその上に成長した単結晶の径方向の温度分布を調整して単結晶の成長形状を制御できる。
本発明の単結晶製造装置によれば、結晶成長中に種結晶やその上に成長した単結晶の径方向の温度分布を調整して単結晶の成長形状を制御できる。
本発明の第1の実施形態に係る単結晶製造装置を示す断面模式図である。 第1の実施形態に係る断熱部材を示す平面模式図である。 第2の実施形態に係る断熱部材を示す平面模式図である。 第3の実施形態に係る断熱部材を示す平面模式図である。 第4の実施形態に係る断熱部材を示す平面模式図である。 第5の実施形態に係る断熱部材を示す平面模式図である。 第6の実施形態に係る断熱部材を示す平面模式図である。 炭化珪素単結晶の形状調整方法の一例を説明するための断面模式図である。 炭化珪素単結晶の形状調整方法の他の例を説明するための断面模式図である。 炭化珪素単結晶の形状調整方法の他の例を説明するための断面模式図である。 炭化珪素単結晶の形状調整方法の他の例を説明するための断面模式図である。 炭化珪素単結晶の形状調整方法の他の例を説明するための断面模式図である。 断熱部材片の取り外し構造の一例を説明するための断面模式図である。
以下、本発明の実施形態について図を用いて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には図中、同一符号を付してある場合がある。また、以下の説明で用いる図面は、特徴を分かりやすくするため便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。一つの実施形態で示した構成を他の実施形態に適用することもできる。
本発明は、昇華再結晶法、CVD法等の気相成長法に適用できるが、以下では一例として昇華再結晶法を用いた場合を例にあげて説明する。また、炭化珪素の単結晶を製造する場合を例に説明するが、本発明の単結晶の製造方法および単結晶製造装置は、炭化珪素に限らず、他の材料についても適用できる。
〔単結晶製造装置(第1の実施形態)〕
図1および図2を参照して、本発明の第1の実施形態を適用した単結晶製造装置の構造について説明する。
図1は、本発明の第1の実施形態に係る単結晶製造装置を示す断面模式図であって、種結晶上に単結晶を成長させる前の段階のものである。この図では坩堝の蓋部の上面に設置した断熱部材の脱着は行われていない。
図1に示す単結晶製造装置100は、坩堝本体1aと蓋部1bとからなる坩堝1と、蓋部1aの外側(上面)に配置された断熱部材2と、を備え、坩堝1内で、前記蓋部1bに種結晶Wを配置し、坩堝1内の下部に原料3を収容し、該原料3を昇華させて原料ガスを供給し、前記種結晶W上に単結晶を成長させる単結晶製造装置であって、断熱部材2が複数の断熱部材片2A〜2E(図2参照)に分割された構造を有し、前記複数の断熱部材片の少なくとも一部は垂直方向に移動可能である。
単結晶製造装置100はさらに、坩堝1を収容する成長容器4と、成長容器4の外側面を取り囲むように配置する加熱手段5と、蓋部1bの外側に配置された断熱部材2とは別に、断熱部材2で覆われている以外の坩堝1の外面を取り囲むように配置する断熱部材22と、を備える。
成長容器4は、坩堝1や断熱部材2等を収容する収容部4aを有し、その収容部4aに導入管6aと排気管6bが接続されている。導入管6aと排気管6bにより、任意のガスを収容部4aに導入・排気することができる。また、排気管6bには、ターボ分子ポンプなど真空ポンプ(図示略)が取り付けられており、排気管6bから排気して収容部4aを高真空の状態にすることができる。例えば、排気管6bから内部の空気を排気して減圧状態とした後、高純度のアルゴン(Ar)ガスを導入管6aから収容部4aに供給し、再び減圧状態とすることにより、収容部4aをアルゴン(Ar)雰囲気の減圧状態とすることができる。
なお、成長容器4の内部に導入するガスは、アルゴン(Ar)やヘリウム(He)などの不活性ガスまたは水素(H)ガスが好ましい。これらのガスは、炭化珪素と特別な反応を起こさず、また、冷却材としての効果もあるからである。
加熱手段5としては例えば、高周波加熱コイルを用いることができる。この場合、電流を流すことにより高周波を発生させて、坩堝1が例えば、黒鉛製からなるものであれば、誘導加熱によって坩堝1を加熱することができる。
坩堝1は分割された坩堝本体1aと蓋部1bとからなるが、坩堝本体1aおよび蓋部1bはそれぞれさらに分割されていてもよい。また、坩堝本体1aと蓋部1bとは、原料が収容される側と種結晶が配置される側とに2つに分割された部分との意であって、坩堝全体にそれぞれが占める割合は各部の機能を発揮できる限り、任意である。
坩堝1の内部には内部空間10を有する。内部空間10内の上部においては、炭化珪素種結晶Wが台座(図示略)に取り付けられる。また、坩堝本体1a(内部空間10)内の下部には、炭化珪素種結晶W上に炭化珪素単結晶を結晶成長させるのに十分な量の炭化珪素原料粉末3が充填される。
坩堝1の材料としては、高温において安定で、かつ不純物ガスの発生の少ない材料を用いることが好ましい。具体的には例えば、黒鉛(グラファイト)、炭化珪素、及び炭化珪素もしくはタンタルカーバイド(TaC)により被覆された黒鉛(グラファイト)等を用いることが好ましい。
台座は炭化珪素種結晶Wを取り付ける部分であり、蓋部1bの内面に下方に突出するように構成されている。図示する台座は蓋部2bと一体の部材として一つの材料で形成されているが、蓋部1bと別個の部材であってもよい。
断熱部材2および断熱部材22は、これらの断熱部材で坩堝2全体を覆うように設置されている。断熱部材2および断熱部材22は坩堝に密接して配置されることが好ましい。
断熱部材2および断熱部材22は、坩堝1を安定的に高温状態に維持するためのものであり、坩堝1を必要な程度に安定的に高温状態に維持するよう、断熱部材2および断熱部材22は適宜、厚さや熱伝導率を調整した材料を用いることができ、例えば、炭素繊維製の材料、黒鉛(グラファイト)などを用いることができる。
断熱部材2は、蓋部2bの上部表面の一部が露出するように孔部2aを有する。また、断熱部材22は坩堝本体2aの底部表面の一部が露出するように孔部22aを有する。これらの孔部は放射温度計8a、8bによって坩堝の温度を計測し、制御するためのものである。
断熱部材2は、その外形が蓋部2bの上面の外形と相似形であることが好ましい。また、断熱部材2は、蓋部2bの上面を完全に覆うことが好ましい。
断熱部材2は複数の断熱部材片に分割された構造を有する。すなわち、断熱部材2は、別個の部材である複数の断熱部材片からなるものであり、複数の断熱部材片を断熱部材の所定の形状(例えば、円形)を有するように集結することで断熱部材をなすものである。隣接する断熱部材片同士は隙間なく密接して配置されているのが好ましいが、断熱部材としての役割を発揮できる範囲で離間して配置する構成であってもよい。また、隣接する断熱部材片同士は結晶成長中に各断熱部材片を垂直方向に移動可能な構成であれば、単に隣接して配置された構成でも、移動前には接着剤等で互いに接合された構成等でもよい。また、隣接する断熱部材片同士は、互いに嵌めこむ構成であったり、または、連結部材で連結されていてもよい。ここで、「垂直方向」とは、坩堝の蓋部の上面に対して直交する方向(坩堝の蓋部と坩堝本体とを結ぶ方向に平行な方向)の意である。なお、「垂直方向に移動可能な構成」とは、垂直方向以外の移動を排除する意味ではなく、蓋部の上面に断熱部材は配置するので蓋部の上面から離間させるために少なくとも垂直方向に移動させる工程を含む構成との意である。
断熱部材2は、複数の断熱部材片の少なくとも一部が垂直方向に移動可能であり、結晶成長中に複数の断熱部材片の一部を垂直方向に移動させることにより坩堝内の径方向の温度分布を調整することができる。坩堝内の径方向の温度分布を調整することで、結晶の成長面の径方向の温度分布を調整する。
断熱部材2を構成する複数の断熱部材片はそれぞれ、断熱部材2から脱着すなわち、取り外すことができる。断熱部材片を断熱部材2から脱着させるとは、断熱部材2を構成する他の断熱部材片から離間させることをいう。結晶成長中に複数の断熱部材片のうちの一部を脱着させることにより、坩堝内の径方向の温度分布を調整することができる。また、結晶成長中に脱着した断熱部材片を元の断熱部材の位置に戻すこともできる。すなわち、複数の断熱部材片は着脱(取り外したり、取り付けたり(元に戻したり))することができる。また、断熱部材片を断熱部材から完全に取り外すように脱着することもできるし、断熱部材片の一部が断熱部材に残るような位置までずらす(図12参照)こともできる。すなわち、断熱部材片の蓋部の上面からの距離を調整することができる。このように、断熱部材片の蓋部の上面からの距離を調整することにより、径方向の温度分布の調整をより精密に行うことができる。
図2に、第1の実施形態に係る断熱部材の平面模式図を示す。
図2に示す断熱部材2は全体として平面視で円形であり、その円形の中心Oを含み、中心軸O(中心Oを通り、断熱部材に対して直交する軸を中心軸Oという)に対して軸対称な形状を有する平面視で円形の断熱部材片2Aと、互いに内径及び外径が異なり、中心軸Oに対して同心円状のリング状の断熱部材片2B、2C、2D、2Eとからなる。リング状の断熱部材片2B、2C、2D、2Eは、径の最も小さい断熱部材片2Bから径の大きな断熱部材片2C、2D、2Eが中心軸から順に外周へ並置されている。断熱部材片2Aは孔部2aを有するが、図2では図示は省略している。
結晶成長中に断熱部材片2A〜2Eのうちの一部を垂直方向に移動させることにより坩堝1内の径方向の温度分布を調整することができる。
〔単結晶製造装置(第2の実施形態)〕
第2の実施形態の単結晶製造装置は、断熱部材以外は第1の実施形態と共通なので断熱部材についてのみ説明する。
図3に、第2の実施形態に係る断熱部材の平面模式図を示す。
図3に示す断熱部材32は全体として平面視で円形であり、その円形の中心を含み、中心軸Oに対して軸対称な形状を有する平面視で六角形の断熱部材片32Aと、その断熱部材片32Aの各辺に平行な辺からなる六角形の内周及び六角形の外周を有し、中心軸Oから順に外周へ並置された断熱部材片32B、32C、32Dと、断熱部材片32Dの外周側に配置され、断熱部材片32Dの外周の各辺に平行な六角形の内周と断熱部材32の外周でもある外周とを有する断熱部材片32Eとからなる。
結晶成長中に断熱部材片32A〜32Eのうちの一部を垂直方向に移動させることにより坩堝1内の径方向の温度分布を調整することができる。
〔単結晶製造装置(第3の実施形態)〕
第3の実施形態の単結晶製造装置は、断熱部材以外は第1の実施形態と共通なので断熱部材についてのみ説明する。
図4に、第3の実施形態に係る断熱部材の平面模式図を示す。
図4に示す断熱部材42は、図2に示した断熱部材2においてさらに、断熱部材片2Aの外周から放射状に、図2に示したリング状の断熱部材片2B〜2Eのそれぞれを等しい面積で分割するように等間隔で配置して延びる分割線L、L、L、L、L、L、L、Lによって分割された構成を有するものである。
断熱部材はより細かく分割した構成ほど、より精密な温度分布の調整が可能になるので、図2に示した断熱部材2よりも図4に示す断熱部材42の方がより精密な温度分布の調整ができる。
〔単結晶製造装置(第4の実施形態)〕
第4の実施形態の単結晶製造装置は、断熱部材以外は第1の実施形態と共通なので断熱部材についてのみ説明する。
図5に、第4の実施形態に係る断熱部材の平面模式図を示す。
図5に示す断熱部材52は、図3に示した断熱部材32においてさらに、断熱部材片32Aの外周の頂点から断熱部材片32B〜32Dの内周及び外周の頂点を結ぶように放射状に延び、図3に示したリング状の断熱部材片32B〜32Eのそれぞれを等しい面積で分割するように等間隔で配置した分割線L11、L21、L31、L41、L51、L61によって分割された構成を有するものである。
断熱部材はより細かく分割した構成ほど、より精密な温度分布の調整が可能になるので、図3に示した断熱部材2よりも図5に示す断熱部材52の方がよりより精密な温度分布の調整ができる。
〔単結晶製造装置(第5の実施形態)〕
第5の実施形態の単結晶製造装置は、断熱部材以外は第1の実施形態と共通なので断熱部材についてのみ説明する。
図6に、第5の実施形態に係る断熱部材の平面模式図を示す。
図6に示す断熱部材62は、図2に示した断熱部材2と比較すると、円形の中心Oを含み、中心軸Oに対して軸対称な形状を有する平面視で円形の断熱部材片を有すると共に、その円形の断熱部材片の外側に配置するリング状の断熱部材片群が中心軸Oに対して同心円状に配置する点で共通するが、図2に示した断熱部材2ではリング状の断熱部材片2B〜2Eの全てのリングの幅が等しいのに対して、図6に示す断熱部材62では、リング状の断熱部材片62B〜62Eの全てのリングの幅が異なる点で異なる。
図6に示す断熱部材62では、リング状の断熱部材片62B〜62Eの全てのリングの幅が異なるが、リングの幅が等しいリング状の断熱部材片がある構成でもよい。
〔単結晶製造装置(第6の実施形態)〕
第6の実施形態の単結晶製造装置は、断熱部材以外は第1の実施形態と共通なので断熱部材についてのみ説明する。
図7に、第6の実施形態に係る断熱部材の平面模式図を示す。
図7に示す断熱部材72は、図3に示した断熱部材32と比較すると、円形の中心Oを含み、中心軸Oに対して軸対称な形状を有する平面視で六角形の断熱部材片を有すると共に、その六角形の断熱部材片の外側に配置する断熱部材片群が最も外側の断熱部材片以外は、その六角形の断熱部材片の各辺に平行な辺からなる六角形の内周及び六角形の外周を有する点で共通するが、図3に示した断熱部材32ではリング状の断熱部材片32B〜32Dの全てのリングの幅が等しいのに対して、図7に示す断熱部材72では、リング状の断熱部材片72B〜72Dの全てのリングの幅が異なる点で異なる。
図7に示す断熱部材72では、リング状の断熱部材片72B〜72Dの全てのリングの幅が異なるが、リングの幅が等しいリング状の断熱部材片がある構成でもよい。
〔単結晶製造方法〕
次に、本発明に係る炭化珪素単結晶の製造方法について図を参照して説明する。
図1に示した単結晶製造装置の坩堝1内に炭化珪素原料3(例えば、SiC粉末)を充填し、坩堝の蓋部1bの台座に炭化珪素種結晶Wを固定する。この坩堝の入った成長容器4中で導入管6aと排気管6bを介して真空排気及びガス導入を行いガス交換した後、高純度Arガスを導入して、成長容器4の内部(収容部4a)を例えば、Ar雰囲気で9.3×10Paという環境とする。
次に、加熱手段5を用いて坩堝1を1900℃以上の温度に加熱する。これにより、坩堝1内の炭化珪素原料粉末3を加熱して、炭化珪素原料粉末3から原料昇華ガス(原料ガス)を発生させ、発生した原料昇華ガスは坩堝の内部空間(成長空間)を通って、坩堝1の下部よりも低温である坩堝の蓋部1bに設置された炭化珪素種結晶W上で炭化珪素が再結晶化されて炭化珪素単結晶が成長する。成長する結晶は種結晶Wの結晶構造を引き継ぐため、例えば、4H−SiC単結晶を種結晶に用いれば、4H−SiC単結晶を種結晶上に成長させることができる。
本発明の単結晶の製造方法は、単結晶を成長させている間に、複数の断熱部材片のうちの一部を垂直方向に移動させることにより、坩堝内の温度分布の調整を通して、種結晶やその上に成長する単結晶の温度分布を調整し、単結晶の成長形状を制御するものである。
複数の断熱部材片の移動の方法は特に限定するものではないが、例えば、ロッドやワイヤを各断熱部材片に取り付け、そのロッドやワイヤを成長容器の外に延ばしておき、そのロッドやワイヤを引き上げることでその断熱部材片を断熱部材から取り外すことができる。剛性のロッド等を用いた場合は、一旦、取り外した断熱部材片を、結晶成長の状態によってはまた、断熱部材に戻すこともできる。
ロッドやワイヤの材料としては特に限定するものではないが、例えば、黒鉛(グラファイト)を用いることができる。
ロッドやワイヤを各断熱部材片に取り付ける方法としては特に限定するものではないが、例えば、ロッドやワイヤの先端を釣り針状の形状としておき、炭素繊維製の断熱部材片に刺し込んで取り付けることができる。
以下では、複数の断熱部材片のうちの一部を垂直方向に移動させることにより坩堝内の径方向の温度分布を調整して単結晶の結晶成長を行う方法について図を参照して説明する。
図8は、断熱部材として図2で示した構成のものを用いた炭化珪素単結晶(インゴット)の形状調整方法の一例を説明するための断面模式図である。図においては、坩堝1、複数の断熱部材片(2A〜2E)からなる断熱部材2、炭化珪素原料3、及び、炭化珪素単結晶S(種結晶は図示略)のみを描いている。
図8に示す例は、成長中のインゴット形状が中央部の成長量が大きく、中央部が原料側に凸形形状に膨らんでいるものを平坦形状へと調整する場合である。
図8(a)は、断熱部材片を移動するところ、図8(b)は断熱部材片の移動後を示すものである。
インゴットの端部の成長量が中央部と比較して少ない状態を調整するためには、インゴットの端部の上方に位置する断熱部材片2Cを垂直方向(上方)に移動して、断熱部材2から取り外す。
断熱部材片2Cが取り外されたことにより、坩堝のインゴットの端部の上方部分から坩堝外へ放出される熱量が増え、その結果としてインゴットの端部の温度が低下する。
インゴットの端部の温度が低下することにより、インゴットの端部での原料ガスの再結晶が促進し、インゴットの端部での結晶成長量が増加することにより、中央部との成長量差が小さい平坦型に調整することが可能となる。
図9は、断熱部材として図2で示した構成のものを用いた炭化珪素単結晶(インゴット)の形状調整方法の他の例を説明するための断面模式図である。図においては、坩堝1、複数の断熱部材片(2A〜2E)からなる断熱部材2、炭化珪素原料3、及び、炭化珪素単結晶S(種結晶は図示略)のみを描いている。
図9に示す例は、成長中のインゴット形状が中央部の成長量が小さく、中央部が凹形形状に凹んでいるものを平坦形状へと調整する場合である。
図9(a)は、断熱部材片を移動するところ、図9(b)は断熱部材片の移動後を示すものである。
インゴットの中央部の成長量が端部と比較して少ない状態を調整するためには、インゴットの中央部の上方に位置する断熱部材片2Aを垂直方向(上方)に移動して、断熱部材2から取り外す。
断熱部材片2Aが取り外されたことにより、坩堝のインゴットの中央部の上方部分から坩堝外へ放出される熱量が増え、その結果としてインゴットの中央部の温度が低下する。
インゴットの中央部の温度が低下することにより、インゴットの中央部での原料ガスの再結晶が促進し、インゴットの中央部での結晶成長量が増加することにより、端部との成長量差が小さい平坦型に調整することが可能となる。
図10は、断熱部材として図2で示した構成のものを用いた炭化珪素単結晶(インゴット)の形状調整方法の他の例を説明するための断面模式図である。図においては、坩堝1、複数の断熱部材片(2A〜2E)からなる断熱部材2、炭化珪素原料3、及び、炭化珪素単結晶S(種結晶は図示略)のみを描いている。
図10に示す例は、成長中のインゴット形状が中央部及び端部の成長量が小さくてM形形状であるものを平坦形状へと調整する場合である。
図10(a)は、断熱部材片を移動するところ、図10(b)は断熱部材片の移動後を示すものである。
インゴットの中央部及び端部の成長量が端部と比較して少ない状態を調整するためには、インゴットの中央部及び端部の上方に位置する断熱部材片2Aおよび断熱部材片2Cを垂直方向(上方)に移動して、断熱部材2から取り外す。
断熱部材片2Aおよび断熱部材片2Cが取り外されたことにより、坩堝のインゴットの中央部及び端部の上方部分から坩堝外へ放出される熱量が増え、その結果としてインゴットの中央部及び端部の温度が低下する。
インゴットの中央部及び端部の温度が低下することにより、インゴットの中央部及び端部での原料ガスの再結晶が促進し、インゴットの中央部及び端部での結晶成長量が増加することにより、他の部分との成長量差が小さい平坦型に調整することが可能となる。
図11は、断熱部材として図2で示した構成のものを用いた炭化珪素単結晶(インゴット)の形状調整方法の他の例を説明するための断面模式図である。図においては、坩堝1、複数の断熱部材片(2A〜2E)からなる断熱部材2、炭化珪素原料3、及び、炭化珪素単結晶S(種結晶は図示略)のみを描いている。
図11に示す例は、成長中のインゴット形状が中央部と端部との間の位置の成長量が少ないW形形状であるものを平坦形状へと調整する場合である。
図11(a)は、断熱部材片を移動するところ、図11(b)は断熱部材片の移動後を示すものである。
インゴットの中央部と端部との間の位置の成長量が中央部及び端部と比較して少ない状態を調整するためには、インゴットの中央部と端部との間の位置の上方に位置する断熱部材片2Bを垂直方向(上方)に移動して、断熱部材2から取り外す。
断熱部材片2Bが取り外されたことにより、坩堝のインゴットの中央部と端部との間の位置の上方部分から坩堝外へ放出される熱量が増え、その結果としてインゴットの中央部と端部との間の位置の温度が低下する。
インゴットの中央部と端部との間の位置の温度が低下することにより、インゴットの中央部と端部との間の位置での原料ガスの再結晶が促進し、インゴットの中央部と端部との間の位置での結晶成長量が増加することにより、他の部分との成長量差が小さい平坦型に調整することが可能となる。
図12は、断熱部材として図2で示した構成のものを用いた炭化珪素単結晶(インゴット)の形状調整方法の他の例を説明するための断面模式図である。図においては、坩堝1、複数の断熱部材片(2A〜2E)からなる断熱部材2、炭化珪素原料3、及び、炭化珪素単結晶S(種結晶は図示略)のみを描いている。
図12に示す例は、成長中のインゴット形状が中央部と外周との間の外周寄りの位置の成長量が最も少なく、中央部は最も成長量が多く、外周の成長量はそれらの中間程度であるもの(ここでは歪形状という)を平坦形状へと調整する場合である。
図12(a)は、インゴットの成長開始後、形状調整のために断熱部材片2B及び2Cの移動を1回行った断熱部材片の配置構成を示すものであり、この際、インゴットの形状が図示のような歪形状であったため(図12(a)に示す断熱部材片の配置構成の場合は、インゴットの形状が図12(a)に示す歪形状となるとの意ではない)、さらに形状調整が必要になって断熱部材片を移動するところを示すものであり、図12(b)はその断熱部材片の移動後を示すものである。
図12(a)に示す断熱部材片の配置構成において、インゴットの形状はその中央部と外周との間の外周寄りの位置の成長量が最も少なく、中央部は最も成長量が多く、外周の成長量はそれらの中間程度である歪形状である。この歪形状を調整するためには、中央部と外周との間の上方に位置する断熱部材片2Cだけを垂直方向(上方)に移動する。この際、成長量のずれを調整するため、断熱部材片2Bの脱着後の位置は断熱部材片2Cの位置よりも坩堝の蓋部に近い位置にする。この位置調整により、断熱部材片2Bの位置での放熱量が断熱部材片2Cの位置での放熱量よりも少なくなることで、インゴット先端の断熱部材片2Bの位置での温度低下は断熱部材2Cの位置での温度低下よりも緩やかになるため、結晶成長量の差が調整され、インゴットの形状を平坦型に調整することが可能となる。また、温度を調整するために、断熱部材片2Cは完全には脱着せずに、断熱部材片2Bに一部接触した所で停止させるなどの位置調整を行ってもよい。このような位置調整により、歪形状のような微妙な調整が可能となる。
図12を参照して説明したように、形状調整のための断熱部材片の移動はインゴット(単結晶)の製造中に複数回行ってもよい。
図8〜図12を参照して、形状調整のための断熱部材片の移動パターン(配置構成)について説明してきたが、これらの図は説明を分かりやすくするために特徴を誇張したり、単純化したりしており、インゴットの形状と断熱部材片の移動パターン(配置構成)との組合せは一例に過ぎない。
図13は、断熱部材片の取り外し構造の一例を説明するための断面模式図である。
図13は、図1に示した単結晶製造装置において、断熱部材を構成する断熱部材片にロッド11を取り付けた構成を示すものである。
ロッド11は各断熱部材片に1本に限らず、複数本を取り付けた構成でもよく、取り外しに適した本数とすることができる。
図13に示す例では、図2に示した断熱部材を備えた構成であるが、リング状の各断熱部材片に図示したものでも2本のロッド11が取り付けられている。
1 坩堝
1a 坩堝本体
1b 蓋部
2、32、42、52、62、72 断熱部材
3 原料(炭化珪素原料、炭化珪素原料粉末)
4 成長容器
5 加熱手段
11 ロッド
100 単結晶製造装置
W 種結晶

Claims (7)

  1. 坩堝本体と蓋部とからなる坩堝内で、蓋部に種結晶を配置し、坩堝本体の下部に原料を収容し、該原料を昇華させて原料ガスを供給し、前記種結晶上に単結晶を成長させる単結晶の製造方法において、
    数の断熱部材片に分割された構造を有し、前記複数の断熱部材片が前記蓋部の上面に平行な方向に並置された断熱部材を前記蓋部の上面に配置し、結晶成長中に前記複数の断熱部材片のうちの一部を垂直方向に移動させることにより坩堝内の温度分布を調整して単結晶の結晶成長を行うことを特徴とする単結晶の製造方法。
  2. 結晶成長中に前記複数の断熱部材片のうちの一部を脱着させることを特徴とする請求項1に記載の単結晶の製造方法。
  3. 坩堝本体と蓋部とからなる坩堝内で、蓋部に種結晶を配置し、坩堝本体の下部に原料を収容し、該原料を昇華させて原料ガスを供給し、前記種結晶上に単結晶を成長させる単結晶製造装置であって、
    前記蓋部の上面に配置された断熱部材を備え、
    該断熱部材が複数の断熱部材片に分割された構造を有し、前記複数の断熱部材片が前記蓋部の上面に平行な方向に並置されており、前記複数の断熱部材片のうちの少なくとも一部は垂直方向に移動可能であることを特徴とする単結晶製造装置。
  4. 前記断熱部材は平面視で円形であり、前記分割は前記円形の中心軸に対して軸対称になされていることを特徴とする請求項3に記載の単結晶製造装置。
  5. 前記複数の断熱部材片のうちの一つは、前記円形の中心を含み、中心軸に対な形状を有することを特徴とする請求項4に記載の単結晶製造装置。
  6. 前記分割のうちの一部は、円形の中心から放射状に延びる分割線に沿ってなされていることを特徴とする請求項3〜5のいずれか一項に記載の単結晶製造装置。
  7. 前記断熱部材は、カーボンを主原料とするカーボン成形材、ポーラスカーボン、またはグラッシーカーボンのいずれかからなることを特徴とする請求項3〜6のいずれか一項に記載の単結晶製造装置。
JP2015241372A 2015-12-10 2015-12-10 単結晶の製造方法および単結晶製造装置 Active JP6584007B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015241372A JP6584007B2 (ja) 2015-12-10 2015-12-10 単結晶の製造方法および単結晶製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015241372A JP6584007B2 (ja) 2015-12-10 2015-12-10 単結晶の製造方法および単結晶製造装置

Publications (2)

Publication Number Publication Date
JP2017105676A JP2017105676A (ja) 2017-06-15
JP6584007B2 true JP6584007B2 (ja) 2019-10-02

Family

ID=59060276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015241372A Active JP6584007B2 (ja) 2015-12-10 2015-12-10 単結晶の製造方法および単結晶製造装置

Country Status (1)

Country Link
JP (1) JP6584007B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111321468A (zh) * 2018-12-14 2020-06-23 昭和电工株式会社 SiC单晶的制造装置及SiC单晶制造用构造体

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6317868B1 (ja) * 2017-05-23 2018-04-25 Jfeミネラル株式会社 窒化アルミニウム単結晶製造装置
JP6291615B1 (ja) * 2017-05-23 2018-03-14 Jfeミネラル株式会社 窒化アルミニウム単結晶製造装置
JP6915526B2 (ja) 2017-12-27 2021-08-04 信越半導体株式会社 炭化珪素単結晶の製造方法
JP6879236B2 (ja) 2018-03-13 2021-06-02 信越半導体株式会社 炭化珪素単結晶の製造方法
KR102122668B1 (ko) * 2018-12-12 2020-06-12 에스케이씨 주식회사 잉곳의 제조장치 및 이를 이용한 탄화규소 잉곳의 제조방법
JP2021014385A (ja) * 2019-07-12 2021-02-12 住友電気工業株式会社 4h炭化珪素単結晶の製造方法
JP7452276B2 (ja) 2019-08-30 2024-03-19 株式会社レゾナック 単結晶製造装置及びSiC単結晶の製造方法
CN112813499B (zh) * 2020-12-31 2022-07-12 山东天岳先进科技股份有限公司 一种n型碳化硅晶体的制备方法及生长装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111321468A (zh) * 2018-12-14 2020-06-23 昭和电工株式会社 SiC单晶的制造装置及SiC单晶制造用构造体
CN111321468B (zh) * 2018-12-14 2022-04-26 昭和电工株式会社 SiC单晶的制造装置及SiC单晶制造用构造体
US11427927B2 (en) 2018-12-14 2022-08-30 Showa Denko K.K. SiC single crystal manufacturing apparatus and structure having container and filler for manufacturing SiC single crystal

Also Published As

Publication number Publication date
JP2017105676A (ja) 2017-06-15

Similar Documents

Publication Publication Date Title
JP6584007B2 (ja) 単結晶の製造方法および単結晶製造装置
US20120234231A1 (en) Process for producing silicon carbide single crystals
JP5613604B2 (ja) 炭化珪素単結晶製造装置、炭化珪素単結晶の製造方法及びその成長方法
JP2008074662A (ja) 炭化珪素単結晶製造装置
JP6338439B2 (ja) 炭化珪素単結晶インゴットの製造方法
JP2011219295A (ja) 炭化珪素単結晶インゴットの製造装置
KR20120025554A (ko) 탄화규소 결정의 제조 방법, 탄화규소 결정, 및 탄화규소 결정의 제조 장치
CN115821372A (zh) 晶体生长装置
KR101458183B1 (ko) 탄화규소 단결정 성장 장치 및 방법
JP2011011926A (ja) 炭化珪素単結晶の製造装置
KR20120140547A (ko) 잉곳 제조 장치
KR20150066015A (ko) 탄화규소(SiC) 단결정 성장 장치
US20140158042A1 (en) Apparatus for fabricating ingot
US20140366807A1 (en) Apparatus for fabricating ingot and method of fabricating ingot
KR101154416B1 (ko) 단결정 성장 방법
CN114540943B (zh) 一种大直径SiC单晶生长装置及生长方法
KR102236396B1 (ko) 탄화규소 잉곳의 제조방법 및 탄화규소 잉곳 제조용 시스템
KR20130033838A (ko) 잉곳 제조 장치
KR20170073834A (ko) 탄화규소(SiC) 단결정 성장 장치
JP2013075793A (ja) 単結晶の製造装置、および単結晶の製造方法
WO2019176447A1 (ja) 炭化珪素単結晶の製造方法及び製造装置
JP5573753B2 (ja) SiC成長装置
KR101886271B1 (ko) 잉곳 제조 장치 및 잉곳 제조 방법
KR102163488B1 (ko) SiC 단결정 성장 장치
US11453959B2 (en) Crystal growth apparatus including heater with multiple regions and crystal growth method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180910

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190902

R150 Certificate of patent or registration of utility model

Ref document number: 6584007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350