JP6522956B2 - クロック生成装置、クロック生成モジュール及びクロックソース選択方法 - Google Patents

クロック生成装置、クロック生成モジュール及びクロックソース選択方法 Download PDF

Info

Publication number
JP6522956B2
JP6522956B2 JP2015005491A JP2015005491A JP6522956B2 JP 6522956 B2 JP6522956 B2 JP 6522956B2 JP 2015005491 A JP2015005491 A JP 2015005491A JP 2015005491 A JP2015005491 A JP 2015005491A JP 6522956 B2 JP6522956 B2 JP 6522956B2
Authority
JP
Japan
Prior art keywords
clock
clock signal
signal
terminal
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015005491A
Other languages
English (en)
Other versions
JP2016131339A (ja
Inventor
貴光 羽深
貴光 羽深
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Lapis Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapis Semiconductor Co Ltd filed Critical Lapis Semiconductor Co Ltd
Priority to JP2015005491A priority Critical patent/JP6522956B2/ja
Publication of JP2016131339A publication Critical patent/JP2016131339A/ja
Application granted granted Critical
Publication of JP6522956B2 publication Critical patent/JP6522956B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Description

本発明は、クロック生成装置、クロック生成モジュール及びクロックソース選択方法に関する。
発振器からの発振信号に基づいてクロック信号を生成するクロック生成装置として、精度が異なる2つの発振器を接続可能とし、接続された発振器の種類に応じて内部の回路の接続を切替えてクロック信号を生成するようにしたものが提案されている(例えば、特許文献1参照)。かかる装置では、接続された発振器の種類に応じた入力電位や抵抗値の相違に基づく電流値の大小に応じて、内部の回路の接続を選択的に切替えて、クロック信号の生成を行う。
特開2005−057478号公報
このようなクロック生成装置では、電圧値や電流値を基準値と比較してその大小を判定することにより、クロックソースの選択、すなわち、発振器の種類に応じた内部回路の接続の切替えを行う。したがって、電圧値や電流値等のアナログ値を用いるため、環境温度の変化、製造ばらつき等により誤動作が発生する場合がある。
また、かかるクロック生成装置は、接続可能な2つの発振器がともに水晶振動子やRC発振器等の発振源を駆動する回路を含まないパッシブ駆動型の振動子から構成されている場合には動作可能であるものの、2つの発振器のうちの1つが例えば発振源を駆動する回路を含むTCXO(temperature compensated crystal oscillator)等のアクティブ駆動型の発振器が接続された場合には、対応していない。
本発明は、上記問題を解決するためになされたものであり、電圧印加によって発振する振動子、又は自己発振して発振信号を生成する発振器が接続されるとマスタクロック信号を生成するクロック生成装置であって、前記振動子の一端が接続される又は基準電位が印加される第1端子と、前記振動子の他端又は前記発振器が接続される第2端子と、前記第1及び前記第2端子に電圧を印加することにより第1クロック信号を生成する第1クロック信号生成部と、前記第2端子を介して前記発振信号が供給された場合に前記発振信号に基づき第2クロック信号を生成する第2クロック信号生成部と、前記第1クロック信号及び前記第2クロック信号のうちの一方を前記マスタクロック信号として出力する出力部と、前記マスタクロック信号のパルス数をカウントするカウンタと、前記第1端子及び前記第1クロック信号生成部を接続又は非接続とする第1接続切替部と、前記第2端子を前記第1クロック信号生成部及び前記第2クロック信号生成部のうちのいずれか一方と接続する第2接続切替部と、を有し、前記カウンタは、電源投入時点からカウントを開始し、前記第1接続切替部は、前記電源投入時点を起算点とする所定期間の経過時点までは前記第1端子及び前記第1クロック信号生成部を非接続とし、前記所定期間の経過時点で前記パルス数が前記所定数に達しなかった場合には前記第1端子及び前記第1クロック信号生成部を接続し、前記所定期間の経過時点で前記パルス数が前記所定数に達した場合には前記第1端子及び前記第1クロック信号生成部を非接続に維持し、前記第2接続切替部は、前記電源投入時点を起算点とする前記所定期間の経過時点までは前記第2端子を前記第2クロック信号生成部と接続し、前記所定期間の経過時点で前記パルス数が前記所定数に達しなかった場合には前記第2端子の接続先を前記第1クロック信号生成部に切り替え、前記所定期間の経過時点で前記パルス数が前記所定数に達した場合には前記第2端子と前記第2クロック信号生成部との接続を維持し、前記出力部は、前記電源投入時点から前記所定期間の経過時点までは前記第2クロック信号生成部からの出力を前記マスタクロック信号として出力し、前記電源投入時点を起算点とする前記所定期間内において前記パルス数が所定数に達している場合には前記第2クロック信号生成部からの出力を前記マスタクロック信号として出力する一方、前記所定期間内に前記パルス数が前記所定数に満たない場合には前記第1クロック信号生成部からの出力を前記マスタクロック信号として出力することを特徴とする。
また、本発明に係るクロックソース選択方法は、電圧印加によって発振する振動子の一端又は基準電位に接続される第1端子と、前記振動子の他端又は自己発振して発振信号を生成する発振器に接続される第2端子と、を有し、前記振動子又は前記発振器の接続に応じてマスタクロック信号を出力するクロック生成装置におけるクロックソース選択方法であって、前記クロック生成装置の電源投入時点から所定期間が経過するまでの間、前記第2端子を介して供給された信号を前記マスタクロック信号として出力するステップと、前記電源投入時点から前記マスタクロック信号のパルス数をカウントするステップと、前記電源投入時点を起算点とする前記所定期間内に前記パルス数が所定数に達しない場合には、前記所定期間の経過後に前記クロック生成装置の第1端子と前記第2端子に電圧を印加することにより前記マスタクロックを生成して出力し、前記所定期間内に前記パルス数が所定数に達した場合には、前記所定期間の経過後も引き続き前記第2端子を介して供給された信号を前記マスタクロックとして出力するステップと、を含むことを特徴とする。


本発明によれば、温度変化、製造ばらつきに拘わらず、接続された振動子又は発振器がパッシブ駆動型であるのかアクティブ駆動型であるのかを自動的に判別して、クロックの生成を行うことが可能なクロック生成装置を提供することが可能となる。
本発明に係るクロック生成装置の回路構成を示すブロック図である。 クロックソース選択回路の構成を示すブロック図である。 水晶振動子XTが接続された場合のクロック生成装置の回路構成を示すブロック図である。 水晶振動子XTが接続された場合のクロック生成装置の動作を示すタイムチャートである。 TCXOが接続された場合のクロック生成装置の回路構成を示すブロック図である。 TCXOが接続された場合のクロック生成装置の動作を示すタイムチャートである。
以下、本発明の実施例を図面を参照しつつ詳細に説明する。図1は、本発明に係るクロック生成装置10の構成を示すブロック図である。XI端子11は、水晶振動子または接地電位(GND)を接続するための第1端子である。XO/TCXO端子12は、水晶振動子XT又は発振器としての例えばTCXO(Temperature Compensated Crystal Oscillator)を接続するための第2端子である。クロック生成装置10は、水晶振動子またはTCXOが接続されることにより、クロック生成モジュールを構成する。
水晶振動子は、XI端子11及びXO/TCXO端子12を介してクロック生成装置10から電圧を印加されることによって発振する、パッシブ型の振動子である。したがって、水晶振動子を用いる場合、XI端子11及びXO/TCXO端子12に水晶振動子を接続し、電圧を印加する。
TCXOは、水晶振動子と共にその周波数温度特性を補正する温度補償用回路や反転増幅器等を備えており、クロック生成装置10側からの電圧供給を受けることなく自己発振して発振信号を生成するアクティブ駆動型の発振器である。したがって、発振器としてTCXOを用いる場合、XO/TCXO端子12にTCXO振動子を接続し、XI端子11には接地電位を印加する。
スイッチ13は、クロックソース選択回路19からのクロックソース選択信号CSに応じて、スイッチング端子13aとスイッチング端子13bとを接続又は非接続とする。例えば、クロックソース選択信号CSが論理レベル1の場合にはスイッチング端子13aと13bとを接続(すなわち、ON)し、クロックソース選択信号CSが論理レベル0の場合にはスイッチング端子13aとスイッチング端子13bとを非接続(すなわち、OFF)とする。すなわち、スイッチ13は、クロックソース選択信号CSが論理レベル1の場合にはXI端子11とインバータ15とを接続し、クロックソース選択信号CSが論理レベル0の場合にはXI端子11とインバータ15との間の接続を遮断する。スイッチ13は、クロック生成装置10の電源投入時にはOFFの状態となるように設定されている。
スイッチ14は、クロックソース選択信号CSに応じて、スイッチング端子14aをスイッチング端子14b及びスイッチング端子14cのうちの一方と接続する。例えば、クロックソース選択信号CSが論理レベル1の場合にはスイッチング端子14aと14bとを接続し、クロックソース選択信号CSが論理レベル0の場合にはスイッチング端子14aと14cとを接続する。すなわち、スイッチ14は、クロックソース選択信号CSが論理レベル1の場合にはXO/TCXO端子12とヒステリシスコンパレータ16とを接続し、クロックソース選択信号CSが論理レベル0の場合にはXO/TCXO端子12とバッファ17とを接続する。スイッチ14は、クロック生成装置10の電源投入時にはスイッチング端子14aと14cとを接続した状態となるように設定されている。
インバータ15は、スイッチ13を介してXI端子11から供給された発振信号を反転し、その信号レベルを増幅した信号を反転増幅信号ASとしてヒステリシスコンパレータ16及びスイッチ14のスイッチング端子14bに供給する。
ヒステリシスコンパレータ16は、反転増幅信号ASを2値化し、これをクロック信号CK1としてセレクタ18に供給する。
バッファ17は、スイッチ14を介してXO/TCXO端子12から供給された発振信号を2値化して増幅し、これをクロック信号CK2としてセレクタ18に供給する。
セレクタ18は、クロックソース選択信号CSに応じて、CK1又はCK2のいずれか一方を選択し、選択した方の信号をマスタクロックMCとして出力する。すなわち、セレクタ18は、クロック信号を出力するクロック信号出力部である。例えば、セレクタ18は、クロックソース選択信号CSが論理レベル1の場合にはCK1を選択して、これをマスタクロックMCとして内部回路及びクロックソース選択回路19に供給する。他方、クロックソース選択信号CSが論理レベル0の場合、セレクタ18はCK2を選択し、これをマスタクロックMCとして内部回路及びクロックソース選択回路19に供給する。なお、セレクタ18は、クロック生成装置10の電源投入時にはCK2を選択した状態となるように設定されている。
クロックソース選択回路19は、マスタクロックMCに基づいて、クロックソース選択信号CSを生成してスイッチ13、スイッチ14及びセレクタ18に供給する。
図2は、クロックソース選択回路19の構成を示すブロック図である。クロックソース選択回路19は、カウンタ21、レジスタ22、比較回路23、インバータ24、インバータ25、セレクタ26、FF(Flip Flop)27及び低速クロック発振回路28を含む。
カウンタ21は、マスタクロックMCの供給を受け、これを動作クロックとしてアップカウントを行う。すなわち、カウンタ21は、マスタクロックMCの信号パルスをカウントする。カウンタ21は、カウント値CNを比較回路23に供給する。
レジスタ22は、所定の固定値FN(FNは自然数)を記憶し、これを比較回路23に供給する。FNは、例えば“7”である。
比較回路23は、カウント値CNと固定値FNとを比較し、これらが一致している場合に論理レベル1、一致していない場合には論理レベル0の比較信号TSをインバータ24及びセレクタ26に供給する。
インバータ24は、比較信号TSのレベルを反転したイネーブル信号ENを、カウンタ21に供給する。
インバータ25は、FF27から出力されたクロックソース選択信号CSを反転し、これを反転信号RSとしてセレクタ26に供給する。
セレクタ26は、クロックソース選択信号CS及び反転信号RSのうちのいずれか一方を比較信号TSに応じて選択し、これを選択信号SSとしてFF27に供給する。例えば、セレクタ26は、比較信号TSが論理レベル1である場合にはクロックソース選択信号CS、論理レベル0である場合には反転増幅信号RSを選択し、これを選択信号SSとしてFF27に供給する。
FF27は、低速クロック発振回路28から供給された低速クロック信号LSの立ち上がりエッジに同期して選択信号SSをラッチし、これをクロックソース選択信号CSとして出力する。すなわち、クロックソース選択信号出力部としてのFF27は、クロックソース選択信号CSをスイッチ13、スイッチ14及びセレクタ18に供給する。
低速クロック発振回路28は、クロック生成装置10の電源投入時から所定時間T1経過後に立ち上がる低周波数の低速クロック信号LSを生成し、これをFF27のクロック入力端子に供給する。
次に、クロック生成装置10の動作について説明する。
[水晶振動子が接続された場合]
図3は、水晶振動子XTが接続された状態で電源が投入された直後のクロック生成装置10の構成を示すブロック図である。水晶振動子XTは、一端がXI端子11に接続され、他端がXO/TCXO端子12に接続されている。また、水晶振動子XTの一端及びXI端子11は、コンデンサC1を介して接地電位に接続されている。水晶振動子XTの他端及びXO/TCXO端子12は、コンデンサC2を介して接地電位に接続されている。スイッチ13はOFF状態であり、スイッチ14はスイッチング端子14aと14cとを接続した状態にある。
図4は、水晶振動子XTが接続された状態で電源が投入された直後のクロック生成装置10及びクロックソース選択回路19の内部の動作を示すタイムチャートである。以下、低速クロック発振回路28の出力信号である低速クロック信号LSが時点T1で立ち上がる場合を例として、各部の動作を説明する。
(電源投入から時点T1まで)
クロック生成装置10の電源投入直後はスイッチ13がOFFの状態であるため、水晶振動子XTは発振せず、発振信号はXI端子11に入力されない(図4(a))。また、水晶振動子XTが発振しないため、XO/TCXO端子12にも発振信号は入力されない(図4(b))。
発振信号がXI端子11から入力されないため、ヒステリシスコンパレータ16は論理レベル0のクロック信号CK1をセレクタ18に供給する(図4(c))。また、XO/TCXO端子12からの発振信号が入力されないため、バッファ17は論理レベル0のクロック信号CK2をセレクタ18に供給する(図4(d))。
セレクタ18は、クロック生成装置10の電源投入直後はバッファ17を選択しているため、クロック信号CK2をマスタクロックMCとして出力する。したがって、マスタクロックMCは論理レベル0となる(図4(e))。
クロックソース選択回路19のカウンタ21は、マスタクロックMCの信号パルスをカウントする。このため、マスタクロックMCが論理レベル0である間、カウンタ21はアップカウントを行わない(図4(f))。
比較回路23は、カウンタ21から供給されるカウント値CNが0であるため、レジスタ22に記憶された固定値FN、例えば、“7”とカウント値CNとが不一致であることを示す論理レベル0の比較信号TSをセレクタ26に供給する(図4(g))。
セレクタ26は、論理レベル0の比較信号TSに応じて、インバータ25からの反転信号RSを選択し、これを選択信号SSとしてFF27に供給する。すなわち、セレクタ26は、論理レベル0のクロックソース選択信号CSを反転した論理レベル1の信号を選択信号SSとして、FF27に供給する(図4(h))。
低速クロック発振回路28は、時点T1までの間、論理レベル0の低速クロック信号LSを出力する(図4(i))。
FF27は、低速クロック発振回路28から供給された低速クロック信号LSが論理レベル0の間、セレクタ26からの選択信号SSをラッチせず、論理レベル0のクロックソース選択信号CSを出力する(図4(j))。
(時点T1以降)
低速クロック信号LSは、時点T1で立ち上がり、論理レベル1となる。低速クロック発振回路28は、時点T1以降、論理レベル1の低速クロック信号LSを出力する(図4(h))。
時点T1では、FF27には、インバータ25の出力信号、すなわち論理レベル0のクロックソース選択信号CSを反転した論理レベル1の選択信号SSが供給されている。そのため、FF27は、低速クロック信号LSの立ち上がりに同期して、セレクタ26から供給された論理レベル1の選択信号SSをラッチし、論理レベル1のクロックソース選択信号CSを論理レベル1に切り換える(図4(i))。
論理レベル1のクロックソース選択信号CSにより、スイッチ13はON状態となり、スイッチ14はスイッチング端子14aと14bとを接続した状態となる。これにより、インバータ15の入力端子がXI端子11、出力端子がXO/TCXO端子12に接続された状態となり、XI端子11及びXO/TCXO端子12に電圧が印加され、水晶振動子XTが発振する(図4(a)、(b))。
ヒステリシスコンパレータ16は、インバータ15を介して供給された反転増幅信号ASを2値化した発振信号を、クロック信号CK1としてセレクタ18に供給する(図4(c))。
この間、スイッチ14のスイッチング端子14aと14cとが非接続の状態となり、バッファ17には発振信号が供給されないため、バッファ17は論理レベル0のクロック信号CK2をセレクタ18に供給する(図4(d))。
セレクタ18は、論理レベル1のクロックソース選択信号CSの供給を受け、クロック信号CK1を選択し、これをマスタクロックMCとして出力する(図4(e))。
カウンタ21は、マスタクロックMCの信号パルスをアップカウントする。カウンタ21のカウント値が“7”に到ると、比較回路23は、カウント値CNと固定値FNとが一致したことを示す論理レベル1の比較信号TSを、インバータ24及びセレクタ26に供給する(図4(g))。
インバータ24は、論理レベル1の比較信号TSを反転した論理レベル0の信号をカウンタ21に供給する。カウント値が“7”になった時点T2で、カウンタ21はディセーブル状態となり、カウント動作を停止する(図4(f))。
セレクタ26は、論理レベル1の比較信号TSに応じて、クロックソース選択信号CSを選択して、FF27に供給する(図4(i))。
よって、FF27は、時点T2以後も、論理レベル1のクロックソース選択信号CSの出力を維持する(図4(j))。
[TCXOが接続された場合]
図5は、TCXOが接続された状態で電源が投入された直後のクロック生成装置10の構成を示すブロック図である。TCXOは、XO/TCXO端子12に接続されている。XI端子11には、接地電位が印加されている。スイッチ13はOFF状態であり、スイッチ14はスイッチング端子14aと14cとを接続した状態にある。
図6は、TCXOが接続された状態で電源が投入された直後のクロック生成装置10及びクロックソース選択回路19の内部の動作を示すタイムチャートである。
XI端子11には接地電位が印加されており(図6(a))、XO/TCXO端子12にはTCXOの発振信号が入力される(図6(b))。
発振信号がXI端子11から入力されないため、ヒステリシスコンパレータ16は論理レベル0のクロック信号CK1をセレクタ18に供給する(図6(c))。バッファ17にはXO/TCXO端子12、スイッチ14を介してTCXOの発振信号が供給される。バッファ17は、これを2値化して得た発振信号をクロック信号CK2としてセレクタ18に供給する(図6(d))。
この間、セレクタ18は、クロック信号CK2を選択しているため、これをマスタクロックMCとして出力する(図6(e))。
クロックソース選択回路19のカウンタ21は、マスタクロックMCの信号パルスをアップカウントする(図6(f))。
比較回路23は、カウンタ21によるカウント値CNが“7”に達するまでの間は、カウント値CNと固定値FNとが不一致であることを示す論理レベル0の比較信号TSを、インバータ24及びセレクタ26に供給する。カウント値が“7”になると、比較回路23は、カウント値CNと固定値FNとが一致したことを示す論理レベル1の比較信号TSを、インバータ24及びセレクタ26に供給する(図6(g))。
インバータ24は、論理レベル1の比較信号TSを反転した論理レベル0のイネーブル信号ENをカウンタ21に供給する。カウント値が“7”になった時点T0で、カウンタ21はディセーブル状態となり、カウント動作を停止する(図6(f))。
セレクタ26は、時点T0までは、比較回路23から論理レベル0の比較信号TSの供給を受けるため、インバータ25からの反転信号RSを選択してFF27に供給する。すなわち、時点T0までの間、セレクタ26は、論理レベル1の選択信号SSをFF27に供給する。時点T0以降は、比較回路23から論理レベル1の比較信号TSの供給を受けるため、セレクタ26は、クロックソース選択信号CSを選択してFF27に供給する。すなわち、時点T0以降は、セレクタ26は、論理レベル0の選択信号SSをFF27に供給する(図6(h))。
低速クロック発振回路28は、時点T1まで論理レベル0の低速クロック信号LSを出力し、時点T1以降は、論理レベル1の低速クロック信号LSの出力を維持する(図6(i))。
FF27には、低速クロック信号LSが立ち上がる時点T1で、論理レベル0の選択信号SSが供給されている。したがって、FF27は、時点の如何にかかわらず、論理レベル0のクロックソース選択信号CSを出力する(図6(j))。
以上のように、図1に示すクロック生成装置10では、まず、パッシブ駆動型である水晶振動子用の発振回路(15、16)と第1の入力端子(11)との接続を第1のスイッチ(13)にて遮断した状態で、第2の入力端子(12)からの信号のパルス数をカウンタ(21)によってカウントする。
ここで、電源投入時から所定期間経過した時点(T1)でカウンタのカウント値(CN)が所定値(FN)に到らなかった場合には、クロック生成装置10は、第1及び第2の入力端子に水晶振動子が接続されていると判断し、第1のスイッチにて第1の入力端子と発振回路とを接続する。これにより、第1及び第2の入力端子に接続された水晶振動子が発振動作を開始する。よって、この際、クロック生成装置10は、発振回路において生成されたクロック信号(CK1)をマスタクロック(MC)として出力する。
一方、電源投入時から所定期間経過した時点でカウンタのカウント値が所定値に到達した場合には、クロック生成装置10は、第2の入力端子にアクティブ駆動型の発振器であるTCXOが接続されていると判断し、第2の入力端子から供給された信号を2値化して増幅(17)して得たクロック信号(CK2)を、マスタクロックとして出力する。
かかる構成により、クロック生成装置10は、接続された振動子又は発振器が水晶振動子のようなパッシブ駆動型の振動子であるのか、又はTCXOのようなアクティブ駆動型の発振器であるのかを自動的に判定し、その接続された振動子又は発振器に対応した処理回路によって生成されたクロック信号をマスタクロックとして出力するようにしている。
よって、クロック生成装置10によれば、接続されている振動子又は発振器自体の出力レベルに基づきその振動子又は発振器がアクティブ型であるのか或いはパッシブ型であるのかを判断する場合に比べて、環境温度及び製造ばらつきの影響による誤動作のリスクを回避することが可能となる。つまり、クロック生成装置10によれば、環境温度の変化及び製造ばらつきが生じていても、接続されている振動子又は発振器がアクティブ型の発振器(例えばTCXO)であるのか或いはパッシブ型の振動子(水晶振動子)であるのかを正しく判断し、その振動子又は発振器に対応したクロック信号の生成処理を施すことが可能となるのである。
なお、上記実施例では、振動子として水晶振動子を用いる例について説明した。しかし、これに限られず、例えばセラミック発振子等の他のパッシブ駆動型の振動子を用いてもよい。また、発振器としてTCXOを用いる例について説明した。しかし、これに限られず、例えばSPXO(Single Package Crystal Oscillator)等の他のアクティブ駆動型の発振器を用いてもよい。
また、上記実施例では、TCXOを用いる場合に、XI端子11を接地電位に接続する例について示した。しかし、これに限られず、所定の固定電位に接続されるものであればよい。
また、上記実施例では、インバータ15から供給された反転増幅信号ASをヒステリシスコンパレータ16が2値化し、XO/TCXO端子12から入力された発振信号をバッファ17が2値化する構成について説明した。しかし、バッファ17としてヒステリシスコンパレータを用いてもよく、ヒステリシスコンパレータ16をバッファにより構成してもよい。つまり、ヒステリシスコンパレータ16は、第1端子11を介して供給された発振信号に基づいて2値化したクロック信号を生成するものであればよい。また、バッファ17は、第2端子12を介して供給された発振信号に基づいて2値化したクロック信号を生成するものであればよい。
また、上記実施例では、クロック生成装置10は、電源投入直後には、スイッチ13がOFF、スイッチ14がスイッチング端子14aと14cとを接続した状態、セレクタ18がクロック信号CK2を選択した状態となるように設定されている例について説明した。しかし、これとは異なり、クロック生成装置10が、電源投入直後、スイッチ13がON、スイッチ14がスイッチング端子14aと14bとを接続した状態、セレクタ18がクロック信号CK1を選択した状態となるように設定してもよい。
10 クロック生成装置
11 XI端子
12 XO/TCXO端子
13、14 スイッチ
15 インバータ
16 ヒステリシスコンパレータ
17 バッファ
18 セレクタ
19 クロックソース選択回路
21 カウンタ
22 レジスタ
23 比較回路
24、25 インバータ
26 セレクタ
27 FF
28 低速クロック発振回路

Claims (8)

  1. 電圧印加によって発振する振動子、又は自己発振して発振信号を生成する発振器が接続されるとマスタクロック信号を生成するクロック生成装置であって、
    前記振動子の一端が接続される又は基準電位が印加される第1端子と、
    前記振動子の他端又は前記発振器が接続される第2端子と、
    前記第1及び前記第2端子に電圧を印加することにより第1クロック信号を生成する第1クロック信号生成部と、
    前記第2端子を介して前記発振信号が供給された場合に前記発振信号に基づき第2クロック信号を生成する第2クロック信号生成部と、
    前記第1クロック信号及び前記第2クロック信号のうちの一方を前記マスタクロック信号として出力する出力部と、
    前記マスタクロック信号のパルス数をカウントするカウンタと、
    前記第1端子及び前記第1クロック信号生成部を接続又は非接続とする第1接続切替部と、
    前記第2端子を前記第1クロック信号生成部及び前記第2クロック信号生成部のうちのいずれか一方と接続する第2接続切替部と、
    を有し、
    前記カウンタは、電源投入時点からカウントを開始し、
    前記第1接続切替部は、前記電源投入時点を起算点とする所定期間の経過時点までは前記第1端子及び前記第1クロック信号生成部を非接続とし、前記所定期間の経過時点で前記パルス数が前記所定数に達しなかった場合には前記第1端子及び前記第1クロック信号生成部を接続し、前記所定期間の経過時点で前記パルス数が前記所定数に達した場合には前記第1端子及び前記第1クロック信号生成部を非接続に維持し、
    前記第2接続切替部は、前記電源投入時点を起算点とする前記所定期間の経過時点までは前記第2端子を前記第2クロック信号生成部と接続し、前記所定期間の経過時点で前記パルス数が前記所定数に達しなかった場合には前記第2端子の接続先を前記第1クロック信号生成部に切り替え、前記所定期間の経過時点で前記パルス数が前記所定数に達した場合には前記第2端子と前記第2クロック信号生成部との接続を維持し、
    前記出力部は、前記電源投入時点から前記所定期間の経過時点までは前記第2クロック信号生成部からの出力を前記マスタクロック信号として出力し、前記電源投入時点を起算点とする前記所定期間内において前記パルス数が所定数に達している場合には前記第2クロック信号生成部からの出力を前記マスタクロック信号として出力する一方、前記所定期間内に前記パルス数が前記所定数に満たない場合には前記第1クロック信号生成部からの出力を前記マスタクロック信号として出力することを特徴とするクロック生成装置。
  2. 前記マスタクロック信号に基づいてクロックソース選択信号を生成するクロックソース選択信号生成部をさらに含み、
    前記第1接続切替部は、前記クロックソース選択信号に応じて、前記第1端子及び前記第1クロック信号生成部を接続又は非接続に切り替え、
    前記第2接続切替部は、前記クロックソース選択信号に応じて、前記第2端子の接続先を前記第1クロック信号生成部又は前記第2クロック信号生成部に切り替え、
    前記出力部は、前記クロックソース選択信号に応じて、前記マスタクロック信号として出力する信号を前記第1クロック信号又は前記第2クロック信号に切り替える、
    ことを特徴とする請求項に記載のクロック生成装置。
  3. 前記電源投入時点から前記所定期間の経過時点で立ち上がる低速クロック信号を生成する低速クロック発振回路をさらに含み、
    前記クロックソース選択信号生成部は、
    前記電源投入時点から前記所定期間の経過時点までは、論理レベル0の前記クロックソース選択信号を生成し、
    前記所定期間の経過時点で前記パルス数が前記所定数に達しなかった場合には、前記低速クロック信号の立ち上がりに同期して論理レベル1の前記クロックソース選択信号を生成し、
    前記所定期間の経過時点で前記パルス数が前記所定数に達した場合には、論理レベル0の前記クロックソース選択信号を生成する、
    ことを特徴とする請求項に記載のクロック生成装置。
  4. 前記所定数の値を記憶するレジスタと、
    前記カウンタのカウント値を前記所定数の値と比較し、前記カウンタのカウント値が前記所定数の値と一致しない場合には前記カウンタをイネーブルし、前記所定数の値と一致する場合には前記カウンタをディセーブルする比較回路と、
    をさらに含むことを特徴とする請求項1乃至のいずれか1に記載のクロック生成装置。
  5. 前記第1クロック信号生成部は、前記第1端子からの入力信号を反転し、信号レベルを増幅し、2値化して前記第1クロック信号を生成し、
    前記第2クロック信号生成部は、前記発振信号の信号レベルを増幅し、2値化して前記第2クロック信号を生成する、
    ことを特徴とする請求項1乃至のいずれか1に記載のクロック生成装置。
  6. 前記振動子としての水晶振動子と、
    前記第1端子が前記水晶振動子の一端に接続され、前記第2端子が前記水晶振動子の他端に接続された請求項1乃至のいずれか1に記載のクロック生成装置と、
    を備えることを特徴とするクロック生成モジュール。
  7. 前記発振器としての温度補償水晶発振器と、
    前記第1端子に前記基準電位が印加され、前記第2端子に前記温度補償水晶発振器が接続された請求項1乃至のいずれか1に記載のクロック生成装置と、
    を備えることを特徴とするクロック生成モジュール。
  8. 電圧印加によって発振する振動子の一端又は基準電位に接続される第1端子と、前記振動子の他端又は自己発振して発振信号を生成する発振器に接続される第2端子と、を有し、前記振動子又は前記発振器の接続に応じてマスタクロック信号を出力するクロック生成装置におけるクロックソース選択方法であって、
    前記クロック生成装置の電源投入時点から所定期間が経過するまでの間、前記第2端子を介して供給された信号を前記マスタクロック信号として出力するステップと、
    前記電源投入時点から前記マスタクロック信号のパルス数をカウントするステップと、
    前記電源投入時点を起算点とする前記所定期間内に前記パルス数が所定数に達しない場合には、前記所定期間の経過後に前記クロック生成装置の第1端子と前記第2端子に電圧を印加することにより前記マスタクロックを生成して出力し、前記所定期間内に前記パルス数が所定数に達した場合には、前記所定期間の経過後も引き続き前記第2端子を介して供給された信号を前記マスタクロックとして出力するステップと、
    を含むことを特徴とするクロックソース選択方法。
JP2015005491A 2015-01-15 2015-01-15 クロック生成装置、クロック生成モジュール及びクロックソース選択方法 Active JP6522956B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015005491A JP6522956B2 (ja) 2015-01-15 2015-01-15 クロック生成装置、クロック生成モジュール及びクロックソース選択方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015005491A JP6522956B2 (ja) 2015-01-15 2015-01-15 クロック生成装置、クロック生成モジュール及びクロックソース選択方法

Publications (2)

Publication Number Publication Date
JP2016131339A JP2016131339A (ja) 2016-07-21
JP6522956B2 true JP6522956B2 (ja) 2019-05-29

Family

ID=56415661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015005491A Active JP6522956B2 (ja) 2015-01-15 2015-01-15 クロック生成装置、クロック生成モジュール及びクロックソース選択方法

Country Status (1)

Country Link
JP (1) JP6522956B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274810A (ja) * 1990-03-23 1991-12-05 Seiko Instr Inc 半導体集積回路
JP2601170B2 (ja) * 1993-08-02 1997-04-16 日本電気株式会社 発振回路
JP2002217689A (ja) * 2001-01-17 2002-08-02 Sanyo Electric Co Ltd 周波数可変rc発振器及びマイクロコンピュータ
JP3872779B2 (ja) * 2003-08-04 2007-01-24 Necエレクトロニクス株式会社 発振回路および半導体集積回路装置

Also Published As

Publication number Publication date
JP2016131339A (ja) 2016-07-21

Similar Documents

Publication Publication Date Title
US6975174B1 (en) Clock oscillator
US9083338B2 (en) Digital noise protection circuit and method
JP2010087571A (ja) 発振回路およびその制御方法
JP2018518107A5 (ja)
US8232847B2 (en) Oscillation circuit
JP6522956B2 (ja) クロック生成装置、クロック生成モジュール及びクロックソース選択方法
US6903616B2 (en) Startup circuit and method for starting an oscillator after power-off
EP3016279B1 (en) Cross-coupled oscillator, integrated circuit and electronic device
KR100202174B1 (ko) 파우어 온 리세트 신호 발생 회로
JP2006295362A (ja) 電圧制御発振回路用の印加電圧制御回路
JP5193167B2 (ja) 発振器、発振装置
JP4547226B2 (ja) 発振器及び半導体装置
JP2007318398A (ja) 水晶発振回路
JP2006279608A (ja) 圧電発振器
JPH09270639A (ja) 発振回路
JP5533052B2 (ja) 信号発生部付き発振回路
JP4277645B2 (ja) 発振開始検出回路及びそれを内蔵した半導体集積回路
JPH0719012Y2 (ja) 電圧検出回路
KR20240002692A (ko) 반도체 장치
JPH04160906A (ja) 発振回路
JPH0222580A (ja) テスト回路
JP2016076818A (ja) 圧電素子駆動回路
JP2011188313A (ja) 発振起動用パルス発生回路付き発振回路
JPH11186848A (ja) 発振回路
JP2016096495A (ja) クロック生成装置及びクロック生成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190425

R150 Certificate of patent or registration of utility model

Ref document number: 6522956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150