JP6547366B2 - インタラクティブプロジェクター - Google Patents

インタラクティブプロジェクター Download PDF

Info

Publication number
JP6547366B2
JP6547366B2 JP2015065674A JP2015065674A JP6547366B2 JP 6547366 B2 JP6547366 B2 JP 6547366B2 JP 2015065674 A JP2015065674 A JP 2015065674A JP 2015065674 A JP2015065674 A JP 2015065674A JP 6547366 B2 JP6547366 B2 JP 6547366B2
Authority
JP
Japan
Prior art keywords
indicator
image
correlation value
captured image
projection screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015065674A
Other languages
English (en)
Other versions
JP2016186680A (ja
Inventor
ニュルスタッド、トルモド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2015065674A priority Critical patent/JP6547366B2/ja
Priority to US15/077,843 priority patent/US10055026B2/en
Publication of JP2016186680A publication Critical patent/JP2016186680A/ja
Application granted granted Critical
Publication of JP6547366B2 publication Critical patent/JP6547366B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3191Testing thereof
    • H04N9/3194Testing thereof including sensor feedback
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0425Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means using a single imaging device like a video camera for tracking the absolute position of a single or a plurality of objects with respect to an imaged reference surface, e.g. video camera imaging a display or a projection screen, a table or a wall surface, on which a computer generated image is displayed or projected
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/50Extraction of image or video features by performing operations within image blocks; by using histograms, e.g. histogram of oriented gradients [HoG]; by summing image-intensity values; Projection analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • G06V10/751Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/20Movements or behaviour, e.g. gesture recognition
    • G06V40/28Recognition of hand or arm movements, e.g. recognition of deaf sign language
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Psychiatry (AREA)
  • Social Psychology (AREA)
  • Position Input By Displaying (AREA)

Description

本発明は、投写画面に対するユーザーの指示体による指示を受け取ることが可能なインタラクティブプロジェクター、及び、そのシステムに関する。
特許文献1には、投写画面をスクリーンに投写するとともに、指などの対象物(object)を含む画像をカメラで撮像し、この撮像画像を用いて対象物の位置を検出することが可能な投写型表示装置(プロジェクター)が開示されている。指などの対象物は、投写画面に対して指示を行うための指示体として利用される。すなわち、プロジェクターは、対象物の先端がスクリーンに接しているときに投写画面に対して描画等の所定の指示が入力されているものと認識し、その指示に応じて投写画面を再描画する。従って、ユーザーは、投写画面をユーザーインターフェースとして用いて、各種の指示を入力することが可能である。このように、スクリーン上の投写画面を入力可能ユーザーインターフェースとして利用できるタイプのプロジェクターを、「インタラクティブプロジェクター」と呼ぶ。また、投写画面に対して指示を行うために利用される対象物を「指示体(pointing element)」と呼ぶ。
特開2012−150636号公報
典型的なインタラクティブプロジェクターでは、指示体の先端がスクリーンに接しているか否かに応じて、指示体によって指示がなされているか否かを判定する。特許文献1では、指示体(対象物)をテンプレートとしてテンプレートマッチング処理を行い、指示体を検出することが記載されているものの、指示体の検出方法について、詳細な検討がなされておらず、指示体の精度よい検出が望まれていた。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
[形態1]
投写画面に対するユーザーの指示体による指示を受け取ることが可能なインタラクティブプロジェクターであって、
スクリーン面上に前記投写画面を投写する投写部と、
前記投写画面の領域を撮像する撮像部と、
前記撮像部によって撮像された前記指示体を含む撮像画像に基づいて、前記指示体を検出するための検出処理を実施する指示体検出部と、
前記投写画面が記憶された投写画面記憶部と、
を備え、
前記指示体検出部は、
前記撮像画像を複数の小領域に区分して、少なくとも一つの前記小領域では他の前記小領域と異なるパラメーターを用いて、前記検出処理を実施し、
前記指示体検出部は、前記撮像画像に含まれる前記投写画面の、前記投写画面記憶部における前記投写画面に対する変形率を前記小領域ごとに導いて、前記変形率に基づいて前記検出処理のパラメーターを決定する、
インタラクティブプロジェクター。
このインタラクティブプロジェクターでは、撮像画像を複数の小領域に区分して、小領域ごとに適したパラメーターを用いて検出処理を行うことにより、検出処理の精度を向上させて、指示体の検出精度を向上させることができる。さらに、この構成によれば、所定の区分方法で区分された各小領域の変形率に応じた適切なパラメーターを用いて、指示体の検出処理が実施されるため、指示体の検出精度を向上させることができる。
[形態2]
投写画面に対するユーザーの指示体による指示を受け取ることが可能なインタラクティブプロジェクターであって、
スクリーン面上に前記投写画面を投写する投写部と、
前記投写画面の領域を撮像する撮像部と、
前記撮像部によって撮像された前記指示体を含む撮像画像に基づいて、前記指示体を検出するための検出処理を実施する指示体検出部と、
を備え、
前記指示体検出部は、
前記撮像画像を複数の小領域に区分して、少なくとも一つの前記小領域では他の前記小領域と異なるパラメーターを用いて、前記検出処理を実施し、
前記検出処理として、前記指示体を検出するためのテンプレート画像を用いたテンプレートマッチングを実施し、
さらに、前記撮像画像の解像度を変換した画像に相当する解像度変換後画像と前記テンプレート画像とを用いて相関値を算出し、前記撮像画像を用いた相関値と、前記解像度変換後画像を用いた相関値とを加算した結果に基づいて、前記指示体を検出し、
前記パラメーターは、前記撮像画像を用いた相関値と、前記解像度変換後画像を用いた相関値とを加算する際の重み付けである、インタラクティブプロジェクター。
このインタラクティブプロジェクターでは、撮像画像を複数の小領域に区分して、小領域ごとに適したパラメーターを用いて検出処理を行うことにより、検出処理の精度を向上させて、指示体の検出精度を向上させることができる。
ここで、重み付けは、0を含まない。上述の通り、撮像画像に含まれる指示体の大きさは同じではなく、解像度変換後画像と1サイズのテンプレート画像との相関値は、小領域に応じて異なる。そのため、高い相関値を得られる小領域の加算の重み付けを高く設定することにより、解像度変換後画像を用いて算出された相関値を加算した結果の精度が向上され、指示体の検出精度を向上させることができる。
[形態3]
投写画面に対するユーザーの指示体による指示を受け取ることが可能なインタラクティブプロジェクターであって、
スクリーン面上に前記投写画面を投写する投写部と、
前記投写画面の領域を撮像する撮像部と、
前記撮像部によって撮像された前記指示体を含む撮像画像に基づいて、前記指示体を検出するための検出処理を実施する指示体検出部と、
を備え、
前記指示体検出部は、
前記撮像画像を複数の小領域に区分して、少なくとも一つの前記小領域では他の前記小領域と異なるパラメーターを用いて、前記検出処理を実施し、
前記検出処理として、前記指示体を検出するためのテンプレート画像を用いたテンプレートマッチングを実施し、
前記撮像画像と前記テンプレート画像との相関値を示す相関値マップを生成し、前記相関値マップにおいて所定の閾値より大きい相関値を有する高相関値領域を抽出し、前記高相関値領域における前記相関値の重心を1画素未満の精度で算出し、前記重心を前記指示体の先端位置として検出し、
前記パラメーターは、前記高相関値領域の画素数である、インタラクティブプロジェクター。
このインタラクティブプロジェクターでは、撮像画像を複数の小領域に区分して、小領域ごとに適したパラメーターを用いて検出処理を行うことにより、検出処理の精度を向上させて、指示体の検出精度を向上させることができる。
さらに、このようにすると、指示体位置が1画素未満の精度で得られるため、指示体の検出精度が向上される。また、上述の通り、小領域ごとに指示体の大きさが異なるため、小領域ごとに適した大きさの高相関度領域を用いて重心を算出することにより、指示体の検出精度を向上させることができる。
[形態4]
投写画面に対するユーザーの指示体による指示を受け取ることが可能なインタラクティブプロジェクターであって、
スクリーン面上に前記投写画面を投写する投写部と、
前記投写画面の領域を撮像する撮像部と、
前記撮像部によって撮像された前記指示体を含む撮像画像に基づいて、前記指示体を検出するための検出処理を実施する指示体検出部と、
を備え、
前記指示体検出部は、
前記撮像画像を複数の小領域に区分して、少なくとも一つの前記小領域では他の前記小領域と異なるパラメーターを用いて、前記検出処理を実施し、
前記撮像画像の解像度を変換した画像に相当する解像度変換後画像に対して前記検出処理を実施して、前記指示体を検出し、
前記パラメーターは、前記解像度の変換における倍率である、インタラクティブプロジェクター。
このインタラクティブプロジェクターでは、撮像画像を複数の小領域に区分して、小領域ごとに適したパラメーターを用いて検出処理を行うことにより、検出処理の精度を向上させて、指示体の検出精度を向上させることができる。
撮像画像の解像度を上げると、概念的には指示体が拡大され、解像度を下げると、概念的には指示体が縮小される。そのため、各小領域に含まれる指示体の大きさに応じて解像度を変換して指示体の検出処理を実施することにより、指示体の検出精度を向上させることができる。
[形態5]
投写画面に対するユーザーの指示体による指示を受け取ることが可能なインタラクティブプロジェクターであって、
スクリーン面上に前記投写画面を投写する投写部と、
前記投写画面の領域を撮像する撮像部と、
前記撮像部によって撮像された前記指示体を含む撮像画像に基づいて、前記指示体を検出するための検出処理を実施する指示体検出部と、
を備え、
前記指示体検出部は、
前記撮像画像を複数の小領域に区分して、少なくとも一つの前記小領域では他の前記小領域と異なるパラメーターを用いて、前記検出処理を実施し、
前記撮像画像に対してローパスフィルター処理を施してフィルター処理後画像を生成し、前記フィルター処理後画像を用いて前記検出処理を実施し、
前記パラメーターは、前記ローパスフィルターのカットオフ周波数である、インタラクティブプロジェクター。
このインタラクティブプロジェクターでは、撮像画像を複数の小領域に区分して、小領域ごとに適したパラメーターを用いて検出処理を行うことにより、検出処理の精度を向上させて、指示体の検出精度を向上させることができる。
例えば、指示体の大きさが相対的に小さい小領域において、ローパスフィルターのカットオフ周波数を低く設定してぼかしの程度を大きくすることにより、指示体の検出精度を向上させることができる。一方、指示体の大きさが相対的に大きい領域では、ローパスフィルターのカットオフ周波数を高く設定してぼかしの程度を小さくすることにより、指示体の検出精度を向上させることができる。
(1)本発明の一形態によれば、投写画面に対するユーザーの指示体による指示を受け取ることが可能なインタラクティブプロジェクターが提供される。このインタラクティブプロジェクターは、スクリーン面上に前記投写画面を投写する投写部と、前記投写画面の領域を撮像する撮像部と、前記撮像部によって撮像された前記指示体を含む撮像画像に基づいて、前記指示体を検出するための検出処理を実施する指示体検出部と、を備え、前記指示体検出部は、前記撮像画像を複数の小領域に区分して、少なくとも一つの前記小領域では他の前記小領域と異なるパラメーターを用いて、前記検出処理を実施する。
撮像画像は、撮像部の撮像方向に起因する歪みや撮像レンズに起因する歪みを有することがあり、撮像画像内の位置(領域)に応じて指示体の大きさや形状が異なることがある。そのため、単一のパラメーターを用いて検出処理を行うと、適切な検出結果が得られない場合がある。このインタラクティブプロジェクターでは、撮像画像を複数の小領域に区分して、小領域ごとに適したパラメーターを用いて検出処理を行うことにより、検出処理の精度を向上させて、指示体の検出精度を向上させることができる。なお、小領域ごとに全て異なるパラメーターを用いてもよいし、同じパラメーターを用いる領域があってもよい。
(2)上記インタラクティブプロジェクターにおいて、前記投写画面が記憶された投写画面記憶部を備え、前記指示体検出部は、前記撮像画像に含まれる前記投写画面の、前記投写画面記憶部における前記投写画面に対する変形率を前記小領域ごとに導いて、前記変形率に基づいて前記検出処理のパラメーターを決定してもよい。この構成によれば、所定の区分方法で区分された各小領域の変形率に応じた適切なパラメーターを用いて、指示体の検出処理が実施されるため、指示体の検出精度を向上させることができる。
(3)上記インタラクティブプロジェクターにおいて、前記投写画面が記憶された投写画面記憶部を備え、前記撮像画像に含まれる前記投写画面の、前記投写画面記憶部における前記投写画面に対する変形率に基づいて、前記小領域が区分されもよい。
撮像画像に含まれる指示体の大きさは、上記の変形率に応じて異なる。ここで、変形率は、拡大率および縮小率を含む概念である。この構成によれば、小領域が変形率に基づいて区分されるため、変形率に応じた適切なパラメーターを用いて指示体の検出処理を行うことにより、指示体の検出精度を向上させることができる。
(4)上記インタラクティブプロジェクターにおいて、前記指示体検出部は、前記検出処理として、前記指示体を検出するためのテンプレート画像を用いたテンプレートマッチングを実施してもよい。このようにしても、精度よく指示体を検出することができる。
(5)上記インタラクティブプロジェクターにおいて、前記パラメーターは、前記テンプレート画像でもよい。例えば、小領域ごとに異なるテンプレート画像(例えば、向きが異なる,縮尺が異なる)を用いてもよい。このようにすると、各小領域に適したテンプレート画像を用いることができるため、指示体の検出精度を向上させることができる。
(6)上記インタラクティブプロジェクターにおいて、異なるパラメーターは、縮尺が異なるテンプレート画像でもよい。撮像画像に含まれる指示体の大きさは、投写画面上の指示体の位置によって異なる。そのため、小領域ごとに適した縮尺のテンプレート画像を用いることにより、指示体の検出精度を向上させることができる。
(7)上記インタラクティブプロジェクターにおいて、前記指示体検出部は、さらに、前記撮像画像の解像度を変換した画像に相当する解像度変換後画像と前記テンプレート画像とを用いて前記相関値を算出し、前記撮像画像を用いた相関値と、前記解像度変換後画像を用いた相関値とを加算した結果に基づいて、前記指示体を検出し、前記パラメーターは、前記撮像画像を用いた相関値と、前記解像度変換後画像を用いた相関値とを加算する際の重み付けでもよい。ここで、重み付けは、0を含まない。上述の通り、撮像画像に含まれる指示体の大きさは同じではなく、解像度変換後画像と1サイズのテンプレート画像との相関値は、小領域に応じて異なる。そのため、高い相関値を得られる小領域の加算の重み付けを高く設定することにより、解像度変換後画像を用いて算出された相関値を加算した結果の精度が向上され、指示体の検出精度を向上させることができる。
(8)上記インタラクティブプロジェクターにおいて、前記指示体検出部は、前記前記撮像画像と前記テンプレート画像との相関値を示す相関値マップを生成し、前記相関値マップに対して所定の閾値に基づく二値化を行って、前記指示体を検出し、前記パラメーターは、前記所定の閾値でもよい。撮像画像に含まれる指示体の明るさは、指示体と撮像部との距離に応じて異なる。そのため、2値化を行う際の閾値を小領域ごとに変えることにより、指示体の検出精度を向上させることができる。
(9)上記インタラクティブプロジェクターにおいて、前記指示体検出部は、前記前記撮像画像と前記テンプレート画像との相関値を示す相関値マップを生成し、前記相関値マップにおいて所定の閾値より大きい相関値を有する高相関値領域を抽出し、前記高相関値領域における前記相関値の重心を1画素未満の精度で算出し、前記重心を前記指示体の先端位置として検出し、前記パラメーターは、前記高相関値領域の画素数でもよい。このようにすると、指示体位置が1画素未満の精度で得られるため、指示体の検出精度が向上される。また、上述の通り、小領域ごとに指示体の大きさが異なるため、小領域ごとに適した大きさの高相関度領域を用いて重心を算出することにより、指示体の検出精度を向上させることができる。
(10)上記インタラクティブプロジェクターにおいて、前記指示体検出部は、前記撮像画像の解像度を変換した画像に相当する解像度変換後画像に対して前記検出処理を実施して、前記指示体を検出し、前記パラメーターは、前記解像度の変換における倍率でもよい。撮像画像の解像度を上げると、概念的には指示体が拡大され、解像度を下げると、概念的には指示体が縮小される。そのため、各小領域に含まれる指示体の大きさに応じて解像度を変換して指示体の検出処理を実施することにより、指示体の検出精度を向上させることができる。
(11)上記インタラクティブプロジェクターにおいて、前記指示体検出部は、前記撮像画像に対してローパスフィルター処理を施してフィルター処理後画像を生成し、前記フィルター処理後画像を用いて前記テンプレートマッチングを実施し、前記パラメーターは、前記ローパスフィルターのカットオフ周波数である。例えば、指示体の大きさが相対的に小さい小領域において、ローパスフィルターのカットオフ周波数を低く設定してぼかしの程度を大きくすることにより、指示体の検出精度を向上させることができる。一方、指示体の大きさが相対的に大きい領域では、ローパスフィルターのカットオフ周波数を高く設定してぼかしの程度を小さくすることにより、指示体の検出精度を向上させることができる。
本発明は、種々の形態で実現することが可能であり、例えば、指示体とスクリーンとインタラクティブプロジェクターを備えるシステム、インタラクティブプロジェクターの制御方法又は制御装置、それらの方法または装置の機能を実現するためのコンピュータプログラム、そのコンピュータプログラムを記録した一時的でない記録媒体(non-transitory storage medium)等の様々な形態で実現することができる。
インタラクティブプロジェクションシステムの斜視図である。 インタラクションプロジェクションシステムの側面図および正面図である。 インタラクティブプロジェクターと自発光指示体の内部構成を示すブロック図である。 自発光指示体と非発光指示体を利用した操作の様子を示す説明図である。 位置検出部の概略構成を示すブロック図である。 メモリー画像と投写画面と撮像画像との関係の説明図である。 第1実施形態における小領域の説明図である。 テンプレート画像を示す図である。 各小領域とテンプレートセットとの対応の説明図である。 非発光指示体に関する指示体位置検出処理を示すフローチャートである。 指示体位置検出処理の説明図である。 第2実施形態の位置検出部の構成を示すブロック図である。 第2実施形態の非発光指示体に関する指示体位置検出処理を示すフローチャートである。 第2実施形態の指示体位置検出処理の説明図である。 第2実施形態における相関値の算出方法の説明図である。 第2実施形態における相関値の算出方法の説明図である。 第3実施形態の非発光指示体に関する指示体位置検出処理を示すフローチャートである。 第3実施形態の相関値マップの生成の説明図である。 第4実施形態の非発光指示体に関する指示体位置検出処理を示すフローチャートである。 第4実施形態における指示体位置の決定方法の説明図である。 第4実施形態における高相関値領域の説明図である。 第5実施形態の位置検出部の概略構成を示すブロック図である。 第6実施形態の位置検出部の構成を示すブロック図である。 第6実施形態における小領域の説明図である。 各小領域とテンプレートセットとの対応の説明図である。
A.システムの概要:
図1は、本発明の一実施形態におけるインタラクティブプロジェクションシステム900の斜視図である。このシステム900は、インタラクティブプロジェクター100と、スクリーン板920と、自発光指示体70とを有している。スクリーン板920の前面は、投写スクリーン面SS(projection Screen Surface)として利用される。プロジェクター100は、支持部材910によってスクリーン板920の前方かつ上方に固定されている。なお、図1では投写スクリーン面SSを鉛直に配置しているが、投写スクリーン面SSを水平に配置してこのシステム900を使用することも可能である。
プロジェクター100は、投写スクリーン面SS上に投写画面PS(Projected Screen)を投写する。投写画面PSは、通常は、プロジェクター100内で描画された画像を含んでいる。プロジェクター100内で描画された画像がない場合には、プロジェクター100から投写画面PSに光が照射されて、白色画像が表示される。本明細書において、「投写スクリーン面SS」(又は「スクリーン面SS」)とは、画像が投写される部材の表面を意味する。また、「投写画面PS」とは、プロジェクター100によって投写スクリーン面SS上に投写された画像の領域を意味する。通常は、投写スクリーン面SSの一部に投写画面PSが投写される。
自発光指示体70は、発光可能な先端部71と、使用者が保持する軸部72と、軸部72に設けられたボタンスイッチ73とを有するペン型の指示体である。自発光指示体70の構成や機能については後述する。このシステム900では、1つ又は複数の自発光指示体70とともに、1つ又は複数の非発光指示体80(非発光のペンや指など)を利用可能である。以下、自発光指示体70と非発光指示体80とを区別しない場合は、単に、指示体780とも呼ぶ。
図2(A)は、インタラクティブプロジェクションシステム900の側面図であり、図2(B)はその正面図である。本明細書では、スクリーン面SSの左右に沿った方向をX方向と定義し、スクリーン面SSの上下に沿った方向をY方向と定義し、スクリーン面SSの法線に沿った方向をZ方向と定義している。なお、便宜上、X方向を「左右方向」とも呼び、Y方向を「上下方向」とも呼び、Z方向を「前後方向」とも呼ぶ。また、Y方向(上下方向)のうち、プロジェクター100から見て投写画面PSが存在する方向を「下方向」と呼ぶ。なお、図2(A)では、図示の便宜上、スクリーン板920のうちの投写画面PSの範囲にハッチングを付している。
プロジェクター100は、投写画面PSをスクリーン面SS上に投写する投写レンズ210と、投写画面PSの領域を撮像する第1カメラ310及び第2カメラ320と、指示体780に検出光を照明するための検出光照射部410とを有している。検出光としては、例えば近赤外光が使用される。2台のカメラ310,320は、検出光の波長を含む波長領域の光を受光して撮像する第1の撮像機能を少なくとも有している。2台のカメラ310,320のうちの少なくとも一方は、更に、可視光を含む光を受光して撮像する第2の撮像機能を有し、これらの2つの撮像機能を切り替え可能に構成されていることが好ましい。例えば、2台のカメラ310,320は、可視光を遮断して近赤外光のみを通過させる近赤外フィルターをレンズの前に配置したりレンズの前から後退させたりすることが可能な近赤外フィルター切換機構(図示せず)をそれぞれ備えることが好ましい。2台のカメラ310,320は、左右方向(X方向)の位置が同じで、前後方向(Z方向)に所定の距離を空けて並んで配置されている。2台のカメラ310,320は、本実施形態に限定されない。例えば、前後方向(Z方向)の位置が同じで、左右方向(X方向)に所定の距離を空けて並んで配置されてもよい。また、X,Y,Z全ての方向において位置が異なってもよい。2台のカメラをZ方向の位置を変えて(前後方向にずらして)配置すると、三角測量による3次元位置の算出におけるZ座標の精度が高いため、好ましい。
図2(B)の例は、インタラクティブプロジェクションシステム900がホワイトボードモードで動作している様子を示している。ホワイトボードモードは、自発光指示体70や非発光指示体80を用いて投写画面PS上にユーザーが任意に描画できるモードである。スクリーン面SS上には、ツールボックスTBを含む投写画面PSが投写されている。このツールボックスTBは、処理を元に戻す取消ボタンUDBと、マウスポインターを選択するポインターボタンPTBと、描画用のペンツールを選択するペンボタンPEBと、描画された画像を消去する消しゴムツールを選択する消しゴムボタンERBと、画面を次に進めたり前に戻したりする前方/後方ボタンFRBと、を含んでいる。ユーザーは、指示体を用いてこれらのボタンにタッチすることによって、そのボタンに応じた処理を行ったり、ツールを選択したりすることが可能である。なお、システム900の起動直後は、マウスポインターがデフォールトツールとして選択されるようにしてもよい。図2(B)の例では、ユーザーがペンツールを選択した後、自発光指示体70の先端部71をスクリーン面SSに接した状態で投写画面PS内で移動させることにより、投写画面PS内に線が描画されてゆく様子が描かれている。この線の描画は、プロジェクター100の内部の投写画像生成部(後述)によって行われる。
なお、インタラクティブプロジェクションシステム900は、ホワイトボードモード以外の他のモードでも動作可能である。例えば、このシステム900は、パーソナルコンピューター(図示せず)から通信回線を介して転送されたデータの画像を投写画面PSに表示するPCインタラクティブモードでも動作可能である。PCインタラクティブモードにおいては、例えば表計算ソフトウェアなどのデータの画像が表示され、その画像内に表示された各種のツールやアイコンを利用してデータの入力、作成、修正等を行うことが可能となる。
図3は、インタラクティブプロジェクター100と自発光指示体70の内部構成を示すブロック図である。プロジェクター100は、制御部700と、投写部200と、投写画像生成部500と、位置検出部600と、接触検出部800と、撮像部300と、検出光照射部410と、信号光送信部430とを有している。
制御部700は、プロジェクター100内部の各部の制御を行う。また、制御部700は、位置検出部600で検出された指示体780の3次元位置、および接触検出部800による指示体780の接触検出に基づいて、指示体780によって投写画面PS上で行われた指示の内容を判定するとともに、その指示の内容に従って投写画像を作成又は変更することを投写画像生成部500に指令する。
投写画像生成部500は、投写画像を記憶する投写画像メモリー510を有しており、投写部200によってスクリーン面SS上に投写される投写画像を生成する機能を有する。投写画像生成部500は、更に、投写画面PS(図2(B))の台形歪みを補正するキーストーン補正部としての機能を有する。
投写部200は、投写画像生成部500で生成された投写画像をスクリーン面SS上に投写する機能を有する。投写部200は、図2で説明した投写レンズ210の他に、光変調部220と、光源230とを有する。光変調部220は、投写画像メモリー510から与えられる投写画像データに応じて光源230からの光を変調することによって投写画像光IMLを形成する。この投写画像光IMLは、典型的には、RGBの3色の可視光を含むカラー画像光であり、投写レンズ210によってスクリーン面SS上に投写される。なお、光源230としては、超高圧水銀ランプ等の光源ランプの他、発光ダイオードやレーザーダイオード等の種々の光源を採用可能である。また、光変調部220としては、透過型又は反射型の液晶パネルやデジタルミラーデバイス等を採用可能であり、色光別に複数の変調部220を備えた構成としてもよい。
検出光照射部410は、指示体780の先端部を検出するための照射検出光IDLをスクリーン面SSとその前方の空間にわたって照射する。照射検出光IDLとしては、例えば近赤外光が使用される。
信号光送信部430は、同期用の近赤外光信号である装置信号光ASLを送信する機能を有する。プロジェクター100が起動されると、信号光送信部430は、装置信号光ASLを定期的に発する。自発光指示体70の先端発光部77は、装置信号光ASLに同期して、予め定められた発光パターン(発光シーケンス)を有する近赤外光である指示体信号光PSLを発する。また、撮像部300のカメラ310,320は、指示体780の位置検出を行う際に、装置信号光ASLに同期した所定のタイミングで撮像を実行する。
撮像部300は、図2で説明した第1カメラ310と第2カメラ320とを有している。前述したように、2台のカメラ310,320は、検出光の波長を含む波長領域の光を受光して撮像する機能を有する。図3の例では、検出光照射部410によって照射された照射検出光IDLが指示体780で反射され、その反射検出光RDLが2台のカメラ310,320によって受光されて撮像される様子が描かれている。2台のカメラ310,320は、更に、自発光指示体70の先端発光部77から発せられる近赤外光である指示体信号光PSLも受光して撮像する。2台のカメラ310,320の撮像は、検出光照射部410から照射検出光IDLが照射される第1の期間と、検出光照射部410から照射検出光IDLが照射されない第2の期間と、の両方で実行される。
なお、2台のカメラ310,320の少なくとも一方は、近赤外光を含む光を用いて撮像する機能に加えて、可視光を含む光を用いて撮像する機能を有することが好ましい。スクリーン面SS上に投写された投写画面PSをカメラで撮像し、その画像を利用して投写画像生成部500がキーストーン補正を実行することが可能である。1台以上のカメラを利用したキーストーン補正の方法は周知なので、ここではその説明は省略する。
位置検出部600は、2台のカメラ310,320で撮像された画像(以下、「撮像画像」とも呼ぶ。)を分析して、三角測量を利用して指示体780の先端部の三次元位置座標を算出する機能を有する。この際、位置検出部600は、上述の第1の期間と第2の期間における撮像画像を比較することによって、画像内に含まれる個々の指示体780が、自発光指示体70と非発光指示体80のいずれであるかを判定する。位置検出部600の詳細については、後述する。
接触検出部800は、位置検出部600による撮像画像の分析結果(位置座標)に基づいて、指示体780の投写画面PS(スクリーン面SS)への接触を検出する。本実施形態のインタラクティブプロジェクター100において、接触検出部800は、自発光指示体70の投写画面PSへの接触の検出については、自発光指示体70が発する指示体信号光PSLの発光パターンに基づいて実行し、非発光指示体80の投写画面PSへの接触の検出については、位置検出部600によって検出された3次元位置座標に基づいて実行する。
自発光指示体70には、ボタンスイッチ73の他に、信号光受信部74と、制御部75と、先端スイッチ76と、先端発光部77とが設けられている。信号光受信部74は、プロジェクター100の信号光送信部430から発せられた装置信号光ASLを受信する機能を有する。先端スイッチ76は、自発光指示体70の先端部71が押されるとオン状態になり、先端部71が解放されるとオフ状態になるスイッチである。先端スイッチ76は、通常はオフ状態にあり、自発光指示体70の先端部71がスクリーン面SSに接触するとその接触圧によってオン状態になる。先端スイッチ76がオフ状態のときには、制御部75は、先端スイッチ76がオフ状態であることを示す特定の第1の発光パターンで先端発光部77を発光させることによって、第1の発光パターンを有する指示体信号光PSLを発する。一方、先端スイッチ76がオン状態になると、制御部75は、先端スイッチ76がオン状態であることを示す特定の第2の発光パターンで先端発光部77を発光させることによって、第2の発光パターンを有する指示体信号光PSLを発する。これらの第1の発光パターンと第2の発光パターンは、互いに異なるので、接触検出部800は、2台のカメラ310,320で撮像された画像の分析結果を位置検出部600から取得して、分析結果に基づいて、先端スイッチ76がオン状態かオフ状態かを識別することが可能である。
自発光指示体70のボタンスイッチ73は、先端スイッチ76と同じ機能を有する。従って、制御部75は、ユーザーによってボタンスイッチ73が押された状態では上記第2の発光パターンで先端発光部77を発光させ、ボタンスイッチ73が押されていない状態では上記第1の発光パターンで先端発光部77を発光させる。換言すれば、制御部75は、先端スイッチ76とボタンスイッチ73の少なくとも一方がオンの状態では上記第2の発光パターンで先端発光部77を発光させ、先端スイッチ76とボタンスイッチ73の両方がオフの状態では上記第1の発光パターンで先端発光部77を発光させる。
但し、ボタンスイッチ73に対して先端スイッチ76と異なる機能を割り当てるようにしてもよい。例えば、ボタンスイッチ73に対してマウスの右クリックボタンと同じ機能を割り当てた場合には、ユーザーがボタンスイッチ73を押すと、右クリックの指示がプロジェクター100の制御部700に伝達され、その指示に応じた処理が実行される。このように、ボタンスイッチ73に対して先端スイッチ76と異なる機能を割り当てた場合には、先端発光部77は、先端スイッチ76のオン/オフ状態及びボタンスイッチ73のオン/オフ状態に応じて、互いに異なる4つの発光パターンで発光する。この場合には、自発光指示体70は、先端スイッチ76とボタンスイッチ73のオン/オフ状態の4つの組み合わせを区別しつつ、プロジェクター100に伝達することが可能である。
図4は、自発光指示体70と非発光指示体80を利用した操作の様子を示す説明図である。この例では、自発光指示体70の先端部71と非発光指示体80の先端部81はいずれもスクリーン面SSから離れている。自発光指示体70の先端部71のXY座標(X71,Y71)は、ツールボックスTBの消しゴムボタンERBの上にある。また、ここでは、自発光指示体70の先端部71の機能を表すツールとしてマウスポインターPTが選択されており、マウスポインターPTの先端OP71が消しゴムボタンERBの上に存在するように、マウスポインターPTが投写画面PSに描画されている。前述したように、自発光指示体70の先端部71の三次元位置は、2台のカメラ310,320で撮像された画像を用いた三角測量で決定される。従って、投写画面PS上において、三角測量で決定された先端部71の三次元座標(X71,Y71,Z71)のうちのXY座標(X71,Y71)の位置にマウスポインターPTの先端にある操作ポイントOP71が配置されようにマウスポインターPTが描画される。すなわち、マウスポインターPTの先端OP71は、自発光指示体70の先端部71の三次元座標(X71,Y71,Z71)のうちのXY座標(X71,Y71)に配置され、この位置においてユーザーの指示が行われる。例えば、ユーザーは、この状態で自発光指示体70の先端部71を投写画面PS上に接触させて、消しゴムツールを選択することが可能である。また、ユーザーは、この状態で自発光指示体70のボタンスイッチ73を押すことによって、消しゴムツールを選択することも可能である。このように、本実施形態では、自発光指示体70がスクリーン面SSから離間した状態にある場合にも、ボタンスイッチ73を押すことによって、先端部71のXY座標(X71,Y71)に配置される操作ポイントOP71における投写画面PSの内容に応じた指示をプロジェクター100に与えることが可能である。
図4(B)では、また、非発光指示体80の先端部81の機能を表すツールとしてペンツールPEが選択されており、ペンツールPEが投写画面PSに描画されている。前述したように、非発光指示体80の先端部81の三次元位置も、2台のカメラ310,320で撮像された画像を用いた三角測量で決定される。従って、投写画面PS上において、三角測量で決定された先端部81の三次元座標(X81,Y81,Z81)のうちのXY座標(X81,Y81)の位置にペンツールPEの先端にある操作ポイントOP81が配置されようにペンツールPEが描画される。但し、非発光指示体80を利用してユーザーが指示をプロジェクター100に与える際には、非発光指示体80の先端部81を投写画面PS上に接触させた状態でその指示(描画やツールの選択など)が行なわれる。
図4の例では、指示体780の先端部が投写画面PSから離れている場合にも、個々の指示体によって選択されたツール(マウスポインターPTやペンツールPE)が投写画面PSに描画されて表示される。従って、ユーザーが指示体の先端部を投写画面PSに接触していない場合にも、その指示体によってどのツールが選択されているのかを理解し易く、操作が容易であるという利点がある。また、ツールの操作ポイントOPが指示体の先端部の三次元座標のうちのXY座標の位置に配置されるようにそのツールが描画されるので、ユーザーが、利用中のツールの位置を適切に認識できるという利点がある。
なお、このインタラクティブプロジェクションシステム900は、複数の自発光指示体70を同時に利用可能に構成されてもよい。この場合には、上述した指示体信号光PSLの発光パターンは、複数の自発光指示体70を識別できる固有の発光パターンであることが好ましい。より具体的に言えば、N個(Nは2以上の整数)の自発光指示体70を同時に利用可能な場合には、指示体信号光PSLの発光パターンは、N個の自発光指示体70を区別できるものであることが好ましい。なお、1組の発光パターンに複数回の単位発光期間が含まれている場合に、1回の単位発光期間では、発光と非発光の2値を表現することができる。ここで、1回の単位発光期間は、自発光指示体70の先端発光部77が、オン/オフの1ビットの情報を表現する期間に相当する。1組の発光パターンがM個(Mは2以上の整数)の単位発光期間で構成される場合には、1組の発光パターンによって2個の状態を区別できる。従って、1組の発光パターンを構成する単位発光期間の数Mは、次式を満足するように設定されることが好ましい。
N×Q≦2 …(1)
ここで、Qは自発光指示体70のスイッチ73,76で区別される状態の数であり、本実施形態の例ではQ=2又はQ=4である。例えば、Q=4の場合には、N=2のときにはMを3以上の整数に設定し、N=2〜4のときにはMを4以上の整数に設定することが好ましい。このとき、位置検出部600(又は制御部700)がN個の自発光指示体70と非発光指示体80、及び、各自発光指示体70のスイッチ73,76の状態を識別する際には、1組の発光パターンのM個の単位発光期間において各カメラ310,320でそれぞれ撮像されたM枚の画像を用いてその識別を実行する。なお、このMビットの発光パターンは、照射検出光IDLをオフの状態に維持した状態で指示体信号光PSLをオン又はオフに設定したパターンであり、カメラ310,320で撮像される画像には非発光指示体80が写らない。そこで、非発光指示体80の位置を検出するために用いる画像を撮像するために、照射検出光IDLをオン状態とした1ビットの単位発光期間を更に追加することが好ましい。但し、位置検出用の単位発光期間では、指示体信号光PSLはオン/オフのいずれでも良い。この位置検出用の単位発光期間で得られた画像は、自発光指示体70の位置検出にも利用することが可能である。
図3に描かれている5種類の信号光の具体例をまとめると以下の通りである。
(1)投写画像光IML:スクリーン面SSに投写画面PSを投写するために、投写レンズ210によってスクリーン面SS上に投写される画像光(可視光)である。
(2)照射検出光IDL: 指示体780(自発光指示体70及び非発光指示体80)の先端部を検出するために、検出光照射部410によってスクリーン面SSとその前方の空間にわたって照射される近赤外光である。
(3)反射検出光RDL:照射検出光IDLとして照射された近赤外光のうち、指示体780(自発光指示体70及び非発光指示体80)によって反射され、2台のカメラ310,320によって受光される近赤外光である。
(4)装置信号光ASL:プロジェクター100と自発光指示体70との同期をとるために、プロジェクター100の信号光送信部430から定期的に発せられる近赤外光である。
(5)指示体信号光PSL:装置信号光ASLに同期したタイミングで、自発光指示体70の先端発光部77から発せられる近赤外光である。指示体信号光PSLの発光パターンは、自発光指示体70のスイッチ73,76のオン/オフ状態に応じて変更される。また、複数の自発光指示体70を識別する固有の発光パターンを有する。
本実施形態において、自発光指示体70と非発光指示体80の先端部の位置検出、及び、自発光指示体70と非発光指示体80により指示される内容の判別は、それぞれ以下のように実行される。
指示体780の先端部71の三次元位置は、位置検出部600が、2台のカメラ310,320により撮像された画像を用いて三角測量に従って決定する。この際、自発光指示体70であるか非発光指示体80であるかは、所定の複数のタイミングで撮像された画像に先端発光部77の発光パターンが現れているか否かを判断することによって認識可能である。自発光指示体70の場合は、自発光指示体70の先端部71に配置された先端発光部77から発せられる指示体信号光PSLが、撮像画像に含まれる。そのため、自発光指示体70の先端部71の三次元位置(X71,Y71,Z71)は、撮像画像に含まれる輝点に基づいて、三角測量に従って算出される。
一方、非発光指示体80の場合は、非発光指示体80によって反射された反射検出光RDLが、撮像画像に含まれる。2台のカメラ310,320により撮像された2枚の画像における非発光指示体80の先端部81の位置は、テンプレートマッチングを利用して決定される。非発光指示体80の先端位置の検出については後述する。
接触検出部800は、非発光指示体80の接触検出を、三角測量で決定した非発光指示体80のZ座標値と、スクリーン面SSの表面のZ座標値との差が微小な許容差以下か否か、すなわち、非発光指示体80の先端部81がスクリーン面SSの表面に十分に近いか否かに応じて検出する。この許容差としては、例えば、2mm〜6mm程度の小さな値を使用することが好ましい。また、接触検出部800は、自発光指示体70の先端部71がスクリーン面SSに接触しているか否か(すなわち先端スイッチ76がオンか否か)については、上記複数のタイミングで撮像された画像における先端発光部77の発光パターンを用いて判別する。なお、自発光指示体70の接触検出も、非発光指示体80の接触検出と同様に、自発光指示体70の先端部71のZ座標に基づいて実行されてもよい。
指示体780の先端部の3次元位置の検出,ボタンスイッチ73のON/OFF判別,および接触検出が終了すると、制御部700は、位置検出部600および接触検出部800の検出結果に基づいて、指示体780(自発光指示体70,非発光指示体80)による指示内容を判別して、指示内容に応じた画像を投写画像生成部500に生成させて、投写部200によってスクリーン面SS上に指示内容に応じた画像を投写させる。例えば、先端部71のXY座標の位置がツールボックスTB(図2(B))内のいずれかのボタンの上にある状態で先端スイッチ76またはボタンスイッチ73がオンになった場合には、そのボタンのツールが選択される。また、図2(B)に例示したように、先端部71のXY座標が投写画面PS内のツールボックスTB以外の位置にある状態で先端スイッチ76またはボタンスイッチ73がオンになった場合には、選択されたツールによる処理(例えば描画)が選択される。制御部700は、自発光指示体70の先端部71のXY座標(X71,Y71),非発光指示体80の先端部81のXY座標(X81,Y81)を利用し、予め選択されているポインターやマークが投写画面PS内の位置(X71,Y71),(X81,Y81)に配置されるように、そのポインターやマークを投写画像生成部500に描画させる。また、制御部700は、自発光指示体70、非発光指示体80によって指示された内容に従った処理を実行して、投写画像生成部500にその処理結果を含む画像を描画させる。
B.位置検出部の第1実施形態(局所倍率に応じてテンプレートサイズを変更):
図5は、位置検出部600(図3)の概略構成を示すブロック図である。位置検出部600は、相関値算出部620と、相関値マップ生成部640と、指示体検出部660と、三次元位置算出部680と、を備える。相関値算出部620は、複数のテンプレートセット(ここでは3つのテンプレートセットS1〜S3)を備える。各テンプレートセットは、複数種類のテンプレート画像(図5に示すテンプレートセットS1は3種のテンプレート画像T11〜T13)を備える。以下、3つのテンプレートセットS1〜S3を区別しない場合には、テンプレートセットSとも称する。また、3種のテンプレート画像T11〜T13を区別しない場合には、テンプレート画像Tとも称する。相関値算出部620は、撮像部300にて投写画面PSの領域を撮像した撮像画像と各テンプレート画像Tとの相関値を算出する。相関値算出部620は、第1カメラ310による第1撮像画像、第2カメラ320による第2撮像画像、それぞれに対して、3つのテンプレート画像T11〜T13に対応する3種類の相関値を算出する。すなわち、相関値算出部620では、一度の撮像タイミングに対して、6種類の相関値が算出される。
本実施形態において、相関値算出部620は、撮像画像を複数の小領域(後述する)に区分して、小領域ごとに異なるテンプレートセットSを用いて相関値を算出する。
図6は、メモリー画像MPと、投写画面PSと、撮像画像Mとの関係を説明するための説明図である。図6では、投写画像生成部500(図3)において生成され、投写画像メモリー510(図3)に描画されたメモリー画像MPが示されている。インタラクティブプロジェクター100は、いわゆる超短焦点プロジェクターであって、投写スクリーン面SSに対する投写レンズ210の配置が図6に示すような配置の場合にも、キーストーン補正なしで投写スクリーン面SSに適切な矩形の投写画面が投写されるように、投写部200(投写レンズ210や曲面ミラー(不図示))の光学設計がなされている。そのため、投写画像PPは、キーストーン補正が行われておらず、例えば、パーソナルコンピューターから通信回線を介して転送された画像と相似形の矩形の画像である。なお、投写画像PPは、メモリー画像MPと一致する矩形であってもよい。スクリーン面SS上の投写画面PSは、投写画像PPが投写画面PSの全面に拡大された矩形状の画像を含む。第1カメラによって投写画面PSを撮像した撮像画像Mの投写画面の領域(投写画面領域PSR)は、撮像方向に起因する台形歪みと撮像レンズの歪曲収差に基づく樽型歪みを含む。本実施形態において、メモリー画像MPと、撮像画像Mは、画素数が等しい相似形の矩形状を成す。本実施形態において、メモリー画像MPの投写画像PPの個々の局所的な領域に対する、撮像画像Mの投写画面領域PSRの対応する領域の倍率を、局所倍率Mと称する。局所倍率Mは、撮像部300による撮像画像を用いたキャリブレーションにおいて算出された歪み補正係数を利用して算出される。なお、キャリブレーションの方法は周知なので、ここではその説明は省略する。本実施形態における投写画像メモリー510が請求項における投写画面記憶部に相当し、撮像画像Mの投写画面領域PSRが請求項における撮像画像に含まれる投写画面に相当し、局所倍率Mが請求項における変形率に相当する。
図7は、第1実施形態における小領域について説明するための説明図である。図7では、図6に示した撮像画像Mを概略的に示している。本実施形態では、撮像画像Mが投写画面領域PSRの局所倍率Mに基づいて、撮像画像Mの長辺に平行な3つの小領域MR1〜MR3に区分される。小領域MR1は局所倍率M≦0.7,小領域MR2は局所倍率0.7<M≦0.9,小領域MR3は局所倍率0.9<M≦1.0の領域である。なお、本実施形態では、説明を簡単にするために、3つの小領域MR1〜MR3に区分する例を示して説明するが、小領域の数は、2つでも4以上にしてもよい。また、撮像画像Mの長辺に平行に区分された小領域に限定されず、例えば、格子状に区分してもよい。また、局所倍率Mは、本実施形態に限定されず、局所倍率M>1.0でもよい。
インタラクティブプロジェクター100では、テンプレートマッチングを実施する際に、少なくとも一つの小領域MRでは他の小領域MRと異なるパラメーターを用いる。パラメーターは、例えば、テンプレート画像のサイズ(縮尺),テンプレート画像の種類(指示体の向き),テンプレートマッチングを行う際の対象画像(撮像画像)の解像度変換倍率,複数の相関値を加算する際の重み付け,相関値マップ(後述する)を2値化する際の閾値,指示体を検出する際に用いる高相関値領域(後述する)の画素数,ローパスフィルターのカットオフ周波数等である。本実施形態では、テンプレート画像のサイズ(縮尺)を、小領域ごとに異なるパラメーターとする。
図8(A)〜(C)は、第2テンプレートセットS2が備えるテンプレートT21〜T23を示す図である。以下では、第m(m=1,2,3)テンプレートセットSmの第n(n=1,2,3)種テンプレートTを、テンプレートTmnと称する。但し、テンプレートセットを限定しない場合には、単に、テンプレートTnとも称する。本実施形態において、非発光指示体80としては、指が想定されている。第2テンプレートセットS2のテンプレート画像Tは、13×13画素で構成され、指の先端がテンプレート画像Tの中心の画素に一致するように生成されている。第1種テンプレート画像T21(図8(A))は、先端を上に向けた指の画像である。第2種テンプレート画像T22(図8(B))は、先端を右斜め上に向けた指の画像である。第3種テンプレート画像T23(図8(C))は、先端を左斜め上に向けた指の画像である。第2種テンプレート画像T22および第3種テンプレート画像T23における指とテンプレート画像の下辺との角度は45度である。なお、テンプレート画像は、本実施形態に限定されず、種々のテンプレート画像を利用可能である。例えば、先端を右斜め上に向けた指の画像であって、指とテンプレート画像の下辺との角度を30度,60度とした画像、先端を左斜め上に向けた指の画像であって、指とテンプレート画像の下辺との角度を30度,60度とした画像をさらに備えてもよい。また、テンプレート画像Tのサイズも適宜設定可能である。本実施形態では、説明を簡単にするために、3種のテンプレート画像T1〜T3を用いる例を示して説明する。
他のテンプレートセットS1,S3は、第2テンプレートセットS2と同様、3種のテンプレート画像Tを備えるが、これらのテンプレート画像Tは、第2テンプレートセットS2のテンプレート画像Tとはサイズが異なる。第1テンプレートセットS1のテンプレート画像Tのサイズは、11×11画素であり、第3テンプレートセットS3のテンプレート画像Tのサイズは、15×15画素である。
図9は、各小領域MR1〜MR3(図7)とテンプレートセットSmとの対応を説明するための説明図である。相関値算出部620(図5)において、撮像画像Mの小領域MR1の画素については、第1テンプレートセットS1を用いて相関値を算出する。撮像画像Mの小領域MR2の画素については、第2テンプレートセットS2を用いて相関値を算出する。撮像画像Mの小領域MR3の画素については、第3テンプレートセットS3を用いて相関値を算出する。
相関値マップ生成部640(図5)は、相関値算出部620で算出された相関値を、撮像画像ごとに加算して、相関値マップを生成する。すなわち、第1撮像画像に対する第1相関値マップと、第2撮像画像に対する第2相関値マップが生成される。
指示体検出部660は、各相関値マップに基づいて、撮像画像ごとに非発光指示体80(指)の先端位置(二次元位置)を、検出する。本実施形態では、相関値マップにおける極大値を有する画素の位置を、指示体80の先端位置とする。
三次元位置算出部680は、指示体検出部660において撮像画像ごとに検出された非発光指示体80の先端位置(二次元位置)に基づいて、三角測量により非発光指示体80の先端の三次元位置を算出する。
図10は、非発光指示体80に関する指示体位置検出処理の流れを示すフローチャートである。図11は、指示体位置検出処理を説明するための説明図である。
相関値算出部620は、撮像部300から撮像画像M(図11)を取得する(図10のステップS110)。上記の通り、撮像部300は非発光指示体80によって反射された反射検出光RDLを受光して撮像する。そのため、実際には、指を含む手の全体が撮像画像に含まれるが、図11では、撮像画像に含まれる指の部分を簡略化して図示している。指示体位置検出処理では、撮像画像Mに含まれる手から指の先端を検出する。
相関値算出部620は、撮像画像Mとテンプレート画像Tとの相関値を画素ごとに算出する(図10のステップS120)。ステップS120において、相関値算出部620は、第1種テンプレート画像T1と撮像画像Mとの相関値RL1を算出する工程(ステップS122)と、第2種テンプレート画像T2と撮像画像Mとの相関値RL2を算出する工程(ステップS124)と、第3種テンプレート画像T3と撮像画像Mとの相関値RL3を算出する工程(ステップS126)とを、並行して実行する。
ステップS120において、相関値算出部620は、撮像画像Mの3つの小領域MR1〜MR3それぞれに対して縮尺の異なるテンプレートセットSを用いて、相関値を算出する。具体的には、相関値算出部620は、小領域MR1の画素についてはテンプレートセットS1(図9:11×11画素)、小領域MR2の画素についてはテンプレートセットS2(図9:13×13画素)、小領域MR3の画素についてはテンプレートセットS3(図9:15×15画素)を用いる(図11)。
この結果、図11に示すように、テンプレート画像の種類ごとに異なる相関値RL1,RL2,RL3が得られる。本実施形態において、相関値は、コンボリューション(畳み込み演算)によって、撮像画像Mの1画素ごとに算出される。相関値の算出方法は、本実施形態に限定されず、SSD(Sum of Squared Difference:画素値の差の2乗和)、SAD(Sum of Absolute Difference:画素値の差の絶対値の和)等、周知の方法を利用して算出してもよい。なお、SSD,SADによって算出される値は、撮像画像とテンプレート画像とが類似しているほど値が小さくなり、完全に一致している場合には、値は0になる。そのため、コンボリューションによる相関値と同様に撮像画像とテンプレート画像とが類似しているほど値が大きくなる相関値とするために、逆数を用いるのが好ましい。コンボリューションは、他の方法と比較して計算量を削減することができるため、好ましい。
相関値マップ生成部640は、撮像画像Mの画素ごとに相関値RL1,RL2,RL3を加算して、相関値マップRLTを生成する(図10のステップS130)。このようにして、3種のテンプレート画像T1〜T3と撮像画像Mとの相関値を表す相関値マップRLT(図11)が生成される。図11では、相関値マップRLTを、撮像画像Mと同様に簡略化して図示している。
指示体検出部660は、相関値マップRLTにおいて閾値Thより大きい極大値を有する画素LMP(図11)の位置を指示体の先端位置として検出する(図10のステップS150)。本実施形態では、閾値Th=180と設定しているが、閾値は、撮像部300の感度、撮像部300とスクリーン面SSとの距離等に応じて適宜設定することができる。例えば、撮像部300とスクリーン面SSとの距離が近いほど非発光指示体80が明るく(画素値が大きく)撮像されるため、撮像部300とスクリーン面SSとの距離が近いほど閾値Thを大きく設定してもよい。
三次元位置算出部680は、第1撮像画像および第2撮像画像のそれぞれで検出された指示体位置に基づいて、三角測量により非発光指示体80の先端部81の三次元位置(X81,Y81,Z81)を算出する。
上述の通り、撮像画像Mの投写画面領域PSRは、撮像部300の撮像方向に起因する歪みや撮像レンズに起因する歪みを有する(図7)。そのため、メモリー画像MPの投写画像PP(図6)に対する、撮像画像Mの投写画面領域PSR(図6)の局所倍率Mに応じて、撮像画像Mに含まれる非発光指示体80の大きさが異なる。例えば、撮像画像Mの小領域MR3(0.9<M≦1.0)に非発光指示体80(指)が含まれる場合は、小領域MR2(0.7<M≦0.9)に非発光指示体80(指)が含まれる場合と比較して、非発光指示体80のサイズが大きい。本実施形態では、撮像画像Mの小領域MR3の画素については、テンプレート画像Tのサイズが15×15画素のテンプレートセットS1を用いて相関値を算出し、撮像画像Mの小領域MR2の画素については、テンプレート画像Tのサイズが13×13画素のテンプレートセットS2を用いて相関値を算出している。すなわち、本実施形態のインタラクティブプロジェクター100では、相関値算出部620において相関値を算出する際に、撮像画像Mを局所倍率Mに基づいて区分された各小領域MRに含まれる非発光指示体80のサイズに適したサイズ(縮尺)のテンプレート画像Tを用いて相関値を算出するため、より高い相関値を得ることができる。その結果、非発光指示体80の検出精度を向上させることができる。
また、本実施形態では、複数種類のテンプレート画像Tを用いて撮像画像Mに含まれる非発光指示体80をテンプレートマッチングにより検出する際に、各テンプレート画像Tと撮像画像Mとの相関値RL1,RL2,RL3を、撮像画像Mの画素ごとに加算して、複数のテンプレート画像Tと撮像画像Mとの相関を示す相関値マップを生成している。複数のテンプレート画像を用いてテンプレートマッチングを実行する場合に、高い相関値を示すものを選択する場合と比較して、計算が簡単になるため、非発光指示体80の検出処理を高速化することができる。
C.位置検出部の第2実施形態(局所倍率に応じて画像の解像度を変更):
図12は、第2実施形態の位置検出部600Aの構成を示すブロック図である。第2実施形態の位置検出部600Aは、第1実施形態の位置検出部600における相関値算出部620に換えて相関値算出部620Aを備える。相関値算出部620Aは、複数のテンプレート画像(ここでは3つのテンプレート画像T1〜T3)を備える。本実施形態におけるテンプレート画像T1〜T3は、第1実施形態におけるテンプレート画像T21〜T23(図8)と同一であり、サイズが13×13画素である。本実施形態においてテンプレート画像T1〜T3は、所定の指で上記の角度で、撮像画像Mの小領域MR2に相当するスクリーン面SSの領域を指した状態を、撮像部300で撮像した画像を用いて生成されている。すなわち、テンプレート画像Tに含まれる指の大きさは、撮像画像Mの小領域MR2に含まれる非発光指示体80の平均的な大きさに相当する。
図13は、第2実施形態の非発光指示体80に関する指示体位置検出処理の流れを示すフローチャートである。図14は、第2実施形態の指示体位置検出処理を説明するための説明図である。
第2実施形態では、上記した第1実施形態(図10)におけるステップS110を実行した後、ステップS120に換えてステップS120Aを実行する(図13)。ステップS120Aにおいて、相関値算出部620Aは、撮像画像Mの小領域MRごとに解像度を変更してテンプレート画像Tと撮像画像Mとの相関値を算出する。具体的には、撮像画像Mの小領域MR1を撮像画像Mの2倍の解像度,小領域MR3を撮像画像Mの1/2倍の解像度にそれぞれ変換した画像(小領域MR2は解像度変換を行わない)に相当する解像度変換後画像M(図14)に対して、第1種テンプレート画像T1との相関値RL1を算出する工程(図13のステップS122A)と、第2種テンプレート画像T2との相関値RL2を算出する工程(ステップS124A)と、第3種テンプレート画像T3との相関値RL3を算出する工程(ステップS126A)とを、並行して実行する。
図15は、第2実施形態における相関値の算出方法を説明するための説明図である。図15(A)にテンプレート画像データを示す。図15では、説明を簡単にするために、テンプレート画像のサイズを3×3画素とし各画素の画素値をTmn(m=1,2,3;n=1,2,3)とする。図15(B)に撮像画像データを示す。撮像画像データにおける注目画素NP(i,j)の画素値をPi,j(i,jは任意の整数)とする。図15(C)に、撮像画像の解像度変換(2倍)を概念的に示す。テンプレート画像と解像度を2倍にした小領域MR1の画像との相関値を算出する場合には、注目画素NP(=Pi,j)を中心とする3×3画素の領域SRを利用してテンプレート画像Tとの相関値を算出する(図15(D))。すなわち、注目画素NP(=Pi,j)の相関値SRL(i,j)は、下記の式(2)によって算出することができる。
SRL(i,j)=Pi−1,j−1×T11+Pi−1,j×(T12+T13)+Pi,j−1×T21+Pi,j×(T22+T23)+Pi,j−1×T31+Pi,j×(T32+T33)・・・(2)
テンプレート画像のサイズが13×13画素の場合も、同様の考え方で上記式(2)に相当する計算式を用いて算出することができる。
図16は、第2実施形態における相関値の算出方法を説明するための説明図である。図16では、撮像画像Mの解像度を1/2倍に変換した画像(以下、1/2倍変換画像とも称する。)を用いた相関値の算出方法を概念的に図示している。1/2倍変換画像を用いてテンプレート画像Tとの相関値を算出する場合には、図16に示すように、注目画素NP(=Pi,j)を中心とする6×6画素を利用してテンプレート画像Tとの相関値を算出する。すなわち、注目画素NPの相関値SRL1/2(i,j)は、下記の式(3)によって算出することができる。
SRL1/2(i,j)=1/4{(Pi−2,j−2+Pi−2,j−1+Pi−1,j−2+Pi−1,j−1)×T11+(Pi−2,j+Pi−2,j+1+Pi−1,j+Pi−1,j+1)×T12+・・・+(Pi+2,j+2+Pi+2,j+3+Pi+3,j+2+Pi+3,j+3)×T33} ・・・(3)
ここでは、1/2倍の解像度を有する1/2倍変換画像における画素の画素値として、変換前の4つの画素の画素値の平均値を使用している。式(3)において、変換前の4つの画素の画素値を平均化するために、1/4を乗算している。
テンプレート画像のサイズが13×13画素の場合も、同様の考え方で上記式(3)に相当する計算式を用いて算出することができる。
相関値マップ生成部640(図12)は、相関値算出部620Aによって算出された3種類の相関値RL1〜3(図14)を、撮像画像Mの画素ごとに加算して、相関値マップRLTを生成する(図13のステップS130)。指示体検出部660は、上記と同様に、相関値マップRLTにおいて閾値Thより大きい極大値を有する画素LMP(図14)の位置を指示体の先端位置として検出する(ステップS150)。
上述の通り、本実施形態においてテンプレート画像Tに含まれる指の大きさは、撮像画像Mの小領域MR2に含まれる非発光指示体80の平均的な大きさに相当する。本実施形態では、局所倍率Mに基づいて区分された小領域MRごとに適した倍率で解像度を変換した変換後画像Mを用いて、テンプレート画像T1〜T3との相関値を算出している。すなわち、概念的には、小領域MR1の画像を2倍に拡大してテンプレート画像Tとの相関値を算出し、小領域MR3の画像を1/2倍に縮小してテンプレート画像Tとの相関値を算出し、小領域MR2については、撮像画像Mに対して解像度の変換を行わず、テンプレート画像Tとの相関値を算出している。ここで「概念的には」と記載した理由は、上述した式(2)および式(3)から理解できるように、現実には解像度変換を行った画像をメモリーに展開する必要はなく、撮像画像データの画像値Pi,jを用いた相関値の算出の式として、解像度変換を反映した式を用いればよいからである。このように、本実施形態では、撮像画像Mの小領域MR1および小領域MR2に含まれる非発光指示体80の大きさを、テンプレート画像Tの指の大きさに近い大きさになるように解像度を変換した画像を用いて相関値を算出しているため、1サイズのテンプレート画像T1〜T3を用いて、より高い相関値を得ることができる。その結果、非発光指示体80の検出精度を向上させることができる。
D.位置検出部の第3実施形態(複数の相関値を局所倍率に応じた重み付けで加算):
第3実施形態のインタラクティブプロジェクターの相関値算出部は、第2実施形態の相関値算出部620Aと同様に、3つのテンプレート画像T1〜T3を備える。本実施形態におけるテンプレート画像T1〜T3は、第2実施形態のテンプレート画像と相似形の画像であり、サイズが15×15画素である。本実施形態においてテンプレート画像T1〜T3は、撮像画像Mの小領域MR3に相当するスクリーン面SSの領域を所定の指で指した状態を、撮像部300で撮像した画像を用いて生成されている。すなわち、テンプレート画像Tに含まれる指の大きさは、撮像画像Mの小領域MR3に含まれる非発光指示体80の平均的な大きさに相当する。
図17は、第3実施形態の非発光指示体80に関する指示体位置検出処理の流れを示すフローチャートである。図18は、第3実施形態の相関値マップの生成を説明するための説明図である。
第3実施形態では、上記した第2実施形態(図13)におけるステップS110を実行した後、ステップS120Aに換えてステップS120Bを実行する(図17)。第3実施形態では、テンプレート画像Tと撮像画像Mとの相関値を算出する工程(図17のステップS120B)において、解像度を上げた画像も用いる。具体的には、ステップS120Bにおいて、相関値算出部は、撮像画像Mと複数のテンプレート画像T1〜T3とを用いて、各テンプレート画像Tと撮像画像Mとの第1種の相関値FRLを算出する工程(ステップS121)と、撮像画像Mの2倍の解像度の2倍拡大画像M(図18)と複数のテンプレート画像T1〜T3とを用いて、各テンプレート画像Tと撮像画像Mとの第2種の相関値SRLを算出する工程(ステップS123)と、撮像画像Mの4倍の解像度の4倍拡大画像M(図18)と複数のテンプレート画像T1〜T3とを用いて、各テンプレート画像Tと撮像画像Mとの第3種の相関値TRLを算出する工程(ステップS125)とを、並行して実行する。詳しくは、ステップS121において、相関値算出部は、3つのテンプレート画像T1〜T3に対応する3つの第1種の相関値FRL1〜FRL3を算出する。同様に、ステップS123において、相関値算出部は、3つのテンプレート画像T1〜T3に対応する3つの第2種の相関値SRL1〜SRL3を算出する。同様に、ステップS125において、相関値算出部は、3つのテンプレート画像T1〜T3に対応する3つの第3種の相関値TRL1〜TRL3を算出する。すなわち、この実施形態では、テンプレート画像Tと撮像画像Mとの相関値を算出する工程(ステップS120B)において、9種類の相関値(FRL1〜3,SRL1〜3,TRL1〜3)が算出される。本実施形態における2倍拡大画像Mおよび4倍拡大画像Mが、それぞれ、請求項における解像度変換後画像に相当する。2倍拡大画像Mおよび4倍拡大画像Mを用いた相関値は、第2実施形態と同様の考え方で、上記式(2)に相当する計算式を用いて算出することができる。
相関値マップ生成部は、相関値算出部によって算出された9種類の相関値FRL1〜3,SRL1〜3,TRL1〜3(図18)を、撮像画像Mの画素ごとに加算して、相関値マップRLTを生成する。この際、小領域MRごとに異なる重み付けで加算する(図17のステップS130B)。詳しくは、図18に示すように、第1種の相関値FRLについては、小領域MR1は1.2,小領域MR2は1.1,小領域MR3は1.0の重み付けを、それぞれ行う。例えば、非発光指示体80(指)が小領域MR3にある場合には、撮像画像Mに含まれる非発光指示体80の大きさがテンプレート画像Tに近いため、高い相関値が得られる。これに対し、非発光指示体80(指)が小領域MR1,2にある場合には、撮像画像Mに含まれる非発光指示体80の大きさが比較的小さく、高い相関値が得られないため、非発光指示体80が検出されにくい。そこで、小領域MR1,2については、小領域MR3より高い重み付けで加算することにより、非発光指示体80が小領域MR1,2にある場合にも非発光指示体80を検出しやすくしている。すなわち、相関値FRLが低い領域ほど重み付けを高く設定している。
第2種の相関値SRLについては、小領域MR2に非発光指示体80がある場合に、高い相関値SRLが得られるため、小領域MR2は重み付けを1.0とし、小領域MR1,3はそれより高い1.1の重み付けを、それぞれ行う。第3種の相関値TRLについては、小領域MR1に非発光指示体80がある場合に、高い相関値TRLが得られるため、小領域MR1は1.0,小領域MR2は1.1,小領域MR3は1.2の重み付けを、それぞれ行う。なお、重み付けは、本実施形態に限定されず、0を除く種々の値に適宜設定可能である。相関値が低い領域ほど重み付けを高く設定するのが好ましい。
指示体検出部660は、上記と同様に、相関値マップRLTにおいて閾値Thより大きい極大値を有する画素LMPの位置を指示体の先端位置として検出する(ステップS150)。
第3実施形態によれば、撮像画像の解像度を上げた画像を用いて相関値を算出し、複数の解像度の画像を用いた相関値を全て加算して相関値マップRLTを生成している。上述のとおり、撮像画像Mに含まれる非発光指示体80の大きさは、局所倍率Mに応じて異なる。本実施形態では、撮像画像の解像度を上げて、概念的には画像を拡大して、テンプレート画像Tとの相関値を算出している。本実施形態では、テンプレート画像Tに含まれる指の大きさが、撮像画像Mの小領域MR3に含まれる非発光指示体80の平均的なサイズに近い。そのため、テンプレート画像Tとの相関をみると、撮像画像Mでは小領域MR3において高い相関値が得られ、2倍拡大画像Mでは小領域MR2において高い相関が得られ、4倍拡大画像Mでは小領域MR1において高い相関が得られる。本実施形態では、相関値マップの生成時に、各種の相関値FRL,SRL,TRLが相対的に低い小領域MRの加算の重み付けを高く設定している。そのため、相関値マップRLTの精度が向上され、その結果、非発光指示体80の検出精度を向上させることができる。
E.位置検出部の第4実施形態(局所倍率に応じて高相関値領域の画素数を変更):
図19は、第4実施形態の非発光指示体80に関する指示体位置検出処理の流れを示すフローチャートである。図20は、第4実施形態における指示体位置の決定方法を説明するための説明図である。
第4実施形態では、上記した第2実施形態(図13)におけるステップS110を実行した後、ステップS120Aに換えてステップS120Cを実行する(図19)。第4実施形態では、ステップS120Cにおいて、撮像画像Mとテンプレート画像T1〜T3の相関値RL1〜RL3を算出する(図19のステップS122C,S124C,S126C)。その後、第2実施形態(図13)におけるステップS130を実行し、ステップS150に換えてステップS140,S150Aを実行する(図19)。
本実施形態では、第1〜3実施形態と異なり、相関値マップRLTにおいて閾値Thより大きい所定の高相関値領域R12の重心を1画素未満の精度で算出し、非発光指示体80の先端部81の位置(指示体位置)とする。具体的には、指示体検出部は、後で詳述するように、相関値マップRLTにおいて閾値Thより大きい極大値を有する画素LMPの属する小領域MRに対応する画素数の高相関値領域を決定する(図19のステップS140)。図20(A)において、画素LMPにハッチングを付し、5×5画素の高相関値領域R12を例示する。そして、高相関値領域R12内の画素の相関値の重心位置Gを1画素未満の精度で算出し、非発光指示体80の先端部81の位置(指示体位置)とする(図19のステップS150A)。ここで、重心位置G(X,Y)は、高相関値領域R12の各画素の相関値を考慮した位置であり、下記の式(4a),(4b)で算出される。
=ΣαiXi/Σαi・・・(4a)
=ΣαiYi/Σαi・・・(4b)
ここで、αiは、高相関値領域R12内の各画素の相関値,Xi,Yiは、各画素のX座標およびY座標である。
図20(A)に示すように、高相関値領域R12内の画素値が高相関値領域R12の中心画素(図20(A)では、ハッチングを付した画素LMP)に対して対称でないため、図20(B)に示すように、相関値マップRLTにおいて高相関値領域R12の重心位置Gは、中心位置PCとは異なる座標になる。
図21は、第4実施形態における高相関値領域R12を説明するための説明図である。本実施形態では、指示体検出部は、上述の通り、相関値マップRLTにおいて閾値Thより大きい極大値を有する極大値画素LMPを検出し、極大値画素LMPの属する小領域MRに基づいて、ステップS150Aにおける重心の算出に用いる高相関値領域R12の画素数を決定する(図19のステップS140)。図21(A)は、相関値マップRLTにおいて、極大値画素LMPが小領域MR3に属する例を示す。この場合、高相関値領域R12Aは、極大値画素LMPを中心とする9×9画素に決定される。図21(B)は、相関値マップRLTにおいて、極大値画素LMPが小領域MR2に属する例を示す。この場合、高相関値領域R12Aは極大値画素LMPを中心とする7×7画素に決定される。図21(C)は、相関値マップRLTにおいて、極大値画素LMPが小領域MR1に属する例を示す。この場合、高相関値領域R12Aは極大値画素LMPを中心とする5×5画素に決定される。
上述のとおり、撮像画像Mに含まれる非発光指示体80の大きさは、局所倍率Mに応じて異なる。その結果、相関値マップRLTにおいて相関値が閾値Thより高い領域の大きさが異なる。例えば、小領域MR3では、局所倍率Mが小領域MR1,MR2に比較して大きく、相関値マップRLTにおいて相関値が閾値Thより高い領域が小領域MR1,MR2に比較して大きい。そのため、高相関値領域R12の画素数を小領域MR1,MR2より大きく設定することにより、重心位置の算出精度を向上させることができる。なお、局所倍率Mが比較的小さい小領域MR1では、高相関値領域R12Cの画素数を小さくすることにより、重心算出処理の処理時間を短縮することができる。
F.位置検出部の第5実施形態(局所倍率に応じてカットオフ周波数を変更):
図22は、第5実施形態の位置検出部600Bの概略構成を示すブロック図である。本実施形態の位置検出部600Bは、第2実施形態の位置検出部600A(図12)の構成に加え、フィルター処理部610を備える。フィルター処理部610は、撮像部300より位置検出部600Bに入力される撮像画像Mに対してローパスフィルターを用いたフィルター処理を実行してフィルター処理後画像Mを生成する。フィルター処理部610は、撮像画像Mの小領域MRごとに異なるカットオフ周波数のローパスフィルターを用いる。具体的には、各小領域MRで用いられるローパスフィルターのカットオフ周波数は、小領域MR1<小領域MR2<小領域MR3である。すなわち、局所倍率Mが小さいほど、ローパスフィルターのカットオフ周波数を低く設定している。局所倍率Mが小さな小領域MR1に含まれる非発光指示体80の大きさは小さいため、ローパスフィルターのカットオフ周波数を低くすると、非発光指示体80の輪郭がぼやけて大きくなり、非発光指示体80の検出精度を向上させることができる。一方、局所倍率Mが大きな小領域MR3に含まれる非発光指示体80の大きさは十分大きいため、ローパスフィルターのカットオフ周波数を高くしてぼかし度合いを小さくした方が検出精度が向上される。相関値算出部620は、フィルター処理後画像Mを用いて、第2実施形態と同様に、相関値を算出する。
G.位置検出部の第6実施形態(撮像画像内の位置に応じてテンプレート画像を変更):
図23は、第6実施形態の位置検出部600Cの構成を示すブロック図である。第6実施形態の位置検出部600Cは、第1実施形態の位置検出部600における相関値算出部620に換えて相関値算出部620Cを備える。相関値算出部620Cは、複数のテンプレートセット(ここでは9つのテンプレートセットS1〜S9)を備える。各テンプレートセットは、複数種類のテンプレート画像(ここでは2種のテンプレート画像T1,T2)を備える。
図24は、第6実施形態における小領域について説明するための説明図である。本実施形態では、小領域DRを、局所倍率Mに関わらず、撮像画像Mの位置(画素座標)に基づいて定めている。撮像画像Mは、9等分に区分され、9つの小領域DR1〜DR9を備える。小領域DRの数は、本実施形態に限定されず、10以上でもよいし、2〜8でもよい。
図25は、各小領域DR1〜DR9(図24)とテンプレートセットS1〜S9(図23)との対応を説明するための説明図である。図25では、図24に示した各小領域DRの相関値を算出する際に用いられるテンプレートセットS1〜S9を示している。小領域DR1に対して、テンプレートセットS1が用いられる。同様に、小領域DR2〜DR9に対して、それぞれ対応するテンプレートセットS2〜S9が用いられる。各テンプレートセットSは、互いに異なる2種のテンプレート画像Tを備える。本実施形態では、第m(m=1〜9の整数)テンプレートセットSmの第n(n=1,2)種テンプレートTを、テンプレートTmnと称する。各テンプレートセットSは、撮像画像Mの各小領域に含まれる非発光指示体80の形状(向き)として、可能性の高い形状(向き)が選定されている。例えば、撮像画像Mの図面左側の小領域DR1,DR4,DR7は、スクリーン面SSの左側に相当し、指示者(非発光指示体80を有する人)がスクリーン面SSの左側に立って投写画面PSに対して指示する可能性が高いため、小領域DR1,DR4,DR7に対応するテンプレートセットS1,S4,S7は、左側から指示をしている指の画像を用いたテンプレート画像Tを備える。同様の考えに基づいて、撮像画像Mの図面右側の小領域DR3,DR6,DR9に対応するテンプレートセットS3,S6,S9は、右側から指示をしている指の画像を用いたテンプレート画像Tを備える。撮像画像Mの真ん中の小領域DR2,DR5,DR8は、指示者がスクリーン面SSの左右どちらにも立つ可能性があるため、小領域DR2,DR5,DR8に対応するテンプレートセットS2,S5,S8は、それらを考慮した組合わせにしている。任意の2つのテンプレートセットSが備えるテンプレート画像Tは、組合わせが異なるものの、1つのテンプレートセットSが備える2つのテンプレート画像Tのうち、1つが同じであってもよい。例えば、テンプレート画像T22とテンプレート画像T31は、同じ画像である。同様に、テンプレート画像T42とテンプレート画像T52,テンプレート画像T51とテンプレート画像T62,テンプレート画像T82とテンプレート画像T91は、同じ画像である。なお、本実施形態のテンプレートセットSが備えるテンプレート画像Tは全て、同サイズ(13×13画素)である。
本実施形態において、相関値算出部620C(図23)は、撮像画像Mの小領域DR(図24)ごとに異なるテンプレートセットS(図25)を用いて、第1種のテンプレート画像T1に対応する相関値RL1,第2種のテンプレート画像T2に対応する相関値RL2をそれぞれ算出し、第1実施形態と同様に、相関値RL1と相関値RL2とを撮像画像Mの画素ごとに加算して相関値マップRLTを作成する。
本実施形態では、撮像画像Mの位置(画素座標)に基づいて、複数の小領域DRに区分し、小領域DRごとに異なるテンプレートセットSを用いて相関値を算出している。上述の通り、テンプレートセットSが備えるテンプレート画像Tは、小領域DRにおける非発光指示体80の想定される向きに応じて決定されているため、高い相関値が得られる。その結果、非発光指示体80の検出精度を向上させることができる。
H.変形例:
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
・変形例1:
上記実施形態では、自発光指示体70と非発光指示体80の両方を、指示体として利用可能なインタラクティブプロジェクターを例示したが、非発光指示体80のみを利用可能に構成してもよい。
・変形例2:
上記実施形態では、撮像部300が2台のカメラ310,320を有しているものとしたが、撮像部300は、1台のカメラを有する構成としてもよいし、3台以上のカメラを有する構成としてもよい。後者の場合には、m台(mは3以上の整数)のカメラで撮像されたm個の画像に基づいて、三次元座標(X,Y,Z)が決定される。例えば、m個の画像から2個の画像を任意に選択して得られる個の組み合わせを用いてそれぞれ三次元座標を求め、それらの平均値を用いて最終的な三次元座標を決定しても良い。こうすれば、三次元座標の検出精度を更に高めることが可能である。
・変形例3:
上記実施形態では、インタラクティブプロジェクションシステム900がホワイトボードモードとPCインタラクティブモードとで動作可能であるものとしたが、これらのうちの一方のモードのみで動作するようにシステムが構成されていても良い。また、インタラクティブプロジェクションシステム900は、これら2つのモード以外の他のモードのみで動作するように構成されていても良く、更に、これら2つのモードを含む複数のモードで動作可能に構成されていてもよい。
・変形例4:
上記実施形態では、図3に示した照射検出光IDLと、反射検出光RDLと、装置信号光ASLと、指示体信号光PSLとがすべて近赤外光であるものとしたが、これらのうちの一部又は全部を近赤外光以外の光としてもよい。
・変形例5:
上記実施形態では、複数のテンプレート画像Tを用いて相関値マップRLTを生成する場合に、各テンプレート画像Tに対応する相関値RLを加算する例を示したが、例えば、最も高い相関関係を示したテンプレート画像Tに対応する相関値Rを選択する構成にしてもよい。
・変形例6:
上記実施形態の指示体検出部660において、相関値マップRLTに対して所定の閾値に基づく2値化を行って、非発光指示体80を検出する構成にしてもよい。この場合、小領域ごとに異なる閾値を用いてもよい。例えば、投写画面PSと撮像部300との距離が小さいほど、閾値を大きく設定してもよい。具体的には、閾値をMR3>MR2>MR1にしてもよい。上述の通り、非発光指示体80と撮像部300との距離が小さいほど、撮像画像M内の非発光指示体80は明るい(画素値が大きい)。すなわち、非発光指示体80と撮像部300との距離が大きいと、撮像画像M内の非発光指示体80は暗い(画素値が小さい)ため、閾値を小さく設定することにより、非発光指示体80を適切に検出することができる。一方、非発光指示体80と撮像部300との距離が小さい小領域では、閾値が小さいと、2値化により検出される領域が大きく、検出精度が低くなるため、閾値を大きく設定することにより、非発光指示体80を適切に検出することができる。このように、小領域MRに応じて閾値を変更することにより、適切に非発光指示体80を検出することができる。
・変形例7:
上記した複数の実施形態を適宜組み合わせてもよい。例えば、第1〜3,6実施形態のそれぞれに、第4実施形態を組み合わせてもよいし、さらに、第5実施形態を組み合わせてもよい。また、例えば、第1実施形態において、小領域MRごとにテンプレート画像Tのサイズとテンプレート画像Tの種類(指の向き)の両方を変えてもよい。このようにしても、非発光指示体80の検出精度を向上させることができる。
・変形例8:
上記実施形態において、局所倍率Mに基づいて小領域MRを区分する例と、撮像画像Mの位置(画素座標)に基づいて小領域DRを区分する例を示したが、上記実施形態に限定されない。例えば、カメラ310,320と、スクリーン面SSとの距離に基づいて小領域を区分してもよい。
・変形例9:
上記実施形態において、局所倍率Mや撮像画像Mの位置(画素座標)に基づいて小領域DRを区分し、小領域MRごとに異なるテンプレートマッチングのパラメーターを用いる例を示したが、所定の区分方法で区分された各小領域の局所倍率に基づいて、パラメーターを決定する構成にしてもよい。例えば、第6実施形態において示したように、撮像画像Mを9等分に区分して、各小領域DR1〜DR9の局所倍率Mに応じてパラメーターを決定してもよい。
・変形例10:
上記実施形態では、テンプレートマッチングにより非発光指示体80を検出する例を示したが、非発光指示体80を検出する方法は、上記実施形態に限定されない。例えば、特徴抽出処理やエッジ検出処理によって、非発光指示体80を検出してもよい。特徴抽出処理やエッジ検出処理によって、非発光指示体80を検出する場合に、指示体検出を行う際の対象画像(撮像画像)の解像度変換倍率を、小領域ごとに変更してもよい。また、自発光指示体70も、テンプレートマッチング,特徴抽出処理,エッジ検出処理等によって検出してもよい。
・変形例11
上記実施形態では、インタラクティブプロジェクター100が検出光照射部410を備える構成を例示したが、検出光照射部410を備えない構成にしてもよい。インタラクティブプロジェクター100が検出光照射部410を備えない場合、非発光指示体80の先端を検出するための照射検出光をスクリーン面SSとその前方の空間にわたって照射する構成を、支持部材910等が備えてもよい。なお、上記実施形態のように、インタラクティブプロジェクターが検出光照射部を備える構成の場合、プロジェクターによって、検出光の照射タイミングを、カメラによる撮像タイミングに関連づけて、容易に制御することができるため、好ましい。また、インタラクティブプロジェクター100が検出光照射部410を備えない場合に、2台のカメラ310,320の両方を、可視光を含む光を受光して撮像する撮像機能を有する構成とし、非発光指示体80の先端を、可視光を含む光を受光して撮像した撮像画像に基づいて検出する構成にしてもよい。なお、上記実施形態のように、インタラクティブプロジェクターが検出光照射部を備える構成の場合は、可視光を含む光を受光して撮像した撮像画像に基づいて検出する構成に比較して、容易に、精度よく非発光指示体を検出することができる。
・変形例12
上記実施形態では、インタラクティブプロジェクター100として、いわゆる超短焦点プロジェクターを例示したが、これに限定されない。すなわち、メモリー画像MPの投写画像PPが、キーストーン補正により逆台形に形成されていてもよい。この場合も、投写画面PSは、図6に示す矩形状を成し、撮像画像Mの投写画面領域PSRは、図6に示す形状を成す。局所倍率として、上記実施形態と同様に、メモリー画像MPの投写画像PPの個々の局所的な領域に対する、撮像画像Mの投写画面領域PSRの対応する領域の倍率を用いることができる。
以上、いくつかの実施例に基づいて本発明の実施の形態について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物が含まれることはもちろんである。
70…自発光指示体
71…先端部
72…軸部
73…ボタンスイッチ
74…信号光受信部
75…制御部
76…先端スイッチ
77…先端発光部
80…非発光指示体
81…先端部
100…インタラクティブプロジェクター
200…投写部
210…投写レンズ
220…光変調部
230…光源
300…撮像部
310…第1カメラ
320…第2カメラ
410…検出光照射部
430…信号光送信部
500…投写画像生成部
510…投写画像メモリー
600…位置検出部
610…フィルター処理部
620…相関値算出部
640…相関値マップ生成部
660…指示体検出部
680…三次元位置算出部
700…制御部
800…接触検出部
900…インタラクティブプロジェクションシステム
910…支持部材
920…スクリーン板

Claims (6)

  1. 投写画面に対するユーザーの指示体による指示を受け取ることが可能なインタラクティブプロジェクターであって、
    スクリーン面上に前記投写画面を投写する投写部と、
    前記投写画面の領域を撮像する撮像部と、
    前記撮像部によって撮像された前記指示体を含む撮像画像に基づいて、前記指示体を検出するための検出処理を実施する指示体検出部と、
    を備え、
    前記指示体検出部は、
    前記撮像画像を複数の小領域に区分して、少なくとも一つの前記小領域では他の前記小領域と異なるパラメーターを用いて、前記検出処理を実施し、
    前記検出処理として、前記指示体を検出するためのテンプレート画像を用いたテンプレートマッチングを実施し、
    さらに、前記撮像画像の解像度を変換した画像に相当する解像度変換後画像と前記テンプレート画像とを用いて相関値を算出し、前記撮像画像を用いた相関値と、前記解像度変換後画像を用いた相関値とを加算した結果に基づいて、前記指示体を検出し、
    前記パラメーターは、前記撮像画像を用いた相関値と、前記解像度変換後画像を用いた相関値とを加算する際の重み付けである、インタラクティブプロジェクター。
  2. 投写画面に対するユーザーの指示体による指示を受け取ることが可能なインタラクティブプロジェクターであって、
    スクリーン面上に前記投写画面を投写する投写部と、
    前記投写画面の領域を撮像する撮像部と、
    前記撮像部によって撮像された前記指示体を含む撮像画像に基づいて、前記指示体を検出するための検出処理を実施する指示体検出部と、
    を備え、
    前記指示体検出部は、
    前記撮像画像を複数の小領域に区分して、少なくとも一つの前記小領域では他の前記小領域と異なるパラメーターを用いて、前記検出処理を実施し、
    前記検出処理として、前記指示体を検出するためのテンプレート画像を用いたテンプレートマッチングを実施し、
    前記撮像画像と前記テンプレート画像との相関値を示す相関値マップを生成し、前記相関値マップにおいて所定の閾値より大きい相関値を有する高相関値領域を抽出し、前記高相関値領域における前記相関値の重心を1画素未満の精度で算出し、前記重心を前記指示体の先端位置として検出し、
    前記パラメーターは、前記高相関値領域の画素数である、インタラクティブプロジェクター。
  3. 投写画面に対するユーザーの指示体による指示を受け取ることが可能なインタラクティブプロジェクターであって、
    スクリーン面上に前記投写画面を投写する投写部と、
    前記投写画面の領域を撮像する撮像部と、
    前記撮像部によって撮像された前記指示体を含む撮像画像に基づいて、前記指示体を検出するための検出処理を実施する指示体検出部と、
    を備え、
    前記指示体検出部は、
    前記撮像画像を複数の小領域に区分して、少なくとも一つの前記小領域では他の前記小領域と異なるパラメーターを用いて、前記検出処理を実施し、
    前記撮像画像の解像度を変換した画像に相当する解像度変換後画像に対して前記検出処理を実施して、前記指示体を検出し、
    前記パラメーターは、前記解像度の変換における倍率である、インタラクティブプロジェクター。
  4. 投写画面に対するユーザーの指示体による指示を受け取ることが可能なインタラクティブプロジェクターであって、
    スクリーン面上に前記投写画面を投写する投写部と、
    前記投写画面の領域を撮像する撮像部と、
    前記撮像部によって撮像された前記指示体を含む撮像画像に基づいて、前記指示体を検出するための検出処理を実施する指示体検出部と、
    を備え、
    前記指示体検出部は、
    前記撮像画像を複数の小領域に区分して、少なくとも一つの前記小領域では他の前記小領域と異なるパラメーターを用いて、前記検出処理を実施し、
    前記撮像画像に対してローパスフィルター処理を施してフィルター処理後画像を生成し、前記フィルター処理後画像を用いて前記検出処理を実施し、
    前記パラメーターは、前記ローパスフィルターのカットオフ周波数である、インタラクティブプロジェクター。
  5. 請求項に記載のインタラクティブプロジェクターにおいて、
    前記投写画面が記憶された投写画面記憶部を備え、
    前記撮像画像に含まれる前記投写画面の、前記投写画面記憶部における前記投写画面に対する変形率に基づいて、前記小領域が区分される、
    インタラクティブプロジェクター。
  6. 請求項に記載のインタラクティブプロジェクターにおいて、
    前記投写画面が記憶された投写画面記憶部を備え、
    前記撮像画像に含まれる前記投写画面の、前記投写画面記憶部における前記投写画面に対する変形率に基づいて、前記小領域が区分される、
    インタラクティブプロジェクター。
JP2015065674A 2015-03-27 2015-03-27 インタラクティブプロジェクター Expired - Fee Related JP6547366B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015065674A JP6547366B2 (ja) 2015-03-27 2015-03-27 インタラクティブプロジェクター
US15/077,843 US10055026B2 (en) 2015-03-27 2016-03-22 Interactive projector and method of controlling interactive projector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015065674A JP6547366B2 (ja) 2015-03-27 2015-03-27 インタラクティブプロジェクター

Publications (2)

Publication Number Publication Date
JP2016186680A JP2016186680A (ja) 2016-10-27
JP6547366B2 true JP6547366B2 (ja) 2019-07-24

Family

ID=56975333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015065674A Expired - Fee Related JP6547366B2 (ja) 2015-03-27 2015-03-27 インタラクティブプロジェクター

Country Status (2)

Country Link
US (1) US10055026B2 (ja)
JP (1) JP6547366B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018088663A (ja) * 2016-11-30 2018-06-07 セイコーエプソン株式会社 プロジェクター、及び、プロジェクターの制御方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001052230A1 (en) * 2000-01-10 2001-07-19 Ic Tech, Inc. Method and system for interacting with a display
JP3640156B2 (ja) * 2000-02-22 2005-04-20 セイコーエプソン株式会社 指示位置検出システムおよび方法、プレゼンテーションシステム並びに情報記憶媒体
JP2004125664A (ja) * 2002-10-03 2004-04-22 Hamamatsu Photonics Kk 位相分布計測装置
JP4560023B2 (ja) * 2006-09-14 2010-10-13 三菱スペース・ソフトウエア株式会社 画像マッチング装置、画像マッチングプログラム及び画像マッチング方法
JP5365387B2 (ja) * 2009-07-17 2013-12-11 株式会社ニコン 位置検出装置
JP2012150636A (ja) 2011-01-19 2012-08-09 Seiko Epson Corp 投写型表示装置及び情報処理システム
CN102859320A (zh) * 2011-04-28 2013-01-02 三洋电机株式会社 信息取得装置以及物体检测装置
US9111135B2 (en) * 2012-06-25 2015-08-18 Aquifi, Inc. Systems and methods for tracking human hands using parts based template matching using corresponding pixels in bounded regions of a sequence of frames that are a specified distance interval from a reference camera
WO2014128749A1 (ja) * 2013-02-19 2014-08-28 株式会社ブリリアントサービス 形状認識装置、形状認識プログラム、および形状認識方法
JP6037901B2 (ja) * 2013-03-11 2016-12-07 日立マクセル株式会社 操作検出装置、操作検出方法及び表示制御データ生成方法
JP6425416B2 (ja) * 2013-05-10 2018-11-21 国立大学法人電気通信大学 ユーザインタフェース装置およびユーザインタフェース制御プログラム

Also Published As

Publication number Publication date
US10055026B2 (en) 2018-08-21
US20160282959A1 (en) 2016-09-29
JP2016186680A (ja) 2016-10-27

Similar Documents

Publication Publication Date Title
JP6477131B2 (ja) インタラクティブプロジェクター,インタラクティブプロジェクションシステム,およびインタラクティブプロジェクターの制御方法
CN107094247B (zh) 位置检测装置及其对比度调整方法
US9535538B2 (en) System, information processing apparatus, and information processing method
JP6477130B2 (ja) インタラクティブプロジェクター及びインタラクティブプロジェクションシステム
JP2020123118A (ja) 位置検出方法、位置検出装置、及び、インタラクティブプロジェクター
US20200264729A1 (en) Display method, display device, and interactive projector
CN107407995B (zh) 交互式投影仪、交互式投影系统以及交互式投影仪的控制方法
US10073614B2 (en) Information processing device, image projection apparatus, and information processing method
JP2016009396A (ja) 入力装置
US11093085B2 (en) Position detection method, position detection device, and interactive projector
JP6547366B2 (ja) インタラクティブプロジェクター
US10551972B2 (en) Interactive projector and method of controlling interactive projector
JP6503828B2 (ja) インタラクティブプロジェクションシステム,指示体,およびインタラクティブプロジェクションシステムの制御方法
US11144164B2 (en) Position detection method, position detection device, and interactive projector
JP6690271B2 (ja) 位置検出システム、位置検出装置、および位置検出方法
US9958958B2 (en) Interactive projector and method of controlling interactive projector
JP6631281B2 (ja) インタラクティブプロジェクター、及び、そのオートキャリブレーション実行方法
JP2018098598A (ja) 入出力装置、情報共有方法及び情報共有プログラム
JP2017125764A (ja) 物体検出装置、及び物体検出装置を備えた画像表示装置
JP2020071573A (ja) 表示装置、表示システム、及び表示方法
JP2016186679A (ja) インタラクティブプロジェクターおよびインタラクティブプロジェクターの制御方法
JP2020123113A (ja) 位置検出方法、位置検出装置、及び、インタラクティブプロジェクター

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190422

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190610

R150 Certificate of patent or registration of utility model

Ref document number: 6547366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees