JP6501562B2 - 固体高分子形燃料電池の運転方法 - Google Patents

固体高分子形燃料電池の運転方法 Download PDF

Info

Publication number
JP6501562B2
JP6501562B2 JP2015046190A JP2015046190A JP6501562B2 JP 6501562 B2 JP6501562 B2 JP 6501562B2 JP 2015046190 A JP2015046190 A JP 2015046190A JP 2015046190 A JP2015046190 A JP 2015046190A JP 6501562 B2 JP6501562 B2 JP 6501562B2
Authority
JP
Japan
Prior art keywords
cooling water
oxygen
containing gas
fuel cell
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015046190A
Other languages
English (en)
Other versions
JP2016167375A (ja
Inventor
田中 雅士
雅士 田中
真吾 渡邉
真吾 渡邉
義彦 小山
義彦 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2015046190A priority Critical patent/JP6501562B2/ja
Publication of JP2016167375A publication Critical patent/JP2016167375A/ja
Application granted granted Critical
Publication of JP6501562B2 publication Critical patent/JP6501562B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、固体高分子電解質膜を燃料極と酸素含有ガス流路を有する酸素極とで挟んで構成されるセルと、前記セルから流出した冷却水を循環させて前記セルに供給する冷却水循環路を有する固体高分子形燃料電池の運転方法に関する。
固体高分子形燃料電池は、固体高分子電解質膜を燃料極及び酸素極で挟んで構成されるセルを複数積層して備えて構成される。固体高分子形燃料電池を発電運転させるとき、燃料極には燃料ガス(水素)を供給し、酸素極には酸素含有ガスを供給する。酸素極には酸素含有ガスが流通する酸素含有ガス流路が設けられる。固体高分子電解質膜は、燃料極で発生した水素イオンを酸素極まで移動させる役割を担っている。
特開2008−218050号公報
酸素含有ガスとしては、通常、外部の空気が用いられるが、空気中には硫黄酸化物、硫化水素、窒素酸化物などの汚染物質や粉塵が含まれている。これら汚染物質等が空気極を汚染することを抑制するため、従来は外部の空気の取り入れ口からセルまでの経路にフィルタが設けられていた。しかしながらフィルタを用いると圧損が生じ、セルに空気を送り込むためのブロア等の消費電力が増加するので、燃料電池のエネルギー効率が低下してしまう。また、フィルタは定期的に交換が必要となるため、フィルタ部品代による燃料電池の価格上昇に加えて、ランニングコストまでも増加してしまう。
フィルタを用いない方法として、特許文献1の燃料電池システムでは、燃料電池が低負荷状態の時に、触媒層中の水量を増加させる制御が行われる。触媒層中の水量の増加は、発電中の燃料電池内における反応生成水の凝縮量、蒸発量を制御することで行われる。これにより、触媒層中の不純物を除去し発電性能を回復できるとされている。また、低負荷時には酸化剤極電位が高いため、触媒に吸着した被毒種の脱離も進行し、被毒の解除効果も発現するとされている。
しかし特許文献1の方法では、燃料電池システムの運転中に水量増加の制御が行われるので、燃料電池システムの安定した運転を実現するために複雑な制御を行う必要があり、また、汚染物質等が十分に除去できない虞がある。
本発明は上述の課題に鑑みてなされたものであり、その目的は、確実に汚染物質等を除去できる固体高分子形燃料電池の運転方法を低コストで簡易に実現することにある。
上記目的を達成するための本発明に係る固体高分子形燃料電池の運転方法の特徴構成は、 固体高分子電解質膜を燃料極と酸素含有ガス流路を有する酸素極とで挟んで構成されるセルと、前記セルから流出した冷却水を循環させて前記セルに供給する冷却水循環路を有する固体高分子形燃料電池の運転方法であって、
前記固体高分子形燃料電池の発電性能が低下したとき、あるいは発電性能が低下する可能性が高いときに、発電運転を停止する運転停止工程と、
前記運転停止工程の後に、前記冷却水循環路から前記セルに冷却水を供給して、前記酸素含有ガス流路に前記冷却水が充満した状態である水没状態とする水没工程と、
前記水没工程の後に、前記酸素含有ガス流路における前記冷却水の流動を停止させる静置工程と、
前記静置工程の後に、前記酸素含有ガス流路から前記冷却水を排出する排出工程と、
前記排出工程の後に発電運転を開始する運転開始工程とを有する点にある。
上記の特徴構成によれば、水没工程にて冷却水循環路からセルに冷却水を供給して、酸素含有ガス流路に冷却水が充満した状態である水没状態とし、その後に酸素含有ガス流路における冷却水の流動を停止させる静置工程を行うので、空気極に付着した汚染物質等を充満した冷却水へと確実に溶出・分散させることができ、続く排出工程にて汚染物質等を含む冷却水をセルから排出することができる。したがって、固体高分子形燃料電池のセルから汚染物質等を確実に除去することができる。
また、水没工程の前に運転停止工程を行い、排出工程の後に運転開始工程を行うので、燃料電池が運転を停止した状態で上述の水没工程を行うこととなり、燃料電池の出力を維持するための特別な制御を行うことなく汚染物質等の除去を行うことができる。さらに、上記の特徴構成によれば、セルに汚染物質等が流入・付着することを抑制するフィルタを簡易化あるいは省略できるので、燃料電池の価格上昇およびランニングコストを低減することができる。
本発明に係る固体高分子形燃料電池の運転方法の別の特徴構成は、前記排出工程は、前記酸素含有ガス流路から排出された前記冷却水を前記冷却水循環路の外に排出する点にある。
上記の特徴構成によれば、排出工程において酸素含有ガス流路から排出された冷却水を冷却水循環路の外に排出するので、汚染物質等を含む冷却水が燃料電池の運転に用いられず、汚染物質等によるセルの汚染を抑制することができる。したがって燃料電池の発電性能が向上するとともに、汚染物質等の除去動作の頻度を低くすることができ、燃料電池の発電効率を高めることができる。
本発明に係る固体高分子形燃料電池の運転方法の別の特徴構成は、前記運転停止工程の後であって前記水没工程の前に前記冷却水循環路を前記酸素含有ガス流路に接続する接続工程を有し、前記水没工程において前記冷却水循環路から前記酸素含有ガス流路に前記冷却水が供給される点にある。
上記の特徴構成によれば、冷却水循環路を酸素含有ガス流路に接続する接続工程を行い、水没工程において冷却水循環路から酸素含有ガス流路に冷却水が供給されるので、迅速に水没状態を実現することができる。また、冷却水循環路からの冷却水の水流によって、酸素含有ガス流路に付着した汚染物質等を押し流すことができ、より確実に汚染物質等を除去することができる。
本発明に係る固体高分子形燃料電池の運転方法の別の特徴構成は、前記水没工程において前記冷却水循環路から前記酸素含有ガス流路に前記冷却水が供給される際、前記固体高分子形燃料電池を発電運転する際の前記酸素含有ガス流路における酸素含有ガスの流れる方向とは逆の方向に前記冷却水が流れる点にある。
酸素含有ガス流路において、発電運転時の酸素含有ガス(空気)の流れの上流側に、汚染物質等がより多く付着していると考えられる。上記の特徴構成によれば、水没工程において発電運転する際の酸素含有ガス流路における酸素含有ガスの流れる方向とは逆の方向に冷却水が流れるので、冷却水は汚染物質等の付着が相対的に少ない領域から多い領域へと流れることとなる。したがって、汚染物質等が多い領域を流れることで汚れた冷却水が、汚染物質等が少ない領域に流れ込んで汚染を拡大してしまう事態を避けることができ、より確実にセルから汚染物質等を除去することができる。
本発明に係る固体高分子形燃料電池の運転方法の別の特徴構成は、前記固体高分子形燃料電池は、前記冷却水循環路から冷却水が供給されて前記セルを冷却する冷却部を有しており、前記水没工程において前記冷却水循環路から前記冷却部に前記冷却水を供給することにより、前記酸素含有ガス流路に前記冷却水が充満した水没状態とする点にある。
固体高分子形燃料電池で用いられる固体高分子電解質膜は、適度に湿潤した状態で良好な水素イオン伝導性を発揮する。そこで冷却水循環路からの冷却水が固体高分子電解質膜を湿らせるように、冷却水がセルの内部に浸透するように構成される場合がある。上記の特徴構成によれば、固体高分子形燃料電池は冷却水循環路から冷却水が供給されてセルを冷却する冷却部を有しており、水没工程において冷却水循環路から冷却部に冷却水を供給することにより、酸素含有ガス流路に冷却水が充満した水没状態とするので、簡便な構成・制御により汚染物質等の除去を実現することができる。
第1実施形態に係る固体高分子形燃料電池の構成を示す概略図 固体高分子形燃料電池の運転方法を示すフローチャート 第2実施形態に係る固体高分子形燃料電池の構成を示す概略図
<第1実施形態>
以下に図面を参照して第1実施形態に係る燃料電池システムの構成および動作について説明する。
図1は、燃料電池システムの構成を説明する図である。燃料電池システムは、固体高分子形燃料電池FC(以下、単に「燃料電池FC」と記載する)を備える。燃料電池FCは固体高分子電解質膜4を燃料極3及び酸素極5で挟んで構成されるセルCを複数積層して備える。尚、図1中では簡略化のため単一のセルCのみを記載している。燃料極3には燃料ガス(水素)が供給され、酸素極5には酸素含有ガス(空気)が供給され、もって発電が行われる。酸素極5には、酸素含有ガスが通流する酸素含有ガス流路が設けられる。
また燃料電池FCは、発電時に発生する熱を回収することで燃料電池FCを冷却する冷却部6を備える。本実施形態では水冷式の冷却部6を設けている。具体的には、この冷却部6には後述する冷却水循環路19を循環する水(以下、「冷却水」と記載する)が供給されて、燃料電池FCの冷却が行われる。冷却部6を通過することで温度が上昇した冷却水は、冷却水循環路19の途中に設けられた熱交換器8に流入する。詳細は後述するが、この熱交換器8において、冷却水は、排熱回収路25を流れる湯水と熱交換して燃料電池FCから回収した排熱をその湯水に渡す。湯水は、貯湯タンク7に貯えられ、そこで蓄熱が行われる。
改質器1には、炭化水素を含む原燃料(例えば、メタンを含む都市ガスなど)が供給され、及び、冷却水循環路19から分岐した改質用水供給路20を介して水が供給される。改質器1は、併設される燃焼器2から与えられる燃焼熱を利用して、原燃料の水蒸気改質を行う。改質器1での水蒸気改質により得られた水素を主成分とする燃料ガスは、燃料ガス供給路14を介して燃料極3に供給される。
燃料極3では、供給された全ての燃料ガスが発電反応で消費される訳ではない。そのため、燃料極3から排出される燃料極排ガスの中には水素等の燃料ガスの成分が残存している。そこで、燃焼器2での燃焼用ガスとして、燃料極排ガスを利用している。具体的には、燃料極3から燃焼器2へ、燃料極排ガス路15を介して燃料極排ガスを供給する。燃焼器2で燃焼された後の燃焼排ガスは、燃焼排ガス路16を介して外部に排出される。
燃料極排ガス及び燃焼排ガスには水分が含まれている。そのため、その水分を回収する目的で、燃料極排ガス路15及び燃焼排ガス路16の途中に水回収器21、22を設けている。水回収器21、22は、例えば、凝縮器とドレントラップとを組み合わせて構成される。つまり、燃料極排ガス及び燃焼排ガスに含まれる水分が凝縮器によって凝縮され、その凝縮水がドレントラップによって取り出される。ドレントラップによって取り出された水は水回収タンク10へと回収され、冷却水循環路19を循環する水として再利用される。
このように、冷却水循環路19を流れる冷却水は、燃料極排ガス中に含まれていた水分や、燃焼排ガス中に含まれていた水分が混入しているため、電解質や水に溶解しない不純物などを含んでいることが想定される。そのため、本実施形態の燃料電池システムは、冷却水循環路19を流れる冷却水が、冷却水循環路19の途中に設けられる水処理装置9によって処理されるように構成してある。本実施形態において、水処理装置9は、冷却水中に存在している有機物などを吸着可能な吸着材9aと、冷却水中に溶存しているイオンを除去可能なイオン交換樹脂9bとを含む。水処理装置9は、これら吸着材9a及びイオン交換樹脂9bの一方のみで構成されてもよく、或いは、これら以外の手段を備えてもよい。例えば逆浸透膜などを併用してもよい。
イオン交換樹脂9bは、冷却水に溶存している電解質のイオン(例えば、イオン化して溶存している塩類やアンモニアなど)を例えばH+、OH-と交換することで、冷却水に含まれる電解質の濃度を相対的に低くさせる(即ち、電気伝導度を低くさせる)機能を果たす。例えば、水処理装置9よりも下流側の冷却水循環路19を流れる冷却水の電気伝導度は、1μS/cm〜10μS/cm程度であることが好ましい。
吸着材9aは例えば活性炭等を備えて構成され、冷却水に含まれる有機物(例えば、シロキサン、無極性又は極性有機分子、微生物や微生物の分泌物、油分等)などの被吸着物を吸着するという機能を発揮する。例えば、水処理装置9よりも下流側の冷却水循環路19を流れる冷却水の油分濃度は、0.01wtppm〜1wtppm程度であることが好ましい。
上述した熱交換器8において冷却水から回収した排熱(即ち、燃料電池FCから回収した排熱)は、排熱回収路25を流れる湯水に与えられ、その湯水は貯湯タンク7に貯えられる。本実施形態において、燃料電池FCの排熱を回収する排熱回収装置12は、貯湯タンク7と補助熱源機11とを備える。具体的には、排熱回収装置12は、貯湯タンク7に貯えている湯水が貯湯タンク7と熱交換器8との間で循環する排熱回収路25を有する。排熱回収路25における湯水の流速はポンプP2によって調整される。また、排熱回収装置12は、貯湯タンク7に蓄えている湯水が補助熱源機11を経由して熱利用装置13に供給される湯水循環路26を有する。湯水循環路26における湯水の流速はポンプP3によって調整される。熱利用装置13が、湯水の熱のみを利用する床暖房装置などの場合、熱利用装置13で熱が利用された後の湯水は湯水循環路26を通って貯湯タンク7に帰還する。或いは、熱利用装置13が、湯水自体を利用する給湯装置などの場合、貯湯タンク7には湯水は帰還しない。補助熱源機11は、熱利用装置13で要求される湯水を所定温度に昇温した上で熱利用装置13に供給する際に使用される。
本実施形態では、酸素極5の内部に設けられた酸素含有ガス流路に対して、冷却水循環路19から冷却水を供給するための冷却水供給路23が設けられる。冷却水供給路23は、その一方の端部が冷却水循環路19の冷却部6と熱交換器8との間に、三方弁V3を介して接続され、もう一方の端部が酸素極排ガス路18に三方弁V4を介して接続される。
また本実施形態では、酸素極5の内部に設けられた酸素含有ガス流路から冷却水を排出するための冷却水排出路24が設けられる。冷却水排出路24は、一方の端部が酸素含有ガス供給路17に三方弁V7を介して接続され、もう一方の端部はポンプP4に接続される。ポンプP4の作動により、酸素極5の酸素含有ガス流路から冷却水が冷却水循環路19の外である燃料電池FCの外部に排水される。
燃料電池FCが発電運転を行っている間、運転制御装置27は、改質器1および燃焼器2を動作させて改質器1から燃料ガスを燃料極3に供給し、及び、酸素含有ガス供給路17の途中に設けている三方弁V7を、空気供給源側から酸素極5側に通流させる方向に開弁して空気(酸素含有ガス)を酸素極5に供給する。その結果、セルCでは発電反応が行われ、電気負荷(図示せず)やインバータ(図示せず)などに対して電力が出力される。
燃料電池FCの発電運転を行っている間、燃料極排ガス路15を通じて燃料極排ガスが燃焼器2に供給され、その結果、燃焼器2では、燃料極排ガスに残存している水素が燃焼される。
また、運転制御装置27は、燃料電池FCの発電運転を行っている間、酸素極排ガス路18の途中に設けている三方弁V4を、酸素極5側から排出側に通流させる方向に開弁して酸素極排ガスを外部に排出させる。
尚、運転制御装置27は、改質器1で燃料ガスを生成するとき、改質器1に原燃料を供給し、且つ、冷却水循環路19に設けているポンプP1を動作させると共に冷却水循環路19から分岐した改質用水供給路20に設けている弁V2を開弁して改質器1に改質用水を供給する。改質器1には上述したように燃焼器2で発生される燃焼熱が与えられて、水蒸気改質反応が促進される。
<洗浄処理制御>
図2は、本実施形態に係る燃料電池システムで行われる洗浄処理制御(固体高分子形燃料電池の運転方法)を示すフローチャートである。運転制御装置27は、発電性能が低下した際、あるいは発電性能が低下する可能性が高いとき、洗浄処理制御を行う。本実施形態では、燃料電池FCの出力電圧が低下した際、発電性能が低下したと判断する。なお、燃料電池FCの起動からの経過時間が所定の閾値を超えた際、あるいは燃料電池FCの設置からの累積運転時間が所定の閾値を超えた際、発電性能が低下する可能性が高いと判断するように運転制御装置27を構成してもよい。
工程#1(運転停止工程)は、燃料電池FCの運転を停止する工程である。
工程#1(運転停止工程)において運転制御装置27は、燃料電池FCの発電運転を停止する。具体的には運転制御装置27は、改質器1および燃焼器2の動作を停止させ、燃料極3(セルC)への燃料ガスの供給を停止する。また運転制御装置27は、三方弁V7を閉じて酸素極5(セルC)への空気の供給を停止する。さらに運転制御装置27は、ポンプP1を停止し、弁V1および弁V2を閉じて冷却部6(セルC)および改質器1への冷却水の供給を停止する。なお、セルCへの燃料ガスおよび空気の供給を停止した後、所定の時間が経過してから弁V1および弁V2を閉弁するようにして、セルCの冷却を行ってもよい。
工程#2(接続工程)は、冷却水循環路19を酸素極5の酸素含有ガス流路に接続する工程である。この工程により、後述する水没工程において冷却水循環路19から酸素極5の酸素含有ガス流路に冷却水が供給されるようになる。
工程#2(接続工程)において運転制御装置27は、三方弁V3を冷却水循環路19と冷却水供給路23とを連通させる方向に開弁し、三方弁V4を冷却水供給路23と酸素極排ガス路18とを連通させる方向に開弁する。これにより冷却水循環路19が冷却水供給路23と酸素極排ガス路18とに接続されるので、冷却水循環路19が酸素極5の酸素含有ガス流路に接続される。ここで「接続」とは、例えば冷却水循環路19と冷却水供給路23と酸素極排ガス路18の内部の空間が連通し、冷却水や空気が通流し得る状態になることをいう。また運転制御装置27は、三方弁V7を閉じて、酸素含有ガス供給路17から冷却水が流出しないようにする。
工程#3(水没工程)は、冷却水循環路19からセルCに冷却水を供給して、酸素極5の酸素含有ガス流路に冷却水が充満した状態である水没状態とする工程である。
工程#3(水没工程)において運転制御装置27は、弁V1を開いてポンプP1を作動させ、冷却水を冷却水循環路19から冷却水供給路23と酸素極排ガス路18とを経由して酸素極5(セルC)の酸素含有ガス流路に供給する。先の工程#2(接続工程)において三方弁V7が閉じられており、比較的短時間で冷却水が酸素極5の酸素含有ガス流路に充満した状態すなわち水没状態となる。なお冷却水を酸素極5の酸素含有ガス流路に供給する際、三方弁V7を酸素含有ガス供給路17の酸素極5側から空気供給源側または冷却水排出路24側に通流させる方向に一時的に開弁して、酸素極5の酸素含有ガス流路の内部の空気や冷却水の一部を酸素含有ガス供給路17から流出させてもよい。
本実施形態では、工程#2(接続工程)において冷却水供給路23が酸素極排ガス路18に接続されているので、工程#3(水没工程)において冷却水は酸素極排ガス路18側から酸素極5の酸素含有ガス流路に流入し、酸素極排ガス路18側へと流れる。なお、燃料電池FCを発電運転する際には、酸素含有ガスは酸素含有ガス供給路17側から酸素極5の酸素含有ガス流路に流入し、酸素極排ガス路18側へと流れる。したがって、工程#3(水没工程)において冷却水循環路19から酸素極5(セルC)の酸素含有ガス流路に冷却水が供給される際、燃料電池FCを発電運転する際の酸素極5の酸素含有ガス流路における酸素含有ガスの流れる方向とは逆の方向に冷却水が流れる。
工程#3(水没工程)を開始するタイミングとしては、工程#1(運転停止工程)および工程#2(接続工程)が完了した後すぐに行ってもよい。この場合、酸素極5の温度が比較的高い状態で水没工程が行われるので、汚染物質等を効果的に除去できる。あるいは、工程#1(運転停止工程)および工程#2(接続工程)が完了した後、所定の時間が経過した後、あるいはセルCの温度が所定の温度よりも低くなった後、水没工程を行ってもよい。この場合、酸素極5の温度が運転時よりも低い状態で水没工程を行うので、冷却水との接触による酸素極5の損傷の可能性を低減することができる。
工程#4(静置工程)は、酸素極5の酸素含有ガス流路における冷却水の流動を停止させる工程である。
工程#4(静置工程)において運転制御装置27は、ポンプP1を停止させ、酸素極5の酸素含有ガス流路における冷却水の流動を停止させる。この際、三方弁V4と三方弁V7とを閉じて、酸素含有ガス流路の両端を閉鎖してもよい。
工程#5(排出工程)は、酸素極5の酸素含有ガス流路から冷却水を排出する工程である。
工程#5(排出工程)において運転制御装置27は、三方弁V7を酸素含有ガス供給路17の酸素極5側と冷却水排出路24とを連通させる方向に開弁し、ポンプP4を作動させて、酸素含有ガス流路から冷却水を排出する。酸素含有ガス流路から排出された冷却水は、冷却水循環路19には戻されず、冷却水循環路19の外である燃料電池FCの外部に排水される。酸素含有ガス流路からの冷却水の排出が完了したら、運転制御装置27はポンプP4の作動を停止させる。
工程#5(排出工程)を開始するタイミングとしては、工程#4(静置工程)を開始してから所定の時間が経過した時点で開始してもよいし、セルCの温度を監視して所定の温度を下回った時点で開始してもよい。またこれらを組み合わせて、所定の時間が経過し、かつ、所定の温度を下回った時点で開始してもよい。
工程#6(接続解除工程)は、冷却水循環路19と酸素極5の酸素含有ガス流路との接続を解除する工程である。
工程#6(接続解除工程)において運転制御装置27は、冷却水循環路19と酸素極5の酸素含有ガス流路との接続を解除する。すなわちこの時、冷却水循環路19と酸素極5の酸素含有ガス流路とが連通しない状態となる。具体的には運転制御装置27は、三方弁V3を冷却水循環路19の冷却部6側と熱交換器8側とを連通させる方向に開弁し、三方弁V4を酸素極排ガス路18の酸素極5側と排気側とを連通させる方向に開弁する。これにより、冷却部6から排出される冷却水が熱交換器8に送られる状態となり、また、酸素極5から排出された酸素極排ガスが酸素極排ガス路18を通じて排出される状態となる。
工程#7(運転開始工程)は、燃料電池FCの発電運転を開始する工程である。
工程#7(運転開始工程)において運転制御装置27は、燃料電池FCの発電運転を開始する。具体的には運転制御装置27は、改質器1および燃焼器2の動作を開始させ、燃料極3(セルC)への燃料ガスの供給を開始する。また運転制御装置27は、三方弁V7を空気供給源側から酸素含有ガス供給路17の酸素極5側に通流させる方向に開弁させて、空気供給源からの空気を酸素極5に供給する。さらに運転制御装置27は、ポンプP1を動作させ、かつ、弁V1および弁V2を閉じて冷却部6(セルC)および改質器1への冷却水の供給を開始する。これにより燃料電池FCは発電を開始する。
<第2実施形態>
次に図3を参照して第2実施形態に係る燃料電池システムの構成および動作ついて説明する。第1実施形態と同一の構成については、同一の符号を用い説明を省略する。
第2実施形態に係る燃料電池FCは、電解質膜4を加湿するための加湿水と冷却部6を冷却する冷却水とが兼用される形式であり、例えばセルCおよび冷却部6が冷却水を透過する多孔質体を有して構成される。冷却部6に供給された冷却水は、冷却部6からしみ出して酸素極5の酸素含有ガス流路へと供給され、酸素含有ガス流路に冷却水が充満した状態(水没状態)となる。冷却部6は、冷却水循環路19から冷却水が供給されてセルCを冷却するが、冷却部6はセルCに隣接するか、あるいはセルCの燃料極3と酸素極5とに挟まれて配置される。
本実施形態では、酸素極5の内部に設けられた酸素含有ガス流路から冷却水を排出するための冷却水排出路24が設けられる。冷却水循環路19の冷却部6と熱交換器8との間に三方弁V3が設けられ、酸素極排ガス路18に三方弁V4が設けられる。冷却水排出路24は、三方弁V3と三方弁V4とを結んで設けられ、さらに三方弁V3と三方弁V4の間から分岐して、ポンプP4に接続される。そしてポンプP4の作動により、酸素含有ガス流路から排出された冷却水が冷却水循環路19の外である燃料電池FCの外部に排水される。
<洗浄処理制御>
第2実施形態で行われる洗浄処理制御(固体高分子形燃料電池の運転方法)について以下説明する。まず工程#1(運転停止工程)は、第1実施形態と同様に行われる。工程#2(接続工程)については、第2実施形態では冷却部6への冷却水供給により水没状態が実現されるので、工程#2は省略される。
工程#3(水没工程)において運転制御装置27は、弁V1を開いてポンプP1を作動させ、冷却水を冷却水循環路19から冷却部6に供給し、これによりセルCの内部を経由して冷却水を酸素極5の酸素含有ガス流路に供給する。その際、三方弁V3を閉じて冷却部6における冷却水の圧力を高めて、酸素含有ガス流路への冷却水の供給を促進してもよい。
工程#4(静置工程)は第1実施形態と同様に行われ、酸素極5の酸素含有ガス流路における冷却水の流動が停止される。
工程#5(排出工程)において運転制御装置27は、三方弁V4を酸素極排ガス路18の酸素極5側から冷却水排出路24に通流させる方向に開弁し、ポンプP4を作動させて、酸素含有ガス流路から冷却水を排出する。酸素含有ガス流路から排出された冷却水は、冷却水循環路19には戻されず、冷却水循環路19の外である燃料電池FCの外部に排水される。酸素含有ガス流路からの冷却水の排出が完了したら、運転制御装置27はポンプP4の作動を停止させる。この時、三方弁V3を冷却水循環路19の冷却部6側と冷却水排出路24とを連通させる方向に開弁し、加えて弁V1を閉弁することで、冷却部6から冷却水排出路24へと冷却水を導き、酸素含有ガス流路からの冷却水の排出を促進してもよい。
工程#6(接続解除工程)において運転制御装置27は、第1実施形態とは異なり、酸素極排ガス路18と冷却水排出路24との接続を解除する。すなわちこの時、酸素極排ガス路18と冷却水排出路24とが連通しない状態となる。具体的には運転制御装置27は、三方弁V3を冷却水循環路19の冷却部6側と熱交換器8側とを連通させる方向に開弁し、三方弁V4を酸素極排ガス路18の酸素極5側と排気側とを連通させる方向に開弁する。これにより、冷却部6から排出される冷却水が熱交換器8に送られる状態となり、また、酸素極5から排出された酸素極排ガスが酸素極排ガス路18を通じて排出される状態となる。
工程#7(運転開始工程)は、第1実施形態と同様に行われる。
<汚染物質の除去効果の実験>
第1実施形態に係る洗浄処理制御(冷却水循環路19を酸素極5の酸素含有ガス流路に接続して冷却水を供給)による汚染物質等の除去の効果を確認するため、以下の実験を行った。
実験装置として、セルCの洗浄後に通常出力による運転を3000時間行って、同程度の汚染状態とした燃料電池FCを2台用意した。
<比較例>
特許文献1に記載された触媒層中の水量を増加させる制御による汚染物質の除去効果を測定した。具体的には、燃料電池FCの運転中に燃料電池FCにおける反応生成水の凝縮量、蒸発量を制御して触媒層中の含水量を増加させ、その状態で12時間運転した。停止後、純水に浸漬して洗い出した後、冷却水を新しいものに入れ替えて通常出力による運転を再開し、その際の冷却水を採取して、汚染物質の濃度を測定した。
<実施例>
酸素極5の酸素含有ガス流路を水没状態にして12時間放置し(静置工程)、続いて排出工程を行った。その後冷却水を入れ替えて通常出力による運転を再開し、その際の冷却水を採取して、汚染物質の濃度を測定した。
次の表は、比較例で測定された汚染物質の濃度を1として、実施例で測定された汚染物質の濃度を示したものである。フッ化物イオン、塩化物イオン、硝酸イオン、硫酸イオン、アンモニウムイオン、カルシウムのいずれの汚染物質も、比較例に比べて実施例では減少した。特に硫酸イオン、アンモニウムイオン、カルシウムは実施例では検出されず、洗浄処理制御(運転方法)による顕著な除去効果が示された。
Figure 0006501562
<別実施形態>
(1)第1実施形態および第2実施形態の運転停止工程では、燃料極3(セルC)への燃料ガスの供給の停止と、酸素極5(セルC)への空気の供給を停止と、冷却部6(セルC)への冷却水の供給の停止とを行ったが、洗浄処理制御を行うにあたっては燃料電池FCの発電が停止し酸素極5の酸素含有ガス流路への冷却水の充満が可能であればよい。よって燃料極3(セルC)への燃料ガスの供給、酸素極5(セルC)への空気の供給、冷却部6(セルC)への冷却水の供給のいずれかが継続している場合であっても発電が停止した運転停止工程であるといえる。
(2)第1実施形態では、冷却部6の下流側(熱交換器8側)で冷却水循環路19を酸素極排ガス路18に接続し、もって酸素含有ガス流路に接続したが、冷却部6の上流側(弁V1側)で冷却水循環路19を酸素含有ガス供給路17に接続し、もって酸素含有ガス流路に接続してもよい。
3 :燃料極
4 :電解質膜
5 :酸素極
6 :冷却部
19 :冷却水循環路
C :セル

Claims (5)

  1. 固体高分子電解質膜を燃料極と酸素含有ガス流路を有する酸素極とで挟んで構成されるセルと、前記セルから流出した冷却水を循環させて前記セルに供給する冷却水循環路を有する固体高分子形燃料電池の運転方法であって、
    前記固体高分子形燃料電池の発電性能が低下したとき、あるいは発電性能が低下する可能性が高いときに、発電運転を停止する運転停止工程と、
    前記運転停止工程の後に、前記冷却水循環路から前記セルに冷却水を供給して、前記酸素含有ガス流路に前記冷却水が充満した状態である水没状態とする水没工程と、
    前記水没工程の後に、前記酸素含有ガス流路における前記冷却水の流動を停止させる静置工程と、
    前記静置工程の後に、前記酸素含有ガス流路から前記冷却水を排出する排出工程と、
    前記排出工程の後に発電運転を開始する運転開始工程とを有する固体高分子形燃料電池の運転方法。
  2. 前記排出工程は、前記酸素含有ガス流路から排出された前記冷却水を前記冷却水循環路の外に排出する請求項1に記載の固体高分子形燃料電池の運転方法。
  3. 前記運転停止工程の後であって前記水没工程の前に前記冷却水循環路を前記酸素含有ガス流路に接続する接続工程を有し、前記水没工程において前記冷却水循環路から前記酸素含有ガス流路に前記冷却水が供給される請求項1または2に記載の固体高分子形燃料電池の運転方法。
  4. 前記水没工程において前記冷却水循環路から前記酸素含有ガス流路に前記冷却水が供給される際、前記固体高分子形燃料電池を発電運転する際の前記酸素含有ガス流路における酸素含有ガスの流れる方向とは逆の方向に前記冷却水が流れる請求項3に記載の固体高分子形燃料電池の運転方法。
  5. 前記固体高分子形燃料電池は、前記冷却水循環路から冷却水が供給されて前記セルを冷却する冷却部を有しており、
    前記水没工程において前記冷却水循環路から前記冷却部に前記冷却水を供給することにより、前記酸素含有ガス流路に前記冷却水が充満した水没状態とする請求項1または2に記載の固体高分子形燃料電池の運転方法。
JP2015046190A 2015-03-09 2015-03-09 固体高分子形燃料電池の運転方法 Active JP6501562B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015046190A JP6501562B2 (ja) 2015-03-09 2015-03-09 固体高分子形燃料電池の運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015046190A JP6501562B2 (ja) 2015-03-09 2015-03-09 固体高分子形燃料電池の運転方法

Publications (2)

Publication Number Publication Date
JP2016167375A JP2016167375A (ja) 2016-09-15
JP6501562B2 true JP6501562B2 (ja) 2019-04-17

Family

ID=56898550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015046190A Active JP6501562B2 (ja) 2015-03-09 2015-03-09 固体高分子形燃料電池の運転方法

Country Status (1)

Country Link
JP (1) JP6501562B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018060687A (ja) * 2016-10-05 2018-04-12 三菱自動車工業株式会社 燃料電池システム
JP7264718B2 (ja) * 2019-05-16 2023-04-25 東京瓦斯株式会社 燃料電池システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276669A (ja) * 2004-03-25 2005-10-06 Nissan Motor Co Ltd 燃料電池システム
JP4633403B2 (ja) * 2004-08-23 2011-02-16 東芝燃料電池システム株式会社 燃料電池システム及びその起動・停止方法
JP2006302551A (ja) * 2005-04-18 2006-11-02 Matsushita Electric Ind Co Ltd 燃料電池システムおよびその運転方法
CA2577766A1 (en) * 2006-02-17 2007-08-17 Nuvera Fuel Cells, Inc. Method of cleaning fuel cell
JP2009016295A (ja) * 2007-07-09 2009-01-22 Honda Motor Co Ltd 燃料電池システム

Also Published As

Publication number Publication date
JP2016167375A (ja) 2016-09-15

Similar Documents

Publication Publication Date Title
JP2007207671A (ja) 燃料電池システム
JP6501562B2 (ja) 固体高分子形燃料電池の運転方法
JP5261999B2 (ja) 燃料電池発電装置
WO2002015315A1 (fr) Systeme de pile a combustible
JP4504614B2 (ja) 燃料電池発電システム
JP2008135271A (ja) 燃料電池装置
JP2010198920A (ja) 燃料電池発電システム
JP2007323863A (ja) 燃料電池システム及び燃料電池の停止方法
KR20200060146A (ko) 수전해 시스템
JP2009170131A (ja) 燃料電池発電システムおよびその運転方法
JP2007234477A (ja) 燃料電池発電システム、その運転方法、プログラム、及び記録媒体
JP5949333B2 (ja) 燃料電池の運転方法及び燃料電池システム
JP2009087726A (ja) 燃料電池システム
JP2004281075A (ja) 固体高分子形燃料電池用水処理装置
JP6501563B2 (ja) 固体高分子形燃料電池システム
JP5984411B2 (ja) 燃料電池の保管方法
JP2011029116A (ja) 燃料電池装置
JP2009266608A (ja) 燃料電池システム
JP4000971B2 (ja) 燃料電池システム
JP2008310970A (ja) 固体高分子電解質型燃料電池スタックの洗浄方法および洗浄装置
JP2015011914A (ja) 燃料電池システム
JP2013206657A (ja) 燃料電池発電システム
JP2009140726A (ja) 燃料電池発電装置
JP2005038787A (ja) 燃料電池システム
JP5292865B2 (ja) 燃料電池発電装置の水回収方法及び燃料電池発電装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190319

R150 Certificate of patent or registration of utility model

Ref document number: 6501562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150