JP6545426B1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP6545426B1
JP6545426B1 JP2019517858A JP2019517858A JP6545426B1 JP 6545426 B1 JP6545426 B1 JP 6545426B1 JP 2019517858 A JP2019517858 A JP 2019517858A JP 2019517858 A JP2019517858 A JP 2019517858A JP 6545426 B1 JP6545426 B1 JP 6545426B1
Authority
JP
Japan
Prior art keywords
cell
converter
voltage
output
arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019517858A
Other languages
English (en)
Other versions
JPWO2020136698A1 (ja
Inventor
拓也 梶山
拓也 梶山
藤井 俊行
俊行 藤井
修平 藤原
修平 藤原
涼介 宇田
涼介 宇田
和順 田畠
和順 田畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6545426B1 publication Critical patent/JP6545426B1/ja
Publication of JPWO2020136698A1 publication Critical patent/JPWO2020136698A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • H02M5/12Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers for conversion of voltage or current amplitude only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4833Capacitor voltage balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Abstract

電力変換器(2)は、2個以上のスイッチング素子(31p,31n)と、蓄電要素(32)と、一対の出力端子(P1,P2)とを含む複数の変換器セル(7)が直列に接続されたアーム(5,6)を有する。制御装置(3)は、電力変換器(2)を制御するように構成される。変換器セル(7)は、変換器セル(7)をバイパスするためのスイッチ(34)を有する。制御装置(3)は、変換器セル(7)の故障を検知すると、故障変換器セルをバイパスさせるとともに、故障変換器セルのバイパスにより消失した出力電圧を推定し、故障変換器セルの推定された出力電圧を健全な変換器セルから出力させるように構成される。

Description

本発明は、電力変換装置に関する。
複数の単位変換器(以下、変換器セルと称す)がカスケードに接続されるモジュラーマルチレベル変換器(以下、MMC変換器と称す)は、変換器セルの数を増加させることによって、高電圧に容易に対応することができる。モジュラーマルチレベル変換器は、大容量の静止型無効電力補償装置、または高圧直流送電用の交直電力変換装置として、送配電系統へ広く適用されている。変換器セルは、複数のスイッチング素子と蓄電要素(キャパシタと称することもある)とを備える。MMC変換器では、変換器セルが故障しても、故障した変換器セルをバイパスすることによって、運転を継続することができる。
特許文献1には、変換器セルの故障数が最も多いアームの故障数に応じて、各アームにおける変換器セルの動作数を調整するとともに、キャパシタ電圧を上昇させることによって、各アームの変調率の調整が不要な運転方法が記載されている。
特開2017−143619号公報
しかしながら、特許文献1は、故障した変換器セルをバイパスした後に増大するアーム電流の高調波成分について考慮されていない。
MMC変換器の変換器セルの出力電圧には、交流出力側の基本波成分(以下、単に基本波成分)および直流成分などのアーム電圧指令値に含まれる周波数成分の他に、スイッチング周波数成分、その整数次の成分、およびそれらの側帯波成分などの高調波成分(以下、単に高調波成分と称す)が含まれている。位相シフトPWM(Pulse Width Modulation)方式を採用しているMMC変換器は、各アームにおける各変換器セルのPWMの基準位相を均等にシフトすることによって、各変換器セルの出力電圧の高調波成分を相殺する。これによって、アームの出力電圧のスイッチング周波数を高くすることができる。
しかしながら、変換器セルが故障した場合に、故障した変換器セルをバイパスすると、故障した変換器セルの出力電圧が零となる。これによって、PWMの基準位相のシフト量が均等ではなくなるため、各変換器セルの出力電圧の高調波成分が相殺できなくなる。その結果、アームの出力電圧に各変換器セルの出力電圧の高調波成分が残留する。これによって、一部の変換器セルに高調波成分のエネルギーが集中する。その結果、その一部の変換器セルのキャパシタ電圧が保護レベルを逸脱して、MMC変換器が保護停止する恐れがある。
それゆえに、本発明の目的は、故障した変換器セルをバイパスした後に増大するアームの出力電圧の高調波成分を抑制することができる電力変換装置を提供することである。
本発明の電力変換装置は、各々が2個以上のスイッチング素子と、蓄電要素と、一対の出力端子とを含む複数の変換器セルが直列に接続されたアームを有する電力変換器と、電力変換器を制御するように構成された制御装置とを備える。変換器セルは、変換器セルをバイパスするためのスイッチを有する。制御装置は、変換器セルの故障を検知すると、故障変換器セルをバイパスさせるとともに、故障変換器セルのバイパスにより消失した出力電圧を推定し、故障変換器セルの推定された出力電圧を健全な変換器セルから出力させるように構成される。
本発明によれば、故障した変換器セルをバイパスした後に増大するアーム電流の高調波成分を抑制することができる。
実施の形態の電力変換装置1の概略構成図である。 (a)および(b)は、電力変換器2を構成する変換器セル7の構成を表わす図である。 実施の形態1の制御装置3の内部構成を表わす図である。 基本制御部502の構成を表わす図である。 アーム制御部503の構成を表わす図である。 個別セル制御部202の構成を表わす図である。 セル付加電圧算出部203の構成を表わす図である。 制御装置3のハードウエア構成の一例を表わす図である。 実施の形態2の制御装置3の構成を表わす図である。 セルバランス用循環電流制御部610の構成を表わす図である。 実施の形態2のアーム電圧指令生成部601の構成を表わす図である。 実施の形態3の制御装置3の構成を表わす図である。 実施の形態4の電力変換装置1Aの構成を表わす図である。 電力変換装置1Bの一部の構成を表わす図である。 電力変換装置1Cの一部の構成を表わす図である。 変形例の基本制御部502Aの構成を表わす図である。
以下、実施の形態について、図面を参照して説明する。
実施の形態1.
(電力変換装置の全体構成)
図1は、実施の形態の電力変換装置1の概略構成図である。図1を参照して、電力変換装置1は、互いに直列接続された複数の変換器セルを含むモジュラーマルチレベル変換器によって構成されている。なお、「変換器セル」は、「サブモジュール」、SM、または「単位変換器」とも呼ばれる。電力変換装置1は、直流回路14と交流回路12との間で電力変換を行なう。電力変換装置1は、電力変換器2と、制御装置3とを含む。
電力変換器2は、正極直流端子(すなわち、高電位側直流端子)Npと、負極直流端子(すなわち、低電位側直流端子)Nnとの間に互いに並列に接続された複数のレグ回路4u,4v,4w(総称する場合または任意のものを示す場合、レグ回路4と記載する)を含む。
レグ回路4は、交流を構成する複数相の各々に設けられる。レグ回路4は、交流回路12と直流回路14との間に接続され、両回路間で電力変換を行なう。図1には、交流回路12が3相交流系統の場合が示され、U相、V相、W相にそれぞれ対応して3個のレグ回路4u,4v,4wが設けられている。
レグ回路4u,4v,4wにそれぞれ設けられた交流入力端子Nu,Nv,Nwは、変圧器13を介して交流回路12に接続される。交流回路12は、例えば、交流電源などを含む交流電力系統である。図1では、図解を容易にするために、交流入力端子Nv,Nwと変圧器13との接続は図示していない。
各レグ回路4に共通に接続された高電位側直流端子Npおよび低電位側直流端子Nnは、直流回路14に接続される。直流回路14は、例えば、直流送電網などを含む直流電力系統または他の電力変換装置の直流端子である。後者の場合、2台の電力変換装置を連結することによって定格周波数などが異なる交流電力系統間を接続するためのBTB(Back To Back)システムが構成される。
図1の変圧器13を用いる代わりに、連系リアクトルを介して交流回路12に接続する構成としてもよい。さらに、交流入力端子Nu,Nv,Nwに代えてレグ回路4u,4v,4wにそれぞれ一次巻線を設け、この一次巻線と磁気結合する二次巻線を介してレグ回路4u,4v,4wが変圧器13または連系リアクトルに交流的に接続するようにしてもよい。この場合、一次巻線を下記のリアクトル8A,8Bとしてもよい。すなわち、レグ回路4は、交流入力端子Nu,Nv,Nwまたは上記の一次巻線など、各レグ回路4u,4v,4wに設けられた接続部を介して電気的に(すなわち直流的または交流的に)交流回路12と接続される。
レグ回路4uは、高電位側直流端子Npから交流入力端子Nuまでの上アーム5と、低電位側直流端子Nnから交流入力端子Nuまでの下アーム6とを含む。上アーム5と下アーム6との接続点である交流入力端子Nuが変圧器13と接続される。高電位側直流端子Npおよび低電位側直流端子Nnが直流回路14に接続される。レグ回路4v,4wについても同様の構成を有するので、以下、レグ回路4uを代表として説明する。
上アーム5は、カスケード接続された複数の変換器セル7と、リアクトル8Aとを含む。複数の変換器セル7およびリアクトル8Aは直列に接続されている。同様に、下アーム6は、カスケード接続された複数の変換器セル7と、リアクトル8Bとを含む。複数の変換器セル7およびリアクトル8Bは直列に接続されている。以下の説明では、上アーム5および下アーム6のそれぞれに含まれる変換器セル7の数をNcellとする。ただし、Ncell≧2とする。
リアクトル8Aが挿入される位置は、レグ回路4uの上アーム5のいずれの位置であってもよく、リアクトル8Bが挿入される位置は、レグ回路4uの下アーム6のいずれの位置であってもよい。リアクトル8A,8Bはそれぞれ複数個あってもよい。各リアクトルのインダクタンス値は互いに異なっていてもよい。さらに、上アーム5のリアクトル8Aのみ、もしくは、下アーム6のリアクトル8Bのみを設けてもよい。
リアクトル8A,8Bは、交流回路12または直流回路14などの事故時に事故電流が急激に増大しないように設けられている。しかし、リアクトル8A,8Bのインダクタンス値を過大なものにすると電力変換器2の効率が低下するという問題が生じる。したがって、事故時においては、各変換器セル7の全てのスイッチング素子をできるだけ短時間で停止(オフ)することが好ましい。
電力変換装置1は、さらに、制御に使用される電気量(電流、電圧など)を計測する各検出器として、交流電圧検出器10と、交流電流検出器16と、直流電圧検出器11A,11Bと、各レグ回路4に設けられたアーム電流検出器9A,9Bとを含む。これらの検出器によって検出された信号は、制御装置3に入力される。
なお、図1では図解を容易にするために、各検出器から制御装置3に入力される信号の信号線と、制御装置3および各変換器セル7間で入出力される信号の信号線とは、一部まとめて記載されているが、実際には検出器ごとおよび変換器セル7ごとに設けられている。各変換器セル7と制御装置3との間の信号線は、送信用と受信用とが別個に設けられていてもよい。信号線は、たとえば光ファイバによって構成される。
以下、各検出器について具体的に説明する。
交流電圧検出器10は、交流回路12のU相の交流電圧Vacu、V相の交流電圧Vacv、およびW相の交流電圧Vacwを検出する。以下の説明では、Vacu、Vacv、およびVacwを総称してVacと記載する。
交流電流検出器16は、交流回路12のU相の交流電流Iacu、V相の交流電流Iacv、およびW相の交流電流Iacwを検出する。以下の説明では、Iacu、Iacv、およびIacwを総称してIacと記載する。
直流電圧検出器11Aは、直流回路14に接続された高電位側直流端子Npの直流電圧Vdcpを検出する。直流電圧検出器11Bは、直流回路14に接続された低電位側直流端子Nnの直流電圧Vdcnを検出する。直流電圧Vdcpと直流電圧Vdcnとの差を直流電圧Vdcとする。
U相用のレグ回路4uに設けられたアーム電流検出器9Aおよび9Bは、上アーム5に流れる上アーム電流Ipu、および下アーム6に流れる下アーム電流Inuをそれぞれ検出する。V相用のレグ回路4vに設けられたアーム電流検出器9Aおよび9Bは、上アーム電流Ipvおよび下アーム電流Invをそれぞれ検出する。W相用のレグ回路4wに設けられたアーム電流検出器9Aおよび9Bは、上アーム電流Ipwおよび下アーム電流Inwをそれぞれ検出する。以下の説明では、上アーム電流Ipu、Ipv、Ipwを総称して上アーム電流Iarmpと記載し、下アーム電流Inu、Inv、Inwを総称して下アーム電流Iarmnと記載し、上アーム電流Iarmpと下アーム電流Iarmnとを総称してIarmと記載する。
(変換器セル)
図2(a)および図2(b)は、電力変換器2を構成する変換器セル7の構成を表わす図である。
図2(a)に示す変換器セル7は、ハーフブリッジ構成と呼ばれる回路構成を有する。この変換器セル7は、2つのスイッチング素子31p、31nを直列接続して形成した直列体と、蓄電要素32と、バイパススイッチ34と、電圧検出器33とを備える。直列体と蓄電要素32とは並列接続される。
スイッチング素子31nの両端子を入出力端子P1,P2とする。スイッチング素子31p、31nのスイッチング動作により蓄電要素32の両端電圧、および零電圧を出力する。たとえば、スイッチング素子31pがオン、かつスイッチング素子31nがオフとなったときに、蓄電要素32の両端電圧が出力される。スイッチング素子31pがオフ、かつスイッチング素子31nがオンとなったときに、零電圧が出力される。
バイパススイッチ34は、入出力端子P1,P2間に接続される。バイパススイッチ34をオンにすることによって、変換器セル7が短絡される。変換器セル7が短絡することによって、変換器セル7に含まれるスイッチング素子31p、31nが事故時に発生する過電流から保護される。
電圧検出器33は、蓄電要素32の両端の電圧Vcを検出する。
図2(b)に示す変換器セル7は、フルブリッジ構成と呼ばれる回路構成を有する。この変換器セル7は、2つのスイッチング素子31p1,31n1を直列接続して形成された第1の直列体と、2つスイッチング素子31p2,31n2を直列接続して形成された第2の直列体と、蓄電要素32と、バイパススイッチ34と、電圧検出器33とを備える。第1の直列体と、第2の直列体と、蓄電要素32とが並列接続される。
スイッチング素子31p1とスイッチング素子31n1との中点と、スイッチング素子31p2とスイッチング素子31n2との中点とを変換器セル7の入出力端子P1,P2とする。スイッチング素子31p1、31n1、31p2、31n2のスイッチング動作により蓄電要素32の両端電圧、または零電圧を出力する。
バイパススイッチ34は、入出力端子P1,P2間に接続される。バイパススイッチ34をオンにすることによって、変換器セル7が短絡される。変換器セル7が短絡することによって、変換器セル7に含まれる各素子が事故時に発生する過電流から保護される。
電圧検出器33は、蓄電要素32の両端の電圧Vcを検出する。
図2(a)および図2(b)において、スイッチング素子31p、31n、31p1、31n1、31p2、31n2は、例えば、IGBT(Insulated Gate Bipolar Transistor)、GCT(Gate Commutated Turn−off)サイリスタなどの自己消弧型の半導体スイッチング素子にFWD(Freewheeling Diode)が逆並列に接続されて構成される。
図2(a)および図2(b)において、蓄電要素32には、フィルムコンデンサなどのキャパシタが主に用いられる。蓄電要素32は、以降の説明では、キャパシタと呼称することもある。
以降では、変換器セル7を図2(a)に示すハーフブリッジセルの構成とし、スイッチング素子として半導体スイッチング素子、蓄電要素としてキャパシタを用いた場合を例に説明する。しかし、電力変換器2を構成する変換器セル7を図2(b)に示すフルブリッジ構成としてもよい。また、上記で示した構成以外の変換器セル、例えば、クランプトダブルセルと呼ばれる回路構成などを適用した変換器セルを用いてもよく、スイッチング素子および蓄電要素も上記のものに限定するものではない。
(制御装置)
図3は、実施の形態1の制御装置3の内部構成を表わす図である。
制御装置3は、スイッチング制御部501と、バイパス制御部510とを備える。
スイッチング制御部501は、変換器セル7のスイッチング素子31p,31nのオン、オフを制御する。
バイパス制御部510は、アーム内の変換器セル7の故障を検知すると、アーム内の故障が生じた変換器セル7のバイパススイッチ34をオンにすることによって、故障が生じた変換器セル7を過電流から保護する。
スイッチング制御部501は、U相基本制御部502Uと、U相上アーム制御部503UPと、U相下アーム制御部503UNと、V相基本制御部502Vと、V相上アーム制御部503VPと、V相下アーム制御部503VNと、W相基本制御部502Wと、W相上アーム制御部503WPと、W相下アーム制御部503WNとを備える。
以下の説明では、U相基本制御部502U、V相基本制御部502V、およびW相基本制御部502Wを総称して基本制御部502と記載する。U相上アーム制御部503UP、U相下アーム制御部503UN、V相上アーム制御部503VP、V相下アーム制御部503VN、W相上アーム制御部503WP、およびW相下アーム制御部503WNを総称してアーム制御部503と記載する。
図4は、基本制御部502の構成を表わす図である。
基本制御部502は、アーム電圧指令生成部601と、キャパシタ電圧指令生成部602とを備える。
アーム電圧指令生成部601は、上アームのアーム電圧指令値krefpと、下アームのアーム電圧指令値krefnとを算出する。以下の説明では、krefpとkrefnとを総称してkrefと記載する。
キャパシタ電圧指令生成部602は、上アームに含まれるN個の変換器セル7のキャパシタ32のキャパシタ指令電圧値Vcrefpを算出する。キャパシタ電圧指令生成部602は、下アームに含まれるN個の変換器セル7のキャパシタ32のキャパシタ指令電圧値Vcrefnを算出する。たとえば、キャパシタ指令電圧値Vcrefpは、上アームの変換器セル7のキャパシタ32の平均電圧とし、キャパシタ指令電圧値Vcrefnは、下アームの変換器セル7のキャパシタ32の平均電圧とする。以下の説明では、VcrefpとVcrefnとを総称してVcrefと記載する。
アーム電圧指令生成部601は、交流電流制御部603と、循環電流算出部604と、循環電流制御部605と、指令分配部606とを備える。
交流電流制御部603は、検出された交流電流Iacと設定された交流電流指令値Iacrefとの偏差が0になるように交流制御指令値Vcpを算出する。
循環電流算出部604は、上アームのアーム電流Iarmpと、下アームのアーム電流Iarmpとに基づいて、1つのレグ回路4に流れる循環電流Izを計算する。循環電流は、複数のレグ回路4の間を循環する電流である。例えば、1つのレグ回路4に流れる循環電流Izは、以下の式によって計算できる。
Idc=(Ipu+Ipv+Ipw+Inu+Inv+Inw)/2 ・・・(1)
Iz=(Iarmp+Iarmn)/2−Idc/3 ・・・(2)
循環電流制御部605は、循環電流Izを設定された循環電流指令値Izref、例えば0に追従制御するための循環制御指令値Vzpを算出する。
指令分配部606は、交流制御指令値Vcpと、循環制御指令値Vzpと、直流電圧指令値Vdcrefと、中性点電圧Vsnと、交流電圧Vacとを受ける。電力変換器2の交流側が変圧器13を介して交流回路12に接続されているため、中性点電圧Vsnは、直流回路14の直流電源の電圧により求めることができる。直流電圧指令値Vdcrefは、直流出力制御により与えられても、一定値でもよい。
指令分配部606は、これらの入力に基づいて、上アーム、および下アームがそれぞれ出力分担する電圧を算出する。指令分配部606は、算出した電圧から上アーム、下アーム内のインダクタンス成分による電圧降下分をそれぞれ差し引くことによって、上アームのアーム電圧指令値krefp、および下アームのアーム電圧指令値krefnを決定する。
決定された上アームのアーム電圧指令値krefp、および下アームのアーム電圧指令値krefnは、交流電流Iacを交流電流指令値Iacrefに追従させ、循環電流Izを循環電流指令値Izrefに追従させ、直流電圧Vdcを直流電圧指令値Vdcrefに追従させるとともに、交流電圧Vacをフィードフォワード制御する出力電圧指令となる。
基本制御部502は、上アームのアーム電流Iarmpと、下アームのアーム電流Iarmnと、上アームのアーム電圧指令値krefpと、下アームのアーム電圧指令値krefnと、上アームのキャパシタ指令電圧値Vcrefpと、下アームのキャパシタ指令電圧値Vcrefnとを出力する。
図5は、アーム制御部503の構成を表わす図である。
アーム制御部503は、変換器セル7の故障を検知すると、故障した変換器セル7をバイパスさせるとともに、故障した変換器セル7のバイパスにより欠損した出力電圧を推定する。アーム制御部503は、故障した変換器セル7の推定された出力電圧を健全な変換器セル7から出力させる。
アーム制御部503は、Ncell個の個別セル制御部202と、セル付加電圧算出部203とを備える。
個別セル制御部202は、対応する変換器セル7を個別に制御する。個別セル制御部202は、基本制御部502からアーム電圧指令値kref、アーム電流Iarm、およびキャパシタ指令電圧値Vcrefを受ける。個別セル制御部202は、対応する変換器セル7から、キャパシタ電圧Vcおよびセル健全判定信号cnを受ける。変換器セル7が健全な状態のときにセル健全判定信号は「1」となり、変換器セル7が故障状態のときにセル健全判定信号は「0」となる。個別セル制御部202は、セル付加電圧算出部203からセル付加電圧信号dcvmを受ける。
個別セル制御部202は、対応する変換器セル7のゲート信号gaを生成して、対応する変換器セル7へ出力する。個別セル制御部202は、対応する変換器セル7の消失出力電圧信号cvmを生成して、セル付加電圧算出部203へ出力する。
図6は、個別セル制御部202の構成を表わす図である。
個別セル制御部202は、個別セルバランス制御部2021と、PWM変調部2022と、信号切替器2023A、2023B、2023C、2023Dと、セル出力電圧推定部2024と、加算器2051とを備える。
信号切替器2023Aは、セル付加電圧算出部203から出力されるセル付加電圧信号dcvmと、零電圧を表わす零信号とを受ける。信号切替器2023Aは、セル健全判定信号cnによって選択される信号を出力する。変換器セル7が健全な状態のときには、セル健全判定信号cnが「1」となり、セル付加電圧信号dcvmが出力される。変換器セル7が故障状態のときには、セル健全判定信号cnが「0」となり、零信号が出力される。
個別セルバランス制御部2021は、キャパシタ指令電圧値Vcrefと、対応する変換器セル7のキャパシタ電圧Vcと、アーム電流Iarmとに基づいて、キャパシタ電圧Vcがキャパシタ指令電圧値Vcrefと一致するように個別セルバランス制御出力dkrefcを出力する。たとえば、個別セルバランス制御部2021は、VcrefとVcとの差分にゲインKを乗算した結果に基づいて、個別セルバランス制御出力dkrefcを生成することができる。
信号切替器2023Bは、個別セルバランス制御出力dkrefcと、零電圧を表わす零信号とを受ける。信号切替器2023Aは、セル健全判定信号cnによって選択される信号を出力する。変換器セル7が健全な状態のときには、セル健全判定信号cnが「1」となり、個別セルバランス制御出力dkrefcが出力される。変換器セル7が故障状態のときには、セル健全判定信号cnが「0」となり、零信号が出力される。
加算器2051は、信号切替器2023Aから出力された信号と、信号切替器2023Bから出力された信号と、アーム電圧指令値krefとを加算する。加算結果が、セル電圧指令値krefcとして出力される。
PWM変調部2022は、キャリア基準位相CRPおよびデッドタイムDTをパラメータとして、セル電圧指令値krefcを位相シフトPWM方式で変調することによって、PWM変調信号を出力する。PWM変調部2022は、変換器セル7の構成に応じた変調をする。変換器セル7の構成において、出力されるPWM変調信号の数nも増減する。例えば、ハーフブリッジセルの場合はn=2、フルブリッジセルの場合はn=4となる。
1つのアームの中の変換器セル7の数がNcellのときに、1つのアーム中において各変換器セル7のPWM変調部2022に360°/Ncellずつ異なる位相が割り振られることによって、1つのアーム内においてNcell個のPWMのキャリア基準位相CRPの間隔が等間隔となる。これにより、各変換器セル7の出力電圧の高調波成分を相殺し、1つのアームの出力電圧の等価スイッチング周波数を高周波化することができる。但し、変換器セル7に故障が発生して、故障変換器セル7の出力電圧が零となると、各変換器セル7の出力電圧の高調波成分の相殺ができなくなる。その結果、アームの出力電圧に各変換器セル7の出力電圧の高調波成分が残留するようになる。
信号切替器2023Cは、PWM変調信号と、零電圧を表わす零信号とを受ける。信号切替器2023Cは、セル健全判定信号cnによって選択される信号を出力する。変換器セル7が健全な状態のときには、セル健全判定信号cnが「1」となり、PWM変調信号が出力される。変換器セル7が故障状態のときには、セル健全判定信号cnが「0」となり、零信号が出力される。信号切替器2023Cから出力された信号は、ゲート信号gaとして、対応する変換器セル7のスイッチング素子31p、31nのゲートドライバに送られることによって、対応する変換器セル7のスイッチング素子31p、31nがスイッチング制御される。
セル出力電圧推定部2024は、PWM変調信号を受ける。セル出力電圧推定部2024は、PWM変調信号によってスイッチング素子31p、31nがスイッチングされた場合の対応する変換器セル7の出力電圧を推定する。セル出力電圧推定部2024は、推定されたセル出力電圧の大きさを表わす推定信号pcvを出力する。具体的には、セル出力電圧推定部2024は、PWM変調信号によって、対応する変換器セル7内のスイッチング素子31p、31nがオン状態となるかあるいはオフ状態となるかに応じて、対応する変換器セル7の出力電圧を零電圧、またはキャパシタ電圧であると推定する。具体的には、セル出力電圧推定部2024は、スイッチング素子31pへのPWM変調信号およびスイッチング素子31nへのPWM変調信号によって、スイッチング素子31pがオン、かつスイッチング素子31nがオフとなる場合に、キャパシタ電圧Vc(蓄電要素32の両端電圧)を対応する変換器セル7の出力電圧として推定する。セル出力電圧推定部2024は、スイッチング素子31pへのPWM変調信号およびスイッチング素子31nへのPWM変調信号によって、スイッチング素子31pがオフ、かつスイッチング素子31nがオンとなる場合に、零電圧を対応する変換器セル7の出力電圧として推定する。
なお、ここでは、セル出力電圧推定部2024には、簡易的にPWM変調信号のみが入力されるものとしたが、アーム電流Iarmが入力されるものとしてもよい。この場合、セル出力電圧推定部2024は、アーム電流Iarmを用いて、デッドタイム期間中の出力電圧を推定することができる。すなわち、セル出力電圧推定部2024は、スイッチング素子31pへのPWM変調信号およびスイッチング素子31nへのPWM変調信号によって、スイッチング素子31pがオフ、かつスイッチング素子31nがオフとなる場合に、アーム電流Iarmの向きに応じて、対応する変換器セル7の出力電圧を推定する。これによって、対応する変換器セル7の出力電圧を高精度に推定することができる。
信号切替器2023Dは、推定信号pcvと、零電圧の大きさを表わす零信号とを受ける。信号切替器2023Dは、セル健全判定信号cnによって選択される信号を出力する。変換器セル7が健全な状態のときには、セル健全判定信号cnが「1」となり、零信号が消失出力電圧の推定値の大きさを表わす消失出力電圧信号cvmとして出力される。変換器セル7が故障状態のときには、セル健全判定信号cnが「0」となり、推定信号pcvが消失出力電圧信号cvmとして出力される。すなわち、個別セル制御部202は、変換器セル7が故障状態の場合、その変換器セル7が健全な状態のときに、その変換器セル7から出力されるはずであった電圧をPWM変調信号に基づいて推定して、セル付加電圧算出部203へ出力する。
図7は、セル付加電圧算出部203の構成を表わす図である。
セル付加電圧算出部203は、消失出力電圧加算部2031と、健全セル計算部2032と、除算器2033とを備える。
消失出力電圧加算部2031は、Ncell個の個別セル制御部202の各々で推定演算された消失出力電圧信号cvmを加算して、アームにおける1個以上の故障した変換器セル7の消失出力電圧の総和を表わす総消失出力電圧信号ccvmを出力する。
健全セル計算部2032は、Ncell個のセル健全判定信号cnを加算する。加算結果は、アーム内の健全な変換器セルの数(以下、健全セル数)scとなる。
除算器2033は、総消失出力電圧信号ccvmを健全セル数scで除算して、除算結果であるセル付加電圧信号dcvmを出力する。セル付加電圧信号dcvmは、アーム内の1つの健全な変換器セル7が分担する付加出力電圧の大きさを表わす。セル付加電圧信号dcvmは、個別セル制御部202の信号切替器2023Aへ送られる。
上記の構成により、実施の形態1の電力変換装置1は、変換器セル7が故障した場合においても、運転を継続することができる。
(制御装置3の動作)
以下では、すべての変換器セル7が健全な状態のときにはと、1つ以上の変換器セル7が故障状態のときのそれぞれにおける、制御装置3の動作を説明する。
(アーム内の全変換器セル7が健全な場合の動作)
アーム内の全変換器セル7が健全な状態のときの制御装置3の動作について説明する。
アーム内のすべての変換器セル7が健全な状態のときには、アーム内のすべての変換器セル7のセル健全判定信号cnは「1」となる。アーム内のすべての個別セル制御部202において、信号切替器2023Dから零信号が出力されるので、消失出力電圧信号cvmは全て0となる。これによって、セル付加電圧算出部203から出力されるセル付加電圧信号dcvmも0となる。すなわち、アーム内のすべての変換器セル7が健全な状態のときに、セル付加電圧信号dcvmは0となる。
個別セル制御部202では、信号切替器2023Bが、個別セルバランス制御部2021から出力される個別セルバランス制御出力dkrefcを出力する。信号切替器2023Aが、セル付加電圧算出部203から出力されるセル付加電圧信号dcvm(=0)を出力する。
加算器2051は、アーム電圧指令値krefと、個別セルバランス制御出力dkrefcと、セル付加電圧信号dcvm(=0)とを加算し、加算結果であるセル電圧指令値krefcが得られる。
PWM変調部2022は、セル電圧指令値krefcをPWM変調し、PWM変調信号を出力する。信号切替器2023Cは、PWM変調信号を出力する。信号切替器2023Cから出力されたPWM変調信号は、ゲート信号gaとして、変換器セル7のスイッチング素子31p、31nのゲートドライバに送られることによって、変換器セル7のスイッチング素子31p、31nがスイッチング制御される。
(アーム内に故障した変換器セル7が含まれる場合の動作)
アーム内に故障した変換器セル7が含まれる場合の制御装置3の動作について説明する。
アームに1つ以上の故障した変換器セル7が含まれる場合、故障した変換器セル7のセル健全判定信号cnが「0」となる。これによって、故障した変換器セル7に対応する個別セル制御部202において、信号切替器2023Dから推定信号pcvが消失出力電圧信号cvmとして出力される。
消失出力電圧信号cvmは、セル付加電圧算出部203に入力されて、アーム内の1つの健全な変換器セル7が分担する付加出力電圧の大きさを表わすセル付加電圧信号dcvmが得られる。
(健全な変換器セルの動作)
健全な変換器セル7の個別セル制御部202では、信号切替器2023Aがセル付加電圧信号dcvmを出力し、信号切替器2023Bが個別セルバランス制御出力dkrefcを選択して出力する。
加算器2051は、セル付加電圧信号dcvmと、個別セルバランス制御出力dkrefcと、アーム電圧指令値krefとを加算して、加算結果であるセル電圧指令値krefcを出力する。
PWM変調部2022は、セル電圧指令値krefcをPWM変調し、PWM変調信号を出力する。信号切替器2023Cは、PWM変調信号を出力する。信号切替器2023Cから出力されたPWM変調信号は、ゲート信号gaとして変換器セル7のスイッチング素子31p、31nのゲートドライバに送られることによって、変換器セル7のスイッチング素子31p、31nがスイッチング制御される。
(故障した変換器セルの動作)
故障した変換器セル7の個別セル制御部202では、信号切替器2023A、2023Bが共に零信号を出力するため、加算器2051から出力されるセル電圧指令値krefcは、アーム電圧指令値krefと等しくなる。
PWM変調部2022は、セル電圧指令値krefcをPWM変調し、PWM変調信号を出力するが、信号切替器2023Cは、零信号を出力するため、ゲート信号gaは零信号となる。これによって、変換器セル7のスイッチング素子31p、31nはオフ状態になる。
以上の動作により、アーム内の故障した変換器セル7から出力されるはずであった消失出力電圧がアーム内の健全な変換器セル7のセル電圧指令値に含まれるので、故障した変換器セル7がバイパスされることによって消失した出力電圧が健全な変換器セル7から出力される。これにより、故障した変換器セル7が出力していた電圧高調波を疑似的に健全な変換器セル7から出力し、対抗電圧がなくなったことにより増大する高調波電流を抑制することができる。その結果、一部の変換器セル7のキャパシタ電圧が保護レベルを逸脱することによる電力変換装置1の保護停止をすることなく、電力変換装置1の継続運転が可能となる。
(実施の形態1の変形例1)
上記の説明では、セル出力電圧推定部2024は、PWM変調信号に基づいて故障した変換器セル7の出力電圧を推定したが、推定の仕方は限定されるものではない。例えば、セル出力電圧推定部2024は、故障した変換器セル7のキャリア基準位相とセル電圧指令値とに基づいて、故障した変換器セル7の出力電圧を推定してもよい。
(実施の形態1の変形例2)
上記の説明では、セル付加電圧算出部203は、アーム内の全ての健全な変換器セル7の対応する個別セル制御部202が、セル付加電圧が加算されたセル電圧指令値を求めると記載したが、これに限定するものではない。アーム内の一部の健全な変換器セル7の対応する個別セル制御部202が、セル付加電圧が加算されたセル出力電圧指令値と求めることによって、アーム内の一部の健全な変換器セル7に対抗電圧を出力させるものとしてもよい。この場合、セル付加電圧算出部203は、故障した変換器セル7の消失出力電圧の総和を表わす総消失出力電圧信号ccvmをアーム内の一部の健全な変換器セル7の総数で除算することによって、セル付加電圧信号dcvmを求める。セル付加電圧信号dcvmは、アーム内の一部の健全な変換器セル7の中の1つが分担する付加電圧の大きさを表わす。
(制御装置3のハードウエア構成)
図8は、制御装置3のハードウエア構成の一例を表わす図である。
制御装置3は、いわゆるデジタルリレー装置と同様の構成を有する。制御装置3は、AD(アナログ−デジタル)変換部530と、演算処理部535と、IO(Input and Output)部543と、整定および表示部547とを備える。
AD変換部530の前段に、アーム電流検出器9A,9B、交流電圧検出器10、交流電流検出器16、直流電圧検出器11A,11B、電圧検出器33からの入力信号を、制御装置3の内部での信号処理に適した電圧レベルに変換するための複数の変成器(不図示)が設けられていてもよい。
AD変換部530は、アナログフィルタ531と、AD変換器532とを含む。アナログフィルタ531は、AD変換の際の折返し誤差を除去するために設けられたローパスフィルタである。AD変換器532は、アナログフィルタ531を通過した信号をデジタル値に変換する。
図8では、AD変換部530の入力は1チャンネルのみ代表的に示されているが、実際には、各検出器からの信号を受けるために多入力の構成となっている。したがって、より詳細には、AD変換部530は、複数のアナログフィルタ531と、複数のアナログフィルタ531を通過した信号を選択するためのマルチプレクサ(不図示)とを含む。
演算処理部535は、CPU(Central Processing Unit)536と、メモリ537と、バスインターフェース538,539と、これらを接続するバス540とを含む。CPU536は、制御装置3の全体の動作を制御する。メモリ537は、CPU536の主記憶として用いられる。さらに、メモリ537は、フラッシュメモリなどの不揮発性メモリを含むことにより、プログラムおよび信号処理用の設定値などを格納する。
なお、演算処理部535は、演算処理機能を有する回路によって構成されていればよく、図8の例には限定されない。たとえば、演算処理部535は、複数のCPUを備えていてもよい。また、演算処理部535は、CPUなどのプロセッサに代えて、少なくとも1つのASIC(Application Specific Integrated Circuit)によって構成されていてもよいし、少なくとも1つのFPGA(Field Programmable Gate Array)によって構成されていてもよい。もしくは、演算処理部535は、プロセッサ、ASIC、およびFPGAのうちのいずれかの組み合わせによって構成されていてもよい。
IO部543は、通信回路544と、デジタル入力回路545と、デジタル出力回路546とを含む。通信回路544は、各変換器セル7に出力するための光信号を生成する。通信回路544から出力された信号は、光中継装置555を介して変換器セル7に伝送される。デジタル入力回路545およびデジタル出力回路546は、CPU536と外部装置との間で通信を行う際のインターフェース回路である。
整定および表示部547は、整定値の入力および表示のためのタッチパネル548を備える。タッチパネル548は、液晶パネルのような表示装置とタッチパッドのような入力装置とを組わせた入出力インターフェースである。タッチパネル548は、バスインターフェース539を介してバス540と接続される。
実施の形態2.
変換器セル7が故障した場合に、アーム電流Iarmの高調波成分が増大し、健全な変換器セル7において、キャパシタ電圧のアンバランスが生じる恐れがあるのは、電力変換器2の交流出力電流および直流出力電流が小さく、アーム電流の実効値が小さい場合である。
個別セルバランス制御は、アーム電流の実効値が大きい場合には、十分効果を奏するが、アーム電流の実効値が小さい場合には、個別セルバランス制御が十分な効果を奏さない場合がある。
しかしながら、交流出力電力および直流出力電力は上位の指令により決定されるため、交流出力電流および直流出力電流を自由に設定することはできない。また、直流成分および交流の基本波成分の循環電流は、基本的に変換器セル7のキャパシタ電圧の各相の平均値のバランス制御、または上アームと下アームの平均値のバランス制御に使用されるため、自由度がない。
そこで、実施の形態2では、アーム内で各変換器セル7のキャパシタ電圧のバランスが取れないような電力変換器2の交流出力電流および直流出力電流が小さい場合には、電力変換器2から出力される電流の周波数と異なる周波数の電流を電力変換器2の内部で循環させる。これによって、アーム電流の実効値が大きくなるので、個別セルバランス制御が十分効果を奏し、変換器セル7の間のアンバランスが解消される。ここで、電力変換器2から出力される電流の周波数と異なる周波数の電流とは、直流電流および交流回路12から出力される交流電流(基本波の電流)以外の電流である。
図9は、実施の形態2の制御装置3の構成を表わす図である。
実施の形態2の制御装置3は、実施の形態1の制御装置3と同様に、スイッチング制御部501およびバイパス制御部510を備えるととともに、セルバランス用循環電流制御部610を備える。
セルバランス用循環電流制御部610は、複数のアームのうちのいずれかのアームの変換器セル7の故障を検知すると、アーム電流Iarmの実効値を増加させるために、電力変換器2から出力される電流の周波数とは異なる周波数の電流を電力変換器2の内部で循環させる。
図10は、セルバランス用循環電流制御部610の構成を表わす図である。
セルバランス用循環電流制御部610は、第1座標変換部611と、補償器612と、第2座標変換部613とを備える。
第1座標変換部611は、UVW3相の循環電流成分Izu、Izv、Izwを、電力変換器2から出力される電流の周波数とは異なる周波数θで回転するdq2相座標上に変換する。変換されたIzdは有効成分、Izqは無効成分で、いずれも直流量となる。
補償器612は、2相の循環電流成分Izd、Izqが、2相に換算された循環電流指令成分Izdref、Izqrefに追従するよう2相の直流電圧指令成分Vzdref、Vzqrefを出力する。
第2座標変換部613は、補償器612が求めた2相の直流電圧指令成分Vzdref、Vzqrefを、3相の直流電圧指令循環電流成分Vdccu、Vdccv、Vdccwに変換する。V直流電圧指令循環電流成分dccu、Vdccv、Vdccwは、それぞれU相基本制御部502U、V相基本制御部502V、W相基本制御部502Wのアーム電圧指令生成部601に送られる。以下の説明では、Vdccu、Vdccv、Vdccwを総称してVdccと記載する。
図11は、実施の形態2のアーム電圧指令生成部601の構成を表わす図である。
指令分配部606は、実施の形態1と同様に、交流制御指令値Vcp、循環制御指令値Vzpと、直流電圧指令値Vdcrefと、中性点電圧Vsnと、交流電圧Vacとを受けるともに、直流電圧指令循環電流成分Vdccを受ける。
指令分配部606は、実施の形態1と同様に、これらの入力に基づいて、上アームおよび下アームがそれぞれ出力分担する電圧を算出する。指令分配部606は、算出した電圧から上アーム、および下アーム内のインダクタンス成分による電圧降下分をそれぞれ差し引くことによって、上アームのアーム電圧指令値krefpおよび下アームのアーム電圧指令値krefnを決定する。
本実施の形態によって、アーム電流Iarmの実効値が増加するので、セル電圧指令値を構成する基本波が大きくなる。その結果、個別セルバランス制御が十分効果を奏し、変換器セル7の間のアンバランスが解消される。
実施の形態3.
本実施の形態では、変圧器13は、変圧比可変の変圧器とする。変圧比可変の変圧器は、たとえば、タップ切替機能付き変圧器などで実現される。
実施の形態2では、交流出力電力および直流出力電力が上位の指令により決定されるため、交流出力電流および直流出力電流を自由に設定することができない旨を記載した。
電力変換装置1は、変圧器13を介して交流回路12に連系されるので、変圧器13の変圧比を変化させることによって、交流出力電力および直流出力電力に影響を与えずに、交流出力電流Vacを変化させることができる。これによって、アーム電流Iarmの実効値を増加させることができるので、変換器セル7間のアンバランスを解消することができる。
図12は、実施の形態3の制御装置3の構成を表わす図である。
実施の形態3の制御装置3は、実施の形態1と同様にスイッチング制御部501およびバイパス制御部510を備えるととともに、変圧器制御部504を備える。
変圧器制御部504は、複数のアームのうちのいずれかのアームの変換器セル7の故障を検知すると、アーム電流Iarmの実効値を増加させるために、変圧器13の変圧比を変化させる。具体的には、変圧器13の交流回路12側の電圧V1と、電力変換装置1側の電圧V2との比N(V2/V1)を小さくすることによって、交流回路12から電力変換装置1へ流れる交流電流を増加させる。これによって、アーム電流Iarmの実効値が増加するので、セル電圧指令値を構成する基本波を大きくなる。その結果、高調波の影響を低減することができる。
実施の形態4.
図13は、実施の形態4の電力変換装置1Aの構成を表わす図である。
実施の形態4の電力変換装置1Aが、実施の形態1の電力変換装置1Aと相違する点は、実施の形態4の電力変換装置1Aの電力変換器2Aの各アームが、冗長変換器セル(RSM)7aを備える点である。冗長変換器セル7aの構成は、図2(a)および(b)に示す変換器セル7の構成と同様である。
各アームの冗長変換器セル7aは、各アーム内のいずれかの変換器セル7に故障が生じる前において、バイパスされている。したがって、この期間においては、冗長変換器セル7aは、変換動作をしない。
各アームの冗長変換器セル7aは、各アーム内のいずれかの変換器セル7に故障が生じた後は、バイパスが解除される。したがって、この期間においては、冗長変換器セル7aは、故障が生じた変換器セル7の代わりに、変換動作をする。
バイパス制御部510は、アーム内のいずれかの変換器セル7に故障が生じる前に、そのアーム内の冗長変換器セル7aのバイパススイッチ34をオンにする。バイパス制御部510は、アーム内のいずれかの変換器セル7に故障が生じた後は、そのアーム内の冗長変換器セル7aのバイパススイッチ34をオフにする。
以上のように、本実施の形態では、各アーム内のいずれかの変換器セル7に故障が生じた後は、冗長変換器セル7aは、故障が生じた変換器セル7の代わりに、変換動作をする。これによって、変換器セル7が故障した場合でも、1つのアーム中において動作する変換器セルの個数が変化しないので、変換器セルの出力電圧の高調波成分を相殺することができる。
なお、アーム内の冗長変換器セル7aの数は、1個に限定されるものではなく、複数個であってもよい。また、アーム内の冗長変換器セル7aは、固定されていなくてもよい。故障が生じていない複数の変換器セルの中から冗長変換器セルが一定の周期ごとに、順番に、あるいはランダムに選択されるものとしてもよい。
(変形例)
本発明は、上記の実施形態に限定されるものではなく、たとえば、以下のような変形例も含まれる。
(1)電力変換器2の構成
上記の実施形態では、電力変換器2は、ダブルスター型と呼ばれる構成を有する。電力変換器2は、主にHVDC(High Voltage Direct Current)送電用の交直変換器に使われる。上記の実施形態で説明した電力変換器の制御は、他の構成の電力変換器にも適用できる。
図14は、電力変換装置1Bの一部の構成を表わす図である。
電力変換装置1Bの電力変換器2Bは、シングルデルタ型と呼ばれる構成を有する。電力変換器2Bは、主に無効電力補償装置に使用される。
図15は、電力変換装置1CMの一部の構成を表わす図である。
電力変換装置1Cの電力変換器2Cは、シングルスター型と呼ばれる構成である。電力変換器2Cも、主に無効電力補償装置に使用される。
上記の実施形態で説明したような変換器セル7の故障による生じる高調波を抑制する方式は、電力変換器2Bおよび2Cにおいても効果を奏する。出力が交流側のみである電力変換器2Cでは、実施の形態2で説明した循環電流は、基本波成分以外の周波数の電流でよい。例えば、直流成分の循環電流を流してもよい。
(2)三角波比較PWM変調方式を例に説明したが、キャリアが鋸波の鋸波比較PWM変調方式としてもよく、キャリアを制限するものではない。また、空間電圧ベクトルPWM変調方式の場合も同様の効果を奏するような機能を付加することによって、変換器セルに故障が生じた場合においても変換器の運転継続を行うことができる。
(3)上記の実施形態で説明した制御は、各変換器セル7のキャパシタ電圧のアンバランスが拡大した場合に、断続的に動作するものであってもよい。
(4)循環電流制御用の変換器セル
アーム内に通常の変換器セルと、循環電流制御用の変換器セルとが含まれる場合には、基本制御部の構成が、図4に示すものと相違する。
図16は、変形例の基本制御部502Aの構成を表わす図である。
図16の基本制御部502Aが、図4の基本制御部502と相違する点は、基本制御部60から出力される循環制御指令値Vzpが指令分配部606Aに出力されない。
指令分配部606Aは、交流制御指令値Vcpと、直流電圧指令値Vdcrefと、中性点電圧Vsnと、交流電圧Vacとを受ける。指令分配部606は、これらの入力に基づいて、上アーム、および下アームがそれぞれ出力分担する電圧を算出する。指令分配部606は、算出した電圧から上アーム、下アーム内のインダクタンス成分による電圧降下分をそれぞれ差し引くことによって、上アームのアーム電圧指令値krefp、および下アームのアーム電圧指令値krefnを決定する。アーム電圧指令値krefp、および下アームのアーム電圧指令値krefnによって、実施の形態1で説明したようにアーム内の通常の変換器セルを制御する信号が生成される。
一方、図示しない制御ブロックが、基本制御部60から出力される循環制御指令値Vzpに基づいて、循環器制御用の変換器セルへのPWM変調信号を出力する。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1,1A,1B,1C 電力変換装置、2,2A,2B,2C 電力変換器、3 制御装置、4u,4v,4w レグ回路、5u,5v,5w 上アーム、6u,6v,6w 下アーム、7 変換器セル、7a 冗長変換器セル、8A,8B リアクトル、9A,9B アーム電流検出器、10 交流電圧検出器、11A,11B 直流電圧検出器、12 交流回路、13 変圧器、14 直流回路、16 交流電流検出器、31p,31n,31p1,31n1,31p2,31n2 スイッチング素子、32 蓄電要素、33 電圧検出器、34 バイパススイッチ、202 個別セル制御部、203 セル付加電圧算出部、501 スイッチング制御部、502,502A 基本制御部、502U U相基本制御部、502V V相基本制御部、502W W相基本制御部、503UP U相上アーム制御部、503UN U相下アーム制御部、503VP V相上アーム制御部、503VN V相下アーム制御部、503WP W相上アーム制御部、503WN W相下アーム制御部、504 変圧器制御部、510 バイパス制御部、530 AD変換部、531 アナログフィルタ、532 AD変換器、535 演算処理部、536 CPU、537 メモリ、538,539 バスI/F、540 バス、543 IO部、544 通信回路、545 デジタル入力回路、546 デジタル出力回路、547 整定および表示部、548 タッチパネル、555 光中継装置、601 アーム電圧指令生成部、602 キャパシタ電圧指令生成部、603 交流電流制御部、604 循環電流算出部、605 循環電流制御部、606 指令分配部、610 セルバランス用循環電流制御部、611 第1座標変換部、612 補償器、613 第2座標変換部、2022 PWM変調部、2023A,2023B,2023C,2023D 信号切替器、2024 セル出力電圧推定部、2031 消失出力電圧加算部、2032 健全セル計算部、2051 加算器、Nn 低電位側直流端子、Np 高電位側直流端子、Nu,Nv,Nw 交流入力端子。

Claims (11)

  1. 各々が2個以上のスイッチング素子と、蓄電要素と、一対の出力端子とを含む複数の変換器セルが直列に接続されたアームを有する電力変換器と、
    前記電力変換器を制御するように構成された制御装置とを備え、
    前記変換器セルは、前記変換器セルをバイパスするためのスイッチを有し、
    前記制御装置は、前記変換器セルの故障を検知すると、故障変換器セルをバイパスさせるとともに、前記故障変換器セルのバイパスにより消失した出力電圧を推定し、前記故障変換器セルの前記推定された出力電圧を健全な変換器セルから出力させるように構成され
    前記制御装置は、
    アーム電圧指令値を出力するように構成される基本制御部と、
    前記アーム電圧指令値を受けて、前記アーム内の対応する前記変換器セルを個別に制御するように構成される1個以上の個別セル制御部とを含み、
    前記故障変換器セルに対応する前記個別セル制御部は、前記故障変換器セルのバイパスにより消失した出力電圧を推定するように構成され、
    前記健全な変換器セルに対応する前記個別セル制御部は、前記アーム電圧指令値と、前記故障変換器セルのバイパスにより消失した出力電圧とに基づいて、対応する変換器セルの電圧指令値を算出するように構成される、電力変換装置。
  2. 前記個別セル制御部は、
    対応する前記変換器セルのセル電圧指令を受けて、PWM変調信号を出力するように構成されるPWM変調部と、
    前記PWM変調信号に基づいて、前記対応する変換器セルの出力電圧を推定するように構成されるセル出力電圧推定部とを含む、請求項記載の電力変換装置。
  3. 前記セル出力電圧推定部は、前記PWM変調信号によって前記スイッチング素子がオン状態となるかあるいはオフ状態となるかに応じて、前記変換器セルの出力電圧を零電圧、または前記蓄電要素の両端電圧であると推定するように構成される、請求項記載の電力変換装置。
  4. 前記個別セル制御部は、対応する前記変換器セルが故障状態のときには、前記セル出力電圧推定部によって推定された電圧の大きさを表わす信号を出力し、対応する前記変換器セルが健全な状態のときには、零電圧を表わす信号を出力する第1の信号切替器を含む、請求項記載の電力変換装置。
  5. 前記制御装置は、前記1個以上の個別セル制御部の前記第1の信号切替器から出力される信号の総和を、前記アーム内の全ての健全な変換器セルの総数で除算することによって、前記全ての健全な変換器セルの中の1つが分担する付加出力電圧の大きさを表わす信号を出力するように構成されるセル付加電圧算出部を含む、請求項記載の電力変換装置。
  6. 前記制御装置は、前記1個以上の個別セル制御部の前記第1の信号切替器から出力される信号の総和を、前記アーム内の一部の健全な変換器セルの総数で除算することによって、前記一部の健全な変換器セルの中の1つが分担する付加出力電圧の大きさを表わす信号を出力するように構成されるセル付加電圧算出部を含む、請求項記載の電力変換装置。
  7. 前記個別セル制御部は、
    対応する前記変換器セルが故障状態のときには、零電圧の大きさを表わす信号を出力し、対応する前記変換器セルが健全な状態のときに、前記セル付加電圧算出部の出力信号を出力する第2の信号切替器と、
    前記基本制御部から出力される前記アーム電圧指令値と前記第2の信号切替器の出力とを加算して、加算結果をセル電圧指令値として前記PWM変調部へ送る加算器とを含む、請求項または記載の電力変換装置。
  8. 前記個別セル制御部は、対応する変換器セルの蓄電要素の電圧が前記アーム内の変換器セルの蓄電要素の平均電圧と一致するように個別セルバランス制御出力を出力するように構成される個別セルバランス制御部を含み、
    前記加算器は、前記基本制御部から出力される前記アーム電圧指令値と、前記第2の信号切替器の出力と、前記個別セルバランス制御出力とを加算して、加算結果を前記セル電圧指令値として前記PWM変調部へ送る、請求項記載の電力変換装置。
  9. 前記制御装置は、前記変換器セルの故障を検知すると、前記アームに流れるアーム電流の実効値を増加させるように構成される、請求項1記載の電力変換装置。
  10. 前記制御装置は、前記アーム電流の実効値を増加させるために、前記電力変換器から出力される電流の周波数成分とは異なる周波数成分の電流を前記電力変換器の内部で循環させるように構成される、請求項に記載の電力変換装置。
  11. 前記電力変換装置は、変圧比が可変の変圧器を備え、
    前記制御装置は、前記アーム電流の実効値を増加させるために、前記変圧比を変化させることによって、交流出力電流を増加させるように構成される、請求項に記載の電力変換装置。
JP2019517858A 2018-12-25 2018-12-25 電力変換装置 Active JP6545426B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/047457 WO2020136698A1 (ja) 2018-12-25 2018-12-25 電力変換装置

Publications (2)

Publication Number Publication Date
JP6545426B1 true JP6545426B1 (ja) 2019-07-17
JPWO2020136698A1 JPWO2020136698A1 (ja) 2021-02-15

Family

ID=67297531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019517858A Active JP6545426B1 (ja) 2018-12-25 2018-12-25 電力変換装置

Country Status (4)

Country Link
US (1) US11336169B2 (ja)
EP (1) EP3905508A4 (ja)
JP (1) JP6545426B1 (ja)
WO (1) WO2020136698A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3905504A4 (en) * 2018-12-25 2021-12-15 Mitsubishi Electric Corporation POWER CONVERSION DEVICE
WO2021181583A1 (ja) * 2020-03-11 2021-09-16 三菱電機株式会社 電力変換装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033943A (ja) * 2007-07-31 2009-02-12 Meidensha Corp 直接高圧インバータ装置
JP2012010542A (ja) * 2010-06-28 2012-01-12 Hitachi Ltd 直列多重インバータ装置とその制御方法
JP2016214009A (ja) * 2015-05-12 2016-12-15 富士電機株式会社 電力変換装置
JP2017143619A (ja) * 2016-02-09 2017-08-17 株式会社東芝 電力変換装置の制御装置
JP2018093701A (ja) * 2016-12-06 2018-06-14 エルエス産電株式会社Lsis Co., Ltd. 無効電力補償装置及びその制御方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10205402B2 (en) * 2015-09-17 2019-02-12 Mitsubishi Electric Corporation Power conversion device for converting power between a DC circuit and an AC circuit by performing a non-linear operation
WO2017046910A1 (ja) * 2015-09-17 2017-03-23 三菱電機株式会社 電力変換装置
CN108370221B (zh) 2015-11-30 2020-06-05 株式会社日立制作所 电力转换装置
JP6461424B2 (ja) * 2016-03-28 2019-01-30 三菱電機株式会社 電力変換装置
EP3514941B1 (en) * 2016-09-13 2020-12-09 Mitsubishi Electric Corporation Power conversion apparatus and power system
JP6203353B2 (ja) 2016-09-20 2017-09-27 株式会社日立製作所 電力変換装置及び電力変換方法
US9819188B1 (en) * 2016-11-22 2017-11-14 Abb Schweiz Ag Direct current transmission system and method
US10992219B2 (en) * 2017-06-27 2021-04-27 Mitsubishi Electric Corporation Power conversion device
JP6440923B1 (ja) * 2017-09-26 2018-12-19 三菱電機株式会社 電力変換装置
EP3694098B1 (en) * 2017-10-04 2021-06-09 Mitsubishi Electric Corporation Power conversion apparatus
EP3905504A4 (en) * 2018-12-25 2021-12-15 Mitsubishi Electric Corporation POWER CONVERSION DEVICE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033943A (ja) * 2007-07-31 2009-02-12 Meidensha Corp 直接高圧インバータ装置
JP2012010542A (ja) * 2010-06-28 2012-01-12 Hitachi Ltd 直列多重インバータ装置とその制御方法
JP2016214009A (ja) * 2015-05-12 2016-12-15 富士電機株式会社 電力変換装置
JP2017143619A (ja) * 2016-02-09 2017-08-17 株式会社東芝 電力変換装置の制御装置
JP2018093701A (ja) * 2016-12-06 2018-06-14 エルエス産電株式会社Lsis Co., Ltd. 無効電力補償装置及びその制御方法

Also Published As

Publication number Publication date
WO2020136698A1 (ja) 2020-07-02
EP3905508A1 (en) 2021-11-03
EP3905508A4 (en) 2021-12-22
US11336169B2 (en) 2022-05-17
US20210408895A1 (en) 2021-12-30
JPWO2020136698A1 (ja) 2021-02-15

Similar Documents

Publication Publication Date Title
JP6545425B1 (ja) 電力変換装置
JP6559387B1 (ja) 電力変換装置
US9960709B2 (en) Power conversion device
JP6377310B1 (ja) 電力変換装置
JP6689472B1 (ja) 電力変換装置
WO2015178376A1 (ja) 直流送電電力変換装置および直流送電電力変換方法
JPWO2017046908A1 (ja) 電力変換装置
JPWO2017046910A1 (ja) 電力変換装置
JP6818191B1 (ja) 電力変換装置
JP6797333B1 (ja) 電力変換装置
JP6786017B1 (ja) 電力変換装置
KR20170097398A (ko) 멀티 레벨 인버터의 3상 평형 전압 제어 방법
JP6545426B1 (ja) 電力変換装置
JP6899967B1 (ja) 電力変換装置
JP6768993B1 (ja) 電力変換装置
JP7251339B2 (ja) 電力変換装置
JP2013258841A (ja) 変圧器多重電力変換装置
JP7224468B2 (ja) 電力変換装置
WO2023214462A1 (ja) 電力変換装置
JP7481576B2 (ja) 電力変換装置
JP6910579B1 (ja) 電力変換システムおよびその制御装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190401

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190401

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190618

R150 Certificate of patent or registration of utility model

Ref document number: 6545426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250