JP6551369B2 - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
JP6551369B2
JP6551369B2 JP2016225316A JP2016225316A JP6551369B2 JP 6551369 B2 JP6551369 B2 JP 6551369B2 JP 2016225316 A JP2016225316 A JP 2016225316A JP 2016225316 A JP2016225316 A JP 2016225316A JP 6551369 B2 JP6551369 B2 JP 6551369B2
Authority
JP
Japan
Prior art keywords
engine
cylinder
compression stroke
crankshaft
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016225316A
Other languages
English (en)
Other versions
JP2018080689A (ja
Inventor
由香里 岡村
由香里 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016225316A priority Critical patent/JP6551369B2/ja
Priority to US15/712,445 priority patent/US10514012B2/en
Priority to CN201711068287.1A priority patent/CN108071508B/zh
Priority to DE102017127079.5A priority patent/DE102017127079A1/de
Publication of JP2018080689A publication Critical patent/JP2018080689A/ja
Application granted granted Critical
Publication of JP6551369B2 publication Critical patent/JP6551369B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0803Circuits or control means specially adapted for starting of engines characterised by means for initiating engine start or stop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N99/00Subject matter not provided for in other groups of this subclass
    • F02N99/002Starting combustion engines by ignition means
    • F02N99/006Providing a combustible mixture inside the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1506Digital data processing using one central computing unit with particular means during starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1512Digital data processing using one central computing unit with particular means concerning an individual cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/08Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing being of friction type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • F02N2019/008Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation the engine being stopped in a particular position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/021Engine crank angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/10Control related aspects of engine starting characterised by the control output, i.e. means or parameters used as a control output or target
    • F02N2300/104Control of the starter motor torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/20Control related aspects of engine starting characterised by the control method
    • F02N2300/2002Control related aspects of engine starting characterised by the control method using different starting modes, methods, or actuators depending on circumstances, e.g. engine temperature or component wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/045Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions combined with electronic control of other engine functions, e.g. fuel injection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

この発明は、車両の制御装置に関し、より詳細には、エンジン停止中に膨張行程にある膨張行程気筒から燃料噴射および点火を開始して内燃機関を始動させる着火始動が行われる車両を制御するうえで好適な車両の制御装置に関する。
例えば、特許文献1には、エンジン停止中に膨張行程にある膨張行程気筒から燃料噴射および点火を開始して内燃機関を始動させる着火始動が行われる車両の制御装置が開示されている。この制御装置は、着火始動の際に、電動モータを用いてクランク軸の回転を補助するアシストトルクをクランク軸に加える。
国際公開第2015/029650号
特許文献1に記載の車両がそうであるように、S&S(Stop & Start)制御が実行される車両が知られている。S&S制御は、車両の一時停止中もしくは車両走行中に所定のエンジン停止条件が成立したときに内燃機関の運転を自動的に停止し、その後に所定のエンジン始動条件が成立したときに内燃機関を再始動させる制御である。このようなS&S制御によるエンジン停止中に圧縮行程にある圧縮行程気筒の筒内圧は、エンジン停止後に時間の経過とともに大気圧に向けて低下していく。S&S制御によるエンジン停止から次のエンジン始動までの間隔は一般的に短い。このため、圧縮行程気筒の筒内圧が低下していく期間中にエンジン始動要求が出される場合には、当該始動要求が出されるタイミングに応じて圧縮行程気筒の筒内圧が異なるものとなる。
特許文献1に記載の制御装置では、アシストトルクの決定に対して、エンジン始動要求が出されたときの圧縮行程気筒の筒内圧の大きさは考慮されていない。エンジン始動要求が出されたときの圧縮行程気筒の筒内圧が高いと、着火始動によりクランク軸を回転させる際の反力(圧縮反力)が高くなる。このため、エンジン始動要求が出されたときの圧縮行程気筒の筒内圧の大きさを考慮せずに当該エンジン始動要求を受けて実行される着火始動のためのアシストトルクを決定したのでは、クランク軸の回転補助を適切に行えないことが起こり得る。より具体的には、アシストトルクが大き過ぎるために着火始動による燃焼開始前にクランク軸が動いてしまうことで内燃機関の始動性が低下したり、アシストトルクが小さ過ぎる場合にも始動不良を招いたりすることが懸念される。
本発明は、上述のような課題に鑑みてなされたものであり、エンジン始動要求が出されたときの圧縮行程気筒の筒内圧の大きさを考慮することで、着火始動が行われるときにクランク軸に対してより適切な大きさのアシストトルクを加えられるようにした車両の制御装置を提供することを目的とする。
本発明の一態様に係る車両の制御装置は、気筒内に燃料を直接噴射する燃料噴射弁と混合気に点火するための点火装置と筒内圧を検出する筒内圧センサとを備える内燃機関と、前記内燃機関のクランク軸を回転駆動可能な電動モータと、を備える車両を制御する。前記制御装置は、前記クランク軸の回転を補助するアシストトルクを前記電動モータを用いて前記クランク軸に加えた状態で、エンジン停止中に膨張行程にある膨張行程気筒から燃料噴射および点火を開始して前記内燃機関を始動させる着火始動を実行するように構成されている。そして、前記アシストトルクは、エンジン停止中に前記クランク軸を動かさない大きさのトルクであって、前記着火始動を利用するエンジン始動要求が出されたときに圧縮行程にある圧縮行程気筒の筒内圧が高いほど大きい。
また、本発明の他の態様に係る車両の制御装置は、気筒内に燃料を直接噴射する燃料噴射弁と混合気に点火するための点火装置とを備える内燃機関と、前記内燃機関のクランク軸を回転駆動可能な電動モータと、を備える車両を制御する。前記制御装置は、前記クランク軸の回転を補助するアシストトルクを前記電動モータを用いて前記クランク軸に加えた状態で、エンジン停止中に膨張行程にある膨張行程気筒から燃料噴射および点火を開始して前記内燃機関を始動させる着火始動を実行するように構成されている。そして、前記アシストトルクは、エンジン停止中に前記クランク軸を動かさない大きさのトルクであって、エンジン停止中に圧縮行程にある圧縮行程気筒の筒内圧が大気圧となるときの値を下限として、エンジン停止時点から、前記着火始動を利用するエンジン始動要求が出される時点までの時間が短いほど大きい。
本発明の一態様によれば、電動モータによるアシストトルクは、エンジン停止中にクランク軸を動かさない大きさのトルクであって、着火始動を利用するエンジン始動要求が出されたときに圧縮行程にある圧縮行程気筒の筒内圧が高いほど大きくなるように決定される。エンジン始動要求が出されたときの圧縮行程気筒の筒内圧が高いほど、クランク軸を回転させにくくなる。このため、本発明に係るアシストトルクの決定手法によれば、エンジン始動要求が出されたときの圧縮行程気筒の筒内圧の大きさを考慮して、適切な大きさのアシストトルクをクランク軸に加えられるようになる。
また、本発明の他の態様によれば、電動モータによるアシストトルクは、エンジン停止中にクランク軸を動かさない大きさのトルクであって、圧縮行程気筒の筒内圧が大気圧となるときの値を下限として、エンジン停止時点から、着火始動を利用するエンジン始動要求が出される時点までの時間が短いほど大きくなるように構成されている。上記時間の経過に伴い、圧縮行程気筒の筒内圧が低下し、大気圧に近づいていく。このため、本発明に係るアシストトルクの決定手法によれば、上記時間の長さを考慮して、適切な大きさのアシストトルクをクランク軸に加えられるようになる。
本発明の実施の形態1に係る車両のシステム構成を概略的に説明するための図である。 エンジン停止中に圧縮行程にある圧縮行程気筒に関して、エンジン停止時点からの筒内圧の変化を表したタイムチャートである。 着火始動の開始時点の圧縮行程気筒の反力および膨張行程気筒の爆発力と、筒内圧との関係を表した図である。 エンジン始動要求時の圧縮行程気筒の筒内圧と最適トルクとの関係を表した図である。 本発明の実施の形態1に係るS&S制御におけるエンジン停止後の処理のルーチンを示すフローチャートである。 図5に示すルーチンの処理により着火始動が実行された場合の車両の動作の一例を表したタイムチャートである。 本発明の実施の形態2に係る車両のシステム構成を概略的に説明するための図である。 圧縮行程気筒の反力および膨張行程気筒の初爆の爆発力と、エンジン停止時間(エンジン停止時点からの経過時間)との関係を表した図である。 最適トルクとエンジン停止時間との関係を表した図である。 本発明の実施の形態3に係るS&S制御におけるエンジン停止後の処理のルーチンを示すフローチャートである。
以下、図面を参照して本発明の実施の形態について説明する。ただし、以下に示す実施の形態において各要素の個数、数量、量、範囲等の数に言及した場合、特に明示した場合や原理的に明らかにその数に特定される場合を除いて、その言及した数に、この発明が限定されるものではない。また、以下に示す実施の形態において説明する構造やステップ等は、特に明示した場合や明らかに原理的にそれに特定される場合を除いて、この発明に必ずしも必須のものではない。
実施の形態1.
まず、図1〜図6を参照して、本発明の実施の形態1について説明する。
[実施の形態1のシステム構成]
図1は、本発明の実施の形態1に係る車両10のシステム構成を概略的に説明するための図である。図1に示す車両10は、その動力源として、火花点火式の内燃機関12を備えている。内燃機関12は、一例として、直列4気筒エンジンである。
内燃機関12は、燃料噴射弁14と点火装置16とを備えている。燃料噴射弁14は、各気筒に配置され、気筒内に直接燃料を噴射する。点火装置16は、各気筒に配置された点火プラグを用いて、気筒内の混合気に点火する。また、内燃機関12は、筒内圧センサ18とクランク角センサ20とを備えている。筒内圧センサ18は、各気筒に配置され、気筒内の筒内圧に応じた信号を出力する。クランク角センサ20は、クランク軸22の回転位置に応じた信号を出力する。クランク角センサ20によれば、エンジン回転速度を取得することができ、さらに、エンジン停止中のクランク軸22の停止位置(ピストン停止位置)も取得することができる。
内燃機関12が発生するトルクは、変速機24およびデファレンシャルギア26を介して駆動輪28に伝達される。車両10は、モータジェネレータ(以下、「MG」とも称する)30を備えている。MG30は、ベルト32を介してクランク軸22と連結されている。MG30は、バッテリ34と電気的に接続されている。MG30は、燃焼により生じるクランク軸22のトルクを電力に変換する発電機としての機能を有している。バッテリ34にはMG30により生成された電力が蓄えられる。また、MG30は、バッテリ34の電力を用いてクランク軸22を回転駆動する電動機としての機能をも有している。なお、MG30とクランク軸22との間は、ベルト32による連結に限られず、ギアによって連結されてもよいし、あるいは直結されてもよい。
本実施形態のシステムは、電子制御ユニット(ECU)36を備えている。ECU36は、少なくとも入出力インターフェースとメモリと演算処理装置(CPU)とを備え、車両10のシステム全体の制御を行うものである。ECU36には、上述した筒内圧センサ18およびクランク角センサ20に加え、エンジン運転状態などの車両10の運転状態を取得するための各種センサが電気的に接続されている。また、ECU36には、上述した燃料噴射弁14、点火装置16およびMG30に加え、車両10の運転を制御するための各種アクチュエータが電気的に接続されている。メモリには、車両10を制御するための各種の制御プログラムおよびマップが記憶されている。CPUは、制御プログラムをメモリから読み出して実行し、取り込んだセンサ信号に基づいて各種アクチュエータの操作信号を生成する。
[実施の形態1の制御]
(S&S制御)
ECU36により実行される制御には、S&S(Stop & Start)制御が含まれる。本実施形態のS&S制御では、車両10の一時停止中に所定のエンジン停止条件が成立したときに燃料供給の停止により内燃機関12の運転が自動的に停止され、その後に所定のエンジン始動条件が成立したときに内燃機関12が再始動させられる。エンジン停止条件は、車両10の一時停止中に、例えば、所定値以上の踏力でブレーキペダルが踏み込まれたときに成立する。一方、エンジン始動条件の一例は、図6を参照して後述する。
(着火始動)
本実施形態では、S&S制御による内燃機関12の再始動を行う際の始動方法の1つとして、次のような着火始動が用いられる。着火始動は、エンジン停止中に膨張行程にある気筒(以下、「膨張行程気筒」と称する)から燃料噴射および点火を開始することで、温間状態にある内燃機関12を始動させるというものである。本実施形態では、着火始動によるエンジン始動を確実に行えるようにするために、MG30を駆動することによってクランク軸22の回転を補助するアシストトルクをクランク軸22に加えた状態で、着火始動が実行される。
(着火始動時の課題)
着火始動の際にMG30を用いてクランク軸22に付与されるアシストトルクとして適切なトルク値は、当該アシストトルクの付与によりクランク軸22を動かさないことを条件としつつ、できるだけ大きな値である。ここでは、このような思想に基づくアシストトルクを「最適トルク」と称する。本実施形態で用いられるアシストトルクは最適トルクである。最適トルクがクランク軸22に加えられた状態で着火始動を行うことで、高い確率で着火始動を成功させられるようになる。
着火始動により膨張行程気筒に燃料噴射および点火を実行することで最初に行われる燃焼を「初爆」と称する。初爆の爆発力によりクランク軸22を回転させる際に反力となるのが、エンジン停止中に圧縮行程にある気筒(以下、「圧縮行程気筒」と称する)の反力(圧縮反力)である。この反力は、圧縮行程気筒の筒内圧が高いほど大きくなる。したがって、最適トルクとして必要とされるトルク値は、圧縮行程気筒の筒内圧ほど大きくなる。
図2は、圧縮行程気筒に関して、エンジン停止時点からの筒内圧の変化を表したタイムチャートである。吸排気弁が閉じている圧縮行程気筒では、エンジン停止後に、燃焼室内のガスがピストンとシリンダ壁との隙間を通ってクランク室に流れていく。その結果、図2に示すように、圧縮行程気筒の筒内圧は、エンジン停止時点(すなわち、クランク軸22の回転が停止した時点)からの時間の経過とともに低下していき、大気圧に近づいていく。したがって、時間の経過に伴う圧縮行程気筒の筒内圧の変化を考慮すると、最適トルクは、時間の経過とともに低くなる。なお、エンジン停止後の時間の経過とともに筒内圧が低下していくのは、圧縮行程気筒だけでなく、吸排気弁が閉じていることを条件として膨張行程気筒も同じである。
図3は、着火始動の開始時点の圧縮行程気筒の反力および膨張行程気筒の爆発力と、筒内圧との関係を表した図である。上述し、かつ、図3にも示すように、圧縮行程気筒の反力は、圧縮行程気筒の筒内圧が高いほど大きくなる。また、図3に示すように、膨張行程気筒の初爆の爆発力は、膨張行程気筒の筒内圧が高いほど大きくなる。しかしながら、図3に表されているように、筒内圧の増加に対し、上記反力の増加率の方が初爆の爆発力の増加率よりも高くなる。
S&S制御によるエンジン停止から次のエンジン始動までの間隔は一般的に短い。このため、圧縮行程気筒の筒内圧が図2に示すように低下していく期間中にエンジン始動要求が出される場合には、当該エンジン始動要求が出されるタイミングに応じて圧縮行程気筒の筒内圧が異なるものとなる。それにもかかわらず、エンジン始動要求が出されたときの圧縮行程気筒の筒内圧の大きさを考慮せずに当該始動要求を受けて実行される着火始動のためのアシストトルクを決定したのでは、クランク軸22の回転補助のためを適切に行えないことが起こり得る。より具体的には、アシストトルクが大き過ぎるために着火始動による燃焼開始前にクランク軸が動いてしまうことで内燃機関12の始動性が低下したり、アシストトルクが小さ過ぎる場合にも始動不良を招いたりすることが懸念される。
(筒内圧に基づくアシストトルクの決定手法)
以上説明したように、本件発明者の鋭意研究により、着火始動時にMG30によるトルクアシストをより適切に行うためには、エンジン始動要求が出されたときの筒内圧を考慮してアシストトルク(すなわち、最適トルク)を決定するのが良いことが分かった。そこで、本実施形態では、着火始動を利用するエンジン始動要求が出されたときに圧縮行程にある圧縮行程気筒(エンジン停止中に圧縮行程にある上述の圧縮行程気筒と同じ)の筒内圧に応じて、MG30によるアシストトルクが変更される。以下、圧縮行程気筒の筒内圧に基づくアシストトルクの具体的な設定例について図4を参照して説明する。
図4は、エンジン始動要求時の圧縮行程気筒の筒内圧と最適トルクとの関係を表した図である。図4に示すように、MG30によるアシストトルク(すなわち、最適トルク)は、エンジン停止中にクランク軸22を動かさない大きさのトルクであって、着火始動を利用するエンジン始動要求が出されたときの圧縮行程気筒の筒内圧が高いほど大きくなるように決定される。より具体的には、各筒内圧でのアシストトルクの値は、上述のように、エンジン停止中にクランク軸22を動かさないことを条件としつつ、できるだけ大きくなるように決定されている。
(実施の形態1における具体的な処理)
図5は、本発明の実施の形態1に係るS&S制御におけるエンジン停止後の処理のルーチンを示すフローチャートである。なお、本ルーチンは、S&S制御によるエンジン停止がなされる度に起動される。
図5に示すルーチンでは、ECU36は、まず、エンジン始動要求があるか否か、換言すると、所定のエンジン始動条件が成立するか否かを判定する(ステップ100)。具体的には、車両のドライバの操作(例えば、ブレーキペダルの踏力の低下)によるエンジン始動要求の有無、および、車両10からのエンジン始動要求(例えば、吸気負圧の低下に基づく要求、もしくはバッテリ34の充電状態(SOC)に基づく要求)の有無が判定される。その結果、エンジン始動要求がないと判定した場合には、ECU36は、ステップ100の処理を繰り返し実行する。
ECU36は、ステップ100においてエンジン始動要求があると判定した場合には、例えば次のような処理によって着火始動が利用可能であるか否かを判定する(ステップ102)。すなわち、クランク角センサ20を用いて今回のエンジン停止中のクランク軸22の停止位置が取得される。直列4気筒エンジンでは、各気筒のピストン停止位置は、基本的には各行程のほぼ中央で揃うことがほとんどである。ただし、稀に圧縮行程気筒のピストン停止位置が圧縮上死点近くの位置となることがある。このような場合には、膨張行程気筒のピストン停止位置は膨張下死点近くの位置となる。この位置では排気弁が開いているため、着火始動を行うことができなくなる。この場合には、ステップ102では着火始動が利用可能ではないと判定される。また、バッテリ34の残容量が少な過ぎる場合には、MG30によるクランク軸22の回転の補助ができなくなる。ステップ102では、この場合にも、着火始動が利用可能ではないと判定される。一方、ステップ102では、上述のような着火始動の利用を除外すべき条件が成立しない場合には、着火始動が利用可能であると判定される。
ECU36は、ステップ102において着火始動が利用可能ではないと判定した場合には、着火始動を利用しない始動方法、一例としてスタータモータ(図示省略)を利用したスタータ始動を選択する(ステップ104)。処理がステップ104に進んだ場合には、本ルーチンに従う処理が終了される。一方、着火始動が利用可能である場合には、ECU36は、ステップ106に進む。
ステップ106では、MG30によるアシストトルクの最適値である最適トルクが決定される。ECU36は、図4に示すようにエンジン始動要求時の圧縮行程気筒の筒内圧と最適トルクとの関係を定めたマップ(図示省略)を記憶している。ステップ106では、ECU36は、筒内圧センサ18を用いて現在の(すなわち、エンジン始動要求が出されたときの)圧縮行程気筒の筒内圧を取得したうえで、取得した筒内圧に応じた最適トルクをこのようなマップを参照して取得する。最適トルクは、上述のように、取得した筒内圧が高いほど大きい値として取得される。より詳細には、上記マップ内の各筒内圧でのアシストトルクの値は、エンジン停止中にクランク軸22を動かさないことを条件としつつ、できるだけ大きくなるように設定されている。
次に、ECU36は、決定した最適トルクが出力されるようにMG30を制御する(ステップ108)。次いで、ECU36は、着火始動の実行中であるか否かを判定する(ステップ110)。ステップ110では、着火始動の開始(より詳細には、膨張行程気筒での燃料噴射および点火の開始)から着火始動の終了(後述のステップ116の判定が成立する時点)までの期間中であれば、着火始動の実行中であると判定される。
ECU36は、ステップ110において着火始動の実行中ではないと判定した場合、つまり、着火始動を未だ開始していない場合には、ステップ112に進む。ステップ112では、MG30の現在の出力トルクが最適トルクに到達したか否かが判定される。その結果、本判定が不成立となる場合には、ECU36は、ステップ108以降の処理を繰り返し実行する。
一方、ECU36は、ステップ112において出力トルクが最適トルクに到達したと判定した場合には、着火始動を開始する(ステップ114)。具体的には、膨張行程気筒のための燃料噴射および点火が実行される。
ECU36は、ステップ114の処理を実行した後に、もしくは、ステップ110において着火始動の実行中であると判定した場合には、着火始動を利用したエンジン始動が完了したか否かを判定する(ステップ116)。エンジン始動の完了の有無は、例えば、エンジン回転速度が所定回転速度に到達したか否かに基づいて判定することができる。その結果、エンジン始動が未だ完了していないと判定される場合には、ECU36は、ステップ108以降の処理を繰り返し実行する。
一方、ECU36は、ステップ116においてエンジン始動が完了したと判定した場合には、MG30によるトルクアシストを終了するために、アシストトルク(すなわち、最適トルク)がゼロとなるようにMG30を制御する(ステップ118)。次いで、ECU36は、着火始動を終了する(ステップ120)。具体的には、各気筒のための燃料噴射および点火の制御が、着火始動を利用した始動時用の制御から、エンジン始動完了後のための所定の制御に切り替えられる。処理がステップ120に進んだ場合にも、本ルーチンに従う処理が終了される。
図6は、図5に示すルーチンの処理により着火始動が実行された場合の車両10の動作の一例を表したタイムチャートである。図6中の時点t0は、S&S制御の実行中(エンジン停止中)にエンジン始動要求が検知された時点に相当する。図6中に表されたアシストトルクの2つの波形のうち、実線は要求トルク(ステップ108で決定される最適トルク)を示し、破線は実トルク(出力トルク)を示している。
図5に示すルーチンによれば、時点t0においてエンジン始動要求が検知されたときに着火始動が利用可能である場合には、圧縮行程気筒の筒内圧に応じた最適トルクである要求トルクが得られるように、MG30へのトルク出力指令が直ちに発せられる。図6中の時t1は、MG30の実トルクが要求トルクに到達した時点に相当する。時点t1が到来すると、着火始動が開始される(すなわち、膨張行程気筒のための燃料噴射と点火とが実行される)。
図6中の噴射信号および点火信号は、所定の爆発順序に従って順番に実行される各気筒の燃料噴射および点火のタイミングを示している。図6に示す一例では、燃料噴射および点火の順で、各気筒の燃料噴射および点火が実行されている。特に、膨張行程気筒での初爆実現のための点火は、一例として、所定回数(例えば、10回)繰り返して実行されている。
MG30によるトルクアシストを伴いつつ、膨張行程気筒での初爆およびその後の各気筒での燃焼が順に実行されていくことで、エンジン回転速度が上昇していく。図6中に示す時点t2は、ステップ116の処理によりエンジン始動が完了したと判定される時点に相当する。時点t2が到来すると、MG30への要求トルクがゼロとされるとともに、着火始動が終了される。
以上説明した本実施形態の制御によれば、MG30によるトルクアシストを伴う着火始動が実行される場合には、アシストトルク(最適トルク)は、エンジン停止中にクランク軸22を動かさない大きさのトルクであって、エンジン始動要求が出されたときの圧縮行程気筒の筒内圧が高いほど大きくなるように決定される。既述したように、エンジン始動要求時の圧縮行程気筒の筒内圧が高いほど、着火始動によるクランク軸22の回転に対する反力が大きくなる。このため、上述のアシストトルクの決定手法によれば、エンジン始動要求が出されたときの圧縮行程気筒の筒内圧の大きさを考慮して、適切な大きさのアシストトルクをクランク軸22に加えられるようになる。これにより、アシストトルクの過不足に起因する内燃機関12の始動性の低下を抑制することができる。
また、上述のように、アシストトルクは、エンジン停止中にクランク軸22を動かさないことを条件としつつ、できるだけ大きいことが好ましい。この点に関し、本実施形態の手法によれば、アシストトルク(最適トルク)が、エンジン始動要求が出されるときの圧縮行程気筒の筒内圧に応じて決定される。このため、この筒内圧がどのような値であっても、エンジン停止中にクランク軸22を動かさないことを条件としつつできるだけ大きい値となるようにアシストトルクを適切に決定することができる。さらに付け加えると、エンジン始動要求が出されたときの膨張行程気筒の筒内圧が高いほど、膨張行程気筒での初爆の爆発力も大きくなる。しかしながら、筒内圧の増大に対し、上記反力の増加率の方が初爆の爆発力の増加率よりも高くなる。本実施形態の制御によれば、このような圧縮反力と初爆の爆発力との関係を考慮しても、圧縮行程気筒の筒内圧に応じた適切な大きさのアシストトルクをクランク軸22に加えられるようになるといえる。
ところで、上述した実施の形態1においては、エンジン始動要求が出されたときの圧縮行程気筒の筒内圧に応じた値で最適トルクを決定するために、圧縮行程気筒の筒内圧が筒内圧センサ18を用いて取得される。既述したように、エンジン停止後の時間の経過とともに筒内圧が低下していくのは、圧縮行程気筒だけでなく、吸排気弁が閉じていることを条件として膨張行程気筒も同じである。したがって、エンジン始動要求が出されたときの圧縮行程気筒の筒内圧に応じた値で最適トルクを決定するために用いられる筒内圧の検出値は、圧縮行程気筒の値に代えて、エンジン始動要求が出されたときに筒内圧センサ18を用いて検出される膨張行程気筒の筒内圧の値であってもよい。そして、膨張行程気筒の筒内圧の検出値とアシストトルクとの関係を定めたマップを記憶しておき、膨張行程気筒の筒内圧の検出値が高いほど大きくなるようにアシストトルクを決定してもよい。このような手法によっても、エンジン始動要求が出されたときの圧縮行程気筒の筒内圧が高いほどアシストトルクを大きくすることができる。
実施の形態2.
次に、図7〜図9を参照して、本発明の実施の形態2について説明する。
[実施の形態2のシステム構成]
図7は、本発明の実施の形態2に係る車両40のシステム構成を概略的に説明するための図である。なお、図7において、上記図1に示す構成要素と同一の要素については、同一の符号を付してその説明を省略または簡略する。
図7に示す車両40は、エンジン構成において図1に示す車両10と相違している。具体的には、内燃機関42は、各気筒に筒内圧センサ18を備えていないという点において内燃機関12と相違している。
[実施の形態2の制御]
(エンジン停止時点からの経過時間に基づくアシストトルクの決定手法)
図8は、圧縮行程気筒の反力および膨張行程気筒の初爆の爆発力と、エンジン停止時間(エンジン停止時点からの経過時間)との関係を表した図である。図9は、最適トルクとエンジン停止時間との関係を表した図である。図2を参照して既述したように、エンジン停止後の時間の経過とともに圧縮行程気筒(膨張行程気筒も同様)の筒内圧が大気圧に向けて低下していく。そこで、本実施形態では、MG30によるアシストトルク(すなわち、最適トルク)は、図9に示すように、圧縮行程気筒の筒内圧が大気圧となるときの値を下限として、エンジン停止時間(エンジン停止時点からエンジン始動要求までの時間)が短いほど大きくなるように決定される。より具体的には、各エンジン停止時間でのアシストトルクの値は、エンジン停止中にクランク軸22を動かさないことを条件としつつ、できるだけ大きくなるように決定されている。
また、図3を参照して既述したように、筒内圧が高いほど、圧縮行程気筒の反力および膨張行程気筒の爆発力が大きくなり、かつ、筒内圧の増加に対し、上記反力の増加率の方が初爆の爆発力の増加率よりも高くなる。図8に示す関係は、図2に示す関係と図3に示す関係とを組み合わせて得られる。すなわち、エンジン停止後の時間の経過に伴う圧縮行程気筒および膨張行程気筒の筒内圧の低下に起因して、図8に示すように圧縮行程気筒の反力および膨張行程気筒の爆発力が時間の経過とともに低下していく。より詳細には、これらの反力および爆発力は、筒内圧が大気圧であるときの値に向けて近づいていく。圧縮行程気筒の反力が膨張行程気筒の爆発力よりも大きいという関係は、図8に示すように時間の経過によって逆になることはない。しかしながら、反力と爆発力との差は、図8に示すように時間の経過とともに小さくなっていく。図9に示すエンジン停止時間と最適トルクとの関係は、より具体的には、図8に示す圧縮行程気筒の反力と膨張行程気筒の初爆の爆発力との関係を考慮して決定されている。
(実施の形態2における具体的な処理)
本実施形態に係るS&S制御におけるエンジン停止後の処理は、MG30によるアシストトルク(最適トルク)の決定手法に関するステップ106の処理を以下のように変更することによって、図5に示すルーチンに類似するルーチンにより実行することができる。すなわち、本実施形態では、図9に示すようにエンジン停止時間と最適トルクとの関係を定めたマップ(図示省略)をECU36に記憶させておき、そのようなマップを参照して、エンジン停止時間から最適トルクが算出される。なお、エンジン停止時間は、ECU36が有するタイマー機能によって計測することができる。
以上説明した本実施形態の制御によれば、MG30によるトルクアシストを伴う着火始動が実行される場合には、エンジン停止時間(すなわち、エンジン停止時点からエンジン始動要求までの時間)が短いほど大きくなるようにアシストトルク(最適トルク)が決定される。このため、上述のアシストトルクの決定手法によれば、エンジン停止時間の長さを考慮して、適切な大きさのアシストトルクをクランク軸22に加えられるようになる。換言すると、本実施形態の制御によれば、筒内圧センサ18を備えていない内燃機関42を備える車両40であっても、エンジン始動要求が出されたときの圧縮行程気筒の筒内圧の大きさを考慮してアシストトルクを適切に決定できるようになる。このため、実施の形態1の制御と同様に、アシストトルクの過不足に起因する弊害の発生を抑制することができる。
また、上述のように、アシストトルクは、エンジン停止中にクランク軸22を動かさないことを条件としつつ、できるだけ大きいことが好ましい。この点に関し、本実施形態の手法によれば、アシストトルク(最適トルク)がエンジン停止時間に応じて決定される。このため、エンジン停止時間がどのような値であっても、エンジン停止中にクランク軸22を動かさないことを条件としつつできるだけ大きい値となるようにアシストトルクを適切に決定することができる。さらに付け加えると、既述したように、エンジン停止中の圧縮行程気筒の反力と膨張行程気筒の爆発力との差は時間の経過とともに小さくなっていく。本実施形態の制御によれば、このような圧縮反力と初爆の爆発力との関係を考慮しても、エンジン停止時間の長さ(すなわち、圧縮行程気筒の筒内圧の大きさ)に応じた適切な大きさのアシストトルクをクランク軸22に加えられるようになるといえる。
実施の形態3.
次に、図10を参照して、本発明の実施の形態3について説明する。
[実施の形態3のシステム構成]
本実施形態の対象となる車両のシステムは、4気筒の内燃機関12に代えて6気筒の内燃機関が用いられている点を除き、図1に示すシステムと同様であるものとする。
[実施の形態3の制御]
(筒内圧に基づくアシストトルクの決定手法)
基本的に180°CA間隔で燃焼が行われる4気筒の内燃機関12では、圧縮行程気筒の数は1つである。一方、本実施形態で用いられる6気筒の内燃機関では、基本的に120°CA間隔で燃焼が行われる。このため、6気筒の内燃機関では、4気筒の内燃機関12とは異なり、エンジン停止中に圧縮行程にある圧縮行程気筒の数は、ピストン停止位置次第で1つになったり2つになったりする。本実施形態の制御は、基本的には、実施の形態1の制御をベースとしている。このため、本実施形態においても、アシストトルク(最適トルク)は、エンジン始動要求が出されたときの圧縮行程気筒の筒内圧が高いほど大きくなるように決定される。
そのうえで、本実施形態では、エンジン停止中に圧縮行程気筒が1つであるか2つであるかが判定される。圧縮行程気筒が1つであると判定された場合には、実施の形態1と同様の手法で、1つの圧縮行程気筒の筒内圧に応じた値となるように、MG30によるアシストトルクが決定される。一方、圧縮行程気筒が2つであると判定された場合には、2つの圧縮行程気筒の筒内圧の合算値に応じた値となるように、MG30によるアシストトルクが決定される。
(実施の形態3における具体的な処理)
図10は、本発明の実施の形態3に係るS&S制御におけるエンジン停止後の処理のルーチンを示すフローチャートである。図10に示すルーチン中のステップ100〜104、108〜120の処理については、実施の形態1において既述した通りである。
図10に示すルーチンでは、ECU36は、ステップ102において着火始動が利用可能であると判定した場合には、圧縮行程気筒が2つであるか否か(すなわち、2つであるか1つであるか)を判定する(ステップ200)。内燃機関の各気筒のピストン停止位置の相対的な関係は機械的に定まっている。このため、本判定は、例えば次のような手法で行うことができる。すなわち、クランク角センサ20を用いてクランク軸22の停止位置を取得することによって、圧縮行程気筒が2つであるか1つであるかを判定することができる。
ECU36は、ステップ200の判定が不成立となる場合(つまり、圧縮行程気筒が1つである場合)には、1つの圧縮行程気筒の筒内圧に基づいて最適トルクを決定する(ステップ202)。圧縮行程気筒が1つである場合に最適トルクを決定する処理は、実施の形態1のステップ106の処理と同様である。すなわち、ECU36には、圧縮行程気筒が1つであることを想定しつつ筒内圧が高いほど大きくなるように最適トルクを事前に定めたマップ(図示省略)が記憶されている。本ステップ202では、筒内圧センサ18を用いて圧縮行程気筒の筒内圧を取得したうえで、上述のマップを参照して最適トルクが決定される。
一方、ECU36は、ステップ200の判定が成立する場合(つまり、圧縮行程気筒が2つである場合)には、2つの圧縮行程気筒の筒内圧の合算値に基づいて最適トルクを決定する(ステップ204)。圧縮行程気筒が2つ存在する場合において着火始動を成功させるためには、これら2つの圧縮行程気筒の双方の圧縮反力に打ち勝つだけのクランク軸22のトルクが必要とされる。したがって、MG30によるアシストトルクは、2つの圧縮行程気筒の筒内圧の合算値を考慮して決定することが望ましい。
そこで、ECU36には、圧縮行程気筒が2つであることを想定して、2つの圧縮行程気筒の筒内圧の合算値が高いほど大きくなるように最適トルクを事前に定めたマップ(図示省略)が記憶されている。本ステップ204では、筒内圧センサ18を用いて2つの圧縮行程気筒の筒内圧をそれぞれ取得したうえで、上述のマップを参照して最適トルクが決定される。さらに付け加えると、圧縮行程気筒が2つある場合においても、上記マップ内の各筒内圧でのアシストトルクの値は、エンジン停止中にクランク軸22を動かさないことを条件としつつ、できるだけ大きくなるよう決定されている。
なお、2つの圧縮行程気筒の筒内圧の取得は、上述の手法に代え、例えば、次のような手法であってもよい。すなわち、上述のように、各気筒のピストン停止位置の相対的な関係は機械的に定まっている。このため、一方の圧縮行程気筒の筒内圧が分かれば、2つの圧縮行程気筒のピストン停止位置の相対的な関係に基づいて他方の圧縮行程気筒の筒内圧を推定可能である。そこで、一方の圧縮行程気筒の筒内圧は筒内圧センサ18を用いて取得するとともに、取得された一方の圧縮行程気筒の筒内圧とピストン停止位置情報とに基づいて、他方の圧縮行程気筒の筒内圧を推定してもよい。
以上説明した図10に示すルーチンの処理によれば、6気筒の内燃機関において圧縮行程気筒が1つおよび2つの何れであっても、エンジン始動要求が出されたときの圧縮行程気筒の筒内圧に応じて適切に決定された最適トルクに基づいて、MG30による着火始動のアシストを行えるようになる。なお、6気筒の内燃機関を対象とする本ルーチンでは、着火始動が利用可能であるか否かを判定するステップ102の処理の中に、次のような判定を追加してもよい。すなわち、2つの圧縮行程気筒間で筒内圧に所定値以上のずれがある場合には、異常が生じていると判定し、着火始動を行わないようにしてもよい。
実施の形態4.
次に、本発明の実施の形態4について説明する。本実施形態の対象となる車両のシステムは、4気筒の内燃機関42に代えて6気筒の内燃機関が用いられている点を除き、図7に示すシステムと同様であるものとする。換言すると、本実施形態のシステムは、上記内燃機関が筒内圧センサ18を備えていないという点において、実施の形態3のシステムと相違している。
[実施の形態4の制御]
実施の形態3の制御に対する本実施形態の制御の関係は、実施の形態1の制御に対する実施の形態2の制御の関係と同様である。すなわち、本実施形態の制御は、基本的には、実施の形態2の制御をベースとしている。このため、本実施形態においても、アシストトルク(最適トルク)は、圧縮行程気筒の筒内圧が大気圧となるときの値を下限として、エンジン停止時間(エンジン停止時点からエンジン始動要求までの時間)が短いほど大きくなるように決定される。
ただし、本実施形態では、圧縮行程気筒が1つであるか2つであるかに応じて、最適トルクを決定するために用いられるマップが変更される。より具体的には、圧縮行程気筒が1つである場合には、1つの圧縮行程気筒の筒内圧の大きさを想定してエンジン停止時間と最適トルクとの関係を事前に定めたマップ(図示省略)が選択される。一方、圧縮行程気筒が2つである場合には、2つの圧縮行程気筒の筒内圧の合算値を想定してエンジン停止時間と最適トルクとの関係を事前に定めたマップ(図示省略)が選択される。
(実施の形態4における具体的な処理)
本実施形態に係るS&S制御におけるエンジン停止後の処理は、MG30によるアシストトルク(最適トルク)の決定手法に関するステップ200〜204の処理を以下のように変更することによって、図10に示すルーチンに類似するルーチンにより実行することができる。すなわち、本実施形態では、圧縮行程気筒が1つであるか2つであるかに応じて上述のように選択されるマップを参照して、エンジン停止時間に応じた最適トルクが算出される。
ところで、上述した実施の形態1〜4においては、直列4気筒エンジンである内燃機関12もしくは42、または6気筒の内燃機関を例に挙げた。しかしながら、本発明の対象となる内燃機関は、エンジン停止中に圧縮行程気筒と膨張行程気筒とが存在し得るものであれば、4気筒および6気筒以外の複数気筒を有する内燃機関であってもよい。さらに付け加えると、圧縮行程気筒の数が3つ以上となることがある内燃機関であっても、実施の形態3または4と同様の思想に基づいて、3つ以上の圧縮行程気筒の筒内圧の合算値を考慮してアシストトルクを決定すればよい。
また、上述した実施の形態1〜4においては、ベルト32を介してクランク軸22と連結されたMG30を備える内燃機関12または42を例に挙げた。しかしながら、本発明に係る「電動モータ」は、クランク軸を回転駆動可能なものであれば、上述のMG30に限られない。すなわち、当該電動モータは、例えば、内燃機関と変速機との間に配置され、内燃機関とともに車両の動力源として機能するモータジェネレータ(MG)であってもよい。そして、このような車両(すなわち、ハイブリッド車両)の場合には、車両の一時停止中だけでなく車両走行中に実行されるS&S制御においても、実施の形態1または2の手法でアシストトルクを決定してもよい。なお、車両走行中に着火始動が行われる場合には、車両走行のために出力されているMGのトルクに対して上記アシストトルクが加えられることになる。
10、40 車両
12、42 内燃機関
14 燃料噴射弁
16 点火装置
18 筒内圧センサ
20 クランク角センサ
22 クランク軸
24 変速機
26 デファレンシャルギア
28 駆動輪
30 モータジェネレータ(MG)
32 ベルト
34 バッテリ
36 電子制御ユニット(ECU)

Claims (2)

  1. 気筒内に燃料を直接噴射する燃料噴射弁と、混合気に点火するための点火装置と、筒内圧を検出する筒内圧センサとを備える内燃機関と、
    前記内燃機関のクランク軸を回転駆動可能な電動モータと、
    を備える車両を制御する制御装置であって、
    前記制御装置は、前記クランク軸の回転を補助するアシストトルクを前記電動モータを用いて前記クランク軸に加えた状態で、エンジン停止中に膨張行程にある膨張行程気筒から燃料噴射および点火を開始して前記内燃機関を始動させる着火始動を実行するように構成されており、
    前記アシストトルクは、エンジン停止中に前記クランク軸を動かさない大きさのトルクであって、前記着火始動を利用するエンジン始動要求が出されたときに圧縮行程にある圧縮行程気筒の筒内圧が高いほど大きいことを特徴とする車両の制御装置。
  2. 気筒内に燃料を直接噴射する燃料噴射弁と、混合気に点火するための点火装置とを備える内燃機関と、
    前記内燃機関のクランク軸を回転駆動可能な電動モータと、
    を備える車両を制御する制御装置であって、
    前記制御装置は、前記クランク軸の回転を補助するアシストトルクを前記電動モータを用いて前記クランク軸に加えた状態で、エンジン停止中に膨張行程にある膨張行程気筒から燃料噴射および点火を開始して前記内燃機関を始動させる着火始動を実行するように構成されており、
    前記アシストトルクは、エンジン停止中に前記クランク軸を動かさない大きさのトルクであって、エンジン停止中に圧縮行程にある圧縮行程気筒の筒内圧が大気圧となるときの値を下限として、エンジン停止時点から、前記着火始動を利用するエンジン始動要求が出される時点までの時間が短いほど大きいことを特徴とする車両の制御装置。
JP2016225316A 2015-11-18 2016-11-18 車両の制御装置 Expired - Fee Related JP6551369B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016225316A JP6551369B2 (ja) 2016-11-18 2016-11-18 車両の制御装置
US15/712,445 US10514012B2 (en) 2015-11-18 2017-09-22 Control device for vehicle
CN201711068287.1A CN108071508B (zh) 2016-11-18 2017-11-03 车辆的控制装置
DE102017127079.5A DE102017127079A1 (de) 2016-11-18 2017-11-17 Steuervorrichtung für ein fahrzeug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016225316A JP6551369B2 (ja) 2016-11-18 2016-11-18 車両の制御装置

Publications (2)

Publication Number Publication Date
JP2018080689A JP2018080689A (ja) 2018-05-24
JP6551369B2 true JP6551369B2 (ja) 2019-07-31

Family

ID=62068753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016225316A Expired - Fee Related JP6551369B2 (ja) 2015-11-18 2016-11-18 車両の制御装置

Country Status (4)

Country Link
US (1) US10514012B2 (ja)
JP (1) JP6551369B2 (ja)
CN (1) CN108071508B (ja)
DE (1) DE102017127079A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10900458B2 (en) * 2019-05-08 2021-01-26 GM Global Technology Operations LLC Apparatus and method for control of powertrain stop position

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4039604B2 (ja) * 2001-05-09 2008-01-30 本田技研工業株式会社 小型二輪車用のエンジン始動装置
JP3815441B2 (ja) * 2003-02-04 2006-08-30 トヨタ自動車株式会社 内燃機関の停止始動制御装置
JP3842230B2 (ja) * 2003-02-28 2006-11-08 三菱電機株式会社 内燃機関の始動装置
JP4136926B2 (ja) * 2003-12-24 2008-08-20 日産自動車株式会社 内燃機関の始動制御装置及び始動制御方法
DE102004037129B4 (de) * 2004-07-30 2016-02-11 Robert Bosch Gmbh Vorrichtung und Verfahren zur Steuerung einer Brennkraftmaschine bei einem Start
US8499734B2 (en) * 2009-10-21 2013-08-06 GM Global Technology Operations LLC System and method for controlling torque during engine start operations in hybrid vehicles
JPWO2012063309A1 (ja) * 2010-11-08 2014-05-12 トヨタ自動車株式会社 エンジン始動装置
JP5950046B2 (ja) * 2013-07-23 2016-07-13 日産自動車株式会社 内燃エンジンの始動制御装置及び始動制御方法
CN105492230B (zh) * 2013-09-02 2017-09-26 丰田自动车株式会社 车辆的控制装置
JP2015150939A (ja) 2014-02-12 2015-08-24 株式会社デンソー 車両制御装置
JP6299672B2 (ja) 2014-07-29 2018-03-28 トヨタ自動車株式会社 車両の駆動システム

Also Published As

Publication number Publication date
DE102017127079A1 (de) 2018-05-24
JP2018080689A (ja) 2018-05-24
CN108071508B (zh) 2020-12-22
CN108071508A (zh) 2018-05-25
US10514012B2 (en) 2019-12-24
US20180142659A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
US6772723B2 (en) Automatic stop and start control system for internal combustion engine
JP4535135B2 (ja) 始動制御装置
JP4338659B2 (ja) 内燃機関の始動方法及び始動装置
CN108223153B (zh) 用于发动机的起动控制装置
US9683496B2 (en) Control apparatus and control method for internal combustion engine
JP4371047B2 (ja) 内燃機関装置および内燃機関の制御方法
JP3861965B2 (ja) 内燃機関の始動装置
JP6458774B2 (ja) 内燃機関の制御装置
JP6551369B2 (ja) 車両の制御装置
JP2006183467A (ja) 車両の制御装置
JP7240228B2 (ja) 内燃機関の制御装置
JP2009228637A (ja) エンジンの制御装置
JP4331124B2 (ja) 内燃機関の始動装置及び方法
JPH11107793A (ja) 内燃機関の停止位置制御装置
JP2004346770A (ja) 内燃機関の始動装置及び方法並びに動力システム
JP2018155224A (ja) 内燃機関の制御装置
JP6841119B2 (ja) エンジンの制御装置
JP2005048626A (ja) ガソリンエンジン
JP6662162B2 (ja) 内燃機関の制御装置
JP5929795B2 (ja) 内燃機関の制御装置
JP2006188963A (ja) 車両の制御装置
JP6064512B2 (ja) エンジン制御装置
JP2018115603A (ja) エンジンの制御装置
JP6575579B2 (ja) エンジンの始動制御装置
JP2018123740A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190617

R151 Written notification of patent or utility model registration

Ref document number: 6551369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees