JP6544282B2 - 車両用走行モータの制御装置 - Google Patents

車両用走行モータの制御装置 Download PDF

Info

Publication number
JP6544282B2
JP6544282B2 JP2016072538A JP2016072538A JP6544282B2 JP 6544282 B2 JP6544282 B2 JP 6544282B2 JP 2016072538 A JP2016072538 A JP 2016072538A JP 2016072538 A JP2016072538 A JP 2016072538A JP 6544282 B2 JP6544282 B2 JP 6544282B2
Authority
JP
Japan
Prior art keywords
armature
current
switching
regenerative braking
energizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016072538A
Other languages
English (en)
Other versions
JP2017184572A (ja
Inventor
山田 剛史
剛史 山田
利成 深津
利成 深津
賢典 清水
賢典 清水
雅 西川原
雅 西川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2016072538A priority Critical patent/JP6544282B2/ja
Publication of JP2017184572A publication Critical patent/JP2017184572A/ja
Application granted granted Critical
Publication of JP6544282B2 publication Critical patent/JP6544282B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Stopping Of Electric Motors (AREA)
  • Control Of Direct Current Motors (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、車両用走行モータの制御装置に関するものである。
バッテリフォークリフト等の車両において走行モータとして直流分巻モータを使用して回生制動する技術が知られている(例えば特許文献1)。
特許第3626893号公報
ところで、直流分巻モータを回生制動する際に制動にてモータの回転数が低下してくると、回生制動ではトルクが保てなくなるので、プラギング(逆相制動)に切り替える必要がある。このとき、回転センサを用いてモータ回転数が閾値よりも小さくなると回生制動モードからプラギングモードに切り替えることになるが、走行モータに回転センサが付いていない車両においても回生制動モードからプラギングモードに切り替える必要がある。
本発明の目的は、回転センサが付いていない走行モータに対し回生制動モードからプラギングモードに切り替えることができる車両用走行モータの制御装置を提供することにある。
請求項1に記載の発明では、走行モータとして直流分巻モータを用い、前記直流分巻モータのアーマチャを通電する回路としてアーマチャ通電用スイッチング素子のブリッジ構成とするとともに、前記直流分巻モータのフィールドコイルを通電する回路としてフィールドコイル通電用スイッチング素子のブリッジ構成とした車両用走行モータの制御装置であって、前記アーマチャ通電用スイッチング素子及び前記フィールドコイル通電用スイッチング素子をデューティ制御する制御部と、前記アーマチャに流れる電流を検出する電流検出手段と、を備え、前記制御部は、回生制動モードからプラギングモードに切り替え可能に構成され、前記制御部は、回生制動モードにおいて前記アーマチャ通電用スイッチング素子のデューティがゼロ、かつ、電流検出手段により検出された前記アーマチャに流れる電流の絶対値が閾値以下になると、それまでの回生制動モードからプラギングモードに切り替える切替手段を有することを要旨とする。
請求項1に記載の発明によれば、切替手段により、回生制動モードにおいてアーマチャ通電用スイッチング素子のデューティがゼロ、かつ、電流検出手段により検出されたアーマチャに流れる電流の絶対値が閾値以下になると、それまでの回生制動モードからプラギングモードに切り替えられる。このように、アーマチャに流れる電流を切替タイミングの検出要素として捉えることにより回転センサが付いていない走行モータに対し回生制動モードからプラギングモードに切り替えることができる。
請求項2に記載のように、請求項1に記載の車両用走行モータの制御装置において、前記制御部は、前記切替手段により回生制動モードからプラギングモードへの切り替えの際に、切替前において、前記アーマチャ通電用スイッチング素子のデューティがゼロとなったら前記フィールドコイルに流す電流を増やし、切替後において、前記フィールドコイルに流す電流を、切替前のフィールドコイルに流す電流と同値かつ逆向きとするようにデューティ制御を行うトルク制御手段を更に有するとよい。
請求項3に記載のように、請求項1または2に記載の車両用走行モータの制御装置において、前記切替手段は、前記アーマチャ通電用スイッチング素子のデューティがゼロ、かつ、電流検出手段により検出された前記アーマチャに流れる電流の絶対値が閾値以下でない場合において、回生制動モードにおいて前記電流検出手段により検出された前記アーマチャに流れる電流の変化量の絶対値が閾値よりも小さいと、それまでの回生制動モードからプラギングモードに切り替えるとよい。
請求項4に記載のように、請求項1〜3のいずれか1項に記載の車両用走行モータの制御装置において、フォークリフトに搭載されるものであるとよい。
本発明によれば、回転センサが付いていない走行モータに対し回生制動モードからプラギングモードに切り替えることができる。
フォークリフトの概略側面図。 フォークリフト用走行モータの制御装置の回路図。 作用を説明するためのフローチャート。 (a),(b),(c)は作用を説明するためのタイムチャート。 第2の実施形態を説明するためのフローチャート。 (a),(b)は第2の実施形態を説明するためのタイムチャート。 (a),(b)は第2の実施形態を説明するためのタイムチャート。 比較のためのタイムチャート。
(第1の実施形態)
以下、本発明を具体化した一実施形態を図面に従って説明する。
図1に示すように、フォークリフト10はバッテリフォークリフトであって、電動モータにて搬送・荷役作業を行うフォークリフトである。フォークリフト10の車体11の前側下部には駆動輪(前輪)12aが設けられ、車体11の後側下部には操舵輪(後輪)12bが設けられている。車体11の前部には荷役装置13が設けられている。
荷役装置13を構成するマスト14は車体11の前部に立設されている。マスト14は車体11に対して前後に傾動可能に支持された左右一対のアウタマスト14aと、これにスライドして昇降するインナマスト14bとからなる。各アウタマスト14aの後部にはリフトシリンダ15が配設されている。インナマスト14bの内側にはフォーク16を備えたリフトブラケット17が昇降可能に支持されている。そして、リフトシリンダ15の伸縮作動によりフォーク16がリフトブラケット17とともに昇降される。
左右一対のティルトシリンダ18は、その基端側が車体(車体フレーム)11に対して回動可能に連結されるとともに、先端側がアウタマスト14aの側面に回動可能に連結されている。マスト14はティルトシリンダ18が伸縮駆動されることで前後に傾動する。
運転室19には運転者が着座可能な運転シート20が設けられている。運転シート20の前方には、ハンドルコラム21が設けられ、ハンドルコラム21には、操舵輪12bの舵角を変更するための操舵ハンドル22が装着されている。運転室19の前側にリフトレバー23およびティルトレバー24が装備されている。リフトレバー23はフォーク16を昇降させるためのレバーであり、ティルトレバー24はマスト14を前後方向に傾動させるためのレバーである。運転席の床面にはアクセルペダル25が設けられ、アクセルペダル25の操作量(アクセル開度)に応じた車速にされる。
また、ハンドルコラム21の側面にはディレクションレバー(前後進レバー)26が設けられ、ディレクションレバー26は車両の走行方向(進行方向)を指示するためのものである。
車体11にはバッテリ27、走行モータ(走行用電動モータ)28および荷役モータ(荷役用電動モータ)29が搭載されている。走行モータ28として直流分巻モータを用いている。バッテリ27により走行モータ28を駆動させ、駆動輪12aが駆動されるようになっている。詳しくは、走行モータ28の出力軸が駆動輪12aの回転軸と減速機を介して連結されており、走行モータ28の駆動により出力軸が回転するとその回転に伴って駆動輪12aの回転軸が回転して駆動輪12aが駆動される。
また、バッテリ27により荷役モータ29が駆動され、この荷役モータ29の駆動により油圧ポンプ(図示略)が駆動される。この油圧ポンプの駆動に基づいてリフトシリンダ15やティルトシリンダ18を伸縮動作してフォーク16の上下動やティルト動作を行うことができるようになっている。
図2に示すように、フォークリフト10には走行モータ28の制御装置30が搭載されている。直流分巻モータである走行モータ28は、アーマチャ(電機子)32とフィールドコイル(界磁コイル)33を有する。アーマチャ32はロータに設けられ、フィールドコイル33はステータに設けられる。
制御装置30はブリッジ回路31を有する。ブリッジ回路31は6つのスイッチング素子Q1〜Q6を有する。走行モータ(直流分巻モータ)のアーマチャ32を通電する回路としてアーマチャ通電用スイッチング素子Q5,Q6のブリッジ構成としている。走行モータ(直流分巻モータ)のフィールドコイル33を通電する回路としてフィールドコイル通電用スイッチング素子Q1,Q2,Q3,Q4のブリッジ構成としている。
詳しくは、直流電源としてのバッテリ27の正極に正極母線Lpが接続されるとともにバッテリ27の負極に負極母線Lnが接続されている。正極母線Lpと負極母線Lnとの間にスイッチング素子Q1,Q2が直列接続されている。正極母線Lpと負極母線Lnとの間にスイッチング素子Q3,Q4が直列接続されている。スイッチング素子Q1とスイッチング素子Q2の間の中点とスイッチング素子Q3とスイッチング素子Q4の間の中点との間にフィールドコイル33(ステータコイル)が接続されている。
正極母線Lpと負極母線Lnとの間にスイッチング素子Q5,Q6が直列接続されている。スイッチング素子Q5とスイッチング素子Q6の間の中点と負極母線Ln(グランド)との間にアーマチャ32(ロータコイル)が接続されている。即ち、スイッチング素子Q6に対し並列にアーマチャ32が接続されている。
各スイッチング素子Q1〜Q6には、パワーMOSFETが使用されている。なお、スイッチング素子としてIGBT(絶縁ゲートバイポーラ型トランジスタ)を使用してもよい。各スイッチング素子Q1〜Q6には、それぞれ帰還ダイオードD1〜D6が逆並列接続されている。
制御装置30は電流検出手段としての電流センサ34,35を備えている。アーマチャ32に対し直列に電流センサ34が設けられ、電流センサ34によりアーマチャ32に流れる電流(アーマチャ電流)Iaが検出される。フィールドコイル33に対し直列に電流センサ35が設けられ、電流センサ35によりフィールドコイル33に流れる電流(フィールド電流)Ifが検出される。
正極母線Lpにおけるバッテリ27側には主回路コンタクタ36が設けられている。
制御装置30は、コントローラ37を備えている。コントローラ37はマイコンとメモリ等を有し、メモリには走行モータ28を駆動するのに必要な各種制御プログラムおよびその実行に必要な各種データやマップが記憶されている。制御プログラムには、走行モータ28を回転駆動させるための制御プログラム等が含まれ、回生制動やプラギングを実行することができる。
図2においてコントローラ37は各スイッチング素子Q1〜Q6のゲートに接続されている。制御部としてのコントローラ37は、アーマチャ通電用スイッチング素子Q5,Q6及びフィールドコイル通電用スイッチング素子Q1,Q2,Q3,Q4をデューティ制御する。
コントローラ37には電流センサ34,35が接続されている。そして、コントローラ37は、各センサ34,35の検出信号に基づいて、走行モータ28を目標出力となるように制御するデューティ信号を各スイッチング素子Q1〜Q6に出力する。
コントローラ37は、乗員(オペレータ)による操作に伴い操作センサから出力される操作信号を入力して車両動作を制御する。より具体的には、コントローラ37にはディレクションスイッチ38と、アクセルセンサ39が電気的に接続されている。ディレクションスイッチ38は、ハンドルコラム21に配設されており、ディレクションレバー26の操作位置(前進位置又は後進位置)を検出する。ディレクションスイッチ38は、ディレクションレバー26の操作位置に応じた検出信号をコントローラ37に出力する。そして、コントローラ37は、ディレクションスイッチ38からの検出信号を入力することによりディレクションレバー26の操作位置が前進位置又は後進位置であることを検知する。
アクセルセンサ39はアクセルペダル25の操作量を検出する。コントローラ37はアクセルセンサ39からの信号を入力することによりアクセルペダル25の操作の有無および操作量(アクセル開度)を検知する。このアクセル開度に応じてトルクが決められ、アーマチャ32の回生電流を制御して回生トルクがアクセル開度に応じて決められる。即ち、アクセルペダル25を踏むとアーマチャ電流を多く流すようにしており、この電流を制御するためにデューティが決められる。
コントローラ37は各種の操作を検知してアクセルペダル25の操作量に応じた走行モータ28の回転速度となるように走行モータ28を制御して車両速度を調整する。
また、コントローラ37は電流センサ34,35からの信号によりアーマチャ32に流れる電流(アーマチャ電流)Ia及びフィールドコイル33に流れる電流(フィールド電流)Ifを検知する。コントローラ37は、回生制動モードからプラギングモードに切り替え可能に構成されている。フォークリフト10においては走行モータ28に回転センサが付いていない。
次に、フォークリフト10の走行モータ28の制御装置30の作用について説明する。
コントローラ37は、ディレクションレバー26がスイッチバック操作(前進から後進に操作、または、後進から前進に操作)されるとともにアクセルペダル25が踏み込まれていると回生制動モードを設定するとともに、その後に回生制動モードからプラギングモード(逆相制動モード)に移行する。以下の説明では前進から後進に切り替えた場合を想定している。コントローラ37は図3に示す処理を実行して回生制動モードからプラギングモードに切り替える。図4(a),(b),(c)には、フィールドコイル33に流れる電流(フィールド電流)If、アーマチャ32に流れる電流(アーマチャ電流)Ia、アーマチャ通電用デューティ、モータトルク、車速(モータ回転数)を示す。
図4(a)において横軸に時間をとり、縦軸にフィールドコイル33に流れる電流(フィールド電流)If、アーマチャ32に流れる電流(アーマチャ電流)Ia、アーマチャ通電用デューティをとっている。コントローラ37は、アクセル開度に応じたアーマチャ電流Iaを流すべくアクセル開度に応じたアーマチャ通電用デューティを設定する。図4(b)において横軸に時間をとり、縦軸にモータトルクをとっている。図4(c)において横軸に時間をとり、縦軸に車速(モータ回転数)をとっている。
図3に示すように、コントローラ37はステップS100でディレクションレバー26の操作により車両の走行方向(進行方向)が変わるか否か判定する。コントローラ37は車両の走行方向(進行方向)が変わると、ステップS101に移行して回生制動モードを設定する。回生制動モードにおいては、コントローラ37は例えば図2のスイッチング素子Q1,Q4,Q5をデューティ制御して図2において破線で示す電流経路でフィールドコイル33とアーマチャ32を通電する。
つまり、アーマチャ32に発生する逆起電力でアーマチャ32→スイッチング素子Q5→スイッチング素子Q1→フィールドコイル33→スイッチング素子Q4→アーマチャ32の経路でフィールドコイル33を通電する。また、アーマチャ32に発生する逆起電力による電流を、アーマチャ32→スイッチング素子Q5→バッテリ27→アーマチャ32の経路で流してアーマチャ32に発生する逆起電力をバッテリ27に戻す。
コントローラ37は図3のステップS102でアクセル開度に応じて、実際のアーマチャ電流Iaが、目標のアーマチャ電流Iaとなるようにスイッチング素子Q5(Q6)のデューティ、即ち、アーマチャデューティを決定する。コントローラ37はステップS103でアーマチャデューティがゼロか否か判定して、アーマチャデューティがゼロでなければステップS105で何も処理せず(ノーオペレーション)、ステップS103でアーマチャデューティがゼロであれば(図4のt1のタイミング)、ステップS104に移行する。コントローラ37はステップS104でフィールドコイル33に流す電流(フィールド電流)Ifを上げるべくスイッチング素子Q1,Q4のデューティを調整する。これにより回生力が保持でき、トルク変動の抑制につながる。
コントローラ37はステップS106においてアーマチャデューティがゼロ、かつ、アーマチャ32に流れる電流(アーマチャ電流)Iaの絶対値が所定の閾値Xになったか否か判定する。そして、コントローラ37はアーマチャデューティがゼロ、かつ、アーマチャ32に流れる電流(アーマチャ電流)Iaの絶対値が閾値X以下になっていないとステップS109で回生制動モードを継続する。一方、コントローラ37はステップS106でアーマチャデューティがゼロ、かつ、アーマチャ32に流れる電流(アーマチャ電流)Iaの絶対値が閾値X以下になると(図4のt2のタイミング)、ステップS107に移行してプラギングモードを設定する。つまり、アーマチャデューティがゼロ、かつ、アーマチャ32に流れる電流(アーマチャ電流)Iaの絶対値が閾値X以下でプラギングへ切り替える。
プラギングモードにおいては、コントローラ37は例えば図2のスイッチング素子Q2,Q3,Q5をデューティ制御して図2において一点鎖線で示す電流経路でフィールドコイル33とアーマチャ32の通電経路を確保する。
つまり、バッテリ27の正極→スイッチング素子Q3→フィールドコイル33→スイッチング素子Q2→バッテリ27の負極の経路でフィールドコイル33を通電する。また、アーマチャ32に対し、バッテリ27の正極→スイッチング素子Q5→アーマチャ32→バッテリ27の負極の経路で電流を流す。
プラギングモードに切り替え後において、コントローラ37は図3のステップS108でフィールドコイル33に流す電流(フィールド電流)Ifを、プラギング前のフィールドコイル33に流れていた電流を正負を逆にして流すべくスイッチング素子Q2,Q3のデューティを調整する。即ち、電流値を保持したままフィールド電流の向き(通電方向)を反転する。
このように、コントローラ37は、回生制動モードからプラギングモードに切り替え可能に構成され、回生制動モードにおいてアーマチャ通電用スイッチング素子Q5,Q6のデューティがゼロ、かつ、アーマチャ32に流れる電流(アーマチャ電流)Iaの絶対値が閾値X以下になると、それまでの回生制動モードからプラギングモードに切り替える。この回生制動モードからプラギングモードへの切り替えの際に、切替前において、アーマチャ通電用スイッチング素子Q5,Q6のデューティがゼロとなったらフィールドコイル33に流す電流(フィールド電流)Ifを増やし、切替後において、フィールドコイル33に流す電流Ifを、切替前のフィールドコイル33に流す電流Ifと同値かつ逆向きとするようにデューティ制御を行う。
図8は比較例であり、機台が停止するまで回生制動し続けた場合のフィールド電流Ifとアーマチャ電流Iaの挙動を示す。スイッチバック操作に伴う回生制動時に制動トルクを維持しようとしてフィールド電流Ifを大きくすると、フィールド電流Ifが、車両速度がゼロに向かうにつれて無限に大きくすることになり、フォークリフトの停止時に慣性力で動くような動作となり止まりにくくなり、回生制動からプラギングに切り替える必要がある。
これに対し、図3に示す本実施形態では、切替タイミングの検出について、モータが発生する誘起電圧が回転数に比例するので、アーマチャ通電用デューティ(アーマチャPWM出力デューティ)も回転数に依存する事を利用する。誘起電圧が低下すると、モータに流れるアーマチャ電流Iaも低下する。よって、アーマチャ通電用デューティ=0かつアーマチャ電流Iaの絶対値が閾値X以下を切替検出条件とする。つまり、フォークリフト10における回生制動からプラギングへの移行の際の挙動として、図4(c)に示すように制動にてモータ回転が低下してくると、回生制動では図4(b)に示すようにトルクが保てなくなるので、プラギングへ切り替える。その際、モータから発生する誘起電圧が回転数に比例するので、アーマチャ通電用デューティも回転数に依存する事を利用して、誘起電圧が低下すると、モータに流れるアーマチャ電流Iaも低下するため、なだらかにトルクが下がったタイミング(トルクが低下してゼロに近づいたタイミング)t2で切り替える。仮に回転センサが装着されているならば図4(c)に示すようにモータ回転数が閾値になるとプラギングに切り替えることになる。
また、切替前後でのトルク変動抑制について、モータ発生トルクが、フィールド電流Ifとアーマチャ電流Iaとの乗算値に比例するので、切替前においてはアーマチャ通電用デューティ=0になったら(図4のt1のタイミング)、フィールド電流Ifを増やして回生制動力を保持しつつトルク変動を抑制する。つまり、切り替え前はアーマチャ通電用デューティ=0になったタイミングt1でフィールド電流Ifを大きくする。モータトルクTはフィールド電流If×アーマチャ電流Iaに比例するのでトルクをフィールド電流Ifの増加で保持する。
また、切替後においてはフィールド電流If(切替後)を、切替前のフィールド電流Ifの(−1)倍したものとする。つまり、切り替え後は、切替後のフィールド電流Ifを(−1)×切替前のフィールド電流Ifにすることでトルク変動を抑制する。即ち、回生制動時に用いていたトルク(フィールド電流Ifとアーマチャ電流Iaに比例するトルク)力をプラギング時に用いるトルクに換算するためにフィールド電流について正負を逆にして用いることによりトルクの変動を抑制することができる。
このようにして、回転センサなしでも回生制動からプラギングに切り替えることができる。また、アーマチャデューティがゼロのときにおいてはアーマチャ電流Iaは、係数×フィールド電流If×モータ回転数で表されるので、フィールド電流Ifを上昇させることによりトルク(=係数×If×Ia)を低回転域でも調整でき、低回転領域でも制動力をコントロールしてトルク変動を抑制することができる。さらに、トルクを保持したまま回生制動からプラギングに切り替えることができる。
上記実施形態によれば、以下のような効果を得ることができる。
(1)車両用走行モータの制御装置の構成として、制御部としてのコントローラ37は、回生制動モードからプラギングモードに切り替え可能に構成されている。コントローラ37は、回生制動モードにおいてアーマチャ通電用スイッチング素子Q5,Q6のデューティがゼロ、かつ、電流検出手段としての電流センサ34により検出されたアーマチャ32に流れる電流(アーマチャ電流)Iaの絶対値が閾値X以下になると、それまでの回生制動モードからプラギングモードに切り替える切替手段(切替機能)を有する。よって、アーマチャ32に流れる電流を切替タイミングの検出要素として捉えることにより回転センサが付いていない走行モータ28に対し回生制動モードからプラギングモードに切り替えることができる。
(2)切替手段としてのコントローラ37は、トルク制御手段(トルク制御機能)を更に有する。トルク制御機能は、回生制動モードからプラギングモードへの切り替えの際に、切替前において、アーマチャ通電用スイッチング素子Q5,Q6のデューティがゼロとなったらフィールドコイル33に流す電流を増やし、切替後において、フィールドコイル33に流す電流を、切替前のフィールドコイル33に流す電流と同値かつ逆向きとするようにデューティ制御を行う。よって、回転センサが付いていない走行モータ28に対し回生制動モードからプラギングモードに切り替える際に、切替の前後でのトルク変動を抑制することができる。
(3)フォークリフトに搭載されるものであるので、実用的である。
(第2の実施形態)
次に、第2の実施形態を、第1の実施形態との相違点を中心に説明する。
第2の実施形態においては、図3に代わり図5に示す構成としている。図3に対し図5ではステップS200の処理とステップS201の処理を追加している。
本実施形態ではプラギングの切り替えを、デューティ=0かつアーマチャ電流Iaの絶対値が閾値以下の条件では検出できない場合、具体的には坂路のように外力が加わる場合においても、プラギングに切り替え可能となっている。
図6,7を用いて一般的な減速時におけるアーマチャ電流Ia、フィールド電流Ifの挙動について言及する。
フォークリフト10での回生制動時におけるアーマチャ通電用デューティの変化量について、平坦路においては、図6(a)のT1の期間において機台停止際のアーマチャ電流Iaはモータ28の誘起電力の低下に伴い、0Aになる。よって、図6(b)に示すように、アーマチャ電流Iaの変化量はある程度大きな値となる。一方、坂路においては、図7(a)のT10の期間において機台に外力が働きタイヤが回ることによって生じる誘起電力によってアーマチャ電流Iaはゼロにならずに微速で坂路をずり落ちる虞がある。つまり、図7(b)に示すように、アーマチャ電流Iaの変化量が平坦路のときと比べて小さい。よって、回生制動からプラギングへの切り替え(遷移)の判定を電流の固定閾値のみで規定した場合、機台と外力の異なったつり合いを加味できずに、切替(遷移)誤判定につながる。
つまり、直流分巻モータの制御について、坂路でスイッチバック操作をした際、停止の際においては回生制動力より外力(路面の傾斜、荷重等に応じた力)が上回るため機台が停止せずに微速でずり下がる現象が発生しうる。そこで、回生制動からプラギングに切り替えて遷移させる必要があるが、平坦路と坂路とでアーマチャ電流Iaとフィールド電流Ifの振る舞いが異なるため、フィーリングを統一するのが困難である。つまり、平坦路でフィーリングを調整すると坂路において回生制動からプラギングに遷移(切り替え)できない現象が発生する。
そこで、図5のステップS200,S201の処理を追加してモータ28が発生する誘起電圧は回転数に比例するのでアーマチャ電流Iaの変化量が小さい、即ち、減速していないことを判別して回生制動からプラギングへ切り替えて遷移させる。つまり、図5のステップS200でアーマチャ電流Iaの変化量(今回のアーマチャ電流Ia(n)から前回のアーマチャ電流Ia(n−1)を減算した値)の絶対値が閾値X1よりも小さい、もしくは、ステップS201で今回のアーマチャ電流Ia(n)の絶対値が閾値X2以下になったことを判定することにより、回生制動からプラギングに切り替えて遷移させるタイミングを検出することができる。
上記実施形態によれば、以下のような効果を得ることができる。
(3)切替手段としてのコントローラ37は、アーマチャ通電用スイッチング素子Q5,Q6のデューティがゼロ、かつ、電流検出手段としての電流センサ34により検出されたアーマチャ32に流れる電流の絶対値が閾値以下でない場合において、回生制動モードにおいて電流センサ34により検出されたアーマチャ32に流れる電流Iaの変化量の絶対値が閾値よりも小さいと、それまでの回生制動モードからプラギングモードに切り替える。よって、回生制動モードからプラギングモードに切り替える際に、平坦路でも坂路でもフィーリングを統一しつつ行うことができる。
実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
・フォークリフトに適用したが、これに限らない。例えば、フォークリフト以外の産業車両でもよいし、産業車両以外の車両であってもよい。
10…フォークリフト、28…走行モータ、30…制御装置、34…電流センサ、37…コントローラ、Q1,Q2,Q3,Q4…フィールドコイル通電用スイッチング素子、Q5,Q6…アーマチャ通電用スイッチング素子。

Claims (4)

  1. 走行モータとして直流分巻モータを用い、前記直流分巻モータのアーマチャを通電する回路としてアーマチャ通電用スイッチング素子のブリッジ構成とするとともに、前記直流分巻モータのフィールドコイルを通電する回路としてフィールドコイル通電用スイッチング素子のブリッジ構成とした車両用走行モータの制御装置であって、
    前記アーマチャ通電用スイッチング素子及び前記フィールドコイル通電用スイッチング素子をデューティ制御する制御部と、
    前記アーマチャに流れる電流を検出する電流検出手段と、
    を備え、
    前記制御部は、回生制動モードからプラギングモードに切り替え可能に構成され、
    前記制御部は、回生制動モードにおいて前記アーマチャ通電用スイッチング素子のデューティがゼロ、かつ、電流検出手段により検出された前記アーマチャに流れる電流の絶対値が閾値以下になると、それまでの回生制動モードからプラギングモードに切り替える切替手段を有し、
    前記制御部は、前記切替手段により回生制動モードからプラギングモードへの切り替えの際に、切替前において、前記アーマチャ通電用スイッチング素子のデューティがゼロとなったら前記フィールドコイルに流す電流を増やし、切替後において、前記フィールドコイルに流す電流を、切替前のフィールドコイルに流す電流と同値かつ逆向きとするようにデューティ制御を行うトルク制御手段を更に有することを特徴とする車両用走行モータの制御装置。
  2. 前記切替手段は、前記アーマチャ通電用スイッチング素子のデューティがゼロ、かつ、電流検出手段により検出された前記アーマチャに流れる電流の絶対値が閾値以下でない場合において、回生制動モードにおいて前記電流検出手段により検出された前記アーマチャに流れる電流の変化量の絶対値が閾値よりも小さいと、それまでの回生制動モードからプラギングモードに切り替えることを特徴とする請求項1に記載の車両用走行モータの制御装置。
  3. 走行モータとして直流分巻モータを用い、前記直流分巻モータのアーマチャを通電する回路としてアーマチャ通電用スイッチング素子のブリッジ構成とするとともに、前記直流分巻モータのフィールドコイルを通電する回路としてフィールドコイル通電用スイッチング素子のブリッジ構成とした車両用走行モータの制御装置であって、
    前記アーマチャ通電用スイッチング素子及び前記フィールドコイル通電用スイッチング素子をデューティ制御する制御部と、
    前記アーマチャに流れる電流を検出する電流検出手段と、
    を備え、
    前記制御部は、回生制動モードからプラギングモードに切り替え可能に構成され、
    前記制御部は、回生制動モードにおいて前記アーマチャ通電用スイッチング素子のデューティがゼロ、かつ、電流検出手段により検出された前記アーマチャに流れる電流の絶対値が閾値以下になると、それまでの回生制動モードからプラギングモードに切り替える切替手段を有し、
    前記切替手段は、前記アーマチャ通電用スイッチング素子のデューティがゼロ、かつ、電流検出手段により検出された前記アーマチャに流れる電流の絶対値が閾値以下でない場合において、回生制動モードにおいて前記電流検出手段により検出された前記アーマチャに流れる電流の変化量の絶対値が閾値よりも小さいと、それまでの回生制動モードからプラギングモードに切り替えることを特徴とする車両用走行モータの制御装置。
  4. フォークリフトに搭載されるものであることを特徴とする請求項1〜3のいずれか1項に記載の車両用走行モータの制御装置。
JP2016072538A 2016-03-31 2016-03-31 車両用走行モータの制御装置 Active JP6544282B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016072538A JP6544282B2 (ja) 2016-03-31 2016-03-31 車両用走行モータの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016072538A JP6544282B2 (ja) 2016-03-31 2016-03-31 車両用走行モータの制御装置

Publications (2)

Publication Number Publication Date
JP2017184572A JP2017184572A (ja) 2017-10-05
JP6544282B2 true JP6544282B2 (ja) 2019-07-17

Family

ID=60007839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016072538A Active JP6544282B2 (ja) 2016-03-31 2016-03-31 車両用走行モータの制御装置

Country Status (1)

Country Link
JP (1) JP6544282B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112046301B (zh) * 2020-09-14 2022-10-14 广州小鹏自动驾驶科技有限公司 一种车辆电机的扭矩控制方法、装置和车辆

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950503U (ja) * 1983-03-23 1984-04-03 株式会社日立製作所 電気車制動制御装置
JP2000125419A (ja) * 1998-10-16 2000-04-28 Toyota Autom Loom Works Ltd 直流分巻電動機の制御方法、及びその制御方法を用いた産業用車両の前後進制御装置
JP2000324605A (ja) * 1999-05-14 2000-11-24 Komatsu Ltd 直流電動車両の制動制御装置
JP2005312109A (ja) * 2004-04-19 2005-11-04 Moric Co Ltd 電動車両の回生制動システム

Also Published As

Publication number Publication date
JP2017184572A (ja) 2017-10-05

Similar Documents

Publication Publication Date Title
JP4062085B2 (ja) 電気式産業車両の操舵装置
JP5052480B2 (ja) 自動操舵制御装置
JP5989530B2 (ja) 電動式駐車ブレーキ制御装置
US11312409B2 (en) Steering control device
JP6343019B2 (ja) 運搬車両
JP3536785B2 (ja) 産業車両の走行制御装置
JP6544282B2 (ja) 車両用走行モータの制御装置
JP2012254705A (ja) 車両用操舵装置及び荷役車両
JP6323221B2 (ja) モータ制御装置
JP6569579B2 (ja) 車両用走行モータの制御装置
JP5888251B2 (ja) 車両の自動操舵装置
JP6575417B2 (ja) 車両用走行モータの制御装置
JP2011046326A (ja) 同軸二輪車及びその制御方法
JP6508751B1 (ja) 荷役車両
JP2010012979A (ja) 電動パワーステアリング装置
JP2002186105A (ja) 電気車両の回生制動制御装置
JP6544283B2 (ja) 直流モータの制御装置、及び、産業車両
JP3736094B2 (ja) バッテリ車の走行制御装置
JP2015000617A (ja) 電動フォークリフトのパワーステアリング用の電力変換装置およびそれを用いた電動フォークリフト
JP3761151B2 (ja) フォークリフトの油圧制御装置
JP3777571B2 (ja) 荷役車両の走行制御装置及び制御方法
WO2022264879A1 (ja) 自動二輪車の制御装置
JP5769006B2 (ja) 車両用操舵装置及び荷役車両
JP4289719B2 (ja) 電動車
JP2001139294A (ja) フォークリフトの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190603

R151 Written notification of patent or utility model registration

Ref document number: 6544282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151