JP6583503B2 - 新規なグルコースデヒドロゲナーゼ - Google Patents
新規なグルコースデヒドロゲナーゼ Download PDFInfo
- Publication number
- JP6583503B2 JP6583503B2 JP2018173756A JP2018173756A JP6583503B2 JP 6583503 B2 JP6583503 B2 JP 6583503B2 JP 2018173756 A JP2018173756 A JP 2018173756A JP 2018173756 A JP2018173756 A JP 2018173756A JP 6583503 B2 JP6583503 B2 JP 6583503B2
- Authority
- JP
- Japan
- Prior art keywords
- gdh
- glucose
- glucose dehydrogenase
- fad
- activity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/001—Enzyme electrodes
- C12Q1/005—Enzyme electrodes involving specific analytes or enzymes
- C12Q1/006—Enzyme electrodes involving specific analytes or enzymes for glucose
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3271—Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/05—Oxidoreductases acting on the CH-OH group of donors (1.1) with a quinone or similar compound as acceptor (1.1.5)
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Emergency Medicine (AREA)
- Biophysics (AREA)
- Hematology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Description
D−グルコース + 電子受容体(酸化型)
→ D−グルコノ−δ−ラクトン + 電子受容体(還元型)
上記特許文献に記載されるどの酵素も、60℃ないし65℃の熱処理に耐えるものではなく、安定性の面でいまだ改善の余地があった。
項1.
以下(A)〜(E)の特性を有するフラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼ。
(A)作用:電子受容体存在下でD−グルコースを酸化し、D−グルコノ−δ−ラクトンを生成する反応を触媒する。
(B)分子量:タンパク質のポリペプチド鎖部分について、SDS−ポリアクリルアミド電気泳動による分子量が65000
(C)熱安定性:60℃15分処理後の残存活性が85%以上、かつ65℃15分処理後の残存活性が50%以上、かつ70℃15分処理後の残存活性が10%以上。
(D)至適反応pH:7.0
(E)基質特異性:
D−グルコースに対する反応性を100%としたときのマルトースに対する反応性が2%以下であり、かつ、
D−グルコースに対する反応性を100%としたときのD−ガラクトースに対する反応性が2%以下であり、かつ、
D−グルコースに対する反応性を100%としたときのD−キシロースに対する反応性が10%以下である。
項2.
以下(A)〜(C)の特性を有するフラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼ。
(A)アミノ酸配列:配列番号3に示すアミノ酸配列との同一性が78%以上である。
(B)作用:電子受容体存在下でD−グルコースを酸化し、D−グルコノ−δ−ラクトンを生成する反応を触媒する。
(C)熱安定性:60℃15分処理後の残存活性が85%以上、かつ65℃15分処理後の残存活性が50%以上、かつ70℃15分処理後の残存活性が10%以上。
項3.
アスペルギルス属糸状菌由来である、項1または2に記載のフラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼ。
項4.
アスペルギルス属糸状菌がアスペルギルス・エスピーRD009469株である、項3に記載のフラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼ。
項5.
項1〜4のいずれかに記載のフラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼを生産する微生物を栄養培地にて培養し、グルコース脱水素酵素活性を有するタンパク質を採取することを特徴とする、項1〜4のいずれかに記載のフラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼの製造方法。
項6.
項1〜4のいずれかに記載のフラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼを含むグルコースアッセイキット。
項7.
項1〜4のいずれかに記載のフラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼを含むグルコースセンサー。
項8.
項1〜4のいずれかに記載のフラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼを含むグルコース定量法。
本発明の実施形態の一つは、以下(A)〜(E)の特性を有するフラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼ(FAD−GDH)である。
(A)作用:電子受容体存在下でD−グルコースを酸化し、D−グルコノ−δ−ラクトンを生成する反応を触媒する。
(B)分子量:タンパク質のポリペプチド鎖部分について、SDS−ポリアクリルアミド電気泳動による分子量が65000
(C)熱安定性:60℃15分処理後の残存活性が85%以上、かつ65℃15分処理後の残存活性が50%以上、かつ70℃15分処理後の残存活性が10%以上。
(D)至適反応pH:7.0
(E)基質特異性:
D−グルコースに対する反応性を100%としたときのマルトースに対する反応性が2%以下であり、かつ、
D−グルコースに対する反応性を100%としたときのD−ガラクトースに対する反応性が2%以下であり、かつ、
D−グルコースに対する反応性を100%としたときのD−キシロースに対する反応性が10%以下である。
本明細書において、熱安定性は、0.1Mのリン酸カリウムバッファー(pH6.0)に2U/mlのGDHが含まれる状態で15分間の加温処理をした後も維持される活性で評価される。
本発明のFAD−GDHは、60℃で15分加温した際の活性残存率が85%以上であり、好ましくは90%以上であり、さらに好ましくは95%以上である。
また、本発明のFAD−GDHは、65℃で15分の加温処理後の活性残存率が50%以上であり、好ましくは60%以上であり、さらに好ましくは70%以上である
さらに、本発明のFAD−GDHは、70℃15分処理後の残存活性率が10%以上であり、好ましくは20%以上、さらに好ましくは30%以上である。
本明細書において、基質特異性は、後述の「基質特異性の評価方法」に従って評価される。
本発明のFAD−GDHは、D−グルコースに対する反応性を100%としたときのマルトースに対する反応性が2%以下であり、好ましくは1%以下である。
また、本発明のFAD−GDHは、D−グルコースに対する反応性を100%としたときのD−ガラクトースに対する反応性が2%以下であり、好ましくは1%以下である。
さらに、本発明のFAD−GDHは、D−グルコースに対する反応性を100%としたときのD−キシロースに対する反応性が10%以下であり、好ましくは5%以下である。
本明細書において、「タンパク質のポリペプチド鎖部分の分子量」は、エンドグルコシダーゼHによって糖鎖部分を除去(より厳密には、前記の糖鎖部分除去後には、元々糖鎖が付加されていたポリペプチド鎖上のアスパラギン残基にN−アセチルグルコサミン1個が残存する。)した後にSDS−PAGEを行うことによって推定される分子量である。
本発明のFAD−GDHのタンパク質のポリペプチド鎖部分の分子量はおおよそ65000である。
SDS−PAGEで測定した場合には通常60−70kDaである。「60−70kDa」とは、SDS−PAGEで分子量を測定した際に、当業者が、通常60kDaから70kDaの間の位置にバンドがあると判断する範囲を含むことを意味する。
SDS−PAGEでの分子量の測定は、一般的な手法及び装置を用い、市販される分子量マーカーを用いて行うことができる。
本明細書において、至適反応pHは以下の手順で評価される。
後述の「FAD−GDH活性測定法」に記載の反応液組成における、0.1mol/LのHEPESに代えて、pH5.0〜9.0の範囲でさまざまなpHの測定液を作製する。
次いで、前記各測定液を用いて、前記活性測定法の手順に従って、各pHにおけるFAD−GDH活性を測定する。
そして、その結果を基に、最も高い活性を示した条件における活性値を100として、各pHにおける相対活性値を算出する。
本発明のFAD−GDHの至適反応pHは、7.0である。
(A)アミノ酸配列:配列番号3に示すアミノ酸配列との同一性が78%以上である。
(B)作用:電子受容体存在下でD−グルコースを酸化し、D−グルコノ−δ−ラクトンを生成する反応を触媒する。
(C)熱安定性:60℃15分処理後の残存活性が85%以上、かつ65℃15分処理後の残存活性が50%以上、かつ70℃15分処理後の残存活性が10%以上。
本発明のFAD−GDHのアミノ酸配列は、前記(B)の作用および(C)の熱安定性を有する限りにおいて、配列番号3に示すアミノ酸配列との同一性が78%以上であり、好ましくは85%以上であり、さらに好ましくは90%以上であり、さらに好ましくは95%以上であり、さらに好ましくは98%以上であり、さらに好ましくは99%以上であり、もっとも好ましくは100%(配列番号3と同一)である。
また、別の観点から本発明のFAD−GDHのアミノ酸配列は、前記(B)の作用および(C)の熱安定性を有する限りにおいて、配列番号3に示すアミノ酸配列において、1若しくは数個のアミノ酸残基が置換、欠失、挿入および/または付加したアミノ酸配列からなるものであっても良い。
本明細書では、全米バイオテクノロジー情報センター(NCBI)の相同性アルゴリズムBLAST(Basic local alignment search tool)http://www.ncbi.nlm.nih.gov/BLAST/においてデフォルト(初期設定)のパラメータを用いることにより、アミノ酸配列の同一性を算出する。
上述の本発明のFAD−GDHにおいて、由来は特に限定しないが、好ましくは糸状菌であり、より好ましくはアスペルギルス属であり、最も好ましくはアスペルギルス・エスピーRD009469株として独立行政法人製品評価技術基盤機構が保有している菌株である。
本発明の他の実施形態の一つは、前記のFAD−GDHを生産する微生物を栄養培地にて培養し、グルコース脱水素酵素活性を有するタンパク質を採取することを特徴とする、前記のFAD−GDHの製造方法である。
ゲノムDNAであれば例えばインバースPCRの方法により、またcDNAライブラリであれば5‘−RACEおよび3’−RACEにより末端配列を決定し、遺伝子全長をクローニング可能である。このようにして得られる、FAD−GDHをコードするDNA配列として最も好ましい例は、配列番号2に示す塩基配列である。
本発明のFAD−GDHをコードするDNA配列としては、前記の、
(a)配列番号2に示す塩基配列
のほかに、以下の(b)〜(f)が例示できる。
(b)配列番号3に示されるアミノ酸配列をコードするDNA;
(c)配列番号2に示される塩基配列との相同性が80%以上である塩基配列をからなり、且つ、FAD−GDH活性を有するポリペプチドをコードするDNA;
(d)配列番号2に示される塩基配列に相補的な塩基配列に対してストリンジェントな条件下でハイブリダイズするDNAを含み、且つFAD−GDH活性を有するポリペプチドをコードするDNA;
(e)配列番号2に示される塩基配列において、一若しくは数個の塩基が置換、欠失、挿入、付加及び/又は逆位されている塩基配列であり、FAD−GDH活性を有するポリペプチドをコードするDNA;
(f)配列番号3に示されるアミノ酸配列において、1若しくは数個のアミノ酸残基が置換、欠失、挿入および/または付加したアミノ酸配列からなり、且つ、FAD−GDH活性を有するポリペプチドをコードするDNA。
本明細書では、全米バイオテクノロジー情報センター(NCBI)の相同性アルゴリズムAdvanced BLAST 2.1において、プログラムにblastnを用い、各種パラメータはデフォルト値に設定して検索を行うことにより、ヌクレオチド配列の相同性の値(%)を算出する。
本明細書では、「ストリンジェントな条件」とは、以下に示す条件を言う。
ハイブリダイゼーション液として50%ホルムアミド、5×SSC(0.15M NaCl, 15mM sodium citrate, pH 7.0)、1×Denhardt溶液、1%SDS、10%デキストラン硫酸、10μg/mLの変性サケ精子DNA、50mMリン酸バッファー(pH7.5))を65℃で用いる。
本発明のFAD−GDHをコードするDNAは、組換えベクターに接続した状態で形質転換される。本発明の組換えベクターは原核および/または真核細胞の各種宿主細胞内で複製保持または自律増殖できるものが好ましく選択され、プラスミドベクターやウイルスベクター等が包含される。当該組換えベクターは、簡便には当該技術分野において入手可能な公知のクローニングベクターまたは発現ベクターに、上記のFAD−GDHをコードするDNAを適当な制限酵素およびリガーゼ、あるいは必要に応じてさらにリンカーもしくはアダプターDNAを用いて連結することにより調製することができる。また、Taqポリメラーゼのように増幅末端に一塩基を付加するようなDNAポリメラーゼを用いて増幅作製した遺伝子断片であれば、TAクローニングによるベクターへの接続も可能である。または宿主細胞のゲノムDNA中にDNAを導入する場合にあっては、必ずしも宿主細胞内で複製保持または自律増殖できるベクターである必要はなく、本発明のGDHをコードする遺伝子、祝す細胞で作動可能なプロモーター、及び形質転換体を選択するためのマーカー遺伝子を少なくとも有し、宿主細胞に固有の遺伝子組換えシステムを利用するかまたはゲノムDNA中に遺伝子を挿入するために必要なエンドヌクレアーゼ遺伝子等と共に宿主細胞に導入し、所望のDNAが挿入された形質転換体を選抜すればよい。
宿主細胞として細菌を用いる場合、一般に発現ベクターは上記のプロモーター領域およびターミネーター領域に加えて、宿主細胞内で自律複製し得る複製可能単位を含む必要がある。また、プロモーター領域は、プロモーターの近傍にオペレーターおよびShine−Dalgarno(SD)配列を包含する。
宿主として酵母,動物細胞または昆虫細胞を用いる場合、発現ベクターは、エンハンサー配列、GDH mRNAの5’側および3’側の非翻訳領域、ポリアデニレーション部位等をさらに含むことが好ましい。
本発明のFAD−GDHは、上記のようにして調製されるFAD−GDH発現ベクターを含む形質転換体を培地中で培養し、得られる培養物からGDHを回収することによって製造することができる。
宿主が細菌,放線菌,酵母,糸状菌等である場合、例えば上記栄養源を含有する液体培地が適当である。好ましくは、pHが5〜9である培地である。宿主が大腸菌の場合、好ましい培地としてLB培地,M9培地[Miller. J., Exp. Mol. Genet, p.431, Cold Spring Harbor Laboratory, New York (1972)]等が例示される。培養は、必要により通気・攪拌をしながら、通常14〜43℃で約3〜72時間行うことができる。宿主が枯草菌の場合、必要により通気・攪拌をしながら、通常30〜40℃で約16〜96時間行うことができる。宿主が酵母の場合、培地として、例えばBurkholder最少培地 [Bostian. K.L. et al, Proc. Natl. Acad. Sci. USA, 77, 4505 (1980)]が挙げられ、pHは5〜8であることが望ましい。培養は通常約20〜35℃で約14〜144時間行なわれ、必要により通気や攪拌を行うこともできる。
宿主が動物細胞の場合、培地として、例えば約5〜20%のウシ胎仔血清を含む最少必須培地(MEM)[Science, 122, 501 (1952)]、ダルベッコ改変イーグル培地(DMEM)[Virology, 8, 396 (1959)]、RPMI1640培地[J. Am. Med. Assoc., 199, 519 (1967)]、199培地[Proc. Soc. Exp. Biol. Med., 73, 1 (1950)] 等を用いることができる。培地のpHは約6〜8であるのが好ましく、培養は通常約30〜40℃で約15〜72時間行なわれ、必要により通気や攪拌を行うこともできる。
宿主が昆虫細胞の場合、培地として、例えばウシ胎仔血清を含むGrace’s培地[Proc. Natl. Acad. Sci. USA, 82, 8404 (1985)]等が挙げられ、そのpHは約5〜8であるのが好ましい。培養は通常約20〜40℃で15〜100時間行なわれ、必要により通気や攪拌を行うこともできる。
培養物の培地中に存在するGDHは、培養物を遠心または濾過して培養上清(濾液)を得、該培養上清から、例えば、塩析、溶媒沈澱、透析、限外濾過、ゲル濾過、非変性PAGE、SDS−PAGE、イオン交換クロマトグラフィー、ヒドロキシルアパタイトクロマトグラフィー、アフィニティークロマトグラフィー、逆相高速液体クロマトグラフィー、等電点電気泳動などの公知の分離方法を適当に選択して行うことにより得ることができる。
金属イオンキレートに吸着し得るアミノ酸配列をコードするDNA配列は、例えば、GDHをコードするDNAをクローニングする過程で、GDHのC末端アミノ酸配列をコードする塩基配列に該DNA配列を連結したハイブリッドプライマーを用いてPCR増幅を行ったり、あるいは該DNA配列を終止コドンの前に含む発現ベクターにGDHをコードするDNAをインフレームで挿入することにより、GDHコード配列に導入することができる。また、精製に使用される金属イオンキレート吸着体は、遷移金属、例えばコバルト、銅、ニッケル、鉄の二価イオン、あるいは鉄、アルミニウムの三価イオン等、好ましくはコバルトまたはニッケルの二価イオン含有溶液を、リガンド、例えばイミノジ酢酸(IDA)基、ニトリロトリ酢酸(NTA)基、トリス(カルボキシメチル)エチレンジアミン(TED)基等を付着したマトリックスと接触させて該リガンドに結合させることにより調製される。キレート吸着体のマトリックス部は通常の不溶性担体であれば特に限定されない。
あるいは、タグとしてグルタチオン−S−トランスフェラーゼ(GST)、マルトース結合タンパク質(MBP)、HA、FLAGペプチドなどを用いてアフィニティー精製することもできる。
また、該GDHを含む溶液または組成物に対して安定化剤及び/又は活性化剤としてウシ血清アルブミン、セリシン等のタンパク質、TritonX−100、Tween20、コール酸塩、デオキシコール酸塩などの界面活性剤、グリシン、セリン、グルタミン酸、グルタミン、アスパラギン酸、アスパラギン、グリシルグリシン等のアミノ酸、トレハロース、イノシトール、ソルビトール、キシリトール、グリセロール、スクロース、マンニトール等の糖及び/又は糖アルコール類、塩化ナトリウム、塩化カリウム等の無機塩類、さらにはプルラン、デキストラン、ポリエチレングリコール、ポリビニルピロリドン、カルボキシメチルセルロース、ポリグルタミン酸などの親水性ポリマーを適宜添加してもよい。
(1) M. Bodanszkyand M.A. Ondetti, Peptide Synthesis, Interscience Publishers, New York (1966)
(2) Schroeder and Luebke, The Peptide, Academic Press, NewYork(1965)
上記方法で得られるGDHが遊離体である場合には、該遊離体を公知の方法あるいはそれに準じる方法によって適当な塩に変換することができるし、逆にタンパク質が塩として得られた場合には、該塩を公知の方法あるいはそれに準じる方法によって遊離体または他の塩に変換することができる。
本発明の別の実施形態は、上記の特性を有する本発明のFAD−GDHの用途である。用途としては、グルコースの測定方法が例示でき、血糖値の測定や食品(調味料や飲料など)中のグルコース濃度の測定などに好適に利用できる。
また、本発明のさらに別の実施形態は、グルコースアッセイキットやグルコースセンサーなど、上記の特性を有する本発明のFAD−GDHを含む、グルコースを測定するための種々のプロダクトである。
本発明のグルコース測定用試薬は、典型的には、本発明のGDH、緩衝液、キャリブレーションカーブ作製のためのグルコース標準溶液、ならびに使用の指針を含む。また好ましくはメディエーターなど測定に必要な試薬を含む。また、GDHを含む試薬中には、安定化剤及び/又は活性化剤としてウシ血清アルブミン、セリシン等のタンパク質、TritonX−100、Tween20、コール酸塩、デオキシコール酸塩などの界面活性剤、グリシン、セリン、グルタミン酸、グルタミン、アスパラギン酸、アスパラギン、グリシルグリシン等のアミノ酸、トレハロース、イノシトール、ソルビトール、キシリトール、グリセロール、スクロース、マンニトール等の糖及び/又は糖アルコール類、塩化ナトリウム、塩化カリウム等の無機塩類、さらにはプルラン、デキストラン、ポリエチレングリコール、ポリビニルピロリドン、カルボキシメチルセルロース、ポリグルタミン酸などの親水性ポリマーを適宜添加してもよい。
本発明のグルコースアッセイキットは、典型的には、本発明のGDH、緩衝液、メディエーターなど測定に必要な試薬、キャリブレーションカーブ作製のためのグルコース標準溶液、ならびに使用の指針を含む。本発明のキットは、例えば、凍結乾燥された試薬として、または適切な保存溶液中の溶液として提供することができる。また、GDHを含む試薬中には、安定化剤及び/又は活性化剤としてウシ血清アルブミン、セリシン等のタンパク質、TritonX−100、Tween20、コール酸塩、デオキシコール酸塩などの界面活性剤、グリシン、セリン、グルタミン酸、グルタミン、アスパラギン酸、アスパラギン、グリシルグリシン等のアミノ酸、トレハロース、イノシトール、ソルビトール、キシリトール、グリセロール、スクロース等の糖及び/又は糖アルコール類、塩化ナトリウム、塩化カリウム等の無機塩類、さらにはプルラン、デキストラン、ポリエチレングリコール、ポリビニルピロリドン、カルボキシメチルセルロース、ポリグルタミン酸などの親水性ポリマーを適宜添加してもよい。
本発明のグルコースセンサは、電極としては、カーボン電極、金電極、白金電極などを用い、この電極上にGDHを固定化する。固定化方法としては、架橋試薬を用いる方法、高分子マトリックス中に封入する方法、透析膜で被覆する方法、光架橋性ポリマー、導電性ポリマー、酸化還元ポリマーなどを用いる方法があり、NADもしくはNADPといった補酵素、あるいは電子メディエーターとともにポリマー中に固定あるいは電極上に吸着固定してもよく、またこれらを組み合わせて用いてもよい。典型的には、グルタルアルデヒドを用いて本発明のGDHをカーボン電極上に固定化した後、アミン基を有する試薬で処理してグルタルアルデヒドをブロッキングする。使用する電子メディエーターとしては、GDHの補酵素であるFADから電子を受け取り、発色物質や電極に電子を供与しうるものが挙げられ、たとえばフェリシアン化物塩、フェナジンエトサルフェート、フェナジンメトサルフェート、フェニレンジアミン、N,N,N’,N’−テトラメチルフェニレンジアミン、1−メトキシ−フェナジンメトサルフェート、2,6−ジクロロフェノールインドフェノール、2,5−ジメチル−1,4−ベンゾキノン、2,6−ジメチル−1,4−ベンゾキノン、2,5−ジクロロ−1,4−ベンゾキノン、ニトロソアニリン、フェロセン誘導体、オスミウム錯体、ルテニウム錯体等が例示されるが、これらに限定されない。また、電極上のGDH組成物中には、安定化剤及び/又は活性化剤としてウシ血清アルブミン、セリシン等のタンパク質、TritonX−100、Tween20、コール酸塩、デオキシコール酸塩などの界面活性剤、グリシン、セリン、グルタミン酸、グルタミン、アスパラギン酸、アスパラギン、グリシルグリシン等のアミノ酸、トレハロース、イノシトール、ソルビトール、キシリトール、グリセロール、スクロース等の糖及び/又は糖アルコール類、塩化ナトリウム、塩化カリウム等の無機塩類、さらにはプルラン、デキストラン、ポリエチレングリコール、ポリビニルピロリドン、カルボキシメチルセルロース、ポリグルタミン酸などの親水性ポリマーを含んでもよい。
(4−1)FAD−GDH活性測定法
本明細書において、FAD−GDH活性測定は特に断りのない限り、以下の方法に従って行われる。
反応液(0.1mol/L HEPES、200mmol/L D−グルコース、0.55mmol/L DCPIP、pH6.5)2.9mLを石英セルにいれ、37℃で5分間予備加温する。そしてGDH溶液0.1mLを加えて混和し、37℃で5分反応させ、この間700nm吸光度を測定する。吸光度変化の直線部分から1分間あたりの吸光度の上昇度(ΔODTEST)を算出する。盲検は、GDH溶液の代わりに緩衝液を加えて混和し、同様に37℃5分インキュベートして700nm吸光度を記録し、1分間あたりの吸光度変化(ΔODBLANK)を算出する。これらの値を以下の式に当てはめて活性値(U/mL)を算出する。なおここでは、基質存在下で1分間に1マイクロモルのDCPIPを還元する酵素量を1Uと定義する。
GDH活性(U/mL)=[(ΔODTEST−ΔODBLANK)×3.0×希釈倍率]/(4.5×1.0×0.1)
なお、ここで
3.0 :GDH溶液混和後の容量(mL)
4.5 :DCPIPのミリモル分子吸光係数(cm2/マイクロモル)
1.0 :光路長(cm)
0.1 :添加するGDH溶液の液量(mL)
である。
本発明に述べるタンパク質量は280nmの吸光度を測定することにより測定したものである。すなわち、280nmにおける吸光度が0.1〜1.0の範囲となるように酵素溶液を蒸留水で希釈し、蒸留水を用いてゼロ点補正を行った吸光度計を用いて280nmの吸光度(Abs)を測定する。本発明に述べるタンパク質濃度は、1Abs≒1mg/mlと近似し、吸光度の測定と測定した溶液の希釈倍率とを乗じた値で示したものである。また、本発明に述べる比活性とは、本測定方法によるタンパク質量として1mgあたりのGDHの活性(U/mg)であり、この際のGDH活性は、上記活性測定例に従って測定することにより得られる値である。
本発明に述べる基質に対するミカエリス定数(Km)の算出方法は、以下の測定方法により行う。すなわち、測定溶液として上述の活性測定例に記載の反応液組成におけるD−グルコースの濃度を200mmol/L、 160mmol/L、120mmol/L、80mmol/L、40mmol/LLとした5種類の反応液を作製し、それぞれの測定溶液を用いて上述の活性測定例の方法に従いGDH溶液(上述の活性測定例における活性値が0.8U/mlとなるよう調整した溶液)のΔOD(ΔODTEST−ΔODBLANK)を測定する。それら測定値をもとにLineweaver−Burkプロット法(両逆数プロット法)に従ってミカエリス定数(Km)を算出する
本明細書において、基質特異性の評価は、以下の方法により行う。すなわち、測定溶液として上述の「FAD−GDH活性測定法」に記載の反応液組成におけるD−グルコースに換えて、他の糖類(例えばマルトース、ガラクトース、キシロースなど)を200mmol/L含む反応液をそれぞれ作製し、これらを用いて「FAD−GDH活性測定法」に従って活性値を測定する。これら反応液を用いた活性値を、グルコースを基質とした場合の活性値で割った値を、各基質に対する反応性(対グルコース%)として算出する。
アスペルギルス・エスピーRD009469株からのGDHの取得
アスペルギルス・エスピーRD009469株は、独立行政法人製品評価技術基盤機構より貸与を受けた。この菌株をまずはME寒天培地(2%マルトエキス、0.1%ペプトン、0.1%リン酸1カリウム、2%グルコース、1.5%アガロース、pH6.0)に植菌し、25℃で培養することにより菌糸をプレート一面に生育させた。この菌糸を生育させたアガロース全量をプレートからかき出し、100mlの滅菌水に懸濁した。10L容ジャーファーメンターに6LのYM培地(3%酵母エキス、3%マルトース、0.05%アデカノール)に懸濁した寒天を投入し、25℃で65時間通気攪拌培養した。培養終了後、培地上清のGDH活性を測定したところ、0.2U/mlの活性が検出された。この培養液をろ紙によりろ過して菌体を除去したのち、1Lあたり300gの硫酸アンモニウムを添加し、完全に溶解させた後、20%水酸化ナトリウム溶液を加えてpHを6.0に調整した。この液を、同じ濃度の硫酸アンモニウムを含む50mMのリン酸カリウム緩衝液(pH6.0)で緩衝化した200mlのPhenyl−sepharose(GEヘルスケア製)充填カラムに通液しGDHを吸着させた。さらに硫酸アンモニウム濃度を0まで低下させたグラジエント溶出によりGDHを溶出させ、GDH活性を有する画分を集めた。さらに分子量10,000カットの限外ろ過膜を用い、透過液が透明になるまで50mMリン酸カリウムバッファー(pH6.0)を加えつつ限外ろ過を行った。最後に300mM塩化ナトリウムを含む50mMリン酸カリウムバッファー(pH6.0)で緩衝化したSuperdex200カラム(560ml、GEヘルスケア製)を用いてゲルろ過を行うことにより、精製GDHを得た。得られた精製GDHの比活性はおおよそ180U/mgであった。
GDHの熱安定性
実施例1で得られたGDHについて、50mMリン酸カリウムバッファー(pH6.0)を用いてGDH濃度2U/mlとなるよう希釈し、それぞれの溶液について40℃〜70℃までの範囲で5℃刻みの各温度で15分加温処理を行い、加温後におけるGDH活性の加温前のGDH活性に対する比率(活性残存率)を調べた。結果を図1に示す。本GDHの加温後の活性残存率は、60℃で94.5%、65℃で78.8%、70℃で48.6%であった。
GDH活性値のpH依存性
実施例1で得られたGDHについて、次のようにGDH活性値のpH依存性を調べた。活性測定例に示す組成のうち、0.1mol/LのHEPESに代えて各種バッファーを使用し、pH5.0〜9.0の範囲でさまざまなpHの測定液を作製した。使用したバッファー種は、酢酸ナトリウム(pH5.0〜5.5)、MES−NaOH(pH5.5〜6.5)、リン酸カリウム(pH6.0〜8.0)、トリス塩酸(pH7.0〜9.0)であり、測定液中におけるバッファー濃度はすべて70mMである。それぞれの測定液を用い、上述の活性測定例の手順に従って各pHにおけるGDH活性を測定した。最も高い活性を示した条件における活性値を100として、各pHにおける相対活性値を算出した(図2)。至適反応pHは、おおよそ7.0であった。
GDHの基質特異性
実施例1で得られたGDHについて、基質特異性を調べた。方法は上述の基質特異性の評価例に従うが、使用する基質としてマルトース、ガラクトース、キシロースに加えて、さらに2−デオキシグルコース、フルクトース、スクロース、マンノース、アラビノース、グリセロール、メレジトールについても同様に反応性(対グルコース%)を測定した。結果を表1に示す。マルトース、ガラクトースに対しては対グルコース比1%未満、またキシロースに対しては対グルコース比5%未満であり、本発明のGDHは良好な基質特異性を有していることが確認された。
GDHの基質に対するミカエリス定数
実施例1で得られたGDHについて、基質に対するミカエリス定数(Km)を上述の算出例に従って求めた。結果、本発明のGDHのD−グルコースに対するミカエリス定数は、52.2mMであった。
SDS−PAGEおよびペプチド質量分析による分子量の推定
実施例1で得られたGDHについて、まずエンドグリコシダーゼH(NEW ENGLAND BioLabs製Endo H)を用いて糖鎖を切断し、定法に従いSDS−PAGEを行った(図3)。主に65kDaおよび55kDaにそれぞれ濃いバンドが見られたため、それぞれのバンドをゲルから切り出し、トリプシンで消化させた後LC/MS/MS解析による消化断片の分子量測定、およびMASCOT解析によるタンパク質の同定を行った。結果、65kDaのバンドから得られるペプチドが既知のFAD依存型GMCオキシドレダクターゼ様タンパク質と高いヒット率を示し、このバンドがすなわちGDHであると推定した。
GDHのアミノ酸配列の推定
実施例6でえられるSDS−PAGEのみかけの分子量65kDaのバンドについて、バンドの切り出しおよび脱水処理ののち、トリプシンを含む溶液を浸透させて1晩消化させ、産物をSDS−PAGEに供し、セミドライ法によるPVDF膜への転写およびCBB染色を行った。出現したバンドのいくつかについてエドマン分析によりN末端アミノ酸配列を決定し、得られた配列よりディジェネレートプライマーを設計してcDNAをテンプレートにPCRを行い、GDH遺伝子の部分断片を得た。この遺伝子部分断片を東洋紡製TAクローニングキット(TArget Clone−Plus−)を用いてプラスミドpTA2にクローニングし、その塩基配列を解析した。得られた部分塩基配列を配列番号1に示す。さらにこの部分配列情報を元に、定法に従って5‘−RACEおよび3’−RACEを行い、最終的に配列番号2に示す、本発明のGDHをコードする塩基配列全長を決定した。この配列から推定される本発明のGDHのアミノ酸配列を配列番号3に示す。この配列についてデータベース上の配列との相同性検索を行ったところ、Aspergillus terreus NIH2624由来hypothetical protein ATEG_08295(シーケンスID:XP_001216916.1)が最も同一性が高く77%、ついでAspergillus kawachii IFO4308由来のGlucose oxidaseとアノテーションされている配列(シーケンスID:GAA92291.1)が63%の同一性であり、本発明のGDHは新規な酵素であるといえる。また、上記アミノ酸配列から計算上推定されるポリペプチド鎖の分子量は64600であり、実施例6に示すSDS−PAGEの結果とほぼ一致する。
Claims (11)
- 以下(A)〜(C)の特性を有するフラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼ。
(A)アミノ酸配列:配列番号3に示すアミノ酸配列との同一性が90%以上である。
(B)作用:電子受容体存在下でD−グルコースを酸化し、D−グルコノ−δ−ラクトンを生成する反応を触媒する。
(C)熱安定性:60℃15分処理後の残存活性が85%以上、かつ65℃15分処理後の残存活性が50%以上、かつ70℃15分処理後の残存活性が10%以上。 - アスペルギルス属糸状菌由来である、請求項1に記載のフラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼ。
- アスペルギルス属糸状菌がアスペルギルス・エスピーRD009469株である、請求項2に記載のフラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼ。
- 請求項1〜3のいずれかに記載のフラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼを生産するアスペルギルス属糸状菌を栄養培地にて培養し、グルコース脱水素酵素活性を有するタンパク質を採取することを特徴とする、請求項1〜3のいずれかに記載のフラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼの製造方法。
- 請求項1〜3のいずれかに記載のフラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼをコードするDNA。
- 請求項5に記載のDNAを含む組換えベクター。
- 請求項6に記載の組換えベクターを含む形質転換体。
- 請求項7に記載の形質転換体を培養した培養物からフラビン結合型グルコース脱水素酵素を精製すること、を含む請求項1〜3のいずれかに記載のフラビン結合型グルコース脱水素酵素の製造方法。
- 請求項1〜3のいずれかに記載のフラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼを含むグルコースアッセイキット。
- 請求項1〜3のいずれかに記載のフラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼを含むグルコースセンサー。
- 請求項1〜3のいずれかに記載のフラビンアデニンジヌクレオチド依存型グルコースデヒドロゲナーゼを含むグルコース定量法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013218308 | 2013-10-21 | ||
JP2013218308 | 2013-10-21 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015543798A Division JP6493212B2 (ja) | 2013-10-21 | 2014-10-10 | 新規なグルコースデヒドロゲナーゼ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019033753A JP2019033753A (ja) | 2019-03-07 |
JP6583503B2 true JP6583503B2 (ja) | 2019-10-02 |
Family
ID=52992750
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015543798A Active JP6493212B2 (ja) | 2013-10-21 | 2014-10-10 | 新規なグルコースデヒドロゲナーゼ |
JP2018173756A Active JP6583503B2 (ja) | 2013-10-21 | 2018-09-18 | 新規なグルコースデヒドロゲナーゼ |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015543798A Active JP6493212B2 (ja) | 2013-10-21 | 2014-10-10 | 新規なグルコースデヒドロゲナーゼ |
Country Status (3)
Country | Link |
---|---|
US (1) | US9657325B2 (ja) |
JP (2) | JP6493212B2 (ja) |
WO (1) | WO2015060150A1 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004058958A1 (ja) | 2002-12-24 | 2004-07-15 | Ikeda Food Research Co., Ltd. | 補酵素結合型グルコース脱水素酵素 |
US8691547B2 (en) | 2005-03-25 | 2014-04-08 | Ikeda Food Research Co., Ltd. | Coenzyme-linked glucose dehydrogenase and polynucleotide encoding the same |
US10913971B2 (en) | 2015-04-09 | 2021-02-09 | Toyobo Co., Ltd. | Enzyme preparation for use in measurement of glucose |
US11046935B2 (en) | 2015-11-06 | 2021-06-29 | Amano Enzyme Inc. | Glucose dehydrogenase |
WO2018062103A1 (ja) * | 2016-09-28 | 2018-04-05 | 天野エンザイム株式会社 | グルコースデヒドロゲナーゼ |
JP6773507B2 (ja) | 2016-09-30 | 2020-10-21 | アークレイ株式会社 | バイオセンサ、その製造方法、グルコース又はラクテートの濃度測定方法及び濃度測定システム |
US20220154242A1 (en) * | 2019-03-26 | 2022-05-19 | Kikkoman Corporation | Method for modifying substrate specificity of glucose dehydrogenase and agent for modifying substrate specificity of glucose dehydrogenase |
JPWO2021125332A1 (ja) * | 2019-12-20 | 2021-06-24 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004058958A1 (ja) | 2002-12-24 | 2004-07-15 | Ikeda Food Research Co., Ltd. | 補酵素結合型グルコース脱水素酵素 |
US8691547B2 (en) * | 2005-03-25 | 2014-04-08 | Ikeda Food Research Co., Ltd. | Coenzyme-linked glucose dehydrogenase and polynucleotide encoding the same |
US7553649B2 (en) * | 2006-03-31 | 2009-06-30 | Toyo Boseki Kabushiki Kaisha | Method for producing glucose dehydrogenase from Aspergillus oryzae |
JP4292486B2 (ja) | 2006-03-31 | 2009-07-08 | 東洋紡績株式会社 | アスペルギルス・オリゼ由来グルコースデヒドロゲナーゼ |
US7494794B2 (en) | 2006-03-31 | 2009-02-24 | Toyo Boseki Kabushiki Kaisha | Glucose dehydrogenase |
CN101535476B (zh) | 2006-11-14 | 2012-10-24 | 东洋纺织株式会社 | 修饰型黄素腺嘌呤二核苷酸依赖性葡萄糖脱氢酶 |
EP2202303B1 (en) * | 2007-09-26 | 2016-10-26 | Kaneka Corporation | Novel glucose dehydrogenase |
US8394615B2 (en) * | 2008-01-07 | 2013-03-12 | Toyo Boseki Kabushiki Kaisha | Glucose dehydrogenase |
WO2010140431A1 (ja) | 2009-06-04 | 2010-12-09 | キッコーマン株式会社 | フラビン結合型グルコースデヒドロゲナーゼ |
WO2011034108A1 (ja) * | 2009-09-16 | 2011-03-24 | 東洋紡績株式会社 | 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ |
EP2647703A4 (en) | 2010-12-01 | 2014-05-14 | Kikkoman Corp | E. COLI TRANSFORMANT, PROCESS FOR PRODUCTION OF FLAVIN-RELATED GLUCOSE DEHYDROGENASE USING THE SAME, AND FLAVIN-RELATED MUTANT GLYCOSIDE DEHYDROGENASE |
WO2012169512A1 (ja) * | 2011-06-07 | 2012-12-13 | キッコーマン株式会社 | フラビン結合型グルコースデヒドロゲナーゼ、フラビン結合型グルコースデヒドロゲナーゼの製造方法、およびそれを用いたグルコース測定方法 |
WO2013022074A1 (ja) | 2011-08-11 | 2013-02-14 | 東洋紡株式会社 | 新規なグルコース脱水素酵素 |
JP2013081399A (ja) * | 2011-10-06 | 2013-05-09 | Toyobo Co Ltd | 新規なグルコース脱水素酵素 |
WO2013065623A1 (ja) * | 2011-10-31 | 2013-05-10 | 東洋紡株式会社 | 新規なグルコース脱水素酵素 |
JP6207167B2 (ja) | 2012-02-09 | 2017-10-04 | 東洋紡株式会社 | 新規なグルコース脱水素酵素 |
WO2014002973A1 (ja) * | 2012-06-29 | 2014-01-03 | 東洋紡株式会社 | 新規なグルコース脱水素酵素 |
US9796963B2 (en) * | 2012-09-10 | 2017-10-24 | Toyobo Co., Ltd. | Glucose dehydrogenase |
US20150267178A1 (en) | 2012-09-18 | 2015-09-24 | National Institute Of Advanced Industrial Science And Technology | Protein having flavin adenine dinucleotide-dependent glucose dehydrogenase activity |
-
2014
- 2014-10-10 WO PCT/JP2014/077223 patent/WO2015060150A1/ja active Application Filing
- 2014-10-10 JP JP2015543798A patent/JP6493212B2/ja active Active
-
2016
- 2016-04-21 US US15/134,684 patent/US9657325B2/en active Active
-
2018
- 2018-09-18 JP JP2018173756A patent/JP6583503B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
US9657325B2 (en) | 2017-05-23 |
US20160265021A1 (en) | 2016-09-15 |
JPWO2015060150A1 (ja) | 2017-03-09 |
WO2015060150A1 (ja) | 2015-04-30 |
JP6493212B2 (ja) | 2019-04-03 |
JP2019033753A (ja) | 2019-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6583503B2 (ja) | 新規なグルコースデヒドロゲナーゼ | |
JP6460152B2 (ja) | 新規なグルコース脱水素酵素 | |
JP5169991B2 (ja) | 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ | |
JP6212852B2 (ja) | 新規なグルコース脱水素酵素 | |
JP5846908B2 (ja) | 特性の改変されたグルコースデヒドロゲナーゼ | |
JP6079038B2 (ja) | 新規なグルコース脱水素酵素 | |
KR20130038914A (ko) | 글루코스 탈수소효소 | |
JP6311270B2 (ja) | 耐熱性に優れたフラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ | |
JP5641738B2 (ja) | 新規なグルコースデヒドロゲナーゼ | |
WO2014002973A1 (ja) | 新規なグルコース脱水素酵素 | |
JP6465156B2 (ja) | 新規なグルコース脱水素酵素 | |
JP5408125B2 (ja) | 糸状菌由来フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ(fadgdh) | |
JP6455134B2 (ja) | 新規なグルコースデヒドロゲナーゼ | |
JP6342174B2 (ja) | 新規なグルコースデヒドロゲナーゼ | |
JP6390776B2 (ja) | 耐熱性に優れたフラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180918 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180918 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190806 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190819 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6583503 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |