JP6567331B2 - 非接触発電機 - Google Patents

非接触発電機 Download PDF

Info

Publication number
JP6567331B2
JP6567331B2 JP2015117771A JP2015117771A JP6567331B2 JP 6567331 B2 JP6567331 B2 JP 6567331B2 JP 2015117771 A JP2015117771 A JP 2015117771A JP 2015117771 A JP2015117771 A JP 2015117771A JP 6567331 B2 JP6567331 B2 JP 6567331B2
Authority
JP
Japan
Prior art keywords
magnet
moving body
magnetic flux
main surface
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015117771A
Other languages
English (en)
Other versions
JP2017005877A (ja
Inventor
ミヒャエル、フランクル
アルダ、トウスズ
ヨハン、ベー.コラー
田 裕 介 塚
田 裕 介 塚
村 和 人 中
村 和 人 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Nabtesco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corp filed Critical Nabtesco Corp
Priority to JP2015117771A priority Critical patent/JP6567331B2/ja
Priority to EP16807554.7A priority patent/EP3309942B1/en
Priority to CN201680047205.2A priority patent/CN107925335B/zh
Priority to PCT/JP2016/067205 priority patent/WO2016199848A1/ja
Priority to EP20202572.2A priority patent/EP3799278A3/en
Publication of JP2017005877A publication Critical patent/JP2017005877A/ja
Priority to US15/834,663 priority patent/US10298107B2/en
Application granted granted Critical
Publication of JP6567331B2 publication Critical patent/JP6567331B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1853Rotary generators driven by intermittent forces
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • H02K35/02Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving magnets and stationary coil systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/42Asynchronous induction generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/02Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1869Linear generators; sectional generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1869Linear generators; sectional generators
    • H02K7/1876Linear generators; sectional generators with reciprocating, linearly oscillating or vibrating parts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1892Generators with parts oscillating or vibrating about an axis

Description

本発明は、非接触で発電する非接触発電機に関する。
特許文献1には、非接触で発電する自転車用ダイナモが開示されている。特許文献1の自転車用ダイナモは、自転車のホイールの回転軸と直交する方向に延びる回転軸周りに回転する円環状の永久磁石の外周面を、ホイールの外周面に連なる一側面から離隔して配置している。
永久磁石は、複数の磁極を周方向に並べて配置したものであり、隣接する磁極では、磁化方向が逆になっている。例えば、永久磁石のN極がホイールの一側面に対向配置された状態でホイールが回転すると、永久磁石からの磁束の変化を妨げる方向に、ホイールの一側面に渦電流が発生する。この渦電流による磁束と永久磁石からの磁束との反発力および誘引力により、永久磁石は、ホイールの回転方向に回転する。
よって、永久磁石の周囲をコイルで巻回して、永久磁石からの磁束がコイルを鎖交するようにすれば、コイルから誘導電力を取り出すことができる。
米国特許公開公報 2014/0132155号
しかしながら、特許文献1に開示された自転車用ダイナモには、以下の課題がある。
1.ホイールの一側面に対向配置される永久磁石の面積が限られているため、ホイールと永久磁石との磁気結合量を大きくできない。よって、ホイールに発生する渦電流が小さくなり、永久磁石の回転力も弱くなる。
2.特許文献1では、永久磁石に単一相のコイルを巻回しているが、単一相のコイルでは、コイルが巻回していない部分の永久磁石の磁束を有効利用できないため、鎖交磁束量を増やすことはできない。また、コイルが巻回している部分の永久磁石の極性の向きが、回転軸を中心に対称である場合、常にコイルを鎖交する磁束の総量が打ち消し合ってしまうため、発電できないという問題がある。
3.永久磁石からの磁束は、空気中を伝搬するため、大きな磁気抵抗を受けることになり、磁気効率がよいとはいえない。
4.ヨークを用いていないため、磁束の漏れが生じやすく、また周囲に導電材料があると、磁路が変化してしまい、発電量に影響を与えてしまうおそれがある。
本発明は、上述した課題に鑑みてなされたものであり、その目的は、磁気効率がよく、磁束の漏れも少ない非接触発電機を提供することにある。
本実施形態によれば、一方向と前記一方向の反対方向との双方向に移動する移動体の一主面から離隔して対向配置され、前記移動体の移動方向に延在する軸に沿って移動自在で、前記一主面を通過する磁束を発生させる磁石と、
前記磁石の前記一主面に対向する面とは反対側の面から離隔して配置され、前記磁石からの磁束が鎖交するコイルと、
前記コイルを鎖交する磁束が通過する磁路の少なくとも一部に配置される磁束ガイド部材と、を備え、
前記磁石は、前記移動体の前記一主面上に前記磁石からの磁束の変化を妨げる方向に発生される渦電流に基づいて前記磁石に働く反力により、前記軸に沿って、前記移動体の移動方向に、前記移動体の移動速度よりも遅い速度で移動する非接触発電機が提供される。
前記磁石の前記移動体の一主面に対向する面と前記一主面との距離は、前記磁石が前記軸に沿って移動する間では同一であってもよい。
本発明の他の一態様では、一主面側に凸部および凹部が交互に配置された移動体の前記一主面から離隔して対向配置され、前記凸部および前記凹部が並ぶ向きに一方向または往復方向に移動する前記移動体の移動方向に延在する軸に沿って移動自在で、前記一主面を通過する磁束を発生させる磁石と、
前記磁石を前記軸に沿って付勢する付勢部材と、
前記磁石の前記一主面に対向する面とは反対の面から離隔して配置され、前記磁石からの磁束が鎖交するコイルと、
前記コイルを鎖交する磁束が通過する磁路の少なくとも一部に配置される磁束ガイド部材と、を備え、
前記磁石は、前記凸部が前記磁石に対向配置されると、前記凸部上に発生される渦電流に基づいて前記磁石に働く反力と、前記凸部と前記磁石の対向面との間に働くリラクタンス力と、の少なくとも一方により、前記軸に沿って、前記移動体の移動方向に移動し、前記凹部が前記磁石に対向配置されると、前記付勢部材の付勢力により、前記移動体の移動方向とは反対の方向に移動する非接触発電機が提供される。
本発明の他の一態様では、平坦な一主面上に第1部分と前記第1部分よりも透磁率および導電率の少なくとも一方が低い第2部分とが交互に配置された移動体の前記一主面から離隔して対向配置され、前記第1部分および前記第2部分が並ぶ方向に移動する前記移動体の移動方向に延在する軸に沿って移動自在で、前記一主面を通過する磁束を発生させる磁石と、
前記磁石を前記軸に沿って付勢する付勢部材と、
前記磁石の前記一主面に対向する面とは反対の面から離隔して配置され、前記磁石からの磁束が鎖交するコイルと、
前記コイルを鎖交する磁束が通過する磁路の一部に配置される磁束ガイド部材と、を備え、
前記磁石は、前記第1部分が前記磁石に対向配置されると、前記第1部分上に発生される渦電流に基づいて前記磁石に働く反力と、前記第1部分と前記磁石の対向面との間に働くリラクタンス力と、の少なくとも一方により、前記軸に沿って、前記移動体の移動方向に移動し、前記第2部分が前記磁石に対向配置されると、前記付勢部材の付勢力により、前記移動体の移動方向とは反対の方向に移動する非接触発電機が提供される。
前記移動体の透磁率が第1閾値より高く導電率が第2閾値より低い場合は、前記磁石は、前記反力より前記リラクタンス力の影響をより受けて移動する。
前記コイルは、前記磁石からの磁束の方向と交差する方向に配置される平面状のコイルであってもよく、
前記磁束ガイド部材は、前記コイルを間に挟んで、前記磁石とは反対側に配置されてもよい。
本発明の他の一態様では、一主面側に凸部および凹部が交互に配置された移動体の前記一主面から離隔して配置され、前記凸部および前記凹部が並ぶ方向に移動する前記移動体の移動方向と交差する方向に延在する軸周りに回転自在で、前記一主面に向かう方向またはその反対方向に磁化される磁石と、
前記磁石を前記軸の回転方向に付勢する付勢部材と、
前記磁石の前記一主面に対向する面とは反対側の面から離隔して配置され、前記磁石からの磁束が鎖交するコイルと、
前記コイルを鎖交する磁束が通過する磁路の少なくとも一部に配置される磁束ガイド部材と、を備え、
前記磁石は、前記凸部が前記磁石に対向配置されると、前記凸部上に発生される渦電流に基づいて前記磁石に働く反力と、前記凸部と前記磁石の対向面との間に働くリラクタンス力と、の少なくとも一方により、前記軸周りに、前記移動体の移動方向に応じた回転方向に回転し、前記凹部が前記磁石に対向配置されると、前記付勢部材の付勢力により、前記軸周りに前記回転方向とは反対の方向に回転する非接触発電機が提供される。
本発明の他の一態様では、平坦な一主面上に第1部分と前記第1部分よりも透磁率および導電率の少なくとも一方が低い第2部分とが交互に配置された移動体の前記一主面から離隔して配置され、前記第1部分および前記第2部分が並ぶ方向に移動する前記移動体の移動方向と交差する方向に延在する軸周りに回転自在で、前記一主面に向かう方向またはその反対方向に磁化される磁石と、
前記磁石を前記軸の回転方向に付勢する付勢部材と、
前記磁石の前記一主面に対向する面とは反対側の面から離隔して配置され、前記磁石からの磁束が鎖交するコイルと、
前記コイルを鎖交する磁束が通過する磁路の一部に配置される磁束ガイド部材と、を備え、
前記磁石は、前記第1部分が前記磁石に対向配置されると、前記第1部分上に発生される渦電流に基づいて前記磁石に働く反力と、前記第1部分と前記磁石の対向面との間に働くリラクタンス力と、の少なくとも一方により、前記軸周りに、前記移動体の移動方向に応じた回転方向に回転し、前記第2部分が前記磁石に対向配置されると、前記付勢部材の付勢力により、前記軸周りに前記回転方向とは反対の方向に回転する非接触発電機が提供される。
前記磁石は、前記軸の外周面側に配置される円筒体であってもよく、
前記コイルは、前記磁石の外周面の少なくとも一部に沿って円弧面状に配置されてもよく、
前記磁束ガイド部材は、前記コイルの前記磁石に対向する面とは反対側の面に対向配置されてもよい。
本発明の他の一態様では、第1方向に移動する移動体の一主面から離隔して対向配置される磁石と、
前記磁石を前記第1方向または前記第1方向の反対方向に付勢する付勢部材と、
前記磁石から離隔して配置され前記第1方向と交差する第2方向に延在される軸部材と、
前記磁石および前記軸部材に接続され、前記磁石を前記軸部材の周りに回転させる接続部材と、
前記磁石の磁束が鎖交するコイルと、を備え、
前記磁石は、前記第1方向に前記移動体が移動する最中に、前記移動体の前記一主面上に前記磁石からの磁束の変化を妨げる方向に発生される渦電流に基づいて前記磁石に働く反力と、前記付勢部材による付勢力と、により、前記第1方向および前記第1方向の反対方向に振動する非接触発電機が提供される。
前記磁石は、永久磁石または電磁石であってもよい。
本発明の第1の実施形態による非接触発電機の正面図。 図1の非接触発電機の磁束の流れを示す模式図。 磁石の2つの磁極を移動体の一主面に略平行に配置した例を示す図。 磁石の2つの磁極を移動体の一主面に略平行で、かつ移動体の移動方向とは異なる方向に配置した例を示す図。 磁石に4つの磁極を設けて、極性の異なる2つの磁極をそれぞれ移動体の一主面の法線方向に配置した例を示す図。 図3Cとは約90度異なる向きに各磁極を配置した例を示す図。 本発明の第2の実施形態による非接触発電機の正面図。 本発明の第3の実施形態による非接触発電機の正面図。 本発明の第3の実施形態による非接触発電機の斜視図。 図6に標準電気機械を接続した斜視図。 図4と同じ構造の非接触発電機を移動体の平坦な一主面に近接して対向配置させた例を示す正面図。 図5と同じ構造の非接触発電機を移動体の平坦な一主面に近接して対向配置させた例を示す正面図。 本発明の第5の実施形態による非接触発電機の正面図。
以下、図面を参照して本発明の実施形態を説明する。以下の実施形態では、非接触発電機内の特徴的な構成および動作を中心に説明するが、非接触発電機には以下の説明で省略した構成および動作が存在しうる。ただし、これらの省略した構成および動作も本実施形態の範囲に含まれるものである。
(第1の実施形態)
図1は本発明の第1の実施形態による非接触発電機1の正面図、図2は図1の非接触発電機1の磁束の流れを示す模式図である。図1の非接触発電機1は、移動体2の一主面2aから離隔して配置される磁石3を備えている。
移動体2は、一方向とその反対方向との双方向に移動可能とされている。移動体2は、平坦な一主面2aを有し、この一主面2aの上方には、移動体2の移動方向に延在される軸部材6が一主面2aから離隔して配置されている。磁石3は、軸部材6に案内されて、移動体2の移動方向に沿って移動自在とされている。磁石3と移動体2の一主面2aとの間には、隙間(エアギャップ)が設けられ、磁石3と移動体2が移動しても、この隙間は常に一定である。
磁石3は、軸部材6によって移動自在に支持されている。軸部材6による磁石3の支持機構は特に問わないが、例えば、磁石3の中央部を貫通する孔に軸部材6を挿通させて、磁石3を移動自在に支持してもよい。あるいは、1本以上の軸部材6の上に磁石3を載置した状態で、これら軸部材6の延在方向に磁石3を移動させてもよい。
磁石3は、1つ以上の磁極を有し、磁極からの磁束は、移動体2の一主面2aを通過するようにしている。磁石3からの磁束が移動体2の一主面2aを通過するようにするには、移動体2の一主面2aに対向する磁石3の磁極端面と一主面2aとの隙間(エアギャップ)が、できるだけ小さい方が望ましい。
移動体2が一方向またはその反対方向に移動すると、磁石3からの磁束の変化を妨げる方向に磁束を発生させるべく、移動体2の一主面2a上に渦電流が発生する。この渦電流による磁束と磁石3からの磁束との反発力および誘引力により、磁石3は、軸部材6の延在方向に沿って、移動体2と同じ方向に移動する。例えば、図1の右側に移動体2が移動すると、それに合わせて磁石3も右側に移動し、図1の左側に移動体2が移動すると、それに合わせて磁石3も左側に移動する。磁石3は、移動体2の移動速度よりも遅い速度で移動する。
図1の非接触発電機1において発電を行うには例えばコイル4が必要となる。図2は、図1の非接触発電機1に、磁石3からの磁束が鎖交するコイル4と、磁石3からの磁束が通過するヨーク(磁束ガイド部材)5とを追加したものである。ヨーク5は必ずしも必須ではない。
例えば、磁石3のN極が移動体2の一主面2aに対向配置され、S極がコイル4に対向配置されているとすると、磁石3からの磁束は、図2の破線矢印線に示すように、N極からエアギャップを通って移動体2の一主面2aに到達し、その後、エアギャップを介してコイル4を鎖交した後、ヨーク5の内部を通過し、さらにコイル4を鎖交してS極に入る。
コイル4は、磁石3からの全磁束が通過する場所、例えば、図1に示すように磁石3の直上に配置される。コイル4と磁石3との距離は、できるだけ短い方がよい。コイル4は、例えば磁石3の移動方向に延在する平面状に形成されている。より具体的には、コイル4は、磁石3の移動方向に沿って延びる基板面上に渦巻き状の導電パターンにより形成可能である。導電パターンは、例えばヨーク5の外表面に形成してもよい。
磁石3が軸部材6に沿って移動すると、コイル4を鎖交する磁束が時間的に変化する。これにより、コイル4には、磁束の変化を妨げる方向に誘導起電力が発生し誘導電流が流れる。すなわち、コイル4の両端には電力が発生していて、これを抽出することで電力を得ることが出来る。この誘導電流による誘導起電力を生成することができる。
コイル4にて発生される誘導起電力Eは、以下のようにして求めることができる。磁束の時間的変化が正弦波状だと仮定して、各コイル4の巻き数をn[ターン]、コイル4を鎖交する磁束をφ[Wb]、磁束の最大値をφmax、磁束φが変化する周波数をf[Hz」、角周波数をω=2πfとすると、磁束φは以下の(1)式で求められる。
φ=φmax×sinωt …(1)
コイル4に誘起される電圧e[V]は、以下の(2)式で表される。
e=−n(dφ/dt) …(2)
(2)式に(1)式を代入すると、以下の(3)式が得られる。
e=−nωφmaxcosωt …(3)
(3)式のnωφmaxは、誘起電圧eの最大値(振幅)を表す。電圧の実効値Eは、以下の(4)式で表される。
E=n (2πf)φmax/√2 …(4)
(4)式において、2π/√2≒4.44である。
よって、(4)式は(5)式で表される。
E≒4.44fnφmax …(5)
(5)式の周波数fは、磁石3の双方向への移動周期または回転周期に依存する。よって、(5)式からわかるように、コイル4による誘導起電力Eは、磁石3の双方向への移動周期または回転周期と、コイル4の巻き数nと、コイル4を鎖交する磁束φとの乗算に比例する。
上述したように、本実施形態では、移動体2の一主面2a上に発生される渦電流を利用して、移動体2を移動させている。移動体2の一主面2a上に渦電流を発生させるには、移動体2の少なくとも一主面2aは導電材料で形成されている必要がある。移動体2のすべてを導電材料で形成してもよいし、あるいは、移動体2の母材は絶縁材料として、絶縁材料の上に導電材料をコーティングしてもよい。
以下、図2を用いて、磁石3が移動する原理を説明する。なお、以下の原理は、コイル4とヨーク5を持たない図1の非接触発電機1にも適用可能である。移動体2が所定方向に移動すると、移動体2の移動方向前方に位置する磁石3のエッジe1の直下の移動体2の一主面2a上に渦電流2bが発生するとともに、移動体2の移動方向後方に位置する磁石3のエッジe2の直下の移動体2の一主面2a上にも渦電流2cが発生する。渦電流2bと渦電流2cの向きは相違している。渦電流2bは、磁石3のエッジe1からの磁束と同方向の磁束を発生させる向きに流れる。一方、渦電流2cは、磁石3のエッジe2からの磁束とは反対方向の磁束を発生させる向きに流れる。いずれの渦電流2b、2cも、移動体2の移動に伴う磁石3からの磁束の変化を妨げる方向に流れる。
移動体2の移動方向前方側では、渦電流2bによる磁束と磁石3のN極からの磁束との方向が同じになることから、互いに引き寄せ合う誘引力が働く。一方、移動体2の移動方向後方側では、渦電流2cによる磁束と磁石3のN極からの磁束との方向が逆になることから、互いに反発し合う反発力が働く。磁石3の移動速度が移動体2の移動速度よりも遅い場合には、上述した渦電流2b、2cの電流の方向が常に成り立つ。これにより、磁石3は、移動体2を追いかけるようにして、移動体2よりも遅い速度で移動することになる。
なお、上述した磁石3の移動の原理は、ローレンツ力による反力にて説明することもできる。上述したように、磁石3のN極の回転方向前方のエッジe1からの磁束による発生する渦電流2bと、磁石3の回転方向後方のエッジe2からの磁束による発生する渦電流2cとは、電流の向きが逆になっていて、N極の直下には常に一定方向の電流が流れる。これら渦電流2b、2cによる電流は、移動体2が図2の矢印の向き(右方向)に移動する場合には、反対方向(左方向)のローレンツ力を受ける。よって、これら渦電流2b、2cによる磁束を受ける磁石3は、移動体2の移動方向への、ローレンツ力の反力を受けて移動する。よって、磁石3と移動体2は、同一方向に移動する。
本実施形態では、移動体2の移動による運動エネルギを磁石3により抽出する。また、磁石3が抽出した運動エネルギを、コイル4にて電気エネルギに変換する。磁石3の一方の磁極端面を移動体2の一主面2aにできるだけ近づけ、かつ磁石3の他方の磁極端面をコイル4にできるだけ近づけることで、磁気抵抗と漏れ磁束とを低減でき、効率よく発電を行うことができる。
図1および図2では、磁石3の2つの磁極が移動体2の一主面2aの法線方向に配置されている例を示したが、磁極の配置はこれ以外にも考えられる。例えば、図3Aは磁石3の2つの磁極を移動体2の一主面2aに略平行に配置した例を示している。また、図3Bは、磁石3の2つの磁極を移動体2の一主面2aに略平行で、かつ移動体2の移動方向とは異なる方向に配置した例を示している。さらに、図3Cは、磁石3に4つの磁極を設けて、極性の異なる2つの磁極をそれぞれ移動体2の一主面2aの法線方向に配置した例を示している。一主面方向に隣接する2つの磁極の間には、各磁極を固定する固定部材3bが設けられている。図3Dは図3Cとは約90度異なる向きに各磁極を配置した例を示している。
図3A〜図3Dのいずれにおいても、磁石3からの磁束は移動体2の一主面2a上を通過する。よって、移動体2の移動に伴って、一主面2a上に渦電流を発生させることができ、この渦電流の反力により、磁石3を軸部材6の延在方向に移動させることができる。
このように、第1の実施形態では、移動体2の移動方向に延在する軸部材6に沿って磁石3を移動自在とし、移動体2の一主面2aから離隔して磁石3を配置することで、移動体2の一主面2a上に渦電流を発生させることができる。渦電流による磁束と磁石3からの磁束との反発力および誘引力により、磁石3は、軸部材6の延在方向に沿って、移動体2の移動方向に移動することになる。これにより、動力源を利用せずに、磁石3を非接触で軸部材6の延在方向に双方向に移動させることができる。
本実施形態では、磁石3の一磁極面を移動体2の一主面2aに近接させて対向配置するため、磁石3の磁極面の面積を大きくすることで、磁石3から移動体2の一主面2aを通過してコイル4と鎖交する磁束量を増加させて誘導起電力を増大させることができる。また、磁石3の磁力を増すことによっても、誘導起電力を増大させることができる。
また、本実施形態によれば、軸部材6の延在方向に移動自在な磁石3を移動体2の一主面2aに近接配置するだけの簡易な構造で、動力源なしで移動体2を軸部材6に沿って双方向に移動させることができるため、外部電源を取れない場所で、移動体2を非接触に移動させることができる。
本実施形態による移動体2は、磁石3に対して相対的に移動すればよく、必ずしも移動体2自体が移動する必要はない。ただし、コイル4にて誘導起電力を発生させるには、移動体2は、ある程度の周期で、双方向の移動を行う必要がある。
(第2の実施形態)
第2の実施形態は、移動体2が一方向に移動する間に磁石3を双方向に振動させるものである。
図4は本発明の第2の実施形態による非接触発電機1の正面図である。図4の非接触発電機1は、移動体2の一主面2aから離隔して配置される磁石3と、磁石3からの磁束が鎖交するコイル4と、磁石3からの磁束が通過するヨーク5とを備えている。
移動体2の一主面2aは、凸部2dと凹部2eが交互に並んだ凹凸形状になっている。移動体2は、凸部2dと凹部2eの並ぶ方向に沿って移動する。なお、移動体2は、図4の矢印の方向だけでなく、その反対の方向にも移動してもよい。逆の言い方をすると、第1の実施形態による移動体2は、双方向に移動しない限り、磁石3を双方向に移動させることはできなかったが、本実施形態では、移動体2が一方向にのみ移動しても、磁石3を双方向に移動させることができる。
磁石3は、第1の実施形態と同様に、軸部材6の延在方向に双方向に移動自在であるが、磁石3にはバネ等からなる付勢部材7が取り付けられている。この付勢部材7は、軸部材6の延在方向に伸縮するものであり、例えば、図4の右側に磁石3が移動すると、付勢部材7が収縮し、付勢部材7には磁石3を左側に移動させようとする付勢力が働く。逆に、図4の左側に磁石3が移動すると、付勢部材7が伸張し、付勢部材7には磁石3を右側に移動させようとする付勢力が働く。
なお、図4では、1個の付勢部材7だけを設ける例を示しているが、軸部材6における磁石3の両側に付勢部材7を設けてもよい。磁石3の両側に付勢部材7を設けると、磁石3が移動体2の移動方向に移動したときに、一方の付勢部材7は伸縮し、他方の付勢部材7は伸張するため、両方の付勢部材7には磁石3を元の方向に戻そうとする付勢力が働く。よって、個々の付勢部材7の付勢力が弱くても、磁石3を元の位置に復帰させることができ、各付勢部材7の小型化が図れる。
本実施形態では、後述するように、渦電流による磁束と磁石3からの磁束との反発力および誘引力(以下、渦電流による反力と呼ぶ)に基づいて磁石3を移動させることもできるし、磁石3からの磁束と移動体2の一主面2aとの間に働くリラクタンス力に基づいて磁石3を移動させることもできる。ここで、リラクタンス力とは、磁石3と透磁率の高い物質との間に働く誘引力である。本実施形態では、磁石3を移動させる原理として、以下の3つが考えられる。
1.リラクタンス力を利用せず、渦電流による反力を利用して磁石3を移動させる。
2.渦電流による反力を利用せず、リラクタンス力を利用して磁石3を移動させる。
3.渦電流による反力とリラクタンス力との双方を利用して磁石3を移動させる。
移動体2の一主面2aが凹凸形状になっている場合、一主面2a上の凸部2dは凹部2eよりも磁石3に近いため、凸部2dは凹部2eよりもリラクタンス力が強くなる。よって、一主面2a上の凸部2dと磁石3とが対向配置された状態で、移動体2が一方向に移動すると、磁石3は、凸部2dを追いかけるようにして、移動体2の移動方向に移動する。このとき、磁石3は、付勢部材7を収縮させるため、付勢部材7には、磁石3を元の位置に移動させようとする付勢力が蓄積される。
磁石3には、凸部2dとの間のリラクタンス力による移動体2の移動方向に移動させようとする力と、付勢部材7による移動体2の移動方向とは逆の方向に移動させようとする付勢力が働いている。磁石3の移動量が増加すると、付勢力が徐々に蓄積されて増大していき、付勢力とリラクタンス力が釣り合った位置で、磁石3は移動体2の移動方向へ移動しなくなる。この状態で、さらに移動体2が移動を続けると、やがて、磁石3と凹部2eとが対向配置されることになる。この状態では、リラクタンス力がさらに弱くなり、付勢力の方が大きくなるため、磁石3は付勢部材7の付勢力により、移動体2の移動方向とは反対の方向に移動する。
磁石3は付勢部材7の付勢力により、次の移動体2の一主面2a上の凸部2dと対向配置される位置まで戻される。この時、付勢部材7の移動体2の移動方向と逆方向の付勢力は、移動体2の移動方向へのリラクタンス力と釣り合っていた時点よりも弱くなっているため、磁石3は、再びリラクタンス力により、移動体2の移動方向に移動することになる。
磁石3と移動体2の一主面2aとの間にリラクタンス力を働かせるには、一主面2aの透磁率が高くなければならない。一主面2aがアルミニウムのように、透磁率の低い材料で形成されている場合には、リラクタンス力はほとんど働かない。
よって、リラクタンス力を利用せずに、渦電流による反力だけを利用して磁石3を移動させたい場合は、移動体2の一主面2aを、透磁率が低くて、かつ導電率が高い材料、より詳細には、透磁率が第1閾値より低くて、導電率が第2閾値より高い材料で形成すればよい。また、渦電流による反力を利用せずに、リラクタンス力を利用して磁石3を移動させたい場合は、移動体2の一主面2aを、透磁率が高くて、かつ導電率が低い材料、より詳細には、透磁率が第1閾値より高くて、導電率が第2閾値より低い材料で形成すればよい。導電率が低いと渦電流は発生しないためである。さらに、渦電流による反力とリラクタンス力の双方を利用して磁石3を移動させたい場合は、移動体2の一主面2aを、透磁率と導電率の双方が高い材料、より詳細には、透磁率と導電率の双方が所定の閾値より高い材料で形成すればよい。
次に、渦電流による反力を利用して磁石3を移動させる原理を説明する。移動体2の一主面2a上の凸部2dが磁石3と対向配置されている場合、磁石3の移動方向前方のエッジe1の直下に位置する凸部2d上には、磁石3からの磁束と同じ向きの磁束を発生させるように渦電流2bが流れる。一方、磁石3の移動方向後方のエッジe2の直下に位置する凸部2d上には、磁石3からの磁束と反対向きの磁束を発生させるように渦電流2cが流れる。これにより、磁石3のエッジe1側には凸部2dと引き寄せ合う誘引力が働き、エッジe2側には凸部2dと反発し合う反発力が働く。これにより、磁石3は、移動体2を追いかけるようにして、移動体2よりも遅い速度で、移動体2と同じ方向に移動する。このとき、磁石3は、付勢部材7を伸縮させ、付勢部材7には磁石3を元の位置に戻そうとする付勢力が蓄積される。
移動体2と磁石3とでは移動速度に差があるため、やがて、磁石3が移動体2の一主面2a上の凹部2eと対向配置されることになる。磁石3が凹部と対向配置されると、磁石3との一主面2aとの距離が離れてしまうため、一主面2a上の凹部2e上に形成される渦電流も小さくなり、上述した誘引力と反発力がともに弱くなる。よって、磁石3は、付勢部材7の付勢力により、移動体2の移動方向とは反対方向に移動する。
磁石3は付勢部材7の付勢力により、次の移動体2の一主面2a上の凸部2dと対向配置される位置まで戻される。磁石3と凸部2dが対向配置されると、渦電流による反力が再び強くなるため、磁石3は移動体2の移動方向に移動することになる。
以上のような動作を繰り返すことで、移動体2が一方向のみに移動しても、リラクタンス力と渦電流による反力との少なくとも一方を利用することで、磁石3は移動体2の移動方向とその逆方向とを行ったり来たりする振動を行う。
図4に示すように、磁石3の近傍には、磁石3からの磁束が鎖交するコイル4と、磁束が通過するヨーク5が配置されている。コイル4が形成された平面内を磁石3が双方向に移動するため、コイル4を鎖交する磁束は時間に応じて変化し、コイル4には誘導起電力が発生する。
第1の実施形態では、磁石3が移動体2の移動方向にしか移動できなかったため、コイル4の配置場所を磁石3が通過してしまうと、移動体2の移動方向を切り替えない限り、コイル4にて誘導起電力を発生させることはできない。これに対して、本実施形態の場合、移動体2は常に同じ方向に移動していても、磁石3はコイル4の配置場所を何度も行き来するため、移動体2の移動方向を変えることなく、コイル4にて誘導起電力を継続して発生させることができる。よって、第1の実施形態よりも、実用性が向上する。
上述したように、移動体2の一主面2aは凹凸形状になっているが、移動体2の具体的な一例は、外周面が凹凸状になった歯車部材である。このような歯車部材の外周面に近接させて図4の磁石3を配置することで、外部電源なしで、発電を行うことができる。発電した電力は、例えば、歯車部材の回転数を検出するセンサの電源電力として用いることができる。よって、センサに電源供給の電源ケーブルを接続する必要がなくなり、例えば歯車部材の速度監視を外部電源なしで行うことができる。
なお、図4の磁石3の磁極の向きは一例であり、図3A〜図3Dのような磁極の向きでもよい。ただし、移動体2の一主面2aの凹凸形状によって発生する、リラクタンス力もしくは、渦電流による反力を有効に利用するためには、磁石3のサイズは、移動体2の凸部2dの面積内に収まるサイズが望ましい。また、必要な発電量を得るために、最適な発電量の非接触発電機を複数接続してもよい。
このように、第2の実施形態では、移動体2の一主面2aに凸部2dと凹部2eを交互に設け、磁石3が凸部2dに対向配置された場合には、渦電流による反力とリラクタンス力の少なくとも一方により、磁石3を移動体2の移動方向に移動させるとともに、付勢部材7に付勢力を蓄積し、磁石3が凹部2eに対向配置された場合には、付勢部材7の付勢力によって磁石3を移動体2の移動方向とは反対の方向に移動させることができる。これにより、本実施形態によれば、移動体2を一方向に移動させながら、磁石3を双方向に移動(振動)させることができる。
(第3の実施形態)
第3の実施形態は、磁石3を回転させるものである。
図5は本発明の第3の実施形態による非接触発電機1の正面図、図6は斜視図である。図5の非接触発電機1は、移動体2の一主面2aから離隔して配置される磁石3と、磁石3からの磁束が鎖交するコイル4と、磁石3からの磁束が通過するヨーク5とを備えている。
移動体2の一主面2aには、第2の実施形態と同様に、凸部2dと凹部2eが交互に配置されており、凸部2dと凹部2eが並ぶ方向に移動体2は移動する。
第3の実施形態も、第2の実施形態と同様に、渦電流による反力とリラクタンス力との少なくとも一方を利用することで、磁石3を回転させる。
図5の磁石3は、中空の円筒状であり、中空部分には軸部材3aが挿通されている。磁石3は、軸部材3a周りに軸部材3aとともに回転自在とされている。磁石3の外周面の一部は、移動体2の一主面2aに離隔して対向配置されている。磁石3は、例えば2つの磁極を有し、軸部材3aよりも移動体2側にはN極が配置され、コイル4側にはS極が配置されている。コイル4は、磁石3の外周面の一部に、離隔して対向配置されている。コイル4は、磁石3の外周面から均一な距離を隔てて配置されている。よって、コイル4は、円弧面状に配置されている。コイル4の磁石3との対向面と反対の面側には、ヨーク5が対向配置されている。ヨーク5の断面は、磁石3およびコイル4の形状に合わせて、円弧状に形成されている。
軸部材3aの軸端方向の磁石3の少なくとも一端面には、付勢部材7が取り付けられている。この付勢部材7は、支持部材8によってヨーク5に支持されている。付勢部材7の具体的な構造と磁石3への取付位置とは、種々の態様が考えられるが、いずれを採用してもよい。
付勢部材7は、磁石3が軸部材3a周りに回転すると、その回転方向とは反対方向の付勢力を蓄積する。磁石3は、渦電流による反力とリラクタンス力の少なくとも一方により回転するが、磁石3を回転させる回転力が付勢力よりも弱くなると、磁石3は付勢力により逆方向に回転する。
例えば、磁石3と移動体2の一主面2aとの間にリラクタンス力が働く場合について説明する。磁石3が移動体2の一主面2a上の凸部2dと対向配置されると、磁石3は凸部2dに引き寄せられるため、移動体2が一方向に移動すると、移動体2を追いかけるようにして、磁石3が移動体2の移動方向に回転するとともに、付勢部材7には磁石3を逆方向に回転させる向きに付勢力が蓄積される。例えば、図5のように、移動体2が右方向に移動する場合、磁石3は反時計回りに回転する。やがて、磁石3が移動体2の一主面2a上の凹部2eと対向配置されると、磁石3と一主面2aとの距離が広がるため、リラクタンス力が付勢力よりも弱くなり、磁石3は、付勢部材7の付勢力により、逆方向(図5の場合は時計回り)に回転する。
移動体2が一方向に移動している間は、磁石3が凸部2dと凹部2eに交互に対向配置されるため、上述した動作が交互に繰り返され、磁石3は軸部材3a周りに双方向に交互に回転する動作を行う。これにより、コイル4を鎖交する磁束が変化し、コイル4にて誘導起電力を発生させることができる。
次に、磁石3と移動体2の一主面2aとの間に渦電流による反力が働く場合について説明する。磁石3が移動体2の一主面2a上の凸部2dと対向配置されると、凸部2d上の磁石3との最近接位置の近傍には、電流の向きの異なる2つの渦電流が発生し、これら渦電流による磁束と磁石3からの磁束との反発力および誘引力、すなわち渦電流による反力により、磁石3は、移動体2の移動方向に、移動体2の一主面2aの表面速度よりも遅い周速度で回転し、付勢部材7には磁石3を元の回転位置に戻そうとする付勢力が働く。その後、磁石3が一主面2a上の凹部2eと対向配置されると、渦電流による反力よりも付勢力の方が大きくなるため、磁石3は逆方向に回転する。これにより、リラクタンス力による磁石3の回転と同様に、移動体2が一方向に移動している間は、磁石3は軸部材3a周りに双方向に交互に回転する動作を行う。
図5の磁石3は、軸部材3a周りに回転するため、例えば軸部材3aに図7に示すような標準電気機械9(Standard electric machine)を接続してもよい。標準電気機械9とは、軸部材3aの回転を利用して駆動される駆動体である。駆動体は、例えば、軸部材3aととともに回転する不図示のロータと、不図示のステータとを有する。ロータの回転により、負荷を駆動する。駆動体は、より具体的には、発電機や減速機などでもよい。また、駆動体は、軸部材3aの回転力を利用して空気を圧縮するコンプレッサであってもよい。このように、駆動体には、軸部材3aの回転力を電気力に変換するものだけでなく、軸部材3aの回転力を機械力に変換するものも含まれる。
本実施形態による非接触発電機1も、第2の実施形態と同様に、例えば、歯車部材からなる移動体2の外周面に近接配置することで、歯車部材の回転速度を検出するセンサ等の電源電力を供給する目的で使用することができる。
なお、図5の磁石3の磁極の向きは一例であり、図3A〜図3Dのような磁極の向きでもよい。ただし、移動体2の一主面2aの凹凸形状によって発生する、リラクタンス力もしくは、渦電流による反力を有効に利用するためには、磁石3のサイズは、移動体2の凸部2dの面積内に収まるサイズが望ましい。また、必要な発電量を得るために、最適な発電量の非接触発電機を複数接続してもよい。
このように、第3の実施形態では、移動体2を一方向に移動させるだけで、円筒状の磁石3を軸部材3a周りに回転方向を交互に変えながら回転振動させることができる。よって、磁石3の外周面に対向配置されたコイル4に鎖交する磁束を周期的に変化させることができ、コイル4にて効率よく誘導電力を発生させることができる。
また、第3の実施形態の場合、円筒状の磁石3の外周面に沿ってコイル4を配置しており、磁石3は移動せずに軸部材3a周りに回転するため、非接触発電機1の左右方向のサイズを第2の実施形態よりも縮小することができる。よって、第3の実施形態によれば、省スペースで発電効率に優れた非接触発電機1を提供できる。
(第4の実施形態)
上述した第2および第3の実施形態では、移動体2の一主面2aが凹凸形状である例を説明したが、移動体2の一主面2aは平坦面であってもよい。
図8は図4と同じ構造の非接触発電機1を移動体2の平坦な一主面2aに近接して対向配置させた例を示し、図9は図5と同じ構造の非接触発電機1を移動体2の平坦な一主面2aに近接して対向配置させた例を示している。
図8および図9の移動体2の一主面2aは平坦であるが、一主面2a上には、透磁率および導電率の少なくとも一方が互いに相違する第1部分2fと第2部分2gとが交互に配置されており、移動体2は、第1部分2fと第2部分2gとが並ぶ方向に移動する。
リラクタンス力を利用して磁石3を移動または回転させるには、移動体2の第1部分2fと第2部分2gは、透磁率が互いに相違している必要がある。例えば、第1部分2fが第2部分2gよりも透磁率が高いとすると、第1部分2fが磁石3と対向配置されている場合には、磁石3は移動体2の移動方向に移動または回転し、第2部分2gが磁石3と対向配置されている場合には、付勢部材7の付勢力により磁石3はその反対方向に移動または回転する。
渦電流による反力を利用して磁石3を移動または回転させるには、移動体2の第1部分2fと第2部分2gは、導電率が互いに相違している必要がある。例えば、第1部分2fが第2部分2gよりも導電率が高いとすると、第1部分2fが磁石3と対向配置されている場合には、磁石3は移動体2の移動方向に移動または回転し、第2部分2gが磁石3と対向配置されている場合には、付勢部材7の付勢力により磁石3はその反対方向に移動または回転する。
このように、磁石3が移動体2の平坦な一主面2aに対向配置されている場合であっても、一主面2a上の透磁率および導電率の少なくとも一方を交互に変化させることにより、磁石3を双方向に移動または回転させることができる。
(第5の実施形態)
第5の実施形態は、磁石3を上下に振動させるものである。
図10は本発明の第5の実施形態による非接触発電機1の正面図である。図10の非接触発電機1は、第1方向xに移動する移動体2の第1方向xに延在する一主面2aから離隔して配置される磁石3と、磁石3を第1方向xまたはその反対方向に付勢する付勢部材7と、磁石3から離隔して配置され第1方向xと交差する第2方向yに延在する磁石3の軸部材6と、磁石3および軸部材6に接続されて磁石3を軸部材6の周りに回転させる接続部材10と、磁石3の磁束が鎖交するコイル4と、を備えている。
第1方向xは例えば鉛直方向であり、第2方向yは例えば水平方向である。移動体2は、例えば鉛直方向すなわち重力方向である下方に向かって移動する。なお、移動体2は、重力方向の反対方向(ば上方)に移動してもよいし、重力方向とその反対方向の双方向に移動してもよい。
磁石3は、接続部材10によって軸部材6に接続されており、磁石3は軸部材6周りに回転自在とされている。初期状態では、磁石3は、付勢部材7と接続部材10とで支持されて、所定の位置に停止している。この停止位置では、磁石3の一つの磁極端面は、移動体2の一主面2aに対向配置されている。
初期状態の典型的な一例として、移動体2の一主面2aが鉛直方向に延在し、付勢部材7の付勢方向が上方の場合、接続部材10の延在方向は水平方向に配置された状態で、磁石3は安定に停止する。
コイル4は、磁石3からの磁束が鎖交する場所に配置される。例えば、磁石3の初期状態での配置場所を取り囲むようにコイル4を配置してもよい。
初期状態から移動体2が一方向(例えば、重力方向である下方)に移動すると、移動体2の一主面2a上には渦電流が発生し、この渦電流による反力により、磁石3は移動体2の移動方向に移動する。例えば、移動体2が下方に移動する場合、磁石3も下方に移動する。磁石3が下方に移動すると、付勢部材7には、磁石3を元の釣り合い位置に戻そうとする付勢力が蓄積される。
また、磁石3には、付勢部材7の他に、接続部材10が接続されているため、図10の破線で示すように、磁石3の一磁極端面と移動体2の一主面2aとの距離は大きくなる。これにより、渦電流による反力よりも付勢部材7の付勢力の方が大きくなり、磁石3は移動体2の移動方向とは反対の方向(例えば上方)に移動する。磁石3が上方に移動すると、磁石3の一磁極端面と移動体2の一主面2aとの距離が短くなり、かつ磁石3を下方に移動させようとする付勢力が付勢部材7に蓄積されるため、磁石3は再び下方に移動する。上記の動作を繰り返すことで、移動体2が一方向に移動していても、磁石3は、一方向とその反対方向に交互に移動する振動動作を行う。
磁石3が例えば上下に振動すると、コイル4を鎖交する磁束が磁石3の振動周期に合わせて周期的に変化し、コイル4に誘導起電力が発生する。
このように、第5の実施形態では、磁石3を移動体2の一主面2aから離隔して対向配置させ、かつ磁石3を付勢部材7で付勢するとともに、磁石3を接続部材10を介して軸部材6周りに回転自在とすることで、移動体2が一方向に移動しても、磁石3を一方向およびその反対方向に振動させることができる。
上述した第1〜第5の実施形態における磁石3は、永久磁石でもよいし、電磁石でもよい。また、磁石3とヨーク5の形状も、図示されたものに限定されない。さらに、ヨーク5は場合によっては省略してもよい。
本発明の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本発明の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。
1 非接触発電機、2 移動体、3 磁石、4 コイル、5 ヨーク、6 軸部材、7 付勢部材、8 支持部材、9 標準電気機械、10 接続部材

Claims (11)

  1. 一方向と前記一方向の反対方向との双方向に移動する移動体の一主面から離隔して対向配置され、前記移動体の移動方向に延在する軸に沿って移動自在で、前記一主面を通過する磁束を発生させる磁石と、
    前記磁石の前記一主面に対向する面とは反対側の面から離隔して配置され、前記磁石からの磁束が鎖交するコイルと、
    前記コイルを鎖交する磁束が通過する磁路の少なくとも一部に配置される磁束ガイド部材と、を備え、
    前記磁石は、前記移動体の前記一主面上に前記磁石からの磁束の変化を妨げる方向に発生される渦電流に基づいて前記磁石に働く反力により、前記軸に沿って、前記移動体の移動方向に、前記移動体の移動速度よりも遅い速度で移動する非接触発電機。
  2. 前記磁石の前記移動体の一主面に対向する面と前記一主面との距離は、前記磁石が前記軸に沿って移動する間では同一である請求項1に記載の非接触発電機。
  3. 一主面側に凸部および凹部が交互に配置された移動体の前記一主面から離隔して対向配置され、前記凸部および前記凹部が並ぶ向きに一方向または往復方向に移動する前記移動体の移動方向に延在する軸に沿って移動自在で、前記一主面を通過する磁束を発生させる磁石と、
    前記磁石を前記軸に沿って付勢する付勢部材と、
    前記磁石の前記一主面に対向する面とは反対の面から離隔して配置され、前記磁石からの磁束が鎖交するコイルと、
    前記コイルを鎖交する磁束が通過する磁路の少なくとも一部に配置される磁束ガイド部材と、を備え、
    前記磁石は、前記凸部が前記磁石に対向配置されると、前記凸部上に発生される渦電流に基づいて前記磁石に働く反力と、前記凸部と前記磁石の対向面との間に働くリラクタンス力と、の少なくとも一方により、前記軸に沿って、前記移動体の移動方向に移動し、前記凹部が前記磁石に対向配置されると、前記付勢部材の付勢力により、前記移動体の移動方向とは反対の方向に移動する非接触発電機。
  4. 平坦な一主面上に第1部分と前記第1部分よりも透磁率および導電率の少なくとも一方が低い第2部分とが交互に配置された移動体の前記一主面から離隔して対向配置され、前記第1部分および前記第2部分が並ぶ方向に移動する前記移動体の移動方向に延在する軸に沿って移動自在で、前記一主面を通過する磁束を発生させる磁石と、
    前記磁石を前記軸に沿って付勢する付勢部材と、
    前記磁石の前記一主面に対向する面とは反対の面から離隔して配置され、前記磁石からの磁束が鎖交するコイルと、
    前記コイルを鎖交する磁束が通過する磁路の一部に配置される磁束ガイド部材と、を備え、
    前記磁石は、前記第1部分が前記磁石に対向配置されると、前記第1部分上に発生される渦電流に基づいて前記磁石に働く反力と、前記第1部分と前記磁石の対向面との間に働くリラクタンス力と、の少なくとも一方により、前記軸に沿って、前記移動体の移動方向に移動し、前記第2部分が前記磁石に対向配置されると、前記付勢部材の付勢力により、前記移動体の移動方向とは反対の方向に移動する非接触発電機。
  5. 前記移動体の透磁率が第1閾値より高く導電率が第2閾値より低い場合は、前記磁石は、前記反力より前記リラクタンス力の影響をより受けて移動する請求項3または4に記載の非接触発電機。
  6. 前記コイルは、前記磁石からの磁束の方向と交差する方向に配置される平面状のコイルであり、
    前記磁束ガイド部材は、前記コイルを間に挟んで、前記磁石とは反対側に配置される請求項1乃至5のいずれかに記載の非接触発電機。
  7. 一主面側に凸部および凹部が交互に配置された移動体の前記一主面から離隔して配置され、前記凸部および前記凹部が並ぶ方向に移動する前記移動体の移動方向と交差する方向に延在する軸周りに回転自在で、前記一主面に向かう方向またはその反対方向に磁化される磁石と、
    前記磁石を前記軸の回転方向に付勢する付勢部材と、
    前記磁石の前記一主面に対向する面とは反対側の面から離隔して配置され、前記磁石からの磁束が鎖交するコイルと、
    前記コイルを鎖交する磁束が通過する磁路の少なくとも一部に配置される磁束ガイド部材と、を備え、
    前記磁石は、前記凸部が前記磁石に対向配置されると、前記凸部上に発生される渦電流に基づいて前記磁石に働く反力と、前記凸部と前記磁石の対向面との間に働くリラクタンス力と、の少なくとも一方により、前記軸周りに、前記移動体の移動方向に応じた回転方向に回転し、前記凹部が前記磁石に対向配置されると、前記付勢部材の付勢力により、前記軸周りに前記回転方向とは反対の方向に回転する非接触発電機。
  8. 平坦な一主面上に第1部分と前記第1部分よりも透磁率および導電率の少なくとも一方が低い第2部分とが交互に配置された移動体の前記一主面から離隔して配置され、前記第1部分および前記第2部分が並ぶ方向に移動する前記移動体の移動方向と交差する方向に延在する軸周りに回転自在で、前記一主面を通過する磁束を発生させる磁石と、
    前記磁石を前記軸の回転方向に付勢する付勢部材と、
    前記磁石の前記一主面に対向する面とは反対側の面から離隔して配置され、前記磁石からの磁束が鎖交するコイルと、
    前記コイルを鎖交する磁束が通過する磁路の一部に配置される磁束ガイド部材と、を備え、
    前記磁石は、前記第1部分が前記磁石に対向配置されると、前記第1部分上に発生される渦電流に基づいて前記磁石に働く反力と、前記第1部分と前記磁石の対向面との間に働くリラクタンス力と、の少なくとも一方により、前記軸周りに、前記移動体の移動方向に応じた回転方向に回転し、前記第2部分が前記磁石に対向配置されると、前記付勢部材の付勢力により、前記軸周りに前記回転方向とは反対の方向に回転する非接触発電機。
  9. 前記磁石は、前記軸の外周面側に配置される円筒体であり、
    前記コイルは、前記磁石の外周面の少なくとも一部に沿って円弧面状に配置され、
    前記磁束ガイド部材は、前記コイルの前記磁石に対向する面とは反対側の面に対向配置される請求項7または8に記載の非接触発電機。
  10. 第1方向に移動する移動体の一主面から離隔して対向配置される磁石と、
    前記磁石を前記第1方向または前記第1方向の反対方向に付勢する付勢部材と、
    前記磁石から離隔して配置され前記第1方向と交差する第2方向に延在される軸部材と、
    前記磁石および前記軸部材に接続され、前記磁石を前記軸部材の周りに回転させる接続部材と、
    前記磁石の磁束が鎖交するコイルと、を備え、
    前記磁石は、前記第1方向に前記移動体が移動する最中に、前記移動体の前記一主面上に前記磁石からの磁束の変化を妨げる方向に発生される渦電流に基づいて前記磁石に働く反力と、前記付勢部材による付勢力と、により、前記第1方向および前記第1方向の反対方向に振動する非接触発電機。
  11. 前記磁石は、永久磁石または電磁石である請求項1乃至10のいずれか一項に記載の非接触発電機。
JP2015117771A 2015-06-10 2015-06-10 非接触発電機 Active JP6567331B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015117771A JP6567331B2 (ja) 2015-06-10 2015-06-10 非接触発電機
EP16807554.7A EP3309942B1 (en) 2015-06-10 2016-06-09 Non-contact power generator
CN201680047205.2A CN107925335B (zh) 2015-06-10 2016-06-09 非接触发电机
PCT/JP2016/067205 WO2016199848A1 (ja) 2015-06-10 2016-06-09 非接触発電機
EP20202572.2A EP3799278A3 (en) 2015-06-10 2016-06-09 Non-contact power generator
US15/834,663 US10298107B2 (en) 2015-06-10 2017-12-07 Non-contact power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015117771A JP6567331B2 (ja) 2015-06-10 2015-06-10 非接触発電機

Publications (2)

Publication Number Publication Date
JP2017005877A JP2017005877A (ja) 2017-01-05
JP6567331B2 true JP6567331B2 (ja) 2019-08-28

Family

ID=57503415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015117771A Active JP6567331B2 (ja) 2015-06-10 2015-06-10 非接触発電機

Country Status (5)

Country Link
US (1) US10298107B2 (ja)
EP (2) EP3309942B1 (ja)
JP (1) JP6567331B2 (ja)
CN (1) CN107925335B (ja)
WO (1) WO2016199848A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106877617A (zh) * 2017-04-12 2017-06-20 成都步共享科技有限公司 一种用于共享单车的发电装置
DE102018217002A1 (de) * 2018-10-04 2020-04-09 Zf Friedrichshafen Ag System zur Energiegewinnung sowie Verfahren zum Betreiben eines Systems zur Energiegewinnung

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5967864A (ja) * 1982-10-12 1984-04-17 Oki Electric Ind Co Ltd 直流ブラシレスリニアモ−タ
US5347186A (en) * 1992-05-26 1994-09-13 Mcq Associates, Inc. Linear motion electric power generator
CN1067815C (zh) * 1996-11-13 2001-06-27 荻野三四郎 利用永磁铁的能量转换装置
JP2000134905A (ja) * 1998-10-26 2000-05-12 Seiko Epson Corp 走行体の制動装置
WO2001033700A1 (en) * 1999-11-02 2001-05-10 Relight An electricity generating device for a vehicle
DE102009054599A1 (de) * 2009-07-29 2011-02-03 Robert Bosch Gmbh Reluktanzmotor
GB2479926B (en) * 2010-04-30 2016-05-11 Atherton Nigel Electricity generator
US8604649B1 (en) * 2010-08-14 2013-12-10 Robert J. Bartol, Jr. Electric generator and related methods
US8299659B1 (en) * 2010-08-14 2012-10-30 Bartol Jr Robert J Electric power generator apparatus
US8901783B2 (en) * 2010-08-24 2014-12-02 Qualcomm Incorporated Handheld device force induction
DE202011107096U1 (de) 2011-07-01 2012-10-04 Dirk Strothmann Vorrichtung zur berührungslosen Drehmomentübertragung
ES2643396T3 (es) * 2011-07-28 2017-11-22 National University Corporation Okayama University Dinamo
US8816541B1 (en) * 2011-09-30 2014-08-26 Theodore R. Bristow Electricity generating apparatus
JP5785886B2 (ja) * 2012-02-27 2015-09-30 アズビル株式会社 磁気バネ装置
US20140070675A1 (en) * 2012-08-28 2014-03-13 Reelight Aps Eddy current generator for bicycles

Also Published As

Publication number Publication date
EP3309942B1 (en) 2020-11-18
US10298107B2 (en) 2019-05-21
CN107925335B (zh) 2020-08-04
EP3799278A2 (en) 2021-03-31
CN107925335A (zh) 2018-04-17
EP3799278A3 (en) 2021-08-18
US20180159414A1 (en) 2018-06-07
EP3309942A4 (en) 2019-06-26
EP3309942A1 (en) 2018-04-18
WO2016199848A1 (ja) 2016-12-15
JP2017005877A (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
US10463460B2 (en) Personal cleaning care appliance
US11101725B2 (en) Rotary electric machine and non-contact power generator
JP6850832B2 (ja) リニア振動モータ
JP6616336B2 (ja) パーソナルケア器具のための駆動システム及びパーソナルケア器具の動作方法
CN107370324B (zh) 执行器及电动理容美容器具
WO2016199845A1 (ja) 回転電機および非接触発電機
JP6567331B2 (ja) 非接触発電機
US9577500B2 (en) Rotary continuous permanent magnet motor
JP5372115B2 (ja) 回転電機
KR102393595B1 (ko) 선형 동력발생장치
KR101094651B1 (ko) 감각신호출력장치
JPWO2011158382A1 (ja) 磁気シャフト軸受装置およびそれを組み込んだシステム
JP2014050204A (ja) 振動発電機
JP2013055717A (ja) 振動発電機
KR20180003961A (ko) 진자형 자가발전기
WO2016199861A1 (ja) 回転電機および非接触発電機
WO2016199844A1 (ja) 回転電機
JP6392229B2 (ja) 発電機
JP2007028719A (ja) 発電装置
JP2019208293A (ja) 回転電機および非接触発電機
WO2010083538A2 (en) Generators and motors using propagated magnetic field
JP5987144B2 (ja) 発電構造及び照明装置
JP5647309B1 (ja) 電動機
JP2014188480A (ja) 振動生成装置、およびロボット

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20161006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190731

R150 Certificate of patent or registration of utility model

Ref document number: 6567331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250